JP2013095628A - Manufacturing method for sintered structure - Google Patents

Manufacturing method for sintered structure Download PDF

Info

Publication number
JP2013095628A
JP2013095628A JP2011239317A JP2011239317A JP2013095628A JP 2013095628 A JP2013095628 A JP 2013095628A JP 2011239317 A JP2011239317 A JP 2011239317A JP 2011239317 A JP2011239317 A JP 2011239317A JP 2013095628 A JP2013095628 A JP 2013095628A
Authority
JP
Japan
Prior art keywords
plate
base
sintered
substrate
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011239317A
Other languages
Japanese (ja)
Inventor
Kiyoshige Miyawaki
清茂 宮脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2011239317A priority Critical patent/JP2013095628A/en
Publication of JP2013095628A publication Critical patent/JP2013095628A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Insulating Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that it is difficult to raise dimensional accuracy of a sintered structure due to a shrinkage of nearly 15-30% of a ceramic green sheet in a process to bake a raw laminate in manufacturing a sintered structure such as a ceramic laminated substrate.SOLUTION: The manufacturing method for the sintered structure includes a preparation step to prepare a board and a substrate, a baking step to bake and integrate the board and the substrate, and a division step to divide a baked product into each piece. The manufacturing method uses the substrate that includes a second sintered material having a smaller shrinkage factor than a first sintered material contained in the board under the same baking condition and has a plurality of openings arranged in two dimensions and partition walls between adjacent openings made equal in thickness.

Description

本発明は、セラミックス材料からなるセラミック積層基板のような焼結構造体の製造方法に関するものである。焼結構造体は、例えば、多層配線回路基板、電子部品収納用パッケージまたは圧力センサなどに用いられる。   The present invention relates to a method for producing a sintered structure such as a ceramic laminated substrate made of a ceramic material. The sintered structure is used for, for example, a multilayer wiring circuit board, an electronic component storage package, or a pressure sensor.

一般に、セラミック積層基板のような焼結構造体は、複数のセラミックグリーンシートを積層してなる生積層体を焼成することによって作製される。しかしながら、生積層体を焼成する過程において、セラミックグリーンシートが10〜25%程度収縮するため、焼結構造体の寸法精度を高めることが難しい。特に、電子部品収納用パッケージおよび圧力センサのような、板状の部分および枠状の部分を有する構造とする場合には、板状の部分に大きな反り、あるいは撓みが生じる可能性があった。   In general, a sintered structure such as a ceramic laminated substrate is produced by firing a green laminate formed by laminating a plurality of ceramic green sheets. However, in the process of firing the green laminate, the ceramic green sheet shrinks by about 10 to 25%, so it is difficult to increase the dimensional accuracy of the sintered structure. In particular, when a structure having a plate-like portion and a frame-like portion, such as an electronic component storage package and a pressure sensor, the plate-like portion may be greatly warped or bent.

特許文献1には、上記枠状の部分を有する基盤の焼成収縮率を、上記板状の部分である膜板の焼成収縮率よりも小さくした、すなわち基盤よりも膜板が大きく収縮する膜型電圧セラミック素子の製造方法が記載されている。特許文献1に記載の製造方法によれば、これらの焼成収縮率の差によって焼成時に膜板が相対的に大きく収縮することから、膜板が張力を受けて平滑に形成される。   Patent Document 1 discloses a film mold in which the firing shrinkage rate of the substrate having the frame-shaped portion is smaller than the firing shrinkage rate of the film plate that is the plate-like portion, that is, the film plate contracts more greatly than the substrate. A method for manufacturing a voltage ceramic element is described. According to the manufacturing method described in Patent Document 1, the film plate is relatively greatly shrunk during firing due to the difference in the firing shrinkage rate, so that the film plate is formed smoothly under tension.

特開2001−352111号公報JP 2001-352111 A

しかしながら、単に板状の部分および枠状の部分の焼成収縮率に差を設けて一つの焼結構造体を作製した場合、上記の張力が板状の部分と枠状の部分との境界に集中しやすい。そのため、板状の部分と枠状の部分との接合性が低下する可能性がある。本発明は、上記課題に鑑みてなされたものであり、板状の部分と枠状の部分との接合性が良好であって高い耐久性を有する焼結構造体を提供できる製造方法を提供することを目的とする。   However, when a single sintered structure is produced by simply providing a difference in firing shrinkage between the plate-like portion and the frame-like portion, the above tension is concentrated at the boundary between the plate-like portion and the frame-like portion. It's easy to do. Therefore, there is a possibility that the bondability between the plate-like portion and the frame-like portion is lowered. This invention is made in view of the said subject, and provides the manufacturing method which can provide the sintered structure which has favorable joining property of a plate-shaped part and a frame-shaped part, and has high durability. For the purpose.

本発明の一態様に基づく焼結構造体の製造方法は、第1焼結材料を含む板状体、および前記第1焼結材料と同じ焼成条件における焼結収縮率が前記第1焼結材料よりも小さい第2焼結材料を含み、複数の開口部を2次元配列して設けているとともに隣接する開口部間の隔壁の厚さを等しくした基体を準備する準備工程と、前記複数の開口部をふさぐように前記板状体を前記基体に重ねて配置した後に、前記板状体および前記基体を焼成一体化する焼成工程と、焼成一体化された前記板状体および前記基体を前記隔壁で分断して、個片に分割する分割工程とを有することを特徴としている。   The method for manufacturing a sintered structure according to one aspect of the present invention includes a plate-like body including a first sintered material, and a sintering shrinkage rate under the same firing conditions as that of the first sintered material. A preparatory step of preparing a substrate including a second sintered material smaller than the first sintered material, and having a plurality of openings arranged in a two-dimensional array and having the same partition wall thickness between adjacent openings, and the plurality of openings After the plate-like body is placed on the base so as to cover the part, the plate-like body and the base are fired and integrated, and the fired and integrated plate-like body and the base are attached to the partition wall. And a dividing step of dividing into individual pieces.

上記態様の焼結構造体の製造方法においては、複数の開口部を2次元配列して設けているとともに隣接する開口部間の隔壁の厚さを等しくした基体を用いて焼結構造体が製造されている。すなわち、単一の焼結構造体を作製するのではなく、枠状となる部分が2次元配列された状態で複数の焼結構造体が同時に作製される。そのため、板状体における互いに隣接する板状の部分となる部分で互いに引っ張り合う力が働く。すなわち、上記の張力が板状体と基体との境界だけでなく、板状体における互いに隣接する板状の部分となる部分の間に平面的に分散される。   In the method for manufacturing a sintered structure according to the above aspect, a sintered structure is manufactured using a base body in which a plurality of openings are provided in a two-dimensional array and the partition wall thickness between adjacent openings is equal. Has been. That is, instead of producing a single sintered structure, a plurality of sintered structures are produced simultaneously in a state where the frame-shaped portions are two-dimensionally arranged. Therefore, the force which pulls mutually in the part used as the plate-shaped part adjacent to each other in a plate-shaped object acts. That is, the above tension is distributed not only in the boundary between the plate-like body and the substrate but also in a plane between the portions of the plate-like body that are adjacent to each other.

さらに、隣接する開口部間の隔壁の厚さを等しくしていることから、複数の焼結構造体それぞれの板状の部分と枠状の部分との境界の特定の領域に張力が集中することを抑制できる。従って、板状の部分と枠状の部分との接合性が良好であって高い耐久性を有する焼結構造体を提供できる。   Furthermore, since the thicknesses of the partition walls between adjacent openings are made equal, the tension is concentrated on a specific region at the boundary between the plate-like portion and the frame-like portion of each of the plurality of sintered structures. Can be suppressed. Accordingly, it is possible to provide a sintered structure having good durability and high durability between the plate-like portion and the frame-like portion.

第1の実施形態の焼結構造体の製造方法における準備工程を示す斜視図である。It is a perspective view which shows the preparatory process in the manufacturing method of the sintered structure of 1st Embodiment. 図1に示す基体の平面図である。It is a top view of the base | substrate shown in FIG. 図1に示す製造方法の準備工程における板状体および基体のX−X断面図である。It is XX sectional drawing of the plate-shaped body and base | substrate in the preparatory process of the manufacturing method shown in FIG. 図3に示す製造方法の焼成工程における板状体および基体の断面図である。It is sectional drawing of the plate-shaped body and base | substrate in the baking process of the manufacturing method shown in FIG. 図3に示す分割方法の焼成工程における板状体および基体の断面図である。It is sectional drawing of the plate-shaped body and base | substrate in the baking process of the division | segmentation method shown in FIG. 図3に示す製造方法の第1の変形例を示す板状体および基体の断面図である。It is sectional drawing of the plate-shaped body and base | substrate which show the 1st modification of the manufacturing method shown in FIG. 図3に示す製造方法の第2の変形例を示す板状体および基体の断面図である。It is sectional drawing of the plate-shaped body and base | substrate which show the 2nd modification of the manufacturing method shown in FIG. 第2の実施形態の焼結構造体の製造方法における準備工程を示す斜視図である。It is a perspective view which shows the preparation process in the manufacturing method of the sintered structure of 2nd Embodiment. 図8に示す製造方法の準備工程における板状体および基体のY−Y断面図である。It is YY sectional drawing of the plate-shaped body and base | substrate in the preparatory process of the manufacturing method shown in FIG.

以下、第1の実施形態の焼結構造体の製造方法(以下、便宜的に、焼結構造体の製造方法を単に製造方法ともいう)について、図面を用いて詳細に説明する。但し、以下で参照する各図は、説明の便宜上、下記の実施形態を構成する部材のうち、特徴的な構成を説明するために必要な主要部材のみを簡略化して示したものである。したがって、下記の実施形態の焼結構造体は、本明細書が参照する各図に示されていない任意の構成部材を備え得る。また、各図中の部材の寸法は、実際の構成部材の寸法および各部材の寸法比率等を忠実に表したものではない。   Hereinafter, the manufacturing method of the sintered structure according to the first embodiment (hereinafter, for convenience, the manufacturing method of the sintered structure is also simply referred to as a manufacturing method) will be described in detail with reference to the drawings. However, in the drawings referred to below, for the convenience of explanation, among the members constituting the following embodiments, only the main members necessary for explaining the characteristic configuration are shown in a simplified manner. Therefore, the sintered structure of the following embodiment may include an arbitrary constituent member that is not shown in each drawing referred to in this specification. Moreover, the dimension of the member in each figure does not represent the dimension of an actual structural member, the dimension ratio of each member, etc. faithfully.

図1〜5に示すように、本実施形態の焼結構造体1の製造方法は、板状体3および基体5を準備する準備工程と、板状体3および基体5を焼成一体化する焼成工程と、個片に分割する分割工程とを有している。   As shown in FIGS. 1-5, the manufacturing method of the sintered structure 1 of this embodiment is the preparatory process which prepares the plate-like body 3 and the base | substrate 5, and baking which integrates the plate-like body 3 and the base | substrate 5 by baking. A process and a dividing process of dividing into individual pieces.

準備工程では、板状体3、および複数の開口部7を2次元配列して設けているとともに隣接する開口部7間の隔壁9の厚さを等しくした基体5が準備される。板状体3は、第1焼結材料を含んでいる。基体5は、第1焼結材料と同じ焼成条件における焼結収縮率が第1焼結材料よりも小さい第2焼結材料を含んでいる。焼成工程では、複数の開口部7をふさぐように板状体3を基体5に重ねて配置した後に、板状体3および基体5を焼成一体化している。分割工程では、焼成一体化された板状体3および基体5を隔壁9で分断して、開口部7を一つずつ含む個片に分割している。   In the preparation step, the base body 5 is prepared in which the plate-like body 3 and the plurality of openings 7 are provided in a two-dimensional array and the thickness of the partition wall 9 between the adjacent openings 7 is equal. The plate-like body 3 includes a first sintered material. The base 5 includes a second sintered material having a sintering shrinkage rate lower than that of the first sintered material under the same firing conditions as the first sintered material. In the firing step, the plate-like body 3 and the base body 5 are fired and integrated after the plate-like body 3 is placed on the base body 5 so as to close the plurality of openings 7. In the dividing step, the fired and integrated plate-like body 3 and the base body 5 are divided by partition walls 9 and divided into individual pieces each including the opening 7.

なお、本実施形態における焼結収縮率とは、焼結前の大きさに対する焼結後の大きさの比率を意味している。例えば、焼結前の1辺の長さが10mmである基体5が、焼成工程を経て、焼結後に1辺の長さが8mmとなった場合、焼結収縮率が80%であるということができる。   In addition, the sintering shrinkage rate in this embodiment means the ratio of the size after sintering to the size before sintering. For example, if the base 5 having a side length of 10 mm before sintering is subjected to a firing step and the length of one side is 8 mm after sintering, the sintering shrinkage rate is 80%. Can do.

本実施形態の製造方法においては、複数の開口部7を2次元配列して設けているとともに隣接する開口部7間の隔壁9の厚さを等しくした基体5を用いて、複数の焼結構造体1が製造される。すなわち、単一の焼結構造体1を作製するのではなく、個片の焼結構造体1における枠状となる部分(枠状部)が2次元配列された状態で複数の焼結構造体1が同時に作製される。   In the manufacturing method of the present embodiment, a plurality of sintered structures are formed using a base 5 in which a plurality of openings 7 are provided in a two-dimensional array and the thickness of the partition wall 9 between adjacent openings 7 is equal. The body 1 is manufactured. That is, instead of producing a single sintered structure 1, a plurality of sintered structures are formed in a state in which the frame-shaped portions (frame-shaped portions) in the individual sintered structure 1 are two-dimensionally arranged. 1 are produced simultaneously.

また、板状体3も個片の焼結構造体1における板状となる部分(板状部)が2次元配列された状態で焼成工程によって焼成される。このとき、それぞれの板状部のうちで互いに隣り合うもの同士の間に互いに引っ張り合う力が働く。すなわち、上記の張力が板状体3と基体5との境界だけでなく、板状体3全体に平面的に分散される。   The plate-like body 3 is also fired by the firing step in a state where the plate-like portions (plate-like portions) in the individual sintered structure 1 are two-dimensionally arranged. At this time, a pulling force is exerted between adjacent ones of the plate-like portions. That is, the above tension is distributed not only on the boundary between the plate-like body 3 and the substrate 5 but also on the entire plate-like body 3.

さらに、隣接する開口部7間の隔壁9の厚さを等しくしていることから、複数の焼結構造体1それぞれにおける板状の部分と枠状の部分との境界の特定の領域に張力が集中することを抑制できる。従って、板状の部分と枠状の部分との接合性が良好であって高い耐久性を有する焼結構造体1を提供できる。   Furthermore, since the thickness of the partition wall 9 between the adjacent openings 7 is made equal, tension is applied to a specific region at the boundary between the plate-like portion and the frame-like portion in each of the plurality of sintered structures 1. Concentration can be suppressed. Therefore, it is possible to provide the sintered structure 1 having good durability and high durability between the plate-like portion and the frame-like portion.

<準備工程>
本実施形態における準備工程では、板状体3、および複数の開口部7を2次元配列して設けているとともに隣接する開口部7間の隔壁9の厚さを等しくした基体5が準備される。
<Preparation process>
In the preparation step in the present embodiment, the base body 5 is prepared in which the plate-like body 3 and the plurality of openings 7 are provided in a two-dimensional array and the thickness of the partition wall 9 between the adjacent openings 7 is equal. .

板状体3の形状としては、例えば、図2に示すように四角板形状とすることができる。板状体3の大きさは個片化される焼結構造体1の数によって異なるが、焼結構造体1の状態での板状体3の部分は、例えば平面視した場合の1辺の大きさを50〜200mmに設定することができる。   As the shape of the plate-like body 3, for example, a square plate shape can be used as shown in FIG. The size of the plate-like body 3 varies depending on the number of the sintered structures 1 to be singulated, but the portion of the plate-like body 3 in the state of the sintered structure 1 is, for example, one side when viewed in plan. The size can be set to 50-200 mm.

例えば、個片化後の焼結構造体1の状態での板状体3の部分における1辺の大きさを8mmとして、図2に示すように、焼結構造体1が上下方向に3個ずつ、左右方向に4個ずつで2次元配列される場合、焼結後の板状体3の上下方向の1辺の大きさが30mm程度、左右方向の1辺の大きさが40mm程度となるように設定すればよい。また、焼結後の板状体3の厚みとしては、例えば、0.1〜5mmに設定することができる。   For example, assuming that the size of one side in the portion of the plate-like body 3 in the state of the sintered structure 1 after singulation is 8 mm, as shown in FIG. 2, there are three sintered structures 1 in the vertical direction. When four-dimensionally arranged in the left-right direction, the size of one side in the vertical direction of the sintered plate-like body 3 is about 30 mm, and the size of one side in the left-right direction is about 40 mm. It should be set as follows. Moreover, as thickness of the plate-shaped body 3 after sintering, it can set to 0.1-5 mm, for example.

基体5の形状としては、例えば四角板形状であって、平面視した場合の外周が板状体3の外周と重なり合う形状とすることができる。従って、例えば上記のように焼結後の板状体3が30×40mm程度となるように設定されている場合、基体5は、焼結後の1辺の大きさが同様に30×40mm程度となるように設定されればよい。また、焼結後の基体5の厚みとしては、例えば、0.3〜10mmに設定することができる。   The shape of the base 5 may be, for example, a square plate shape, and the shape of the outer periphery when viewed in plan overlaps with the outer periphery of the plate-like body 3. Therefore, for example, when the plate-like body 3 after sintering is set to be about 30 × 40 mm as described above, the base 5 is similarly about 30 × 40 mm in size on one side after sintering. It may be set so as to be. Moreover, as thickness of the base | substrate 5 after sintering, it can set to 0.3-10 mm, for example.

基体5には、複数の開口部7が2次元配列されて設けられている。それぞれの開口部7は、図3に示すように、基体5の上面のみに開口する凹形状となっている。また、複数の開口部7は、分割工程によって隔壁9で分割される各個片にそれぞれ位置するように配列している。具体的には、本実施形態の製造方法においては、開口部7間の隔壁9が格子状となるように、図2における上下方向および左右方向にそれぞれ開口部7が等間隔で設けられている。   The base 5 is provided with a plurality of openings 7 arranged two-dimensionally. As shown in FIG. 3, each opening 7 has a concave shape that opens only on the upper surface of the substrate 5. In addition, the plurality of openings 7 are arranged so as to be positioned in the individual pieces divided by the partition walls 9 in the division step. Specifically, in the manufacturing method of the present embodiment, the openings 7 are provided at equal intervals in the vertical and horizontal directions in FIG. 2 so that the partition walls 9 between the openings 7 have a lattice shape. .

本実施形態における焼結構造体1の開口部7は、平面視した場合の内周が四角である形状となっている。このとき、内周の1辺の大きさは、例えば3〜18mmに設定できる。本実施形態における開口部7は、四角形状であるが、平面視した場合の内周が円形状あるいは楕円形状であってもよい。また、開口部7の深さとしては、0.2〜9.5mm程度に設定すればよい。   The opening 7 of the sintered structure 1 in the present embodiment has a shape whose inner periphery is a square when viewed in plan. At this time, the size of one side of the inner periphery can be set to 3 to 18 mm, for example. The opening 7 in the present embodiment has a quadrangular shape, but the inner periphery in plan view may be circular or elliptical. Moreover, what is necessary is just to set as the depth of the opening part 7 about 0.2-9.5 mm.

なお、本実施形態における焼結構造体1では、開口部7が基体5の上面のみに開口する凹形状となっているが、これに限られるものではない。例えば、図6に示すように、基体5として、複数の開口部7がそれぞれこの基体5の反対側まで貫通した複数の貫通孔の一方の開口部7となっているものを用いてもよい。言い換えれば、開口部7が基体5の上面および下面にそれぞれ開口する貫通孔となっていてもよい。開口部7が基体5の下面にも開口する貫通孔である場合、板状体3および基体5を焼成一体化する際に、焼結前のこれらの部材に含まれる有機溶剤およびバインダが気化することによって生じるガスを開口部7の下面側の開口から外部に逃がすことができる。そのため、上記のガスが開口部7内に溜まることを抑制できる。   In the sintered structure 1 according to the present embodiment, the opening 7 has a concave shape that opens only on the upper surface of the substrate 5, but is not limited thereto. For example, as shown in FIG. 6, a substrate 5 may be used in which a plurality of openings 7 are respectively one of the plurality of through holes penetrating to the opposite side of the substrate 5. In other words, the opening 7 may be a through hole that opens on the upper surface and the lower surface of the base body 5. When the opening 7 is a through-hole that also opens on the lower surface of the base 5, when the plate-like body 3 and the base 5 are fired and integrated, the organic solvent and binder contained in these members before sintering are vaporized. The gas generated by this can escape from the opening on the lower surface side of the opening 7 to the outside. Therefore, it is possible to suppress the above gas from accumulating in the opening 7.

また、図6に示す基体5のように、開口部7が基体5の上面および下面にそれぞれ開口する貫通孔である構造の場合には、図7に示すように、板状体3を2つ準備してもよい。この場合、後述する焼成工程において、一方の板状体3を貫通孔形状である開口部7の上面側の開口を塞ぐように基体5の上面に重ねるとともに、他方の板状体3を開口部7の下面側の開口を塞ぐように基体5の下面に重ねる。このように基体5が一対の板状体3によって挟まれる形状となる場合には、貫通孔を間に挟んで対向する一対の板状体3それぞれの平坦性を良好なものにできる。そのため、例えば、焼結構造体1を圧力センサとして用いた場合には、静電容量のバラつきのさらに小さい信頼性の非常に高いものにできる。   In the case of a structure in which the opening 7 is a through-hole that opens to the upper surface and the lower surface of the substrate 5 as in the substrate 5 shown in FIG. 6, two plate-like bodies 3 are provided as shown in FIG. You may prepare. In this case, in the firing step described later, one plate-like body 3 is overlaid on the upper surface of the base 5 so as to close the opening on the upper surface side of the opening 7 having a through-hole shape, and the other plate-like body 3 is opened. 7 is overlaid on the lower surface of the base 5 so as to close the opening on the lower surface side. Thus, when the base | substrate 5 becomes a shape pinched | interposed by a pair of plate-shaped body 3, each flatness of a pair of plate-shaped body 3 which opposes on both sides of a through-hole can be made favorable. For this reason, for example, when the sintered structure 1 is used as a pressure sensor, it is possible to achieve extremely high reliability with even smaller variations in capacitance.

本実施形態における基体5は、上面視して最外周側に位置する開口部7と基体5の最外周との間の隔壁9の厚さD1が、隣接する開口部7同士の間の隔壁9の厚さD2よりも厚いものを用いている。これによって、上面視して最外周側に位置する開口部7と基体5の最外周との間に位置する隔壁9において焼成工程時に基体5の形状を安定して保持することができる。そのため、焼成工程において板状体3に生じる反り、あるいは撓みをさらに抑制することができる。また、上記の隔壁9を除くそれぞれの隔壁9に加わる応力を低減できるので、個片に分割された複数の焼結構造体1それぞれにおける板状の部分と枠状の部分との接合性を良好なものにできる。   In the base body 5 in the present embodiment, the thickness D1 of the partition wall 9 between the opening 7 located on the outermost peripheral side when viewed from above and the outermost periphery of the base body 5 is the partition wall 9 between the adjacent openings 7. A thickness thicker than the thickness D2 is used. As a result, the shape of the base body 5 can be stably held during the firing process in the partition wall 9 located between the opening 7 located on the outermost peripheral side when viewed from the top and the outermost periphery of the base body 5. Therefore, it is possible to further suppress warping or bending that occurs in the plate-like body 3 in the firing step. Further, since the stress applied to each partition wall 9 excluding the partition wall 9 can be reduced, the bondability between the plate-like portion and the frame-like portion in each of the plurality of sintered structures 1 divided into pieces is excellent. Can be anything.

また、本実施形態の製造方法においては、開口部7が基体5の上面のみに開口する凹形状であって、後述する焼成工程において基体5の上面に板状体3が配置されるが、これに限られるものではない。例えば、開口部7が基体5の下面のみに開口する凹形状であって、後述する焼成工程において基体5の下面に板状体3が配置されてもよい。   Further, in the manufacturing method of the present embodiment, the opening 7 has a concave shape that opens only on the upper surface of the base body 5, and the plate-like body 3 is disposed on the upper surface of the base body 5 in the firing step described later. It is not limited to. For example, the opening 7 may have a concave shape that opens only on the lower surface of the base body 5, and the plate-like body 3 may be disposed on the lower surface of the base body 5 in a baking process described later.

板状体3および基体5としては、高い絶縁性を有する部材を用いることができる。絶縁性を有する部材としては、例えば、酸化アルミニウム質焼結体、窒化アルミニウム質焼結体、ムライト質焼結体、炭化珪素質焼結体、窒化珪素質焼結体またはガラスセラミックスのような部材を用いることができる。   As the plate-like body 3 and the substrate 5, a member having high insulation can be used. Examples of the insulating member include a member such as an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, a silicon carbide sintered body, a silicon nitride sintered body, or a glass ceramic. Can be used.

上記の部材を含有する原料粉末、有機溶剤およびバインダを混ぜることによって混合部材が作製される。混合部材をシート状に成形することによってグリーンシートが作製される。シート状に成形する方法としては、例えばドクタブレード法を用いればよい。   A mixed member is produced by mixing the raw material powder containing the above members, an organic solvent, and a binder. A green sheet is produced by forming the mixing member into a sheet. As a method for forming the sheet, for example, a doctor blade method may be used.

これらのグリーンシートの単層または積層体を焼成前の板状体3および基体5として用いることができる。また、グリーンシート自体を用いてもよいが、後述する焼成工程において板状体3と基体5とを焼結一体化することが可能であれば、グリーンシートを仮焼成した状態のものを板状体3または基体5として用いてもよい。   A single layer or a laminate of these green sheets can be used as the plate-like body 3 and the substrate 5 before firing. Alternatively, the green sheet itself may be used, but if the plate-like body 3 and the substrate 5 can be sintered and integrated in the firing step described later, the green sheet is pre-fired in the form of a plate. It may be used as the body 3 or the substrate 5.

本実施形態における板状体3は、第1焼結材料を含んでいる。また、基体5は、第1焼結材料と同じ焼成条件における焼結収縮率が第1焼結材料よりも小さい第2焼結材料を含んでいる。第1焼結材料および第2焼結材料としては、上記の絶縁性を有する部材から選択することができる。上記の絶縁性を有する部材を所望の焼結収縮率を有するグリーンシートの調合組成とすることによって、第1焼結材料と同じ焼成条件における第2焼結材料の焼結収縮率を第1焼結材料よりも小さくできる。   The plate-like body 3 in the present embodiment includes a first sintered material. Further, the base 5 includes a second sintered material having a sintering shrinkage rate smaller than that of the first sintered material under the same firing conditions as the first sintered material. As a 1st sintered material and a 2nd sintered material, it can select from the member which has said insulation. By making the above-mentioned insulating member into a green sheet preparation composition having a desired sintering shrinkage rate, the sintering shrinkage rate of the second sintered material under the same firing conditions as that of the first sintering material can be reduced. Can be smaller than the binding material.

また、グリーンシートの収縮率は、上記の絶縁性を有する部材に混ぜられる有機溶剤およびバインダの種類あるいは混合量によっても調整することができる。従って、第1焼結材料および第2焼結材料として、同じ絶縁性を有する部材を含むとともに、有機溶剤およびバインダの種類、あるいは、材料の粒度分布を調整することによって、第1焼結材料と同じ焼成条件における第2焼結材料の焼結収縮率を第1焼結材料よりも小さくしてもよい。   Further, the shrinkage rate of the green sheet can also be adjusted by the type or amount of the organic solvent and binder mixed in the insulating member. Therefore, as the first sintered material and the second sintered material, the first sintered material and the second sintered material are included in the first sintered material by adjusting the kind of the organic solvent and the binder, or the particle size distribution of the material. The sintering shrinkage rate of the second sintered material under the same firing conditions may be smaller than that of the first sintered material.

また、板状体3および基体5として、焼成工程において焼成一体化させるときに等しい熱膨張係数を有するものを用いることが好ましい。板状体3および基体5における上記の熱膨張係数が異なると、焼成工程の後における収縮によって板状体3と基体5との間に大きな残留応力が生じ、境界面を基点とした破壊等が発生する可能性がある。しかしながら、板状体3および基体5として、焼成工程において焼成一体化させるときに等しい熱膨張係数を有するものを用いることによって、上記の残留応力を低減できるので、焼結構造体1の耐久性を向上させることができる。   Moreover, it is preferable to use the plate-like body 3 and the substrate 5 having the same thermal expansion coefficient when they are fired and integrated in the firing step. If the thermal expansion coefficients of the plate-like body 3 and the substrate 5 are different from each other, a large residual stress is generated between the plate-like body 3 and the substrate 5 due to the shrinkage after the firing step, and breakage or the like based on the boundary surface may occur. May occur. However, since the residual stress can be reduced by using the plate-like body 3 and the base body 5 having the same thermal expansion coefficient when they are fired and integrated in the firing step, the durability of the sintered structure 1 is improved. Can be improved.

本実施形態の製造方法によって作製される焼結構造体1を、例えば圧力センサとして用いる場合には、板状体3の下面における開口部7に面する領域および開口部7の底面に、互いに対向する金属層(不図示)を形成すればよい。焼成工程を経て、このような金属層を一対の対向電極とすることができる。   When the sintered structure 1 manufactured by the manufacturing method of the present embodiment is used as, for example, a pressure sensor, the region facing the opening 7 on the lower surface of the plate-like body 3 and the bottom surface of the opening 7 are opposed to each other. A metal layer (not shown) may be formed. Through the firing step, such a metal layer can be used as a pair of counter electrodes.

一対の対向電極となる金属層としては、例えば、銅、銀、金、白金、ニッケル、タングステンおよびモリブデンのような金属粉末に、有機バインダ、溶剤、可塑剤および分散剤等を添加混合して得た金属ペーストを用いることができる。このような金属ペーストを上記の領域に、例えばスクリーン印刷法を用いて印刷すればよい。印刷された金属ペーストは、焼成工程を経て一対の対向電極となる。   The metal layer to be a pair of counter electrodes is obtained, for example, by adding and mixing an organic binder, a solvent, a plasticizer, a dispersant, and the like into a metal powder such as copper, silver, gold, platinum, nickel, tungsten, and molybdenum. Metal paste can be used. What is necessary is just to print such a metal paste on said area | region, for example using a screen printing method. The printed metal paste becomes a pair of counter electrodes through a baking process.

また、本実施形態の製造方法によって作製される焼結構造体1を、例えば多層配線回路基板、あるいはパッケージとして用いる場合も同様に、所望の回路構造に応じてグリーンシートの表面または内部に上記の金属ペーストを印刷すればよい。印刷された金属ペーストは、焼成工程を経て所定の配線回路となる。   Similarly, when the sintered structure 1 manufactured by the manufacturing method of the present embodiment is used as, for example, a multilayer wiring circuit board or a package, the above-described structure is formed on the surface or inside of the green sheet according to a desired circuit structure. What is necessary is just to print a metal paste. The printed metal paste becomes a predetermined wiring circuit through a baking process.

<焼成工程>
本実施形態の焼成工程では、図4に示すように、複数の開口部7をふさぐように板状体3を基体5に重ねて配置した後に、板状体3および基体5を焼成一体化している。具体的には、本実施形態における開口部7が基体5の上面側のみに開口する凹形状であることから、板状体3の下面が、複数の開口部7を塞ぐように基体5の上面に重ねて配置される。
<Baking process>
In the firing step of this embodiment, as shown in FIG. 4, the plate-like body 3 and the base body 5 are fired and integrated after the plate-like body 3 is placed on the base body 5 so as to block the plurality of openings 7. Yes. Specifically, since the opening 7 in the present embodiment is a concave shape that opens only on the upper surface side of the base 5, the lower surface of the plate-like body 3 closes the plurality of openings 7. Are placed on top of each other.

このように、板状体3に基体5を重ねて配置することによって生積層体が作製される。作製された生積層体を焼成することによって板状体3と基体5とが焼成一体化される。最適な焼成温度は板状体3および基体5として用いる材料によって異なるが、例えば酸化アルミニウムのような高温焼成のセラミックス材料を用いる場合は1550℃〜1600℃にて板状体3および基体5を焼成すればよい。また、例えばガラスセラミックスのような低温焼成のセラミックス材料を用いる場合は1000℃〜1400℃にて板状体3および基体5を焼成すればよい。   In this way, a green laminate is produced by placing the base body 5 on the plate-like body 3. By firing the produced green laminate, the plate-like body 3 and the substrate 5 are fired and integrated. The optimum firing temperature varies depending on the materials used as the plate-like body 3 and the substrate 5, but when using a high-temperature fired ceramic material such as aluminum oxide, the plate-like body 3 and the substrate 5 are fired at 1550 ° C to 1600 ° C. do it. Further, when a low-temperature fired ceramic material such as glass ceramic is used, the plate-like body 3 and the substrate 5 may be fired at 1000 to 1400 ° C.

本実施形態の製造方法においては、複数の開口部7が2次元配列されて設けられ、複数の焼結構造体1が同時に作製されている。そのため、板状体3と基体5との焼結収縮率の差に起因する応力が、板状体3と基体5との境界だけでなく、例えば、板状体3における分割工程によって個片化した場合に隣り合う焼結構造体1にそれぞれ位置する部分3A,3Bのように、互いに隣接する部分の間にも互いに引っ張り合う力として働く。   In the manufacturing method of the present embodiment, a plurality of openings 7 are provided in a two-dimensional array, and a plurality of sintered structures 1 are produced simultaneously. Therefore, the stress caused by the difference in the sintering shrinkage rate between the plate-like body 3 and the base body 5 is separated into not only the boundary between the plate-like body 3 and the base body 5 but also, for example, by a dividing step in the plate-like body 3. In this case, as in the portions 3A and 3B respectively located in the adjacent sintered structures 1, the portions that are adjacent to each other also act as pulling forces.

このとき、板状体3が平面的であるところ、複数の開口部7が2次元配列されていることから、板状体3における互いに隣接する部分の間に平面的に分散される。そのため、図2における上下方向に働く張力および左右方向に働く張力のそれぞれに関して板状体3と基体5との境界に応力が集中することを抑制できる。また更に、隣接する開口部7間の隔壁9の厚さが等しくされていることから、複数の焼結構造体1の一部に応力が過度に集中することを抑制できる。   At this time, since the plate-like body 3 is planar, the plurality of openings 7 are two-dimensionally arranged, so that the plate-like body 3 is dispersed in a plane between adjacent portions. Therefore, it is possible to suppress the concentration of stress at the boundary between the plate-like body 3 and the base 5 with respect to the tension acting in the vertical direction and the tension acting in the left-right direction in FIG. Furthermore, since the thickness of the partition wall 9 between the adjacent openings 7 is made equal, it is possible to suppress stress from being excessively concentrated on a part of the plurality of sintered structures 1.

尚、基体と板状体との収縮率の違いによって多数個取り生積層体を焼成する際には、積層体と接合しない材料によって構成される部材や、このような材料をコーティングした重しを使用して、多数個取り焼結体全体に発生する曲面状の反りを低減してもよい。   When firing a large number of green laminates due to the difference in shrinkage between the substrate and the plate-like body, a member composed of a material not bonded to the laminate or a weight coated with such a material is used. It may be used to reduce curved warpage occurring in the entire multi-piece sintered body.

<分割工程>
本実施形態の分割工程では、図5に示すように、焼成一体化された板状体3および基体5を隔壁9において分断して、開口部7を一つずつ含む個片に分割している。具体的には、本実施形態の製造方法においては、図2に示す一点鎖線に沿って板状体3および基体5を分断することでそれぞれ開口部7を一つずつ含む個片に分割できる。これによって、開口部7を有する複数の焼結構造体1が作製される。
<Division process>
In the dividing step of this embodiment, as shown in FIG. 5, the fired and integrated plate-like body 3 and the base body 5 are divided at the partition wall 9 and divided into individual pieces each including the opening 7. . Specifically, in the manufacturing method of this embodiment, the plate-like body 3 and the base body 5 are divided along the alternate long and short dash line shown in FIG. Thereby, a plurality of sintered structures 1 having the openings 7 are produced.

尚、基体の多数個取りエリアの外側を構成する最外周部を除き、個片に分割する分割予定ラインである、図2に示す一点鎖線に沿って、基体5に溝あるいは貫通孔を設けても良い。これらのような溝あるいは貫通孔が設けられている場合には、分割工程を容易に行うことができる。   In addition, a groove or a through hole is provided in the base body 5 along the alternate long and short dash line shown in FIG. 2, which is a line to be divided into individual pieces, excluding the outermost peripheral portion constituting the outside of the multi-cavity area of the base body. Also good. When such grooves or through holes are provided, the dividing step can be easily performed.

本実施形態の製造方法に基づいて作製された複数の焼結構造体1は、上述のように応力が分散されるとともに、複数の焼結構造体1の一部に応力が過度に集中することが抑制されている。そのため、それぞれの焼結構造体1の耐久性が良好であるとともに、複数の焼結構造体1それぞれにおける焼結後の板状体3の平坦性、大きさ、耐久性などの品質のバラつきを低減できる。   In the plurality of sintered structures 1 manufactured based on the manufacturing method of the present embodiment, stress is dispersed as described above, and stress is excessively concentrated on a part of the plurality of sintered structures 1. Is suppressed. Therefore, the durability of each sintered structure 1 is good, and the quality of flatness, size, durability, etc. of the plate-like body 3 after sintering in each of the plurality of sintered structures 1 varies. Can be reduced.

作製された中空構造を有する焼結構造体1は、例えば、圧力センサのような中空構造体として用いられる。本実施形態における焼結構造体1は板状体3の平坦性が良好であることから、例えば圧力センサとして用いた場合には、静電容量のバラつきの小さい信頼性の高いものにできる。   The produced sintered structure 1 having a hollow structure is used as a hollow structure such as a pressure sensor, for example. Since the sintered structure 1 in the present embodiment has good flatness of the plate-like body 3, for example, when used as a pressure sensor, the sintered structure 1 can be made highly reliable with little variation in capacitance.

また、図6に示すように、開口部7が基体5の上面および下面にそれぞれ開口する貫通孔である場合、焼結構造体1を信頼性の高い電子部品収納用パッケージとして用いることができる。開口部7が基体5の下面に開口していることから、焼結構造体1の下面側から、コンデンサ、IC素子、光学素子のような電子部品(不図示)を載置できる。このとき、板状体3の表面の平坦性が高いことから、電子部品を焼結構造体1へ安定して載置できる。また、電子部品として光学素子を用いる場合には、光軸合わせを容易に行うことができる。結果として、電子部品とパッケージとの接合信頼性を高くすることができる。また、本実施形態の焼結構造体と、焼結構造体の中空空間に収納された電子部品を備えた電子装置の生産性を向上に寄与することができる。   As shown in FIG. 6, when the opening 7 is a through hole that opens to the upper surface and the lower surface of the base body 5, the sintered structure 1 can be used as a highly reliable electronic component storage package. Since the opening 7 opens in the lower surface of the base body 5, electronic components (not shown) such as capacitors, IC elements, and optical elements can be placed from the lower surface side of the sintered structure 1. At this time, since the flatness of the surface of the plate-like body 3 is high, the electronic component can be stably placed on the sintered structure 1. Further, when an optical element is used as the electronic component, the optical axis can be easily aligned. As a result, it is possible to increase the bonding reliability between the electronic component and the package. Further, it is possible to contribute to the improvement of the productivity of the electronic device including the sintered structure of the present embodiment and the electronic component housed in the hollow space of the sintered structure.

次に、第2の実施形態の焼結構造体1の製造方法について、図面を用いて詳細に説明する。なお、本実施形態にかかる各構成において、第1の実施形態と同様の機能を有する構成については同じ参照符号を付記し、その詳細な説明を省略する。また、第1の実施形態と同様の工程についても、その詳細な説明を省略する。   Next, the manufacturing method of the sintered structure 1 of 2nd Embodiment is demonstrated in detail using drawing. In addition, in each structure concerning this embodiment, about the structure which has a function similar to 1st Embodiment, the same referential mark is attached and the detailed description is abbreviate | omitted. Detailed descriptions of the same steps as those in the first embodiment are also omitted.

図8,9に示すように、本実施形態の製造方法は、第1の実施形態の製造方法と同様に、板状体3および基体5を準備する準備工程と、板状体3および基体5を焼成一体化する焼成工程と、個片に分割する分割工程とを有している。   As shown in FIGS. 8 and 9, the manufacturing method of the present embodiment is similar to the manufacturing method of the first embodiment, in which the plate-like body 3 and the base body 5 are prepared, and the plate-like body 3 and the base body 5 are prepared. And a dividing step of dividing the piece into individual pieces.

このとき、本実施形態の焼結構造体1の製造方法は、第1の実施形態の製造方法と比較して、準備工程において第2基体11をさらに準備している。第2基体11は、基体5と同一の材質からなるとともに、基体5と重ね合わせて平面透視したときに複数の開口部7が内部に含まれる大きさの第2開口部13を有している。   At this time, the manufacturing method of the sintered structure 1 according to the present embodiment further prepares the second substrate 11 in the preparation step as compared with the manufacturing method according to the first embodiment. The second base 11 is made of the same material as that of the base 5 and has a second opening 13 having a size in which a plurality of openings 7 are included when the base 5 is overlapped with the base 5 and seen through the plane. .

このような第2基体11を、焼成工程において、基体5および第2基体11によって板状体3を両面から挟むように板状体3に重ね合わせて配置する。そして、基体5、板状体3および第2基体11を焼成一体化する。   In the firing step, such a second substrate 11 is disposed so as to overlap the plate-like body 3 so that the plate-like body 3 is sandwiched from both sides by the substrate 5 and the second substrate 11. And the base | substrate 5, the plate-shaped body 3, and the 2nd base | substrate 11 are integrated by baking.

本実施形態の製造方法においては、基体5と同一の材質からなる第2基体11を用いていることから、基体5、板状体3および第2基体11を焼成一体化する際に、第2基体11と板状体3との間にも張力が生じる。そのため、基体5、板状体3および第2基体11を焼成一体化する際に、基体5と板状体3との間に生じる張力を第2基体11と板状体3との間に分散させることができる。結果として、基体5と板状体3との接合性をさらに良好なものにできる。   In the manufacturing method of the present embodiment, since the second base 11 made of the same material as the base 5 is used, the second base 11, the plate-like body 3, and the second base 11 are integrated by firing. Tension is also generated between the substrate 11 and the plate-like body 3. Therefore, when the base body 5, the plate-like body 3, and the second base body 11 are baked and integrated, the tension generated between the base body 5 and the plate-like body 3 is dispersed between the second base body 11 and the plate-like body 3. Can be made. As a result, the bondability between the substrate 5 and the plate-like body 3 can be further improved.

第2基体11としては、第1基体5と同一の材質を用いていることから、高い絶縁性を有する部材を用いることができる。絶縁性を有する部材としては、例えば、酸化アルミニウム質焼結体、窒化アルミニウム質焼結体、ムライト質焼結体、炭化珪素質焼結体、窒化珪素質焼結体またはガラスセラミックスのような部材を用いることができる。   Since the same material as the first substrate 5 is used as the second substrate 11, a member having high insulation can be used. Examples of the insulating member include a member such as an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, a silicon carbide sintered body, a silicon nitride sintered body, or a glass ceramic. Can be used.

焼結構造体1は、第2基体11が除去されたものが、例えば多層配線回路基板、電子部品収納用パッケージまたは圧力センサとして用いられる。第2基体11は、焼結工程の後、最終的に除去されてもよいが、除去する場合には分断工程に先立って、基体5、板状体3および第2基体11が焼成一体化されたものから除去することが好ましい。分断工程の後であって、個別の焼結構造体1から第2基体11を除去する場合と比較して、第2基体11の除去が容易であり、また、各焼結構造体1における板状体3の部分の厚みや板状体3における第2基体11が接合される面の平坦性を良好なものにできるからである。   The sintered structure 1 from which the second substrate 11 is removed is used as, for example, a multilayer wiring circuit board, an electronic component storage package, or a pressure sensor. The second substrate 11 may be finally removed after the sintering step, but in the case of removal, the substrate 5, the plate-like body 3, and the second substrate 11 are integrated by firing prior to the dividing step. It is preferably removed from the waste. Compared with the case where the second substrate 11 is removed from the individual sintered structures 1 after the cutting step, the second substrate 11 can be easily removed, and the plate in each sintered structure 1 is removed. This is because the thickness of the portion of the sheet-like body 3 and the flatness of the surface of the plate-like body 3 to which the second substrate 11 is joined can be improved.

上述の通り、各実施形態の焼結構造体の製造方法について説明してきたが、本発明は上述の実施形態に限定されるものではない。すなわち、本発明の要旨を逸脱しない範囲内であれば、種々の変更や実施の形態の組み合わせを施すことは何等差し支えない。   Although the manufacturing method of the sintered structure of each embodiment has been described as described above, the present invention is not limited to the above-described embodiment. In other words, various modifications and combinations of embodiments can be made without departing from the scope of the present invention.

1・・・焼結構造体
3・・・板状体
5・・・基体
7・・・開口部
9・・・隔壁
11・・・第2基体
DESCRIPTION OF SYMBOLS 1 ... Sintered structure 3 ... Plate-shaped body 5 ... Base | substrate 7 ... Opening part 9 ... Partition 11 ... 2nd base | substrate

Claims (6)

第1焼結材料を含む板状体、および前記第1焼結材料と同じ焼成条件における焼結収縮率が前記第1焼結材料よりも小さい第2焼結材料を含み、複数の開口部を2次元配列して設けているとともに隣接する開口部間の隔壁の厚さを等しくした基体を準備する準備工程と、
前記複数の開口部をふさぐように前記板状体を前記基体に重ねて配置した後に、前記板状体および前記基体を焼成一体化する焼成工程と、
焼成一体化された前記板状体および前記基体を前記隔壁で分断して、個片に分割する分割工程とを有する、焼結構造体の製造方法。
A plate-like body containing the first sintered material, and a second sintered material having a sintering shrinkage rate smaller than that of the first sintered material under the same firing conditions as the first sintered material, and a plurality of openings A preparatory step of preparing a substrate which is provided in a two-dimensional array and has the same partition wall thickness between adjacent openings;
A firing step in which the plate-like body and the base body are fired and integrated after the plate-like body is placed on the base body so as to cover the plurality of openings;
A method for producing a sintered structure, comprising: a step of dividing the plate-like body and the base body, which are integrated by firing, into pieces by dividing the base body by the partition walls.
前記板状体および前記基体として、前記焼成工程において焼成一体化させるときに等しい熱膨張係数を有するものを用いる、請求項1に記載の焼結構造体の製造方法。   The method for manufacturing a sintered structure according to claim 1, wherein the plate-like body and the substrate have the same thermal expansion coefficient when they are fired and integrated in the firing step. 前記基体として、上面視して最外周側に位置する開口部と前記基体の最外周との間の前記隔壁の厚さが、隣接する開口部同士の間の前記隔壁の厚さよりも厚いものを用いる、請求項1または請求項2に記載の焼結構造体の製造方法。   As the base, a thickness of the partition wall between the opening located on the outermost peripheral side when viewed from above and the outermost periphery of the base is larger than the thickness of the partition wall between adjacent openings. The manufacturing method of the sintered structure of Claim 1 or Claim 2 to be used. 前記準備工程において、前記基体と同一の材質からなるとともに、前記基体と重ね合わせて平面透視したときに前記複数の開口部が内部に含まれる大きさの第2開口部を有する第2基体をさらに準備し、
前記焼成工程において、前記第2基体を前記板状体に重ね合わせて配置することによって、前記基体および前記第2基体によって前記板状体を両面から挟んで焼成一体化するようにする、請求項1乃至請求項3のいずれかに記載の焼結構造体の製造方法。
In the preparation step, a second base made of the same material as the base and having a second opening having a size in which the plurality of openings are included inside when overlapped with the base and viewed through the plane is further provided. Prepare
In the firing step, the second base is disposed so as to overlap the plate-like body so that the plate-like body is sandwiched from both sides by the base and the second base to be integrally fired. The manufacturing method of the sintered structure in any one of Claim 1 thru | or 3.
前記分断工程に先立って、前記基体、前記板状体および前記第2基体が焼成一体化されたものから、前記第2基体の部分を除去する、請求項4に記載の焼結構造体の製造方法。   The manufacturing of the sintered structure according to claim 4, wherein a part of the second substrate is removed from the substrate, the plate-like body, and the second substrate which are integrated by firing prior to the dividing step. Method. 前記基体として、前記複数の開口部がそれぞれ前記基体の反対側まで貫通した複数の貫通孔の一方の開口部となっているものを用いる、請求項1乃至請求項5のいずれかに記載の焼結構造体の製造方法。
The firing according to any one of claims 1 to 5, wherein the base is one in which the plurality of openings are each one of a plurality of through holes penetrating to the opposite side of the base. A method for producing a bonded structure.
JP2011239317A 2011-10-31 2011-10-31 Manufacturing method for sintered structure Pending JP2013095628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011239317A JP2013095628A (en) 2011-10-31 2011-10-31 Manufacturing method for sintered structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011239317A JP2013095628A (en) 2011-10-31 2011-10-31 Manufacturing method for sintered structure

Publications (1)

Publication Number Publication Date
JP2013095628A true JP2013095628A (en) 2013-05-20

Family

ID=48617967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011239317A Pending JP2013095628A (en) 2011-10-31 2011-10-31 Manufacturing method for sintered structure

Country Status (1)

Country Link
JP (1) JP2013095628A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217334A (en) * 2000-01-31 2001-08-10 Kyocera Corp Method of manufacturing multi arrangement substrate for wiring boards
JP2001352111A (en) * 2000-06-05 2001-12-21 Matsushita Electric Ind Co Ltd Film type piezoelectric ceramic element and its manufacturing method
JP2007266113A (en) * 2006-03-27 2007-10-11 Kyocera Corp Manufacturing method for electronic-component mounting substrate
JP2008084922A (en) * 2006-09-26 2008-04-10 Kyocera Corp Method of manufacturing ceramic substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217334A (en) * 2000-01-31 2001-08-10 Kyocera Corp Method of manufacturing multi arrangement substrate for wiring boards
JP2001352111A (en) * 2000-06-05 2001-12-21 Matsushita Electric Ind Co Ltd Film type piezoelectric ceramic element and its manufacturing method
JP2007266113A (en) * 2006-03-27 2007-10-11 Kyocera Corp Manufacturing method for electronic-component mounting substrate
JP2008084922A (en) * 2006-09-26 2008-04-10 Kyocera Corp Method of manufacturing ceramic substrate

Similar Documents

Publication Publication Date Title
JP5971447B2 (en) Manufacturing method of ceramic substrate and module component
JP2009064909A (en) Multilayer ceramic wiring board, and method of manufacturing the same
JP5062844B2 (en) Manufacturing method of ceramic laminate
JP2013115325A (en) Manufacturing method of sintered structure
JP2013095628A (en) Manufacturing method for sintered structure
JP4277012B2 (en) Multiple wiring board
JP7209740B2 (en) Substrates for mounting electronic components and electronic devices
CN107615477B (en) Substrate for mounting electronic component and electronic device
JP2016058415A (en) Semiconductor power module manufacturing method
JP6121860B2 (en) Wiring board and electronic device
JP4612567B2 (en) Manufacturing method of ceramic package
JP6408341B2 (en) Imaging device mounting substrate, imaging device, and imaging module
CN108695293B (en) Ceramic wiring board and method for manufacturing the same
US11950360B2 (en) Method for manufacturing ceramic substrate and ceramic substrate
TW200815309A (en) Ceramic substrate and fabricating method thereof
US20210362372A1 (en) Method for manufacturing ceramic substrate and ceramic substrate
JP2004014668A (en) Manufacturing method of laminated ceramic electronic part
JP2019029379A (en) Electronic component and manufacturing method thereof
JP4428883B2 (en) Multi-cavity ceramic wiring board
US20150351258A1 (en) Method for Producing a Multilayer Carrier Body
JP2011134739A (en) Ceramic package, and method of manufacturing the same
JP5573407B2 (en) Metal base substrate
JP4392138B2 (en) Multi-cavity ceramic wiring board manufacturing method
JP2010245116A (en) Method of manufacturing piezoelectric element, and ceramic laminate with electrode
JP5178595B2 (en) Multi-cavity wiring board, wiring board, electronic component storage package, and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150630