JP2013096661A - Heat pump device and heat pump water heater - Google Patents

Heat pump device and heat pump water heater Download PDF

Info

Publication number
JP2013096661A
JP2013096661A JP2011241294A JP2011241294A JP2013096661A JP 2013096661 A JP2013096661 A JP 2013096661A JP 2011241294 A JP2011241294 A JP 2011241294A JP 2011241294 A JP2011241294 A JP 2011241294A JP 2013096661 A JP2013096661 A JP 2013096661A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
compressor
circuit
defrosting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011241294A
Other languages
Japanese (ja)
Other versions
JP5939764B2 (en
Inventor
Masayoshi Obayashi
誠善 大林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011241294A priority Critical patent/JP5939764B2/en
Publication of JP2013096661A publication Critical patent/JP2013096661A/en
Application granted granted Critical
Publication of JP5939764B2 publication Critical patent/JP5939764B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a heat pump device capable of suppressing the amount of liquid returning to a compressor without using a refrigerant container while unfreezing frost deposited on a bottom of a heat sink, and to provide a heat pump water heater.SOLUTION: A heat pump device includes: a main circuit 10 having an air heat exchanger 5 in which a compressor 1, a water heat exchanger 2, an expansion valve 4, and an air heat exchanger 5 are connected in order by a refrigerant pipe, and exchanging heat between a high-pressure refrigerant on an intake side of the expansion valve 4 and a low-tempreature refrigerant on an outlet side of the air heat exchanger 5; a main defrosting circuit 20 guiding the high-temperature refrigerant discharged from the compressor 1 to the intake of a low/high-pressure heat exchanger 3 in a state of a higher temperature than that in normal operation by reducing the heat radiation of the water heat exchanger 2; and an auxiliary defrosting circuit 30 branched from a clearance between the compressor 1 and the water heat exchanger 2 of the main circuit 10, and joined to an intake side of the air heat exchanger 5 through an auxiliary-side on/off-valve 30a and a refrigerant pipe of a bottom stage forming a flow passage independent of the main circuit 10 among refrigerant pipes of a plurality of stages of the air heat exchanger 5.

Description

本発明は、ヒートポンプ装置及びヒートポンプ給湯機に関するものである。   The present invention relates to a heat pump device and a heat pump water heater.

一般的に、給湯用や空調用に用いられるヒートポンプ装置は、圧縮機と、放熱器と、膨張弁と、吸熱器とを冷媒配管で順次接続した冷凍サイクルを備えている。吸熱器の熱源として大気を用いるヒートポンプ装置では、冷凍サイクルの効率を向上させるために、吸熱器(以下、空気熱交換器と記載する)に付着した霜の除霜運転を行うことができるようになっていることが多い。そして、この除霜運転の効率を向上させるようにしたものが種々提案されている。   Generally, a heat pump device used for hot water supply or air conditioning includes a refrigeration cycle in which a compressor, a radiator, an expansion valve, and a heat absorber are sequentially connected by a refrigerant pipe. In a heat pump device that uses the atmosphere as a heat source for a heat absorber, in order to improve the efficiency of the refrigeration cycle, it is possible to perform a defrosting operation of frost attached to the heat absorber (hereinafter referred to as an air heat exchanger). Often has become. Various proposals have been made to improve the efficiency of the defrosting operation.

しかしながら、空気熱交換器に付着した霜が除霜運転時に溶けた際、一部は霜の状態のまま滑り落ちて空気熱交換器の最下部に堆積したり、また、低温の溶けた水が同様に最下部に溜まったりして、その最下部に堆積した霜等が溶解しきれずに残ってしまうことがある。   However, when the frost adhering to the air heat exchanger melts during the defrosting operation, some of the frost slides down and accumulates at the bottom of the air heat exchanger, or low-temperature melted water Similarly, it may accumulate in the lowermost part, and frost or the like accumulated in the lowermost part may remain undissolved.

これを防止するため、従来より、圧縮機と放熱器との間から分岐させたバイパス配管を、空気熱交換器の最下段の冷媒配管よりも下方を通過させ、空気熱交換器の出口側に合流させた冷凍サイクル装置が提案されている(例えば、特許文献1参照)。この冷凍サイクル装置では、圧縮機と放熱器との間の高温のガス冷媒を、バイパス配管により空気熱交換器の最下段を通過させることで空気熱交換器の最下部に堆積した霜を溶かすようにしている。   In order to prevent this, conventionally, a bypass pipe branched from between the compressor and the radiator is passed below the lowermost refrigerant pipe of the air heat exchanger, and is connected to the outlet side of the air heat exchanger. A combined refrigeration cycle apparatus has been proposed (see, for example, Patent Document 1). In this refrigeration cycle apparatus, the high-temperature gas refrigerant between the compressor and the radiator is passed through the lowest stage of the air heat exchanger by the bypass pipe so as to melt the frost accumulated at the lowermost part of the air heat exchanger. I have to.

特許文献1の技術において高温のガス冷媒は、バイパス管により空気熱交換器を通過した際に冷却されて液冷媒となり、空気熱交換器から流出した冷媒と空気熱交換器の出口側で合流した後、圧縮機に向かう。圧縮機に向かう液冷媒がそのまま圧縮機に吸入されると、所謂液戻りとなることから、これを防止するため、圧縮機の吸入側にはアキュムレータが設けられている。   In the technique of Patent Document 1, the high-temperature gas refrigerant is cooled when it passes through the air heat exchanger by the bypass pipe, becomes a liquid refrigerant, and merges on the outlet side of the air heat exchanger with the refrigerant that has flowed out of the air heat exchanger. Then head to the compressor. If the liquid refrigerant directed to the compressor is sucked into the compressor as it is, so-called liquid return occurs, and in order to prevent this, an accumulator is provided on the suction side of the compressor.

特開2008−138921号公報(第12頁、第1図)JP 2008-138921 A (page 12, FIG. 1)

従来の冷凍サイクル装置では、空気熱交換器の最下部に高温ガス冷媒を流すバイパス管を設けたことにより、空気熱交換器の最下部に堆積する霜を溶かすことができる一方、バイパス管で凝縮した液冷媒を貯留するアキュムレータなどの冷媒容器が必要となり、コストが上昇するという問題があった。   In the conventional refrigeration cycle apparatus, by providing a bypass pipe through which high-temperature gas refrigerant flows at the bottom of the air heat exchanger, frost accumulated at the bottom of the air heat exchanger can be melted, while condensing in the bypass pipe Therefore, a refrigerant container such as an accumulator for storing the liquid refrigerant is required, which increases the cost.

本発明は、上記のような課題を解決するためになされたもので、吸熱器の最下部に堆積する霜を溶かすことを可能としつつ、冷媒容器を用いずに圧縮機への液戻り量を抑制することができるヒートポンプ装置及びヒートポンプ給湯機を提供することを目的とする。   The present invention has been made to solve the above-described problems, and it is possible to melt the frost accumulated at the lowermost portion of the heat absorber, while reducing the amount of liquid returned to the compressor without using a refrigerant container. It aims at providing the heat pump apparatus and heat pump water heater which can be suppressed.

本発明に係るヒートポンプ装置は、圧縮機と、放熱器と、減圧装置と、吸熱器とが順次冷媒配管で接続され、減圧装置の入口側の高圧冷媒と吸熱器の出口側の低圧冷媒とを熱交換させる高低圧熱交換器を備えた主回路と、放熱器での放熱を低減して通常運転時よりも温度が高い状態で圧縮機から吐出された高温冷媒を高低圧熱交換器の入口に導くための主除霜回路と、主回路の圧縮機と放熱器との間から分岐し、補助側開閉弁と、吸熱器の複数段の冷媒配管のうち主回路とは別の独立した流路を形成している最下段の冷媒配管とを介して吸熱器の入口側に合流する補助除霜回路とを備えたものである。   In the heat pump device according to the present invention, a compressor, a radiator, a decompressor, and a heat absorber are sequentially connected by refrigerant piping, and a high-pressure refrigerant on the inlet side of the decompressor and a low-pressure refrigerant on the outlet side of the heat absorber are connected. Main circuit with high / low pressure heat exchanger for heat exchange and high temperature / low pressure heat exchanger inlet with high temperature refrigerant discharged from compressor with lower temperature than normal operation by reducing heat dissipation in radiator The main defrosting circuit for leading to the main circuit, the compressor and the radiator of the main circuit are branched from, and the auxiliary side on-off valve and the independent flow separate from the main circuit among the multi-stage refrigerant pipes of the heat absorber And an auxiliary defrosting circuit that merges with the inlet side of the heat absorber via the lowermost refrigerant pipe forming the path.

本発明によれば、霜との熱交換により液冷媒となって補助除霜回路から流出した冷媒を、吸熱器内に流入させて吸熱器内に溜めることができる。加えて、主除霜回路によって高低圧熱交換器での熱交換量を増加させることができるため、吸熱器から流出した冷媒を十分に加熱することができる。その結果、余剰冷媒を発生させず、すなわち冷媒容器を用いずに、圧縮機への液戻り量を抑制できる。また、補助除霜回路によって吸熱器の最下部を加温することで、吸熱器の最下部に堆積する霜を溶かすことができる。   According to the present invention, the refrigerant that has become liquid refrigerant and has flowed out of the auxiliary defrost circuit by heat exchange with frost can flow into the heat absorber and be stored in the heat absorber. In addition, since the amount of heat exchange in the high and low pressure heat exchanger can be increased by the main defrosting circuit, the refrigerant flowing out of the heat absorber can be sufficiently heated. As a result, the amount of liquid return to the compressor can be suppressed without generating excess refrigerant, that is, without using a refrigerant container. Moreover, the frost deposited on the lowest part of a heat absorber can be melt | dissolved by heating the lowest part of a heat absorber by an auxiliary defrost circuit.

本発明の一実施の形態におけるヒートポンプ装置を適用したヒートポンプ給湯機の全体構成を示す概略構成図である。It is a schematic block diagram which shows the whole structure of the heat pump water heater to which the heat pump apparatus in one embodiment of this invention is applied. 図1の空気熱交換器5の最下段部に第2バイパス管32を配置した状態の説明模式図である。It is an explanatory schematic diagram of the state where the 2nd bypass pipe 32 has been arranged in the lowest step part of the air heat exchanger 5 of FIG. 各運転モードにおける各機器の制御タイミングを示すタイミングチャートである。It is a timing chart which shows the control timing of each apparatus in each operation mode. 貯湯運転中における主回路10の冷媒状態を示すモリエル線図(P−H線図)である。It is a Mollier diagram (PH diagram) showing a refrigerant state of main circuit 10 during hot water storage operation. 除霜準備運転中における主回路10、主除霜回路20及び補助除霜回路30の冷媒状態を示すモリエル線図(P−H線図)である。It is a Mollier diagram (PH diagram) showing refrigerant states of the main circuit 10, the main defrost circuit 20, and the auxiliary defrost circuit 30 during the defrost preparation operation. 圧縮機1の回転数及び膨張弁4の開度の制御の一例を示す説明図である。It is explanatory drawing which shows an example of control of the rotation speed of the compressor 1, and the opening degree of the expansion valve 4. 除霜準備運転における制御例を示しており、圧縮機1の回転数を段階的に下げ、膨張弁4の開度を一旦小さくした後、段階的に大きくさせた例を示す図である。It is a figure which shows the example of control in a defrost preparation operation, and shows the example which made it increase in steps, after reducing the rotation speed of the compressor 1 stepwise and once reducing the opening degree of the expansion valve 4. FIG. 除霜本運転中における主回路10、主除霜回路20及び補助除霜回路30の冷媒状態を示すモリエル線図(P−H線図)である。It is a Mollier diagram (PH diagram) showing refrigerant states of the main circuit 10, the main defrost circuit 20, and the auxiliary defrost circuit 30 during the defrost main operation. 図1のヒートポンプ給湯機100における各運転の切り替え処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the switching process of each driving | operation in the heat pump water heater 100 of FIG.

以下、本発明の実施の形態に係るヒートポンプ装置について説明する。実施の形態では、ヒートポンプ装置をヒートポンプ給湯機に適用した一例を示す。また、冷媒には、二酸化炭素(以下、単にCO2 という)を使用しているものとして説明する。 Hereinafter, a heat pump device according to an embodiment of the present invention will be described. In the embodiment, an example in which the heat pump device is applied to a heat pump water heater will be described. Further, it is assumed that carbon dioxide (hereinafter simply referred to as CO 2 ) is used as the refrigerant.

図1は、本発明の一実施の形態におけるヒートポンプ装置を適用したヒートポンプ給湯機の全体構成を示す概略構成図である。図1及び後述の図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。
このヒートポンプ給湯機100は、大きく分けてヒートポンプ装置60と貯湯装置70とを備えている。ヒートポンプ装置60は、冷媒を循環させる冷媒回路を備え、冷媒回路を循環する冷媒により、貯湯装置70の後述の貯湯タンク71内の水を加熱して湯に沸き上げる加熱手段として機能を有している。
FIG. 1 is a schematic configuration diagram illustrating an overall configuration of a heat pump water heater to which a heat pump device according to an embodiment of the present invention is applied. In FIG. 1 and the drawings to be described later, the same reference numerals denote the same or corresponding parts, which are common throughout the entire specification.
The heat pump water heater 100 is roughly provided with a heat pump device 60 and a hot water storage device 70. The heat pump device 60 includes a refrigerant circuit that circulates the refrigerant, and has a function as a heating unit that heats water in a hot water storage tank 71 (to be described later) of the hot water storage device 70 and boils it to hot water using the refrigerant circulating in the refrigerant circuit. Yes.

<ヒートポンプ装置>
以下、ヒートポンプ装置60の構成について説明する。
ヒートポンプ装置60は、圧縮機1と、油分離器1aと、放熱器としての水熱交換器2と、高低圧熱交換器3と、減圧装置としての膨張弁4と、吸熱器としての空気熱交換器5とが順次冷媒配管11で接続された冷媒回路の主回路10を備えている。この主回路10は、一般にヒートポンプサイクルと称されており、各機器間に冷媒を循環させることで熱の受け渡しをするようになっている。
<Heat pump device>
Hereinafter, the configuration of the heat pump device 60 will be described.
The heat pump device 60 includes a compressor 1, an oil separator 1a, a water heat exchanger 2 as a radiator, a high and low pressure heat exchanger 3, an expansion valve 4 as a decompression device, and air heat as a heat absorber. The main circuit 10 of the refrigerant circuit connected to the exchanger 5 by the refrigerant pipe 11 is provided. The main circuit 10 is generally called a heat pump cycle, and transfers heat by circulating a refrigerant between the devices.

圧縮機1は、冷媒を圧縮して高温・高圧の冷媒とするものである。水熱交換器2は、圧縮機1から吐出された高温・高圧の冷媒と給湯用の水との熱交換を行い水の温度を上昇させるものである。つまり、水熱交換器2は、水を湯に沸き上げるものである。膨張弁4は、水の沸き上げを行った後の冷媒を減圧し低温・低圧の冷媒にするものである。   The compressor 1 compresses a refrigerant into a high-temperature / high-pressure refrigerant. The water heat exchanger 2 increases the temperature of the water by exchanging heat between the high-temperature and high-pressure refrigerant discharged from the compressor 1 and hot water. That is, the water heat exchanger 2 is for boiling water into hot water. The expansion valve 4 is for reducing the pressure of the refrigerant after boiling water into a low-temperature / low-pressure refrigerant.

高低圧熱交換器3は、膨張弁4の入口側の高圧冷媒と空気熱交換器5の出口の低圧冷媒とを熱交換する。以下では、高低圧熱交換器3において高温高圧冷媒が通過する側の配管を高圧配管3a、低温低圧冷媒が通過する側の配管を低圧配管3bとして区別する場合がある。   The high-low pressure heat exchanger 3 exchanges heat between the high-pressure refrigerant on the inlet side of the expansion valve 4 and the low-pressure refrigerant at the outlet of the air heat exchanger 5. Hereinafter, in the high-low pressure heat exchanger 3, a pipe on the side through which the high-temperature / high-pressure refrigerant passes may be distinguished as a high-pressure pipe 3a, and a pipe on the side through which the low-temperature / low-pressure refrigerant passes may be distinguished as a low-pressure pipe 3b.

空気熱交換器5は、膨張弁4から供給される冷媒を、空気熱交換器5の近傍に配置された送風機としてのファン5aから供給された外気と熱交換させて吸熱し、蒸発させるものである。   The air heat exchanger 5 absorbs heat by evaporating the refrigerant supplied from the expansion valve 4 with the outside air supplied from a fan 5a as a blower arranged in the vicinity of the air heat exchanger 5, and evaporates the refrigerant. is there.

(主除霜回路20)
ヒートポンプ装置60は、主回路10の油分離器1aと水熱交換器2との間から分岐部21で分岐して、水熱交換器2と高低圧熱交換器3との間の合流部23で主回路10に合流する第1バイパス管22を備えている。この第1バイパス管22には、主側開閉弁20aが設けられている。この主側開閉弁20aを開制御することで、圧縮機1からの高温冷媒を水熱交換器2を介さずに直接、第1バイパス管22から高低圧熱交換器3に流入させ、空気熱交換器5の除霜運転を実行するようになっている。つまり、冷媒が第1バイパス管22に流れ込むことで主除霜回路20を形成するようになっているのである。
(Main defrosting circuit 20)
The heat pump device 60 branches from the oil separator 1 a of the main circuit 10 and the water heat exchanger 2 at the branch portion 21, and joins the junction 23 between the water heat exchanger 2 and the high and low pressure heat exchanger 3. The first bypass pipe 22 that joins the main circuit 10 is provided. The first bypass pipe 22 is provided with a main-side on-off valve 20a. By controlling the opening of the main-side on-off valve 20a, the high-temperature refrigerant from the compressor 1 flows directly from the first bypass pipe 22 into the high-low pressure heat exchanger 3 without going through the water heat exchanger 2, and the air heat The defrosting operation of the exchanger 5 is performed. That is, the main defrosting circuit 20 is formed by the refrigerant flowing into the first bypass pipe 22.

主除霜回路20は、圧縮機1から吐出された冷媒を通常運転(後述の貯湯運転)時よりも温度が高い状態で高低圧熱交換器3の入口に導き、高低圧熱交換器3での熱交換量を増加させて除霜運転時の液戻りを防止する役割を有している。   The main defrosting circuit 20 guides the refrigerant discharged from the compressor 1 to the inlet of the high / low pressure heat exchanger 3 in a state where the temperature is higher than that during normal operation (hot water storage operation described later). The amount of heat exchange is increased to prevent liquid return during the defrosting operation.

主側開閉弁20aには、主側開閉弁20aへ流入する冷媒流量が、水熱交換器2へ流入する冷媒流量よりも多くなるような構成の主側開閉弁20aを選定する。そうすると、水熱交換器2へ流入する冷媒流量が少なくなり、水熱交換器2での放熱量(熱交換量)を低下させることができるため、圧縮機1から吐出した高温・高圧の冷媒を、高温・高圧のまま高低圧熱交換器3へ流入させることができる。   For the main-side on-off valve 20a, a main-side on-off valve 20a having a configuration in which the refrigerant flow rate flowing into the main-side on-off valve 20a is larger than the refrigerant flow rate flowing into the water heat exchanger 2 is selected. As a result, the flow rate of refrigerant flowing into the water heat exchanger 2 is reduced, and the amount of heat dissipated in the water heat exchanger 2 (heat exchange amount) can be reduced. Therefore, the high-temperature and high-pressure refrigerant discharged from the compressor 1 is reduced. The high-low pressure heat exchanger 3 can be allowed to flow while maintaining the high temperature and high pressure.

(補助除霜回路30)
ヒートポンプ装置60は、主回路10の油分離器1aと水熱交換器2との間から分岐部31で分岐して、空気熱交換器5の最下段部を介し、主回路10の膨張弁4と空気熱交換器5との間の合流部33で主回路10に合流する第2バイパス管32を備えている。この第2バイパス管32には、補助側開閉弁30aが設けられている。この補助側開閉弁30aを開制御し、圧縮機1からの高温冷媒を第2バイパス管32に流入させて空気熱交換器5の最下段部に通過させることで、除霜運転時に空気熱交換器5の上方部から流れ落ちた霜や低温の水を再加温し、空気熱交換器5の最下段で氷結しないようにしている。つまり、冷媒が第2バイパス管32に流れ込むことで補助除霜回路30を形成するようになっているのである。
(Auxiliary defrost circuit 30)
The heat pump device 60 branches from the oil separator 1 a of the main circuit 10 and the water heat exchanger 2 at the branching portion 31, and passes through the lowermost stage portion of the air heat exchanger 5 to expand the expansion valve 4 of the main circuit 10. And a second bypass pipe 32 that joins the main circuit 10 at a junction 33 between the air heat exchanger 5 and the air heat exchanger 5. The second bypass pipe 32 is provided with an auxiliary side on-off valve 30a. This auxiliary-side on-off valve 30a is controlled to open, and the high-temperature refrigerant from the compressor 1 flows into the second bypass pipe 32 and passes through the lowermost stage of the air heat exchanger 5, thereby allowing air heat exchange during defrosting operation. The frost and low-temperature water that have flowed down from the upper part of the vessel 5 are reheated so that they are not frozen at the lowest stage of the air heat exchanger 5. That is, the auxiliary defrost circuit 30 is formed by the refrigerant flowing into the second bypass pipe 32.

図2は、図1の空気熱交換器5の最下段部に第2バイパス管32を配置した状態の説明模式図で、図2(a)はヒートポンプ装置の斜視図、図2(b)は図2(a)のA−A断面図、図2(c)は、空気熱交換器5の斜視図である。図2(c)における矢印は冷媒の流れ方向を示している。
空気熱交換器5は、図2には詳しく図示されていないが、上下方向に複数段並設された冷媒配管を有し、最下段を除く複数段の冷媒配管により主回路10の一部が構成されている。すなわち、膨張弁4から流入した冷媒が複数段の冷媒配管を順次通過した後、高低圧熱交換機3へ流出する流路を形成している。そして、最下段の冷媒配管は、主回路10の流路とは別の独立した流路を形成しており、この最下段の冷媒配管により補助除霜回路30の第2バイパス管32の一部が構成されている。
FIG. 2 is an explanatory schematic view of a state in which the second bypass pipe 32 is arranged at the lowermost stage portion of the air heat exchanger 5 of FIG. 1, FIG. 2 (a) is a perspective view of the heat pump device, and FIG. 2A is a cross-sectional view taken along the line AA, and FIG. 2C is a perspective view of the air heat exchanger 5. The arrow in FIG.2 (c) has shown the flow direction of the refrigerant | coolant.
Although not shown in detail in FIG. 2, the air heat exchanger 5 has refrigerant pipes arranged in a plurality of stages in the vertical direction, and a part of the main circuit 10 is formed by a plurality of refrigerant pipes excluding the lowest stage. It is configured. That is, a flow path is formed in which the refrigerant flowing in from the expansion valve 4 flows out to the high-low pressure heat exchanger 3 after sequentially passing through a plurality of stages of refrigerant piping. The lowermost refrigerant pipe forms an independent flow path different from the flow path of the main circuit 10, and a part of the second bypass pipe 32 of the auxiliary defrost circuit 30 is formed by the lowermost refrigerant pipe. Is configured.

(返油バイパス回路40)
ヒートポンプ装置60は、主回路10の油分離器1aにより分離された油を圧縮機1に戻すために高低圧熱交換器3と圧縮機1の間を接続する返油バイパス回路40を備えている。ヒートポンプ給湯機100の運転中、圧縮機1から吐出された冷媒に含まれる油は、常に返油バイパス回路40によって圧縮機1に戻されるようになっている。図1には詳しく図示していないが、返油バイパス回路40では、流量がコントロールされて圧縮機1に戻されるようになっている。
(Oil return bypass circuit 40)
The heat pump device 60 includes an oil return bypass circuit 40 that connects the high-low pressure heat exchanger 3 and the compressor 1 to return the oil separated by the oil separator 1 a of the main circuit 10 to the compressor 1. . During operation of the heat pump water heater 100, oil contained in the refrigerant discharged from the compressor 1 is always returned to the compressor 1 by the oil return bypass circuit 40. Although not shown in detail in FIG. 1, in the oil return bypass circuit 40, the flow rate is controlled and returned to the compressor 1.

(加熱補助回路50)
ヒートポンプ装置60は、返油バイパス回路40に並列に接続した第3バイパス管52を備えている。上記の返油バイパス回路40は、圧縮機1から吐出された油の返油量を抑えて圧縮機1に戻す回路であるが、第3バイパス管52では油を積極的に戻す役割を持たせるため、第3バイパス管52は、返油バイパス回路40より小さい流路抵抗で形成されている。
(Heating auxiliary circuit 50)
The heat pump device 60 includes a third bypass pipe 52 connected in parallel to the oil return bypass circuit 40. The oil return bypass circuit 40 is a circuit that suppresses the oil return amount of the oil discharged from the compressor 1 and returns it to the compressor 1. However, the third bypass pipe 52 has a role of actively returning the oil. Therefore, the third bypass pipe 52 is formed with a flow resistance smaller than the oil return bypass circuit 40.

また、第3バイパス管52には、返油側開閉弁50aが設けられている。この返油側開閉弁50aを開制御することで、返油バイパス回路40において油分離器1aにより分離された油を第3バイパス管52に流入させ、高低圧熱交換器3から流出して圧縮機1に向かう低温冷媒に合流させて加熱し、圧縮機1に流入させるようになっている。つまり、油が第3バイパス管52に流れ込むことで加熱補助回路50を形成するようになっているのである。なお、図1には、第3バイパス管52を返油バイパス回路40に並列に接続し、合流部51を返油バイパス回路40上に設けた構成を示したが、合流部51は返油バイパス回路40上に限らず、高低圧熱交換器3の低圧配管3bと圧縮機1との間であればよい。   The third bypass pipe 52 is provided with an oil return side on-off valve 50a. By controlling the opening of the oil return side on-off valve 50a, the oil separated by the oil separator 1a in the oil return bypass circuit 40 flows into the third bypass pipe 52, flows out of the high / low pressure heat exchanger 3 and is compressed. The low-temperature refrigerant that goes to the machine 1 is joined and heated, and flows into the compressor 1. That is, the heating auxiliary circuit 50 is formed by the oil flowing into the third bypass pipe 52. Although FIG. 1 shows a configuration in which the third bypass pipe 52 is connected in parallel to the oil return bypass circuit 40 and the merge portion 51 is provided on the oil return bypass circuit 40, the merge portion 51 is provided with the oil return bypass circuit. Not only on the circuit 40, it may be between the low pressure pipe 3 b of the high and low pressure heat exchanger 3 and the compressor 1.

(センサ)
ヒートポンプ装置60には、空気熱交換器5の入口冷媒温度(蒸発温度(Tei))を検知するための蒸発温度検知装置7aと、空気熱交換器5の周囲空気温度を検知するための外気温度検知装置7bとが設けられている。更に、ヒートポンプ装置60には、蒸発温度検知装置7a及び外気温度検知装置7bからの情報に基づいて後述の図3に示す各運転それぞれにおける各機器の制御や、後述の図9に示す各運転の切り替え制御を行う制御装置61が設けられている。この制御装置61は、ヒートポンプ給湯機100の全体を統括制御できるようなマイクロコンピュータ等で構成するとよい。
(Sensor)
The heat pump device 60 includes an evaporating temperature detecting device 7a for detecting an inlet refrigerant temperature (evaporating temperature (Tei)) of the air heat exchanger 5, and an outside air temperature for detecting the ambient air temperature of the air heat exchanger 5. A detection device 7b is provided. Furthermore, the heat pump device 60 controls each device in each operation shown in FIG. 3 to be described later based on information from the evaporation temperature detection device 7a and the outside air temperature detection device 7b, and each operation shown in FIG. 9 to be described later. A control device 61 that performs switching control is provided. The control device 61 may be configured by a microcomputer or the like that can control the entire heat pump water heater 100.

蒸発温度検知装置7a及び外気温度検知装置7bは、蒸発温度(Tei)及び外気温度をそれぞれ検知できるものであればよく、特に種類を限定するものでない。例えば、サーミスタ等の温度センサや温度計等で構成するとよい。ここでは、蒸発温度検知装置7a及び外気温度検知装置7bしか図示していないが、周囲空気湿度を検知するための湿度検知装置や冷媒の圧力を検知するための圧力検知装置等を設けてもよい。また、水熱交換器2や高低圧熱交換器3の近傍に温度検知装置や、湿度検知装置、圧力検知装置を設けてもよい。   The evaporation temperature detecting device 7a and the outside air temperature detecting device 7b are not particularly limited as long as they can detect the evaporation temperature (Tei) and the outside air temperature, respectively. For example, a temperature sensor such as a thermistor or a thermometer may be used. Here, only the evaporation temperature detection device 7a and the outside air temperature detection device 7b are shown, but a humidity detection device for detecting the ambient air humidity, a pressure detection device for detecting the pressure of the refrigerant, and the like may be provided. . Further, a temperature detection device, a humidity detection device, and a pressure detection device may be provided in the vicinity of the water heat exchanger 2 and the high-low pressure heat exchanger 3.

<貯湯装置>
以下、貯湯装置70の構成について説明する。
貯湯装置70は、ヒートポンプ装置60で沸き上げられた湯を貯え、その湯を外部(蛇口や浴槽)に供給する機能を有している。貯湯装置70には、水熱交換器2により加熱された湯を貯える貯湯タンク71と、水熱交換器2へ送水する水ポンプ72と、流量を調節する水流量制御弁73とが順次接続されて設けられている。水ポンプ72は、貯湯タンク71あるいは給水装置から水熱交換器2へ水を送水できるものであればよい。なお、水ポンプ72、水流量制御弁73もヒートポンプ装置60の制御装置61により制御されるようになっている。
<Hot water storage device>
Hereinafter, the configuration of the hot water storage device 70 will be described.
The hot water storage device 70 has a function of storing hot water boiled by the heat pump device 60 and supplying the hot water to the outside (faucet or bathtub). A hot water storage tank 71 that stores hot water heated by the water heat exchanger 2, a water pump 72 that supplies water to the water heat exchanger 2, and a water flow rate control valve 73 that adjusts the flow rate are sequentially connected to the hot water storage device 70. Is provided. The water pump 72 only needs to be able to feed water from the hot water storage tank 71 or the water supply device to the water heat exchanger 2. The water pump 72 and the water flow rate control valve 73 are also controlled by the control device 61 of the heat pump device 60.

<運転モード>
次に、ヒートポンプ装置60の制御装置61が行う貯湯運転モード及び除霜運転モードについて説明する。貯湯運転モードは、貯湯装置70を循環する水を所定の温度に加熱するモードである。除霜運転モードは、空気熱交換器5に付着した霜を溶かすモードであり、除霜準備運転と除霜本運転とから構成される。
<Operation mode>
Next, the hot water storage operation mode and the defrosting operation mode performed by the control device 61 of the heat pump device 60 will be described. The hot water storage operation mode is a mode in which water circulating through the hot water storage device 70 is heated to a predetermined temperature. The defrosting operation mode is a mode for melting frost adhering to the air heat exchanger 5 and includes a defrosting preparation operation and a defrosting main operation.

除霜準備運転は、主除霜回路20、補助除霜回路30及び加熱補助回路50に冷媒を流通させ、空気熱交換器5に流入する冷媒の蒸発温度(Tei)を貯湯運転モード時よりも上昇させて外気温度に近づけることを主目的とした運転で、この後に行う除霜本運転の時間短縮を図る目的で実施される運転である。例えば外気温度が−10℃のとき、霜の温度は例えば−15℃程度であり、空気熱交換器5に流入する冷媒の蒸発温度を外気温度に近づけることで、いわば空気熱交換器5の配管温度を外気温度に近づけ、配管に付着した霜自体の温度を外気温度に近づけるのである。   In the defrosting preparation operation, the refrigerant flows through the main defrosting circuit 20, the auxiliary defrosting circuit 30, and the heating auxiliary circuit 50, and the evaporation temperature (Tei) of the refrigerant flowing into the air heat exchanger 5 is set to be higher than that in the hot water storage operation mode. This operation is performed mainly for the purpose of raising the temperature to be close to the outside temperature, and is performed for the purpose of shortening the time of the main defrosting operation performed thereafter. For example, when the outside air temperature is −10 ° C., the temperature of the frost is, for example, about −15 ° C., and by bringing the evaporation temperature of the refrigerant flowing into the air heat exchanger 5 close to the outside air temperature, so to speak, the piping of the air heat exchanger 5 The temperature is brought close to the outside air temperature, and the temperature of the frost itself adhering to the pipe is brought close to the outside air temperature.

除霜本運転も除霜準備運転と同様に、主除霜回路20、補助除霜回路30及び加熱補助回路50に冷媒を流通させ、空気熱交換器5の冷媒温度を例えば0℃付近に保って空気熱交換器5に付着した霜を除去し、水熱交換器2及び空気熱交換器5での熱交換量を低下させないようにすることを主目的とした運転である。   In the defrosting main operation, similarly to the defrosting preparation operation, the refrigerant is circulated through the main defrosting circuit 20, the auxiliary defrosting circuit 30, and the heating auxiliary circuit 50, and the refrigerant temperature of the air heat exchanger 5 is maintained at, for example, around 0 ° C. This operation is mainly intended to remove frost adhering to the air heat exchanger 5 so that the amount of heat exchange in the water heat exchanger 2 and the air heat exchanger 5 is not reduced.

制御装置61は、空気熱交換器5の状態に応じて貯湯運転モードと除霜運転モードとを交互に繰り返し実行する。   The control device 61 repeatedly executes the hot water storage operation mode and the defrosting operation mode alternately according to the state of the air heat exchanger 5.

図3は、各運転モードにおける各機器の制御タイミングを示すタイミングチャートで、(a)は貯湯運転、(b)は除霜準備運転、(c)は除霜本運転を示している。図3には、各運転における各機器(圧縮機1、膨張弁4、主側開閉弁20a、補助側開閉弁30a、返油側開閉弁50a、水流量制御弁73、水ポンプ72及びファン5a)の制御を示している。なお、制御装置61が、圧縮機1の回転数(rps)、膨張弁4の開度(pulse)、主側開閉弁20aの開閉、補助側開閉弁30aの開閉、返油側開閉弁50aの開閉、水流量制御弁73の開度制御・水ポンプ72の回転数制御による水流量(L/min)及びファン5aの回転数(rpm)をそれぞれ制御するようになっている。以下、図3と、各運転(貯湯運転、除霜準備運転及び除霜本運転)に応じたP−H線図等とを用いて各運転それぞれについて順次詳細に説明する。   FIG. 3 is a timing chart showing the control timing of each device in each operation mode. (A) shows a hot water storage operation, (b) shows a defrost preparation operation, and (c) shows a defrost main operation. FIG. 3 shows each device (compressor 1, expansion valve 4, main side on / off valve 20a, auxiliary side on / off valve 30a, oil return side on / off valve 50a, water flow control valve 73, water pump 72 and fan 5a in each operation. ) Control. In addition, the control device 61 sets the rotation speed (rps) of the compressor 1, the opening degree (pulse) of the expansion valve 4, the opening / closing of the main side opening / closing valve 20a, the opening / closing of the auxiliary side opening / closing valve 30a, and the oil return side opening / closing valve 50a. The water flow rate (L / min) and the rotation speed (rpm) of the fan 5a are controlled by opening and closing, opening control of the water flow control valve 73, and rotation speed control of the water pump 72, respectively. Hereinafter, each operation will be sequentially described in detail using FIG. 3 and a PH diagram corresponding to each operation (hot water storage operation, defrost preparation operation, and defrost main operation).

(a)貯湯運転
図4(a)は、貯湯運転中における主回路10の冷媒状態を示すモリエル線図(P−H線図)である。図4(b)は、図4(a)の各冷媒状態(1)〜(6)に対応する箇所を冷媒回路図上に示した図である。この図4は、縦軸が絶対圧力(P)で、横軸がエンタルピ(H)を示している。この図4では、L301が冷媒の状態遷移を、L304が外気温度をそれぞれ示している。なお、状態(1)、(5)及び(6)は、外気温度L304よりも低くなっている。
(A) Hot Water Storage Operation FIG. 4A is a Mollier diagram (PH diagram) showing the refrigerant state of the main circuit 10 during the hot water storage operation. FIG.4 (b) is the figure which showed the location corresponding to each refrigerant | coolant state (1)-(6) of Fig.4 (a) on a refrigerant circuit diagram. In FIG. 4, the vertical axis represents absolute pressure (P) and the horizontal axis represents enthalpy (H). In FIG. 4, L301 indicates the refrigerant state transition, and L304 indicates the outside air temperature. Note that states (1), (5), and (6) are lower than the outside air temperature L304.

この図4において、冷媒は、飽和液線と飽和蒸気線とで囲まれた部分では気液二相状態であることを、飽和液線の左側では液化した状態であることを、飽和蒸気線の右側ではガス化した状態であることをそれぞれ表している。つまり、冷媒は、状態(1)では気液二相状態からガス状態に遷移する段階であることがわかり、状態(2)〜状態(4)では臨界圧力以上の状態であることがわかり、状態(5)及び状態(6)では気液二相状態であることがわかる。   In FIG. 4, the refrigerant is in a gas-liquid two-phase state in a portion surrounded by a saturated liquid line and a saturated vapor line, and is in a liquefied state on the left side of the saturated liquid line. On the right side, the gasified state is shown. That is, it can be seen that the refrigerant is in the stage of transition from the gas-liquid two-phase state to the gas state in the state (1), and that the state is above the critical pressure in the states (2) to (4). In (5) and state (6), it turns out that it is a gas-liquid two-phase state.

貯湯運転は、貯湯装置70を循環する水を所定の温度にまで沸き上げることを主目的としている。そのため、制御装置61は、図3に示すように、主側開閉弁20a、補助側開閉弁30a、返油側開閉弁50aを閉じて主回路10だけに冷媒が循環するようにしている。そして、圧縮機1を所定の回転数(本実施の形態では最大回転数)で駆動させ、膨張弁4を所定の開度に開き、ファン5aを所定の回転数で駆動させ、水流量を多くするように水流量制御弁73の開度制御や水ポンプ72の回転数制御を行う。   The main purpose of the hot water storage operation is to boil the water circulating through the hot water storage device 70 to a predetermined temperature. Therefore, as shown in FIG. 3, the control device 61 closes the main side opening / closing valve 20 a, the auxiliary side opening / closing valve 30 a, and the oil return side opening / closing valve 50 a so that the refrigerant circulates only in the main circuit 10. Then, the compressor 1 is driven at a predetermined rotational speed (the maximum rotational speed in the present embodiment), the expansion valve 4 is opened to a predetermined opening degree, the fan 5a is driven at the predetermined rotational speed, and the water flow rate is increased. Thus, the opening control of the water flow control valve 73 and the rotation speed control of the water pump 72 are performed.

以上の制御により、ヒートポンプ装置60では、まず、圧縮機1から吐出した臨界圧力以上の高温・高圧の冷媒(状態(2))が水熱交換器2に流入する。この水熱交換器2では、冷媒(状態(2))は、貯湯装置70を循環する水に一部を放熱しながら温度が低下し、低温・高圧の冷媒(状態(3))になる。つまり、冷媒に貯えられている熱を貯湯装置70を循環する水に渡すことでこの水が沸き上がるようになっているのである。水熱交換器2から流出した冷媒(状態(3))は、高低圧熱交換器3に流入する。この冷媒(状態(3))は、高低圧熱交換器3で放熱して更に温度が低下した低温・高圧の冷媒(状態(4))となる。   With the above control, in the heat pump device 60, first, a high-temperature and high-pressure refrigerant (state (2)) equal to or higher than the critical pressure discharged from the compressor 1 flows into the water heat exchanger 2. In this water heat exchanger 2, the temperature of the refrigerant (state (2)) decreases while radiating a part of the water to the water circulating in the hot water storage device 70, and the refrigerant becomes a low-temperature / high-pressure refrigerant (state (3)). In other words, this water is boiled by passing the heat stored in the refrigerant to the water circulating in the hot water storage device 70. The refrigerant (state (3)) flowing out from the water heat exchanger 2 flows into the high / low pressure heat exchanger 3. This refrigerant (state (3)) becomes a low-temperature / high-pressure refrigerant (state (4)) in which heat is radiated by the high-low pressure heat exchanger 3 and the temperature is further reduced.

その後、高低圧熱交換器3から流出した冷媒(状態(4))は、膨張弁4に流入する。膨張弁4に流入した冷媒(状態(4))は、膨張弁4によって減圧されて低温・低圧の気液二相冷媒(状態(5))となる。この気液二相冷媒(状態(5))は、空気熱交換器5に流入し、ファン5aから送られる空気から吸熱して蒸発した低温・低圧の気液二相冷媒(状態(6))となる。空気熱交換器5から流出した気液二相冷媒(状態(6))は、高低圧熱交換器3の低圧配管3bに流入し、水熱交換器2から流出して高圧配管3a側を通過する低温・高圧の冷媒(状態(3))と熱交換して加熱され、気液二相冷媒からガス冷媒(つまり、状態(1)の冷媒)となる。この冷媒(状態(1))が圧縮機1に吸引されることで主回路10が形成されるようになっている。   Thereafter, the refrigerant (state (4)) flowing out from the high / low pressure heat exchanger 3 flows into the expansion valve 4. The refrigerant (state (4)) flowing into the expansion valve 4 is decompressed by the expansion valve 4 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant (state (5)). This gas-liquid two-phase refrigerant (state (5)) flows into the air heat exchanger 5 and absorbs heat from the air sent from the fan 5a to evaporate and is a low-temperature / low-pressure gas-liquid two-phase refrigerant (state (6)). It becomes. The gas-liquid two-phase refrigerant (state (6)) flowing out from the air heat exchanger 5 flows into the low pressure pipe 3b of the high and low pressure heat exchanger 3, flows out of the water heat exchanger 2 and passes through the high pressure pipe 3a side. The refrigerant is heated by exchanging heat with the low-temperature and high-pressure refrigerant (state (3)) to be changed from a gas-liquid two-phase refrigerant to a gas refrigerant (that is, refrigerant in the state (1)). The refrigerant (state (1)) is sucked into the compressor 1 so that the main circuit 10 is formed.

ところが、外気温度が低い、例えば0℃以下の条件における貯湯運転モードでは、空気熱交換器5の表面温度が低下するために空気熱交換器5の表面に霜が付着してしまうことがある。そうすると、空気熱交換器5での熱交換効率が低下すると共に、空気熱交換器5での冷媒温度も低下してしまうことになる。また、貯湯運転モードを継続すると空気熱交換器5に付着した霜が成長してしまい、水熱交換器2で効率良く加熱を行うための十分な熱量を外気から吸熱することができなくなってしまうことになる。   However, in the hot water storage operation mode under a condition where the outside air temperature is low, for example, 0 ° C. or less, frost may adhere to the surface of the air heat exchanger 5 because the surface temperature of the air heat exchanger 5 decreases. If it does so, while the heat exchange efficiency in the air heat exchanger 5 will fall, the refrigerant | coolant temperature in the air heat exchanger 5 will also fall. Further, if the hot water storage operation mode is continued, frost attached to the air heat exchanger 5 grows, and a sufficient amount of heat for efficient heating by the water heat exchanger 2 cannot be absorbed from the outside air. It will be.

そこで、制御装置61は、予め設定された除霜開始タイミングになったと判断すると、除霜運転モードを開始する。ここで、除霜運転モードの除霜本運転を開始する際の膨張弁4の開度は、図3からも明らかなように貯湯運転モード時とは異なる開度となっている。このため、貯湯運転から除霜本運転に直接切り替え、急激に膨張弁4の開度を変化させたり、圧縮機1の回転数を変化させたりすると、圧縮機1の入口における冷媒の乾き度が外気温度以下となってしまい圧縮機1へ大量の液冷媒が流入してしまうことにもなる。そこで、本実施の形態では、除霜本運転を行う前に除霜準備運転を実行するようにしているのである。次に、除霜準備運転について説明する。   Therefore, when it is determined that the preset defrosting start timing has been reached, the control device 61 starts the defrosting operation mode. Here, the opening degree of the expansion valve 4 when starting the defrosting main operation in the defrosting operation mode is different from that in the hot water storage operation mode, as is apparent from FIG. For this reason, if the hot water storage operation is directly switched to the defrosting main operation and the opening degree of the expansion valve 4 is suddenly changed or the rotation speed of the compressor 1 is changed, the dryness of the refrigerant at the inlet of the compressor 1 is increased. The temperature becomes below the outside air temperature, and a large amount of liquid refrigerant flows into the compressor 1. Therefore, in the present embodiment, the defrost preparation operation is performed before the defrost main operation. Next, the defrost preparation operation will be described.

(b)除霜準備運転
図5は、除霜準備運転中における主回路10、主除霜回路20及び補助除霜回路30の冷媒状態を示すモリエル線図(P−H線図)である。この図5は、縦軸が絶対圧力(P)で、横軸がエンタルピ(H)を示している。この図5では、L302が冷媒の状態遷移を、L304が外気温度をそれぞれ示している。また、L302上に図示してある状態(1)〜(6)は、図1に示した(1)〜(6)のそれぞれの場所における冷媒の状態を示している。なお、状態(1)、(5)、(5’)、(5’’)及び(6)は、外気温度L304よりも低くなっている。
(B) Defrost preparation operation FIG. 5 is a Mollier diagram (PH diagram) showing refrigerant states of the main circuit 10, the main defrost circuit 20, and the auxiliary defrost circuit 30 during the defrost preparation operation. In FIG. 5, the vertical axis represents absolute pressure (P) and the horizontal axis represents enthalpy (H). In FIG. 5, L302 indicates the state transition of the refrigerant, and L304 indicates the outside air temperature. In addition, states (1) to (6) illustrated on L302 indicate the states of the refrigerant at the respective locations (1) to (6) illustrated in FIG. In addition, states (1), (5), (5 ′), (5 ″), and (6) are lower than the outside air temperature L304.

この図5において、冷媒は、飽和液線と飽和蒸気線とで囲まれた部分では気液二相状態であることを、飽和液線の左側では液化した状態であることを、飽和蒸気線の右側ではガス化した状態であることをそれぞれ表している。つまり、冷媒は、状態(1)ではガス状態であることがわかり、状態(2)〜状態(4)では臨界圧力以上の状態であることがわかり、状態(5’’)では液状態、状態(5)、(5’)及び(6)では気液二相状態であることがわかる。   In FIG. 5, the refrigerant is in a gas-liquid two-phase state in a portion surrounded by a saturated liquid line and a saturated vapor line, and is in a liquefied state on the left side of the saturated liquid line. On the right side, the gasified state is shown. That is, the refrigerant is found to be in a gas state in the state (1), is found to be in a state equal to or higher than the critical pressure in the states (2) to (4), and is in a liquid state and a state in the state (5 ″). In (5), (5 ') and (6), it turns out that it is a gas-liquid two phase state.

除霜準備運転は、上述したように、除霜本運転の時間短縮、つまり蒸発温度(Tei)をより早く外気温度以上にすることを主目的としており、制御装置61により主除霜回路20の主側開閉弁20aを開制御することで開始するようになっている(図3のP1参照)。すなわち、主側開閉弁20aを開制御することで貯湯運転から除霜準備運転へ切り替わるのである。そして、図3に示すように、除霜準備運転開始と同時に返油側開閉弁50aの開制御を行う。また、除霜準備運転開始と同時(主側開閉弁20aを開制御したタイミング)又はそれ以降に、補助側開閉弁30aの開制御を行う。すなわち、除霜準備運転では、主除霜回路20、補助除霜回路30及び加熱補助回路50の全てに冷媒を流すことになる。   As described above, the defrost preparation operation is mainly intended to shorten the time of the defrost main operation, that is, to make the evaporation temperature (Tei) faster than the outside air temperature. The operation is started by opening the main-side on-off valve 20a (see P1 in FIG. 3). That is, the hot-side storage operation is switched to the defrost preparation operation by controlling the opening of the main-side on-off valve 20a. Then, as shown in FIG. 3, the oil return side on-off valve 50a is controlled to open simultaneously with the start of the defrost preparation operation. Further, the opening control of the auxiliary opening / closing valve 30a is performed simultaneously with the start of the defrosting preparation operation (timing at which the opening control of the main opening / closing valve 20a) or thereafter. That is, in the defrost preparation operation, the refrigerant flows through all of the main defrost circuit 20, the auxiliary defrost circuit 30, and the heating auxiliary circuit 50.

除霜準備運転では、膨張弁4の開度制御にも特徴があるが、その開度制御や、各機器の制御については後述することにし、ここではまず、主除霜回路20、補助除霜回路30及び加熱補助回路50の全てに冷媒を流すことによる冷媒の流れとその冷媒状態の変化について説明する。   In the defrost preparation operation, the opening degree control of the expansion valve 4 is also characterized. However, the opening degree control and control of each device will be described later. Here, first, the main defrosting circuit 20 and the auxiliary defrosting are performed. The refrigerant flow and the change in the refrigerant state caused by flowing the refrigerant through all of the circuit 30 and the heating auxiliary circuit 50 will be described.

主側開閉弁20aを開くことによって、圧縮機1から吐出した高温・高圧の冷媒(状態(2))が主回路10だけでなく主除霜回路20(つまり、第1バイパス管22)に流れるようにして除霜準備運転を開始するのである。なお、分岐部21で主回路10と主除霜回路20とに分かれた冷媒は、高低圧熱交換器3の入口側(合流部23)で合流し、比較的高温・高圧の冷媒(状態(3))となる。   By opening the main-side on-off valve 20a, the high-temperature and high-pressure refrigerant (state (2)) discharged from the compressor 1 flows not only to the main circuit 10 but also to the main defrosting circuit 20 (that is, the first bypass pipe 22). Thus, the defrost preparation operation is started. Note that the refrigerant separated into the main circuit 10 and the main defrosting circuit 20 at the branching portion 21 is merged at the inlet side (merging portion 23) of the high / low pressure heat exchanger 3, and the refrigerant (state ( 3)).

このとき、主除霜回路20側へ流入する冷媒(状態(2))は、主除霜回路20を流れても比較的高温を保ったままの冷媒(状態(3’’))となる。一方、主回路10を流れる冷媒(状態(2))は、主側開閉弁20aが開かれたことによって冷媒流量が減少して水熱交換器2に流入することになる。よって、水熱交換器2での熱交換量も低下することになる。つまり、貯湯装置70を循環する水に渡すことのできる熱量が少なくなっているのである。したがって、水熱交換器2から流出した冷媒(状態(3’))の温度は比較的下がっていないことになる。   At this time, the refrigerant (state (2)) flowing into the main defrosting circuit 20 side becomes a refrigerant (state (3 ″)) that maintains a relatively high temperature even though it flows through the main defrosting circuit 20. On the other hand, the refrigerant flowing through the main circuit 10 (state (2)) flows into the water heat exchanger 2 with the refrigerant flow rate decreased by opening the main-side on-off valve 20a. Therefore, the heat exchange amount in the water heat exchanger 2 is also reduced. That is, the amount of heat that can be transferred to the water circulating through the hot water storage device 70 is reduced. Therefore, the temperature of the refrigerant (state (3 ')) flowing out from the water heat exchanger 2 is not relatively lowered.

主回路10を流れる冷媒(状態(3’))と主除霜回路20を流れる冷媒(状態(3’’))とが高低圧熱交換器3の入口側(合流部23)で合流し、比較的高温・高圧の冷媒(状態(3))となる。この冷媒(状態(3))は、分岐部21の冷媒(状態(2))の温度よりも低下しているものの、上述したように、比較的高温を保ったままの状態で高低圧熱交換器3へ流入することになる。   The refrigerant flowing through the main circuit 10 (state (3 ′)) and the refrigerant flowing through the main defrosting circuit 20 (state (3 ″)) merge at the inlet side (merging portion 23) of the high / low pressure heat exchanger 3, The refrigerant becomes a relatively high temperature / high pressure refrigerant (state (3)). Although this refrigerant (state (3)) is lower than the temperature of the refrigerant (state (2)) at the branching section 21, as described above, high-low pressure heat exchange is performed while maintaining a relatively high temperature. Will flow into the vessel 3.

すなわち、合流部23で主回路10と主除霜回路20とが合流した後の冷媒(状態(3))は、比較的高温となっているので、高低圧熱交換器3の熱交換量が増加することになるのである。高低圧熱交換器3の高圧配管3a側に流入した冷媒(状態(3))は、低圧配管3b側を流れる気液二相冷媒(状態(6))に一部を放熱しながら温度が低下し、低温・高圧の冷媒(状態(4))になる。高低圧熱交換器3の高圧配管3a側を流出した冷媒(状態(4))は、膨張弁4に流入する。   That is, since the refrigerant (state (3)) after the main circuit 10 and the main defrosting circuit 20 merge at the junction 23 has a relatively high temperature, the heat exchange amount of the high-low pressure heat exchanger 3 is high. It will increase. The refrigerant (state (3)) that flows into the high-pressure pipe 3a side of the high-low pressure heat exchanger 3 decreases in temperature while partially radiating heat to the gas-liquid two-phase refrigerant (state (6)) that flows through the low-pressure pipe 3b side. Thus, the refrigerant becomes a low-temperature and high-pressure refrigerant (state (4)). The refrigerant (state (4)) that has flowed out from the high-pressure pipe 3 a side of the high-low pressure heat exchanger 3 flows into the expansion valve 4.

膨張弁4に流入した冷媒(状態(4))は、膨張弁4で減圧されて低温・低圧の気液二相冷媒(状態(5’))となる。また一方、補助除霜回路30の補助側開閉弁30aを開制御することにより、圧縮機1より吐出された高温の冷媒は、空気熱交換器5の最下段流路を流れ、空気熱交換器5の下部を加温した後、乾き度の低い状態(状態(5’’))となって主回路10の空気熱交換器入口側の合流部33で合流し、状態(5)となる。   The refrigerant (state (4)) flowing into the expansion valve 4 is decompressed by the expansion valve 4 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant (state (5 ')). On the other hand, by controlling the opening of the auxiliary side opening / closing valve 30a of the auxiliary defrosting circuit 30, the high-temperature refrigerant discharged from the compressor 1 flows through the lowermost flow path of the air heat exchanger 5, and the air heat exchanger After the lower part of 5 is heated, it becomes a state of low dryness (state (5 ″)) and joins at the merging portion 33 on the air heat exchanger inlet side of the main circuit 10 to become the state (5).

この気液二相冷媒(状態(5))は、空気熱交換器5へ流入し、ファン5aから送られる空気から吸熱して蒸発し、低温・低圧の気液二相冷媒(状態(6))となる。なお、空気熱交換器5での熱交換量は、水熱交換器2での放熱量(熱交換量)が低下したことに伴って低下している。また、空気熱交換器5での熱交換量が低下すれば、蒸発温度検知装置7aで検知する蒸発温度(Tei)も貯湯運転時の蒸発温度よりも上昇する。   This gas-liquid two-phase refrigerant (state (5)) flows into the air heat exchanger 5, absorbs heat from the air sent from the fan 5a and evaporates, and is a low-temperature and low-pressure gas-liquid two-phase refrigerant (state (6)). ) In addition, the heat exchange amount in the air heat exchanger 5 is reduced as the heat radiation amount (heat exchange amount) in the water heat exchanger 2 is reduced. Moreover, if the heat exchange amount in the air heat exchanger 5 decreases, the evaporation temperature (Tei) detected by the evaporation temperature detector 7a also rises higher than the evaporation temperature during hot water storage operation.

膨張弁4を流出して主回路10から空気熱交換器5に流入する気液二相冷媒(状態(5’))は、補助除霜回路30からの乾き度が低下した液冷媒(状態(5’’))と合流部33で合流した上で空気熱交換器5に流入する。このため、空気熱交換器5から流出する気液二相冷媒(状態(6))は、補助除霜回路30からの液冷媒(状態(5’’)が合流部33で合流されない場合に比べて乾き度が低下することになる。   The gas-liquid two-phase refrigerant (state (5 ′)) flowing out of the expansion valve 4 and flowing into the air heat exchanger 5 from the main circuit 10 (state (5 ′)) is a liquid refrigerant (state (state ( 5 ″)) and the merging section 33 and then flows into the air heat exchanger 5. For this reason, the gas-liquid two-phase refrigerant (state (6)) flowing out from the air heat exchanger 5 is compared with the case where the liquid refrigerant (state (5 ″) from the auxiliary defrost circuit 30 is not merged at the junction 33. The dryness will decrease.

しかし、主除霜回路20の主側開閉弁20aが開かれることにより、上述したように高低圧熱交換器3での熱交換量が増加しているため、空気熱交換器5から流出して高低圧熱交換器3に流入する気液二相冷媒(状態(6))は、高低圧熱交換器3で十分に加熱される。そして、高低圧熱交換器3から流出した冷媒は、加熱補助回路50の返油側開閉弁50aの開制御により、圧縮機1の吐出部分の油分離器1aの外郭や内部の油に蓄熱された熱を回収して更に加熱されて圧縮機1へ吸引される。   However, since the amount of heat exchange in the high / low pressure heat exchanger 3 is increased as described above by opening the main side opening / closing valve 20a of the main defrosting circuit 20, it flows out of the air heat exchanger 5. The gas-liquid two-phase refrigerant (state (6)) flowing into the high / low pressure heat exchanger 3 is sufficiently heated by the high / low pressure heat exchanger 3. The refrigerant that has flowed out of the high / low pressure heat exchanger 3 is stored in the outer or inner oil of the oil separator 1a at the discharge portion of the compressor 1 by opening control of the oil return side on-off valve 50a of the auxiliary heating circuit 50. The collected heat is recovered and further heated and sucked into the compressor 1.

すなわち、状態(6)の気液二相冷媒は、高低圧熱交換器3を通過し、更に加熱補助回路50からの油と合流することにより、圧縮機1へ吸引される際には十分加熱されてガス冷媒(状態(1))となる。   That is, the gas-liquid two-phase refrigerant in the state (6) passes through the high / low pressure heat exchanger 3 and further joins with the oil from the heating auxiliary circuit 50, so that it is sufficiently heated when sucked into the compressor 1. It becomes a gas refrigerant (state (1)).

ここで、従来の特許文献1の技術と比較すると、従来は本実施の形態の第2バイパス管32の冷媒出口側の端部を空気熱交換器5の出口側に接続した構成に相当する。第2バイパス管32を通過する冷媒は、上述したように、空気熱交換器5の最下段を通過することによって乾き度の低い状態となる。このような乾き度の低い状態の冷媒を空気熱交換器5の出口側に合流させることから、圧縮機1への液戻りを避けられず、アキュムレータが必要であった。   Here, compared with the technique of the conventional patent document 1, it corresponds to the structure which connected the edge part by the side of the refrigerant | coolant exit of the 2nd bypass pipe 32 of this Embodiment to the exit side of the air heat exchanger 5 conventionally. As described above, the refrigerant passing through the second bypass pipe 32 passes through the lowermost stage of the air heat exchanger 5 and thus has a low dryness. Since the refrigerant in such a low dryness state is joined to the outlet side of the air heat exchanger 5, liquid return to the compressor 1 cannot be avoided and an accumulator is necessary.

これに対し、本実施の形態のように第2バイパス管32の冷媒出口側の端部を高低圧熱交換器3の入口側に接続することで、乾き度の低い状態(状態(5’’))を、主回路10からの冷媒と合流させた後、空気熱交換器5に流入させて空気熱交換器5に溜めることができ、更に、主除霜回路20によって高低圧熱交換器3での熱交換量を増加させることによってアキュムレータを不要とできるのである。   On the other hand, by connecting the end of the second bypass pipe 32 on the refrigerant outlet side to the inlet side of the high / low pressure heat exchanger 3 as in the present embodiment, a low dryness state (state (5 '' )) Can be combined with the refrigerant from the main circuit 10 and then flowed into the air heat exchanger 5 to be stored in the air heat exchanger 5. By increasing the amount of heat exchange at, an accumulator can be made unnecessary.

次に、除霜準備運転における各機器の具体的な制御例について図3を参照して説明する。   Next, a specific control example of each device in the defrost preparation operation will be described with reference to FIG.

以上の説明では、膨張弁4の開度制御と圧縮機1の回転数制御について特に説明してこなかったが、蒸発温度を外気温度まで早く近づけるには、圧縮機1の回転数を貯湯運転時よりも下げる方法と、膨張弁4の開度を貯湯運転時よりも大きくする方法がある。図3には、両方行う例を示しているが、何れか一方の方法を採用して蒸発温度を上げるようにしてもよい。なお、膨張弁4の開度を大きくするとしたが、本実施の形態では、図3に示すように膨張弁4の開度を大きく前に一旦小さくしている。この理由については後述することにし、まずは、圧縮機1の回転数を貯湯運転時よりも下げ、且つ膨張弁4の開度を大きくする制御を行った際の動作について説明する。   In the above description, the opening degree control of the expansion valve 4 and the rotation speed control of the compressor 1 have not been specifically described. However, in order to bring the evaporation temperature close to the outside temperature quickly, the rotation speed of the compressor 1 is set during hot water storage operation. And a method of increasing the opening degree of the expansion valve 4 than in the hot water storage operation. FIG. 3 shows an example in which both are performed, but either one of the methods may be adopted to raise the evaporation temperature. Although the opening degree of the expansion valve 4 is increased, in the present embodiment, as shown in FIG. 3, the opening degree of the expansion valve 4 is once decreased before being increased. The reason for this will be described later. First, the operation when the rotation speed of the compressor 1 is controlled to be lower than that during hot water storage operation and the opening degree of the expansion valve 4 is increased will be described.

図6は、圧縮機1の回転数及び膨張弁4の開度の制御の一例を示す説明図である。図6に示すように、圧縮機1の回転数及び膨張弁4の開度を除霜運転モード開始と同時に大きく変化、つまり圧縮機1の回転数を急に低下させ、膨張弁4の開度を急に大きくさせると、空気熱交換器5内に流入する冷媒量が急激に増加することになる。つまり、過渡的に圧縮機1の入口における冷媒の乾き度が外気温度L304以下となり、圧縮機1への液戻り量が増加してしまうことになる。   FIG. 6 is an explanatory diagram illustrating an example of control of the rotation speed of the compressor 1 and the opening degree of the expansion valve 4. As shown in FIG. 6, the rotational speed of the compressor 1 and the opening degree of the expansion valve 4 are greatly changed simultaneously with the start of the defrosting operation mode, that is, the rotational speed of the compressor 1 is suddenly decreased, If the value is suddenly increased, the amount of refrigerant flowing into the air heat exchanger 5 will increase rapidly. That is, the dryness of the refrigerant at the inlet of the compressor 1 becomes transiently below the outside air temperature L304, and the amount of liquid returned to the compressor 1 increases.

そこで、本実施の形態では除霜準備運転を行い、圧縮機1の回転数を徐々に下げ、膨張弁4の開度を徐々に大きくするようにして、空気熱交換器5内に流入する冷媒量を徐々に増加させ、圧縮機1への液戻り量を小さく抑えつつ、蒸発温度(Tei)を上昇させることができるのである。このとき、ファン5aを貯湯運転時と同様の回転数で駆動させておくことにより、空気熱交換器5の出口における冷媒の乾き度が急激に低下して圧縮機1へ液戻りが生じるのを抑制できる。そして、一定時間後(冷媒がサイクルを1周する程度の時間で例えば30秒から約1分程度)に、圧縮機1の回転数を次第に貯湯運転モード時の回転数と同様になるように上昇させる。上昇させるのは、高低圧熱交換器3の高圧配管3aの温度を高く維持することにより、高低圧熱交換器3の能力を上昇させ、圧縮機1へ液戻りが生じるのを防止するためである。   Therefore, in the present embodiment, the defrost preparation operation is performed, the rotational speed of the compressor 1 is gradually decreased, and the opening degree of the expansion valve 4 is gradually increased so that the refrigerant flows into the air heat exchanger 5. The evaporation temperature (Tei) can be increased while the amount is gradually increased and the amount of liquid returned to the compressor 1 is kept small. At this time, by driving the fan 5a at the same rotational speed as in the hot water storage operation, the dryness of the refrigerant at the outlet of the air heat exchanger 5 is drastically reduced and liquid return to the compressor 1 occurs. Can be suppressed. Then, after a certain time (the time for which the refrigerant makes one cycle of the cycle, for example, from about 30 seconds to about 1 minute), the rotational speed of the compressor 1 gradually increases so as to become the same as the rotational speed in the hot water storage operation mode. Let The reason for the increase is to maintain the temperature of the high-pressure pipe 3a of the high-low pressure heat exchanger 3 at a high level, thereby increasing the capacity of the high-low pressure heat exchanger 3 and preventing the liquid from returning to the compressor 1. is there.

次に、除霜準備運転開始時に、膨張弁4の開度を一旦下げる理由について説明する。除霜準備運転開始時の空気熱交換器5には、貯湯運転中に低温とされた液冷媒が保持されている。よって、除霜準備運転開始と同時に膨張弁4の開度を大きくすると、空気熱交換器5内の低温の液冷媒が一度に放出されて圧縮機1に液戻りする可能性がある。よって、これを防止するため、除霜準備運転開始と共に一旦、膨張弁4の開度を小さくして空気熱交換器5から圧縮機1へ流出する冷媒を少なくしているのである。   Next, the reason why the opening degree of the expansion valve 4 is once lowered at the start of the defrost preparation operation will be described. The air heat exchanger 5 at the start of the defrost preparation operation holds liquid refrigerant that has been kept at a low temperature during the hot water storage operation. Therefore, if the opening degree of the expansion valve 4 is increased simultaneously with the start of the defrost preparation operation, the low-temperature liquid refrigerant in the air heat exchanger 5 may be released at a time and returned to the compressor 1. Therefore, in order to prevent this, at the same time when the defrost preparation operation is started, the opening degree of the expansion valve 4 is once reduced to reduce the refrigerant flowing out from the air heat exchanger 5 to the compressor 1.

また、除霜準備運転時には、ファン5aを図3に示したように貯湯運転時と同様の回転数で駆動させておくことにより、空気熱交換器5の出口における冷媒の乾き度が急激に低下して圧縮機1に液戻りするのを抑制できる。また、水流量制御弁73の開度制御や水ポンプ72の回転数制御を行って貯湯運転モード時よりも流量を少なくするように制御する。なお、水ポンプ72を停止してもよい。   In addition, during the defrost preparation operation, the fan 5a is driven at the same rotational speed as in the hot water storage operation as shown in FIG. 3, so that the dryness of the refrigerant at the outlet of the air heat exchanger 5 is drastically reduced. As a result, liquid return to the compressor 1 can be suppressed. Further, the opening degree control of the water flow rate control valve 73 and the rotation speed control of the water pump 72 are performed to control the flow rate to be smaller than that in the hot water storage operation mode. The water pump 72 may be stopped.

なお、圧縮機1の回転数を徐々に下げ、膨張弁4の開度を徐々に大きくするにあたっては、図3に示したように連続的にしてもよいし、次の図7に示すように段階的に変化させるようにしてもよい。   In order to gradually decrease the rotational speed of the compressor 1 and gradually increase the opening degree of the expansion valve 4, it may be continuous as shown in FIG. 3, or as shown in FIG. You may make it change in steps.

図7は、圧縮機1の回転数を段階的に下げ、膨張弁4の開度を一旦小さくした後、段階的に大きくさせた例を示す図である。図7に示すように、膨張弁4の開度を所定の時間間隔で段階的に大きくさせたり、先の図に示したように連続的に大きくさせたりといったように制御することにより、上述したように、空気熱交換器5内に流入する冷媒量を急激に増加させないようにする。そうすると、圧縮機1の入口における冷媒の乾き度が常に外気温度L304以上となり、圧縮機1への液戻り量を増加させることなく、除霜本運転への切り替えを行うことができる。   FIG. 7 is a diagram showing an example in which the rotational speed of the compressor 1 is lowered stepwise and the opening degree of the expansion valve 4 is once reduced and then increased stepwise. As shown in FIG. 7, the opening degree of the expansion valve 4 is increased in steps at predetermined time intervals, or is controlled to increase continuously as shown in the previous figure. As described above, the amount of the refrigerant flowing into the air heat exchanger 5 is prevented from rapidly increasing. If it does so, the dryness of the refrigerant | coolant in the inlet_port | entrance of the compressor 1 will always become more than the external temperature L304, and it can switch to a defrost main operation, without increasing the liquid return amount to the compressor 1. FIG.

そして、この除霜準備運転を継続していると、水熱交換器2の出口における冷媒(状態(3’))の温度及び蒸発温度(tei)は、上昇を続け、圧縮機1での熱量よりも水熱交換器2での熱交換量が小さくなる。そのため、空気熱交換器5で気液二相冷媒(状態(5))の熱が空気側へ放熱され、いわば空気熱交換器5が凝縮器として機能し始める。そして、蒸発温度(tei)が外気温度を超えると、制御装置61は除霜本運転へ切り替える。次に、除霜本運転について説明する。   And if this defrost preparation operation is continued, the temperature and evaporation temperature (tei) of the refrigerant | coolant (state (3 ')) in the exit of the water heat exchanger 2 will continue to rise, and the amount of heat in the compressor 1 will increase. The amount of heat exchange in the water heat exchanger 2 is smaller than that. Therefore, the heat of the gas-liquid two-phase refrigerant (state (5)) is radiated to the air side by the air heat exchanger 5, so that the air heat exchanger 5 starts to function as a condenser. When the evaporation temperature (tei) exceeds the outside air temperature, the control device 61 switches to the defrost main operation. Next, the defrost main operation will be described.

(c)除霜本運転
図8は、除霜本運転中における主回路10、主除霜回路20及び補助除霜回路30の冷媒状態を示すモリエル線図(P−H線図)である。この図8は、縦軸が絶対圧力(P)で、横軸がエンタルピ(H)を示している。この図8では、L303が冷媒の状態遷移を、L304が外気温度をそれぞれ示している。また、L303上に図示してある状態(1)〜(6)は、図1に示した(1)〜(6)のそれぞれの場所における冷媒の状態を示している。なお、何れの状態においても外気温度L304よりも高くなっている。
(C) Main Defrosting Operation FIG. 8 is a Mollier diagram (PH diagram) showing refrigerant states of the main circuit 10, the main defrosting circuit 20, and the auxiliary defrosting circuit 30 during the defrosting main operation. In FIG. 8, the vertical axis represents absolute pressure (P) and the horizontal axis represents enthalpy (H). In FIG. 8, L303 indicates the refrigerant state transition, and L304 indicates the outside air temperature. In addition, states (1) to (6) illustrated on L303 indicate the states of the refrigerant in the respective locations (1) to (6) illustrated in FIG. In any state, the temperature is higher than the outside air temperature L304.

この図8において、冷媒は、飽和液線と飽和蒸気線とで囲まれた部分では気液二相状態であることを、飽和液線の左側では液化した状態であることを、飽和蒸気線の右側ではガス化した状態であることをそれぞれ表している。つまり、冷媒は、状態(1)ではガス状態であることがわかり、状態(2)〜状態(4)では臨界圧力以上の状態であることがわかり、状態(5’’)では液状態、状態(5)、(5’)、(5’’)及び(6)では気液二相状態であることがわかる。   In FIG. 8, the refrigerant is in a gas-liquid two-phase state in a portion surrounded by a saturated liquid line and a saturated vapor line, and is in a liquefied state on the left side of the saturated liquid line. On the right side, the gasified state is shown. That is, the refrigerant is found to be in a gas state in the state (1), is found to be in a state equal to or higher than the critical pressure in the states (2) to (4), and is in a liquid state and a state in the state (5 ″). In (5), (5 ′), (5 ″) and (6), it can be seen that the gas-liquid two-phase state.

除霜本運転は、除霜準備運転を経た後に開始されるモードであり、制御装置61は、主側開閉弁20a、補助側開閉弁30a、返油側開閉弁50aを開いた状態にしたままで除霜本運転が開始するようになっている(図3のP2参照)。   The defrosting main operation is a mode started after the defrosting preparation operation, and the control device 61 keeps the main side opening / closing valve 20a, the auxiliary side opening / closing valve 30a, and the oil return side opening / closing valve 50a open. The defrosting main operation is started (see P2 in FIG. 3).

圧縮機1や膨張弁4等の各機器の制御については後述することにし、ここではまず、除霜本運転時の冷媒の流れとその冷媒状態の変化について説明する。   The control of each device such as the compressor 1 and the expansion valve 4 will be described later. First, the refrigerant flow and the change in the refrigerant state during the defrosting main operation will be described.

除霜本運転では、上述した除霜準備運転と同様に、圧縮機1から吐出した高温・高圧の冷媒(状態(2))を主回路10だけでなく主除霜回路20、補助除霜回路30及び加熱補助回路50に流れるようにして除霜本運転を行っているのである。除霜本運転において状態(1)〜状態(5)までの冷媒の状態変化の流れは除霜準備運転と同様である。   In the defrost main operation, similarly to the defrost preparation operation described above, the high-temperature and high-pressure refrigerant discharged from the compressor 1 (state (2)) is not only the main circuit 10 but also the main defrost circuit 20 and the auxiliary defrost circuit. The defrosting main operation is performed so as to flow to 30 and the heating auxiliary circuit 50. In the defrost main operation, the flow of state change of the refrigerant from state (1) to state (5) is the same as that in the defrost preparation operation.

そして、低温・低圧の気液二相冷媒(状態(5))は、ここでは除霜準備運転を経た後であるので、冷媒温度が外気温度L304以上となっている。この気液二相冷媒(状態(5))は、空気熱交換器5へ流入し、ファン5aから送られる空気から吸熱して蒸発し、低温・低圧の気液二相冷媒(状態(6))となる。なお、空気熱交換器5での熱交換量は、水熱交換器2での放熱量(熱交換量)が低下したことに伴って低下している。空気熱交換器5での熱交換量が低下すれば、蒸発温度検知装置7aで検知する蒸発温度(Tei)も上昇し、除霜準備運転時の蒸発温度よりも上昇している。そして、蒸発温度が0℃以上になると、空気熱交換器5に付着した霜を溶かすことができる。   Since the low-temperature / low-pressure gas-liquid two-phase refrigerant (state (5)) is after the defrost preparation operation, the refrigerant temperature is equal to or higher than the outside air temperature L304. This gas-liquid two-phase refrigerant (state (5)) flows into the air heat exchanger 5, absorbs heat from the air sent from the fan 5a and evaporates, and is a low-temperature and low-pressure gas-liquid two-phase refrigerant (state (6)). ) In addition, the heat exchange amount in the air heat exchanger 5 is reduced as the heat radiation amount (heat exchange amount) in the water heat exchanger 2 is reduced. If the amount of heat exchange in the air heat exchanger 5 decreases, the evaporation temperature (Tei) detected by the evaporation temperature detector 7a also increases, which is higher than the evaporation temperature during the defrost preparation operation. And if evaporation temperature becomes 0 degreeC or more, the frost adhering to the air heat exchanger 5 can be melt | dissolved.

ここで、空気熱交換器5では、除霜準備運転時よりも蒸発温度が上昇しており、図5に示した除霜準備運転時の状態(5)から状態(6)への変化と、図8に示した除霜本運転時の状態(5)から状態(6)への変化とを比較して明かなように、除霜本運転では、除霜準備運転時よりもより乾き度の低下した気液二相冷媒が空気熱交換器5から出ることになる。しかし、空気熱交換器5での蒸発温度が上昇することに伴い、圧縮機1の吐出側の圧力が上がるため、高低圧熱交換器3での熱交換量が除霜準備運転時よりも増加している。このため、高低圧熱交換器3から流出した冷媒は高低圧熱交換器3で十分に加熱される。そして高低圧熱交換器3から流出した冷媒は、返油側開閉弁50aの開制御により、圧縮機1の吐出部分の油分離器1aの外郭や内部の油に蓄熱された熱を回収して更に加熱され、圧縮機1へ吸引される際には十分加熱されてガス冷媒(状態(1))となる。   Here, in the air heat exchanger 5, the evaporation temperature is higher than that during the defrost preparation operation, and the change from the state (5) to the state (6) during the defrost preparation operation shown in FIG. As is clear by comparing the change from the state (5) to the state (6) during the defrost main operation shown in FIG. 8, the defrost main operation is more dry than the defrost preparation operation. The lowered gas-liquid two-phase refrigerant comes out of the air heat exchanger 5. However, as the evaporation temperature in the air heat exchanger 5 rises, the pressure on the discharge side of the compressor 1 increases, so the amount of heat exchange in the high-low pressure heat exchanger 3 is higher than in the defrost preparation operation. doing. For this reason, the refrigerant flowing out of the high / low pressure heat exchanger 3 is sufficiently heated by the high / low pressure heat exchanger 3. The refrigerant flowing out of the high / low pressure heat exchanger 3 recovers the heat stored in the outer and inner oil of the oil separator 1a at the discharge portion of the compressor 1 by opening control of the oil return side on-off valve 50a. When further heated and sucked into the compressor 1, it is sufficiently heated to become a gas refrigerant (state (1)).

そして、貯湯運転時よりも空気熱交換器5内に存在する冷媒量が増加して余剰冷媒が空気熱交換器5に貯留され、圧縮機1から吐出する冷媒圧力上昇を抑制できるようになっている。また、空気熱交換器5を流出した気液二相冷媒(状態(6))は、高低圧熱交換器3へ流入する高温・高圧の冷媒(状態(3))によって加熱されてガス冷媒(状態(1))となって圧縮機1へ吸引されてサイクルを形成する。   And the refrigerant | coolant amount which exists in the air heat exchanger 5 increases rather than the time of hot water storage driving | running, an excess refrigerant | coolant is stored in the air heat exchanger 5, and it becomes possible to suppress the refrigerant | coolant pressure rise discharged from the compressor 1 now. Yes. Further, the gas-liquid two-phase refrigerant (state (6)) that has flowed out of the air heat exchanger 5 is heated by the high-temperature and high-pressure refrigerant (state (3)) flowing into the high-low pressure heat exchanger 3 to be gas refrigerant ( State (1)) is drawn into the compressor 1 to form a cycle.

次に、除霜本運転における各機器の制御について説明する。
除霜本運転は、上述したように空気熱交換器5に付着した霜を除去し、水熱交換器2及び空気熱交換器5での熱交換量を低下させないようにすることを主目的としている。そのために、制御装置61は、圧縮機1の回転数を最大回転数に一定に保ち、膨張弁4の開度を次第に小さくすることによって、除霜本運転時間が短くなり効率良く除霜本運転が実行できる。
Next, control of each device in the defrost main operation will be described.
The main purpose of the defrosting operation is to remove the frost adhering to the air heat exchanger 5 as described above and not to reduce the heat exchange amount in the water heat exchanger 2 and the air heat exchanger 5. Yes. Therefore, the control device 61 keeps the rotation speed of the compressor 1 constant at the maximum rotation speed and gradually decreases the opening degree of the expansion valve 4, thereby shortening the defrost main operation time and efficiently performing the defrost main operation. Can be executed.

また、ファン5aを停止又は除霜準備運転時の回転数よりも低下させ、これにより蒸発温度(Tei)を更に上昇させることで除霜効率を向上させているのである。また、貯湯装置70の水流量は、除霜準備運転と同様、水ポンプ72を停止又は水流量制御弁73を制御して貯湯運転時よりも流量を少なくするように制御する。以上のように各機器を制御することで、除霜効率を向上させることができる。   Moreover, the defrosting efficiency is improved by lowering the fan 5a from the rotational speed at the time of stopping or defrosting preparation operation, thereby further increasing the evaporation temperature (Tei). In addition, the water flow rate of the hot water storage device 70 is controlled so that the water pump 72 is stopped or the water flow rate control valve 73 is controlled to make the flow rate smaller than in the hot water storage operation, as in the defrost preparation operation. Defrosting efficiency can be improved by controlling each device as described above.

なお、膨張弁4の開度を除霜本運転に入ってから次第に小さくしているが、これは以下の理由による。膨張弁4の開度を除霜準備モードと同様の開度のままとしていると、圧縮機1の吐出側圧力が低下、圧縮機1の吸入側圧力が上昇して、圧縮機1の入力が低下し、除霜能力が低下する。よって、それを防止するため、膨張弁4の開度を次第に小さくしている。   In addition, although the opening degree of the expansion valve 4 is gradually reduced after entering the defrosting main operation, this is due to the following reason. If the opening degree of the expansion valve 4 remains the same as that in the defrost preparation mode, the discharge side pressure of the compressor 1 decreases, the suction side pressure of the compressor 1 increases, and the input of the compressor 1 is Decrease, defrosting ability decreases. Therefore, in order to prevent this, the opening degree of the expansion valve 4 is gradually reduced.

また、ここでは除霜本運転開始時において圧縮機1の回転数が貯湯運転モード時と同じ最大回転数に達しているため、圧縮機1の回転数を最大回転数に一定に保つようにしているが、除霜本運転開始時において圧縮機1の回転数が最大回転数に達していない場合には、除霜本運転開始時から圧縮機1の回転数を次第に増加させて最大回転数又は貯湯運転モード時と同様の回転数になるようにしてもよい。   Here, since the rotation speed of the compressor 1 reaches the same maximum rotation speed as that in the hot water storage operation mode at the start of the defrosting main operation, the rotation speed of the compressor 1 is kept constant at the maximum rotation speed. However, when the rotation speed of the compressor 1 does not reach the maximum rotation speed at the start of the defrost main operation, the rotation speed of the compressor 1 is gradually increased from the start of the defrost main operation, or The rotation speed may be the same as that in the hot water storage operation mode.

図9は、図1のヒートポンプ給湯機100における各運転の切り替え処理の流れを示すフローチャートである。以下、各運転モードの切り替えについて説明する。
通常、ヒートポンプ給湯機100は、貯湯運転モードを行っている(S1)。貯湯運転モード時に空気熱交換器5に霜が付着すると、蒸発温度(Tei)が低下することになる。つまり、空気熱交換器5への着霜状態をこの蒸発温度(Tei)で判定することができる。ヒートポンプ給湯機100が貯湯運転モードを開始すると、制御装置61は、蒸発温度検知装置7aで検知した蒸発温度(Tei)と予め設定してある所定値(T1)とを比較する(S2)。
FIG. 9 is a flowchart showing the flow of the switching process of each operation in the heat pump water heater 100 of FIG. Hereinafter, switching of each operation mode will be described.
Usually, the heat pump water heater 100 is performing the hot water storage operation mode (S1). If frost adheres to the air heat exchanger 5 during the hot water storage operation mode, the evaporation temperature (Tei) is lowered. That is, the frosting state on the air heat exchanger 5 can be determined by the evaporation temperature (Tei). When the heat pump water heater 100 starts the hot water storage operation mode, the control device 61 compares the evaporation temperature (Tei) detected by the evaporation temperature detection device 7a with a predetermined value (T1) set in advance (S2).

制御装置61は、蒸発温度(Tei)が所定値(T1)以下になるまで貯湯運転モードを継続させる。なお、この所定値(T1)は、空気熱交換器5に霜が付着し、空気熱交換器5の熱交換量が低下してしまうであろうと想定される温度を予め設定したものである。   The controller 61 continues the hot water storage operation mode until the evaporation temperature (Tei) becomes equal to or lower than a predetermined value (T1). The predetermined value (T1) is a preset temperature at which it is assumed that frost will adhere to the air heat exchanger 5 and the heat exchange amount of the air heat exchanger 5 will decrease.

制御装置61は、蒸発温度(Tei)が所定値(T1)以下になったと判断すると、除霜運転開始タイミングと判断し、貯湯運転モードから除霜運転モードに切り替え、まずは除霜準備運転を開始する(S3)。そして、除霜準備運転を開始することよって上述したように蒸発温度(Tei)が徐々に上昇するため、その上昇した蒸発温度(Tei)が所定値(Tx)以内の間は除霜準備運転を継続し(S4)、所定値(Tx)を超えると、制御装置61は、除霜本運転に切り替える(S5)。この所定値(Tx)は、上記では外気温度として説明したが、外気温度以上の温度であればよく、氷の融点である0℃としてもよい。   When determining that the evaporation temperature (Tei) has become equal to or lower than the predetermined value (T1), the control device 61 determines the defrosting operation start timing, switches from the hot water storage operation mode to the defrosting operation mode, and starts the defrosting preparation operation first. (S3). Since the evaporation temperature (Tei) gradually increases as described above by starting the defrost preparation operation, the defrost preparation operation is performed while the increased evaporation temperature (Tei) is within a predetermined value (Tx). If it continues (S4) and exceeds predetermined value (Tx), the control apparatus 61 will switch to defrost main operation (S5). Although the predetermined value (Tx) has been described as the outside air temperature in the above, it may be a temperature equal to or higher than the outside air temperature, and may be 0 ° C. that is the melting point of ice.

そして、除霜本運転を実行すると、空気熱交換器5に付着した霜が溶けるので、蒸発温度(Tei)が上昇することになる。そこで、制御装置61は、蒸発温度(Tei)と予め設定してある所定値(T2)とを比較する(S6)。制御装置61は、蒸発温度(Tei)が所定値(T2)以上になるまで除霜本運転を継続させる。すなわち、制御装置61は、蒸発温度(Tei)が所定値(T2)未満の間は空気熱交換器5に付着した霜が溶解してしないと判断し、除霜本運転を継続させるのである。制御装置61は、蒸発温度(Tei)が所定値(T2)以上になったと判断すると、霜が溶解して貯湯運転モードに戻るタイミングであると判断し、除霜本運転から再度貯湯運転に切り替える(S1)。所定値(T2)は、空気熱交換器5に付着した霜が溶け、空気熱交換器5の熱交換量が低下しないであろうと想定される温度を予め設定したものである。   And if a defrost main operation is performed, since the frost adhering to the air heat exchanger 5 will melt | dissolve, evaporation temperature (Tei) will rise. Therefore, the control device 61 compares the evaporation temperature (Tei) with a predetermined value (T2) set in advance (S6). The controller 61 continues the defrost main operation until the evaporation temperature (Tei) becomes equal to or higher than a predetermined value (T2). That is, the control device 61 determines that the frost attached to the air heat exchanger 5 has not melted while the evaporation temperature (Tei) is lower than the predetermined value (T2), and continues the defrosting main operation. When the controller 61 determines that the evaporation temperature (Tei) has reached the predetermined value (T2) or more, it determines that it is time to return to the hot water storage operation mode when the frost melts, and switches from the defrost main operation to the hot water storage operation again. (S1). The predetermined value (T2) is a preset temperature at which it is assumed that the frost attached to the air heat exchanger 5 will melt and the heat exchange amount of the air heat exchanger 5 will not decrease.

以上のように、このヒートポンプ給湯機100は、主側開閉弁20a、補助側開閉弁30a及び返油側開閉弁50aを開くことで貯湯運転と除霜本運転とでのサイクル状態を異なるものとすると共に、貯湯運転と除霜本運転とを繋ぐ除霜準備運転を実行することによって、貯湯運転から除霜本運転へサイクル状態を効率良く変化させることを可能にしている。   As described above, the heat pump water heater 100 has different cycle states between the hot water storage operation and the defrost main operation by opening the main side opening / closing valve 20a, the auxiliary side opening / closing valve 30a, and the oil return side opening / closing valve 50a. In addition, the cycle state can be efficiently changed from the hot water storage operation to the defrost main operation by executing the defrost preparation operation that connects the hot water storage operation and the defrost main operation.

以上説明したように、本実施の形態のヒートポンプ装置60によれば、圧縮機1と水熱交換器2との間から分岐して、空気熱交換器5の最下段の冷媒配管よりも下方を通過して空気熱交換器5の入口側に合流する補助除霜回路30を設けたので、霜との熱交換により液冷媒となって補助除霜回路30から流出した冷媒を、空気熱交換器5内に流入させて空気熱交換器5内に溜めることができる。加えて、主除霜回路20によって高低圧熱交換器3での熱交換量を増加させることができるため、余剰冷媒を発生させず、すなわち冷媒容器を用いずに、圧縮機1への液戻り量を抑制できる。また、補助除霜回路30によって空気熱交換器5の最下部を加温することで、空気熱交換器5が鉛直方向に高さを有する構成のものであっても、空気熱交換器5の最下部に堆積する霜を溶かすことができ、残氷等の除霜不良を防止することができる。   As described above, according to the heat pump device 60 of the present embodiment, a branch is made between the compressor 1 and the water heat exchanger 2 and below the lowermost refrigerant pipe of the air heat exchanger 5. Since the auxiliary defrosting circuit 30 that passes through and merges with the inlet side of the air heat exchanger 5 is provided, the refrigerant flowing out of the auxiliary defrosting circuit 30 as liquid refrigerant by heat exchange with the frost is converted into the air heat exchanger. 5 and can be stored in the air heat exchanger 5. In addition, since the amount of heat exchange in the high-low pressure heat exchanger 3 can be increased by the main defrosting circuit 20, the liquid return to the compressor 1 without generating surplus refrigerant, that is, without using a refrigerant container. The amount can be suppressed. Moreover, even if the air heat exchanger 5 is configured to have a height in the vertical direction by heating the lowermost part of the air heat exchanger 5 by the auxiliary defrosting circuit 30, the air heat exchanger 5 The frost accumulated at the bottom can be melted, and defective defrost such as residual ice can be prevented.

また、除霜準備運転を経た後に除霜本運転を実行することで、液戻りを抑制することができ、効率のよい除霜本運転を実現している。また、除霜準備運転及び除霜本運転において、圧縮機1の回転数、膨張弁4の開度及びファン5aの回転数を制御することにより更に効率良く除霜でき、除霜時間の短縮を図ることを可能にしている。   Moreover, by performing defrost main operation after passing through defrost preparation operation, a liquid return can be suppressed and the efficient defrost main operation is implement | achieved. Further, in the defrost preparation operation and the defrost main operation, the defrosting can be further efficiently performed by controlling the rotation speed of the compressor 1, the opening degree of the expansion valve 4, and the rotation speed of the fan 5a, thereby shortening the defrosting time. Makes it possible to plan.

なお、上記の説明では、補助側開閉弁30aの開閉制御に関し、複雑な制御を行わず除霜準備運転開始と共に開制御とする例を示したが、除霜準備運転開始後、高低圧熱交換器3での熱交換量が増加したことを検出(例えば、高低圧熱交換器3入口の温度を検出し、所定値(Ty)以上)してから、開制御するようにしてもよい。これは、貯湯運転によって補助除霜回路30の第2バイパス管32内に液冷媒が滞留している場合であっても、その滞留している液冷媒が補助側開閉弁30aを開制御することによって追い出され、空気熱交換器5及び高低圧熱交換器3で蒸発しないまま、乾き度の小さい状態で圧縮機1に流入するのを防止するためである。よって、この制御とした場合、液戻り抑制に更に効果的である。   In the above description, regarding the opening / closing control of the auxiliary side opening / closing valve 30a, an example in which complicated control is not performed and opening control is performed at the same time as the start of the defrost preparation operation is shown. The opening control may be performed after detecting that the amount of heat exchange in the heat exchanger 3 has increased (for example, by detecting the temperature at the inlet of the high / low pressure heat exchanger 3 and a predetermined value (Ty) or more). This is because even if the liquid refrigerant stays in the second bypass pipe 32 of the auxiliary defrost circuit 30 due to the hot water storage operation, the staying liquid refrigerant controls the opening of the auxiliary side opening / closing valve 30a. This is for preventing the air heat exchanger 5 and the high / low pressure heat exchanger 3 from flowing into the compressor 1 with a low dryness without being evaporated. Therefore, this control is more effective for suppressing liquid return.

なお、本実施の形態で示した所定値(T1)、所定値(Tx)、所定値(Ty)及び所定値(T2)の値は特に限定するものではない。ヒートポンプ装置60の用途、設置場所及び性能等の条件に基づいて設定するとよい。また、これらの所定値を変更可能にしておくとよい。   Note that the values of the predetermined value (T1), the predetermined value (Tx), the predetermined value (Ty), and the predetermined value (T2) shown in the present embodiment are not particularly limited. It is good to set based on conditions, such as a use of a heat pump device 60, an installation place, and performance. Further, it is preferable that these predetermined values can be changed.

また、本実施の形態では、加熱補助回路50を設けているが、主除霜回路20及び補助除霜回路30だけでも十分に高低圧熱交換器3から吐出される冷媒を加熱してガス化することができ、加熱補助回路50は省略可能である。しかし、加熱補助回路50を設けた方が、より好ましい。   Moreover, in this Embodiment, although the heating auxiliary circuit 50 is provided, only the main defrosting circuit 20 and the auxiliary defrosting circuit 30 can fully heat the refrigerant discharged from the high-low pressure heat exchanger 3 and gasify it. The auxiliary heating circuit 50 can be omitted. However, it is more preferable to provide the heating auxiliary circuit 50.

また、CO2 を冷媒とした場合、CO2 は気液の密度差が小さいため、空気熱交換器5側に多くの冷媒を貯留することができる。また、CO2 は、圧縮機1から吐出する冷媒温度が高くなるため、高低圧熱交換器3で空気熱交換器5から流出する気液二相冷媒を加熱してガス化しやすいという効果もある。更に、蒸発温度検知装置7aを、空気熱交換器5を流通する冷媒配管の中間位置に設けてもよい。なお、膨張弁4の出口から圧縮機1の入口までの間の冷媒配管(低圧)の途中に低圧圧力検知装置を設けて、算出した飽和温度を蒸発温度(Tei)としてもよい。 Further, when CO 2 is used as the refrigerant, CO 2 has a small gas-liquid density difference, so that a large amount of refrigerant can be stored on the air heat exchanger 5 side. Moreover, since the temperature of the refrigerant discharged from the compressor 1 becomes high, CO 2 also has an effect that the gas-liquid two-phase refrigerant flowing out from the air heat exchanger 5 is easily heated and gasified by the high-low pressure heat exchanger 3. . Furthermore, the evaporating temperature detection device 7a may be provided at an intermediate position of the refrigerant pipe that circulates through the air heat exchanger 5. Note that a low pressure detection device may be provided in the middle of the refrigerant pipe (low pressure) from the outlet of the expansion valve 4 to the inlet of the compressor 1, and the calculated saturation temperature may be used as the evaporation temperature (Tei).

また、CO2 を冷媒として使用した場合、第2バイパス管32前後の圧力差が大きいため、空気熱交換器5における第2バイパス管32部分の配管サイズを小さく構成することができる。 Further, when CO 2 is used as the refrigerant, the pressure difference between the front and rear of the second bypass pipe 32 is large, so that the pipe size of the second bypass pipe 32 portion in the air heat exchanger 5 can be reduced.

また、本実施の形態では、圧縮機1から吐出された冷媒を貯湯運転時よりも温度が高い状態で高低圧熱交換器3の入口に導く主除霜回路20の具体的な構成として、主側開閉弁20aを有する第1バイパス配管22で構成した例を示したが、この構成に限られず、主回路10自身で主除霜回路20を兼ねるようにしてもよい。この場合は、水流量制御弁73の開度と水ポンプ72の回転数を調整すればよい。具体的には、除霜準備運転開始と共に、水流量を停止あるいは減少させることにより、水熱交換器2での熱交換量が減少し、水熱交換器2の出口冷媒温は上昇する。つまり高低圧熱交換器3の入口冷媒温を上昇させることができる。   Further, in the present embodiment, as a specific configuration of the main defrosting circuit 20 that guides the refrigerant discharged from the compressor 1 to the inlet of the high-low pressure heat exchanger 3 in a state where the temperature is higher than that during hot water storage operation, Although the example comprised with the 1st bypass piping 22 which has the side on-off valve 20a was shown, it is not restricted to this structure, You may make it the main circuit 10 itself serve as the main defrost circuit 20 as well. In this case, the opening degree of the water flow control valve 73 and the rotation speed of the water pump 72 may be adjusted. Specifically, the amount of heat exchange in the water heat exchanger 2 is reduced by stopping or reducing the water flow rate with the start of the defrost preparation operation, and the outlet refrigerant temperature of the water heat exchanger 2 is increased. That is, the inlet refrigerant temperature of the high / low pressure heat exchanger 3 can be increased.

この構成によっても、圧縮機1への液戻り量を削減できるというほぼ同様の効果が得られる。ただし、水熱交換器2での水の沸騰を防止するため、水熱交換器2出口の温度が所定値以上(例えば80℃)の場合は、一度水流量を増加させ、水熱交換器2内の水の温度を低下させた後、水流量を減少させる必要がある。   Also with this configuration, substantially the same effect that the amount of liquid return to the compressor 1 can be reduced is obtained. However, in order to prevent boiling of water in the water heat exchanger 2, when the temperature at the outlet of the water heat exchanger 2 is equal to or higher than a predetermined value (for example, 80 ° C.), the water flow rate is increased once and the water heat exchanger 2 After reducing the temperature of the water inside, it is necessary to reduce the water flow rate.

また、上記実施の形態では、冷媒としてCO2 冷媒を使用した場合を例に示したが、これに限定するものではない。例えば、CO2 と共沸性の高い炭化水素類、たとえばプロパンやシクロプロパン、イソブタン、ブタン等とCO2 を混合した混合冷媒を使用してもよい。このような混合冷媒を使用すれば、CO2 単体冷媒の場合と比較して臨界圧力を更に低くすることが可能になる。 In the above embodiment, the case using the CO 2 refrigerant as refrigerant shown in the example, not limited thereto. For example, a mixed refrigerant obtained by mixing CO 2 with hydrocarbons having a high azeotropic property with CO 2 , such as propane, cyclopropane, isobutane, butane and the like may be used. If such a mixed refrigerant is used, the critical pressure can be further reduced as compared with the case of a CO 2 simple substance refrigerant.

また、上記実施の形態では、ヒートポンプ装置60をヒートポンプ給湯機に適用した場合を例に説明したが、これに限定するものではなく、例えばカーエアコンや空気調和装置、冷凍機、冷蔵庫等の装置に適用されてもよい。   Moreover, in the said embodiment, although the case where the heat pump apparatus 60 was applied to the heat pump water heater was demonstrated to the example, it is not limited to this, For example, apparatus, such as a car air-conditioner, an air conditioning apparatus, a refrigerator, a refrigerator, etc. May be applied.

1 圧縮機、1a 油分離器、2 水熱交換器、3 高低圧熱交換器、3a 高圧配管、3b 低圧配管、4 膨張弁、5 空気熱交換器、5a ファン、7a 蒸発温度検知装置、7b 外気温度検知装置、10 主回路、11 順次冷媒配管、20 主除霜回路、20a 主側開閉弁、21 分岐部、22 第1バイパス管、23 合流部、30 補助除霜回路、30a 補助側開閉弁、31 分岐部、32 第2バイパス管、33 合流部、40 返油バイパス回路、50 加熱補助回路、50a 返油側開閉弁、51 合流部、52 第3バイパス管、60 ヒートポンプ装置、61 制御装置、70 貯湯装置、71 貯湯タンク、72 水ポンプ、73 水流量制御弁、100 ヒートポンプ給湯機。   1 Compressor, 1a Oil separator, 2 Water heat exchanger, 3 High / low pressure heat exchanger, 3a High pressure piping, 3b Low pressure piping, 4 Expansion valve, 5 Air heat exchanger, 5a Fan, 7a Evaporation temperature detector, 7b Outside air temperature detection device, 10 main circuit, 11 sequential refrigerant piping, 20 main defrost circuit, 20a main side opening / closing valve, 21 branching section, 22 first bypass pipe, 23 merge section, 30 auxiliary defrosting circuit, 30a auxiliary side opening / closing Valve, 31 branch section, 32 second bypass pipe, 33 merge section, 40 oil return bypass circuit, 50 heating auxiliary circuit, 50a oil return side on-off valve, 51 merge section, 52 third bypass pipe, 60 heat pump device, 61 control Apparatus, 70 hot water storage apparatus, 71 hot water storage tank, 72 water pump, 73 water flow control valve, 100 heat pump water heater.

Claims (9)

圧縮機と、放熱器と、減圧装置と、吸熱器とが順次冷媒配管で接続され、前記減圧装置の入口側の高圧冷媒と前記吸熱器の出口側の低圧冷媒とを熱交換させる高低圧熱交換器を備えた主回路と、
前記放熱器での放熱を低減して通常運転時よりも温度が高い状態で前記圧縮機から吐出された高温冷媒を前記高低圧熱交換器の入口に導くための主除霜回路と、
前記主回路の前記圧縮機と前記放熱器との間から分岐し、補助側開閉弁と、前記吸熱器の複数段の冷媒配管のうち前記主回路とは別の独立した流路を形成している最下段の冷媒配管とを介して前記吸熱器の入口側に合流する補助除霜回路と
を備えたことを特徴とするヒートポンプ装置。
A compressor, a radiator, a decompressor, and a heat absorber are sequentially connected by a refrigerant pipe, and heat is exchanged between the high-pressure refrigerant on the inlet side of the decompressor and the low-pressure refrigerant on the outlet side of the heat absorber. A main circuit with an exchanger,
A main defrosting circuit for guiding the high-temperature refrigerant discharged from the compressor to a high-low pressure heat exchanger at a temperature higher than that during normal operation by reducing heat dissipation in the radiator;
Branching from between the compressor and the radiator of the main circuit, forming an independent flow path different from the main circuit among the auxiliary side on-off valve and the refrigerant piping of the plurality of stages of the heat absorber. A heat pump device comprising: an auxiliary defrosting circuit that merges with an inlet side of the heat absorber via a lowermost refrigerant pipe.
前記吸熱器の除霜を行う除霜運転時に前記主除霜回路に冷媒を流すと共に、その除霜運転中に前記補助除霜回路の前記補助側開閉弁を開くことを特徴とする請求項1記載のヒートポンプ装置。   2. The defrosting operation in which the heat absorber is defrosted, a refrigerant flows through the main defrosting circuit, and the auxiliary side opening / closing valve of the auxiliary defrosting circuit is opened during the defrosting operation. The heat pump apparatus as described. 前記除霜運転の開始直後に前記減圧装置の開度を一旦、小さくすることを特徴とする請求項2記載のヒートポンプ装置。   The heat pump apparatus according to claim 2, wherein the opening degree of the decompression device is once reduced immediately after the start of the defrosting operation. 前記高低圧熱交換器入口の温度を検出する温度検知装置を備え、前記吸熱器の除霜を行う除霜運転中に、前記温度検知装置の検知温度が予め設定した所定値以上になると、前記補助除霜回路の前記補助側開閉弁を開くことを特徴とする請求項1乃至請求項3の何れか一項に記載のヒートポンプ装置。   A temperature detection device that detects the temperature of the high-low pressure heat exchanger inlet, and during the defrosting operation that performs defrosting of the heat absorber, when the detected temperature of the temperature detection device is equal to or higher than a predetermined value, The heat pump device according to any one of claims 1 to 3, wherein the auxiliary side opening / closing valve of the auxiliary defrosting circuit is opened. 前記圧縮機から吐出した冷媒中の油を分離する油分離器と、
返油側開閉弁が配設され、前記油分離器で分離された油を前記圧縮機の吸入側に返油し、その油により前記吸熱器から前記圧縮機に向かう冷媒を加熱する加熱補助回路とを備え、
前記除霜運転中に前記加熱補助回路の前記返油側開閉弁を開くことを特徴とする請求項1乃至請求項4の何れか一項に記載のヒートポンプ装置。
An oil separator for separating oil in the refrigerant discharged from the compressor;
A heating auxiliary circuit that is provided with an oil return side on-off valve, returns oil separated by the oil separator to the suction side of the compressor, and heats the refrigerant from the heat absorber toward the compressor by the oil. And
5. The heat pump device according to claim 1, wherein the oil return side opening / closing valve of the heating auxiliary circuit is opened during the defrosting operation.
前記除霜運転は、
前記吸熱器に流入する冷媒の蒸発温度を上昇させる除霜準備運転と、
前記除霜準備運転後に行われ、前記吸熱器に付着した霜を溶かす除霜本運転とを有し、 前記除霜本運転では、前記圧縮機の回転数を前記除霜準備運転時よりも増加させることを特徴とする請求項1乃至請求項5の何れか一項に記載のヒートポンプ装置。
The defrosting operation is
A defrost preparation operation for increasing the evaporation temperature of the refrigerant flowing into the heat absorber;
A defrost main operation that is performed after the defrost preparation operation and melts frost adhering to the heat absorber. In the defrost main operation, the number of rotations of the compressor is increased compared to that during the defrost preparation operation. The heat pump device according to any one of claims 1 to 5, wherein the heat pump device is used.
前記除霜運転は、
前記吸熱器に流入する冷媒の蒸発温度を上昇させる除霜準備運転と、
前記除霜準備運転後に行われ、前記吸熱器に付着した霜を溶かす除霜本運転とを有し、 前記除霜本運転では、前記圧縮機の回転数を最大回転数に維持することを特徴とする請求項1乃至請求項5の何れか一項に記載のヒートポンプ装置。
The defrosting operation is
A defrost preparation operation for increasing the evaporation temperature of the refrigerant flowing into the heat absorber;
A defrost main operation that is performed after the defrost preparation operation and melts frost adhering to the heat absorber, and the rotation speed of the compressor is maintained at a maximum rotation speed in the defrost main operation. The heat pump device according to any one of claims 1 to 5.
冷媒として二酸化炭素を使用したことを特徴とする請求項1乃至請求項7の何れか一項に記載のヒートポンプ装置。   The heat pump device according to any one of claims 1 to 7, wherein carbon dioxide is used as a refrigerant. 請求項1乃至請求項8の何れか一項に記載のヒートポンプ装置と、
前記放熱器に水を送り込む水ポンプと前記放熱器で加熱された水を貯える貯湯タンクとを備えた貯湯装置とを備え、
前記制御装置は、前記水ポンプの駆動を制御して貯湯運転、除霜準備運転及び除霜運転を行うことを特徴とするヒートポンプ給湯機。
The heat pump device according to any one of claims 1 to 8,
A hot water storage device comprising a water pump for feeding water to the radiator and a hot water storage tank for storing water heated by the radiator;
The said control apparatus controls the drive of the said water pump, and performs hot water storage operation, defrost preparation operation, and defrost operation, The heat pump water heater characterized by the above-mentioned.
JP2011241294A 2011-11-02 2011-11-02 Heat pump device and heat pump water heater Active JP5939764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011241294A JP5939764B2 (en) 2011-11-02 2011-11-02 Heat pump device and heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011241294A JP5939764B2 (en) 2011-11-02 2011-11-02 Heat pump device and heat pump water heater

Publications (2)

Publication Number Publication Date
JP2013096661A true JP2013096661A (en) 2013-05-20
JP5939764B2 JP5939764B2 (en) 2016-06-22

Family

ID=48618778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011241294A Active JP5939764B2 (en) 2011-11-02 2011-11-02 Heat pump device and heat pump water heater

Country Status (1)

Country Link
JP (1) JP5939764B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103822396A (en) * 2014-02-08 2014-05-28 河南科技大学 Heat exchanger running auxiliary system and heat exchanger system using same
WO2015118580A1 (en) * 2014-02-10 2015-08-13 三菱電機株式会社 Heat pump hot water supply device
JP2016090174A (en) * 2014-11-07 2016-05-23 ダイキン工業株式会社 Hot water supply air-conditioning system
WO2016084341A1 (en) * 2014-11-27 2016-06-02 株式会社デンソー Heat pump cycle device
WO2018185823A1 (en) * 2017-04-04 2018-10-11 三菱電機株式会社 Refrigeration cycle device
JP2019174041A (en) * 2018-03-28 2019-10-10 三菱重工サーマルシステムズ株式会社 Control device, air conditioner, control program and program
WO2021186490A1 (en) * 2020-03-16 2021-09-23 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JP7445287B2 (en) 2019-12-26 2024-03-07 アクア株式会社 refrigerator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7202245B2 (en) 2019-04-11 2023-01-11 黒崎播磨株式会社 Brick lining for calcium phosphate firing furnace

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4215555A (en) * 1978-10-02 1980-08-05 Carrier Corporation Hot gas defrost system
JPS5997462A (en) * 1982-11-27 1984-06-05 松下電器産業株式会社 Defrosting circuit for heat pump
JPS6026254A (en) * 1983-07-22 1985-02-09 松下精工株式会社 Heat pump type air conditioner
JPS62147252A (en) * 1985-12-19 1987-07-01 Toshiba Corp Defrosting operation of refrigerating cycle
JPS6441781A (en) * 1987-08-07 1989-02-14 Toshiba Corp Air conditioner
JPH11182946A (en) * 1997-12-18 1999-07-06 Topre Corp Refrigerating device
JP2008121923A (en) * 2006-11-09 2008-05-29 Denso Corp Heat pump water heater
JP2008224050A (en) * 2007-03-08 2008-09-25 Mitsubishi Electric Corp Heat pump device
JP2011153784A (en) * 2010-01-28 2011-08-11 Panasonic Corp Refrigerating cycle apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4215555A (en) * 1978-10-02 1980-08-05 Carrier Corporation Hot gas defrost system
JPS5997462A (en) * 1982-11-27 1984-06-05 松下電器産業株式会社 Defrosting circuit for heat pump
JPS6026254A (en) * 1983-07-22 1985-02-09 松下精工株式会社 Heat pump type air conditioner
JPS62147252A (en) * 1985-12-19 1987-07-01 Toshiba Corp Defrosting operation of refrigerating cycle
JPS6441781A (en) * 1987-08-07 1989-02-14 Toshiba Corp Air conditioner
JPH11182946A (en) * 1997-12-18 1999-07-06 Topre Corp Refrigerating device
JP2008121923A (en) * 2006-11-09 2008-05-29 Denso Corp Heat pump water heater
JP2008224050A (en) * 2007-03-08 2008-09-25 Mitsubishi Electric Corp Heat pump device
JP2011153784A (en) * 2010-01-28 2011-08-11 Panasonic Corp Refrigerating cycle apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103822396A (en) * 2014-02-08 2014-05-28 河南科技大学 Heat exchanger running auxiliary system and heat exchanger system using same
CN103822396B (en) * 2014-02-08 2016-03-09 河南科技大学 Heat exchanger runs accessory system and uses the heat exchanger system of this system
WO2015118580A1 (en) * 2014-02-10 2015-08-13 三菱電機株式会社 Heat pump hot water supply device
JPWO2015118580A1 (en) * 2014-02-10 2017-03-23 三菱電機株式会社 Heat pump type water heater
JP2016090174A (en) * 2014-11-07 2016-05-23 ダイキン工業株式会社 Hot water supply air-conditioning system
WO2016084341A1 (en) * 2014-11-27 2016-06-02 株式会社デンソー Heat pump cycle device
WO2018185823A1 (en) * 2017-04-04 2018-10-11 三菱電機株式会社 Refrigeration cycle device
JP2019174041A (en) * 2018-03-28 2019-10-10 三菱重工サーマルシステムズ株式会社 Control device, air conditioner, control program and program
JP7049148B2 (en) 2018-03-28 2022-04-06 三菱重工サーマルシステムズ株式会社 Controls, air conditioners, control methods and programs
JP7445287B2 (en) 2019-12-26 2024-03-07 アクア株式会社 refrigerator
WO2021186490A1 (en) * 2020-03-16 2021-09-23 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JPWO2021186490A1 (en) * 2020-03-16 2021-09-23

Also Published As

Publication number Publication date
JP5939764B2 (en) 2016-06-22

Similar Documents

Publication Publication Date Title
JP5939764B2 (en) Heat pump device and heat pump water heater
JP4738293B2 (en) Heat pump device and heat pump water heater
JP4246257B2 (en) Refrigeration cycle equipment
EP2420767B1 (en) Heat-pump hot water supply and air conditioning apparatus
KR101192346B1 (en) Heat pump type speed heating apparatus
JP4867749B2 (en) Heat pump water heater
JP5434460B2 (en) Heat pump equipment
JP5210364B2 (en) Air conditioner
JPWO2017061010A1 (en) Refrigeration cycle equipment
JP2008096033A (en) Refrigerating device
JP5842310B2 (en) Refrigeration apparatus and defrost method for load cooler
WO2010143373A1 (en) Heat pump system
JP4804528B2 (en) Refrigeration cycle apparatus and control method for refrigeration cycle apparatus
JP2013185808A (en) Heat pump
JP2009236483A (en) Hot water supply device using co2 refrigerant and its operating method
JP2010085004A (en) Heat pump water heater and method for defrosting the heat pump water heater
WO2015083392A1 (en) Heat pump device
JP5320382B2 (en) Method and apparatus for defrosting air refrigerant refrigeration system
JP5150300B2 (en) Heat pump type water heater
JP4417396B2 (en) Heat pump equipment
JP2011027358A (en) Heater
JP2015021643A (en) Heat pump device
JP2006194537A (en) Heat pump device
JP2018096632A (en) Refrigerant circuit system, control device and control method
JP7038277B2 (en) Refrigeration cycle device and liquid heating device equipped with it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160226

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160517

R150 Certificate of patent or registration of utility model

Ref document number: 5939764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250