JP2013093956A - Sealed compressor, refrigeration cycle device incorporating sealed compressor, and air conditioner incorporating refrigeration cycle device - Google Patents

Sealed compressor, refrigeration cycle device incorporating sealed compressor, and air conditioner incorporating refrigeration cycle device Download PDF

Info

Publication number
JP2013093956A
JP2013093956A JP2011233995A JP2011233995A JP2013093956A JP 2013093956 A JP2013093956 A JP 2013093956A JP 2011233995 A JP2011233995 A JP 2011233995A JP 2011233995 A JP2011233995 A JP 2011233995A JP 2013093956 A JP2013093956 A JP 2013093956A
Authority
JP
Japan
Prior art keywords
hermetic compressor
permanent magnet
refrigeration cycle
temperature
magnet insertion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011233995A
Other languages
Japanese (ja)
Other versions
JP5579149B2 (en
Inventor
Kazunori Tsuchida
和慶 土田
Isato Yoshino
勇人 吉野
So Nomoto
宗 野本
Hisahira Kato
央平 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011233995A priority Critical patent/JP5579149B2/en
Publication of JP2013093956A publication Critical patent/JP2013093956A/en
Application granted granted Critical
Publication of JP5579149B2 publication Critical patent/JP5579149B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a sealed compressor which can heighten the restrictive effect of high temperature demagnetization of permanent magnets embedded in a rotor core.SOLUTION: In a sealed compressor, a motor is installed in a cylindrical sealed container whose top and bottom are blocked up, and a compressing mechanism is installed together with the motor in the sealed container and is driven by the motor. A rotor 1 of the motor comprises: a rotor core 3 consisting of a plurality of laminated magnetic steel sheets having a plurality of magnet insertion holes 6 opened at equal angle intervals along the periphery in circumferential direction; and a plurality of permanent magnets 5 which are inserted in alternating polarities into the adjacent magnet insertion holes 6 to form magnetic poles. Each of the plurality of magnet insertion holes 6 are formed so that when a permanent magnet 5 is inserted, there will be voids 8 in both edge portions 6a in the circumferential direction of the magnet insertion hole 6, and the voids 8 are used as a coolant passage in order for the coolant to flow in the voids 8.

Description

本発明は、密閉型圧縮機、その密閉型圧縮機を備えた冷凍サイクル装置、およびその冷凍サイクル装置を備えた空気調和機に関する。   The present invention relates to a hermetic compressor, a refrigeration cycle apparatus including the hermetic compressor, and an air conditioner including the refrigeration cycle apparatus.

一般に、永久磁石は、高温状態で強い反磁界に曝されると、磁化方向が反転して、減磁、つまり、磁力が弱くなる現象が発生することが知られている。   In general, it is known that when a permanent magnet is exposed to a strong demagnetizing field in a high temperature state, the magnetization direction is reversed and demagnetization, that is, a phenomenon in which the magnetic force is weakened occurs.

回転子鉄心に永久磁石を組み込んだ永久磁石型電動機では、固定子の巻線電流の増加に伴い、永久磁石にかかる反磁界が大きくなり、巻線電流値がある値を超えると、急激に減磁率が上昇する。この現象は、永久磁石の温度が高いほど生じ易く、一旦減磁率が上昇した後に永久磁石の温度を常温に戻しても磁力が回復しない不可逆減磁が生じた場合には、電動機としての性能が著しく劣化することとなる。以下、この永久磁石の温度上昇により生じる減磁を「高温減磁」という。   In a permanent magnet type motor with a permanent magnet built into the rotor core, the demagnetizing field applied to the permanent magnet increases as the stator winding current increases. When the winding current exceeds a certain value, it decreases rapidly. Magnetic susceptibility increases. This phenomenon is more likely to occur as the temperature of the permanent magnet increases.If irreversible demagnetization occurs in which the magnetic force does not recover even if the temperature of the permanent magnet is returned to room temperature after the demagnetization rate has once increased, the performance as a motor is reduced. It will deteriorate significantly. Hereinafter, the demagnetization caused by the temperature rise of the permanent magnet is referred to as “high temperature demagnetization”.

従来、圧縮機の吐出ガス温度を検出する吐出ガスサーミスタと、冷凍サイクル中の液冷媒を圧縮機に直接注入可能な液インジェクション機構を備えた冷凍装置において、圧縮機に用いられる電動機に設けられた永久磁石の磁力が低下し始める温度にならないように、冷凍サイクル中の液冷媒を圧縮機へ注入する液インジェクション量を制御することにより、圧縮機の吐出ガス温度を低下させ、永久磁石の温度上昇を抑制して、永久磁石の磁気特性の低下を抑制する、つまり、永久磁石の高温減磁を抑制する技術が開示されている(例えば、特許文献1)。   Conventionally, in a refrigeration apparatus having a discharge gas thermistor for detecting the discharge gas temperature of a compressor and a liquid injection mechanism capable of directly injecting liquid refrigerant in a refrigeration cycle to a compressor, the electric motor used for the compressor is provided. By controlling the amount of liquid injection that injects liquid refrigerant in the refrigeration cycle into the compressor so that the magnetic force of the permanent magnet does not begin to decrease, the discharge gas temperature of the compressor is decreased and the temperature of the permanent magnet increases. Has been disclosed to suppress the deterioration of the magnetic properties of the permanent magnet, that is, to suppress the high temperature demagnetization of the permanent magnet (for example, Patent Document 1).

特開2008−136329号公報JP 2008-136329 A

しかしながら、密閉型圧縮機は、一般に回転子鉄心に設けられた貫通孔を冷媒流路としているので、上記従来技術を適用したとしても、回転子鉄心に組み込まれた永久磁石は、回転子鉄心を形成する電磁鋼板を介して間接的に冷却されるのみであり、効率良く永久磁石を冷却することができず、永久磁石の高温減磁の抑制効果が小さい、という問題があった。   However, since the hermetic compressor generally uses a through hole provided in the rotor core as a refrigerant flow path, even if the above-described conventional technique is applied, the permanent magnet incorporated in the rotor core does not replace the rotor core. It is only indirectly cooled through the electromagnetic steel sheet to be formed, and the permanent magnet cannot be efficiently cooled, and there is a problem that the effect of suppressing the high temperature demagnetization of the permanent magnet is small.

本発明は、上記に鑑みてなされたものであって、回転子鉄心に組み込まれた永久磁石の高温減磁の抑制効果を高めることが可能な密閉型圧縮機を提供することを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at providing the hermetic compressor which can raise the inhibitory effect of the high temperature demagnetization of the permanent magnet integrated in the rotor core.

上述した課題を解決し、目的を達成するため、本発明にかかる密閉型圧縮機は、上下が閉塞された円筒状の密閉容器内に設置された電動機と、前記密閉容器内に前記電動機と共に設置され、該電動機により駆動される圧縮機構とを具備する密閉型圧縮機であって、前記電動機の回転子は、複数の磁石挿入孔が周方向外周部に沿って等角度間隔で設けられた電磁鋼板を複数枚積層してなる回転子鉄心と、隣り合う前記磁石挿入孔に極性を交互にして挿入され磁極を形成する複数の永久磁石と、を備え、複数の前記磁石挿入孔は、前記永久磁石を挿入した際に、該磁石挿入孔の周方向両端部に空隙が生じるように形成され、前記空隙を冷媒が通流するための冷媒流路として用いることを特徴とする。   In order to solve the above-described problems and achieve the object, a hermetic compressor according to the present invention is provided with a motor installed in a cylindrical sealed container whose top and bottom are closed, and the motor in the sealed container. A hermetic compressor including a compression mechanism driven by the electric motor, wherein the rotor of the electric motor includes an electromagnetic wave in which a plurality of magnet insertion holes are provided at equiangular intervals along the circumferential outer periphery. A rotor core formed by laminating a plurality of steel plates, and a plurality of permanent magnets that are inserted alternately into the magnet insertion holes adjacent to each other to form magnetic poles, wherein the plurality of magnet insertion holes are the permanent magnets. When a magnet is inserted, a gap is formed at both ends in the circumferential direction of the magnet insertion hole, and the gap is used as a refrigerant flow path for allowing refrigerant to flow therethrough.

本発明によれば、回転子鉄心に組み込まれた永久磁石の高温減磁の抑制効果を高めることができる、という効果を奏する。   According to the present invention, there is an effect that the effect of suppressing the high temperature demagnetization of the permanent magnet incorporated in the rotor core can be enhanced.

図1は、実施の形態にかかる密閉型圧縮機の縦断面図である。FIG. 1 is a longitudinal sectional view of a hermetic compressor according to an embodiment. 図2は、実施の形態における回転子の側面図である。FIG. 2 is a side view of the rotor in the embodiment. 図3は、図2に示す回転子の横断面図である。3 is a cross-sectional view of the rotor shown in FIG. 図4は、図2に示す回転子の磁極間部の拡大図である。FIG. 4 is an enlarged view of a portion between the magnetic poles of the rotor shown in FIG. 図5は、実施の形態におけるエンドプレートの一形状例を示す図である。FIG. 5 is a diagram showing an example of the shape of the end plate in the embodiment. 図6は、実施の形態における回転子を軸方向に見た図である。FIG. 6 is a view of the rotor in the embodiment as viewed in the axial direction. 図7は、図5に示す例とは異なるエンドプレートの一形状例を示す図である。FIG. 7 is a view showing one shape example of the end plate different from the example shown in FIG. 図8は、実施の形態にかかる冷凍サイクル装置の一構成例を示す図である。FIG. 8 is a diagram illustrating a configuration example of the refrigeration cycle apparatus according to the embodiment. 図9は、図4に示す空隙の有効性を説明するための図である。FIG. 9 is a diagram for explaining the effectiveness of the air gap shown in FIG. 図10は、磁石挿入孔の外周側の面に空隙をさらに設けた例を示す図である。FIG. 10 is a diagram illustrating an example in which a gap is further provided on the outer peripheral surface of the magnet insertion hole. 図11は、磁石挿入孔の軸側の面に空隙をさらに設けた例を示す図である。FIG. 11 is a diagram illustrating an example in which a gap is further provided on the shaft-side surface of the magnet insertion hole. 図12は、固定子の巻線電流と減磁率との関係を示す図である。FIG. 12 is a diagram showing the relationship between the winding current of the stator and the demagnetization factor. 図13は、Dy含有率に対する温度特性を示す図である。FIG. 13 is a diagram showing temperature characteristics with respect to the Dy content.

以下に添付図面を参照し、本発明の実施の形態にかかる密閉型圧縮機、その密閉型圧縮機を備えた冷凍サイクル装置、およびその冷凍サイクル装置を備えた空気調和機について説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。   Hereinafter, a hermetic compressor according to an embodiment of the present invention, a refrigeration cycle apparatus including the hermetic compressor, and an air conditioner including the refrigeration cycle apparatus will be described with reference to the accompanying drawings. In addition, this invention is not limited by embodiment shown below.

実施の形態.
図1は、実施の形態にかかる密閉型圧縮機の縦断面図である。図1に示すように、実施の形態にかかる密閉型圧縮機11は、有底円筒状で上部開口部が蓋体によって閉塞された密閉容器19の内部に、電動機21と、この電動機21により駆動される圧縮機構20とが設置されており、密閉容器19内の底部には、主として圧縮機構20の摺動部(図示せず)を潤滑する冷凍機油(図示せず)が貯留されている。
Embodiment.
FIG. 1 is a longitudinal sectional view of a hermetic compressor according to an embodiment. As shown in FIG. 1, a hermetic compressor 11 according to an embodiment is driven by an electric motor 21 and an electric motor 21 inside a hermetic container 19 whose bottom opening is cylindrical and whose upper opening is closed by a lid. The refrigerating machine oil (not shown) that lubricates mainly the sliding part (not shown) of the compression mechanism 20 is stored in the bottom of the sealed container 19.

電動機21は、密閉容器2の上部に固定された固定子22と、中心部にシャフト2が挿通固定され、固定子22の内周面に回転自在に配置された回転子1とを備えている。   The electric motor 21 includes a stator 22 fixed to the upper portion of the hermetic container 2, and a rotor 1 having a shaft 2 inserted and fixed at the center and rotatably disposed on the inner peripheral surface of the stator 22. .

図2は、実施の形態における回転子の側面図である。また、図3は、図2に示す回転子の横断面図である。   FIG. 2 is a side view of the rotor in the embodiment. FIG. 3 is a cross-sectional view of the rotor shown in FIG.

図2および図3に示すように、回転子1は、薄板(例えば、0.1〜1.0mm程度)の電磁鋼板を所定の形状に金型で打ち抜き、所定数(複数枚)積層して形成された回転子鉄心3の中心部にシャフト挿入孔2aが設けられ、そのシャフト挿入孔2aには、シャフト2が挿通固定されている。また、回転子鉄心3の外周側の軸方向には、周方向外周部に沿って等角度間隔で複数の磁石挿入孔6が設けられ、それらの各磁石挿入孔6には、隣り合う永久磁石5が極性を交互にして挿入されている。さらに、回転子鉄心3には、磁石挿入孔6よりも内側の軸方向には、主たる冷媒流路となる複数の貫通孔7が設けられている。また、回転子1は、固定子鉄心3を軸方向に挟み、永久磁石5を軸方向に固定するエンドプレート4を備えている。なお、貫通孔7の数、位置、および形状は、図3に示す態様以外であってもよい。   As shown in FIG. 2 and FIG. 3, the rotor 1 is formed by punching a thin plate (for example, about 0.1 to 1.0 mm) of electromagnetic steel sheet into a predetermined shape with a die and laminating a predetermined number (plural sheets). A shaft insertion hole 2a is provided at the center of the formed rotor core 3, and the shaft 2 is inserted and fixed in the shaft insertion hole 2a. Further, in the axial direction on the outer peripheral side of the rotor core 3, a plurality of magnet insertion holes 6 are provided at equiangular intervals along the circumferential outer periphery, and adjacent permanent magnets are provided in the respective magnet insertion holes 6. 5 are inserted with alternating polarities. Further, the rotor core 3 is provided with a plurality of through holes 7 serving as main refrigerant flow paths in the axial direction inside the magnet insertion hole 6. The rotor 1 includes an end plate 4 that sandwiches the stator core 3 in the axial direction and fixes the permanent magnet 5 in the axial direction. The number, position, and shape of the through holes 7 may be other than those shown in FIG.

図4は、実施の形態における回転子の磁極間部の拡大図である。図4に示すように、磁石挿入孔6は、永久磁石5を挿入した際に、磁石挿入孔6の周方向両端部6aに貫通孔7と同様に冷媒流路となる空隙8が生じるように形成されている。本実施の形態では、この空隙8を冷媒が通流するための冷媒流路として用いる。これにより、永久磁石5の周方向両端部5aが空隙8に露出し、冷媒に直接接触する。この空隙8を低温の冷媒が通流することにより、永久磁石5が冷却される。なお、図4に示す例では、磁石挿入孔6は、永久磁石5の外周面側の角部が空隙8に露出するように、且つ、永久磁石5の軸側の角部が回転子鉄心3を形成する電磁鋼板に接するように形成されている。このように形成された空隙8による効果は、永久磁石5の冷却だけでなく、副次的な効果も有している。この副次的な効果については後述する。   FIG. 4 is an enlarged view of a portion between the magnetic poles of the rotor in the embodiment. As shown in FIG. 4, the magnet insertion hole 6 is configured such that when the permanent magnet 5 is inserted, a gap 8 serving as a refrigerant flow path is generated at both circumferential ends 6 a of the magnet insertion hole 6 in the same manner as the through-hole 7. Is formed. In the present embodiment, this gap 8 is used as a refrigerant flow path for the refrigerant to flow therethrough. Thereby, the circumferential direction both ends 5a of the permanent magnet 5 are exposed to the space | gap 8, and it contacts a refrigerant | coolant directly. The permanent magnet 5 is cooled by allowing the low-temperature refrigerant to flow through the gap 8. In the example shown in FIG. 4, the magnet insertion hole 6 is such that the corner on the outer peripheral surface side of the permanent magnet 5 is exposed in the gap 8, and the corner on the shaft side of the permanent magnet 5 is the rotor core 3. It is formed so as to be in contact with the electromagnetic steel sheet forming. The effect of the gap 8 formed in this way has not only the cooling of the permanent magnet 5 but also a secondary effect. This secondary effect will be described later.

図5は、実施の形態におけるエンドプレートの一形状例を示す図である。また、図6は、実施の形態における回転子を軸方向に見た図である。図5および図6に示すように、エンドプレート4は、回転子鉄心3に設けられた複数の各貫通孔7および各空隙8を塞がない形状に加工されている。図5および図6では、回転子鉄心3に設けられた複数の各貫通孔7の位置に対応して穴10を設け、隣り合う永久磁石5の周方向端部5aを含む各磁極間部周辺位置に対応して切り欠き9を設けた例を示している。   FIG. 5 is a diagram showing an example of the shape of the end plate in the embodiment. Moreover, FIG. 6 is the figure which looked at the rotor in embodiment to the axial direction. As shown in FIGS. 5 and 6, the end plate 4 is processed into a shape that does not block the plurality of through holes 7 and the gaps 8 provided in the rotor core 3. In FIGS. 5 and 6, holes 10 are provided corresponding to the positions of the plurality of through holes 7 provided in the rotor core 3, and the periphery of each magnetic pole portion including the circumferential end 5 a of the adjacent permanent magnet 5. The example which provided the notch 9 corresponding to the position is shown.

図7は、図5に示す例とは異なるエンドプレートの一形状例を示す図である。図7に示すように、エンドプレート4の形状は、各空隙8の位置に対応して、空隙8と略同一形状の穴10aを設けるようにしてもよい。このようにすれば、永久磁石5が欠けた場合でも、その破片が飛散するのを防止することができる。   FIG. 7 is a view showing one shape example of the end plate different from the example shown in FIG. As shown in FIG. 7, the end plate 4 may have a hole 10 a having substantially the same shape as the gap 8 corresponding to the position of each gap 8. In this way, even if the permanent magnet 5 is missing, it is possible to prevent the fragments from scattering.

つぎに、本実施の形態にかかる冷凍サイクル装置の構成および動作について説明する。図8は、実施の形態にかかる冷凍サイクル装置の一構成例を示す図である。なお、図8に示す本実施の形態にかかる冷凍サイクル装置は、例えば、空気調和機に用いて好適である。   Next, the configuration and operation of the refrigeration cycle apparatus according to the present embodiment will be described. FIG. 8 is a diagram illustrating a configuration example of the refrigeration cycle apparatus according to the embodiment. Note that the refrigeration cycle apparatus according to the present embodiment shown in FIG. 8 is suitable for use in an air conditioner, for example.

図8に示すように、実施の形態にかかる冷凍サイクル装置は、実施の形態にかかる密閉型圧縮機11、凝縮器12、減圧装置13、蒸発器14、温度センサ15、バイパス回路(液インジェクション回路)16、および制御回路25を備えている。バイパス回路16は、凝縮器12の液冷媒吐出口と密閉型圧縮機11のガス吸入口との間に減圧装置17と開閉弁18とが直列に接続され構成されている。温度センサ15は、密閉型圧縮機11のガス吐出口付近に設けられ、ガス吐出口に流れる冷媒の温度を検出する。また、制御回路25は、温度センサ15の検出結果に基づいて、開閉弁18を制御する。   As shown in FIG. 8, the refrigeration cycle apparatus according to the embodiment includes a hermetic compressor 11, a condenser 12, a decompression device 13, an evaporator 14, a temperature sensor 15, a bypass circuit (liquid injection circuit) according to the embodiment. ) 16 and a control circuit 25. The bypass circuit 16 is configured by connecting a pressure reducing device 17 and an on-off valve 18 in series between a liquid refrigerant discharge port of the condenser 12 and a gas suction port of the hermetic compressor 11. The temperature sensor 15 is provided in the vicinity of the gas discharge port of the hermetic compressor 11 and detects the temperature of the refrigerant flowing through the gas discharge port. The control circuit 25 controls the on-off valve 18 based on the detection result of the temperature sensor 15.

まず、実施の形態にかかる冷凍サイクル装置の通常の運転時における動作について、図1、図3、図4および図8を参照して説明する。冷凍サイクル装置の通常の運転時では、図8に示すように、密閉型圧縮機11、凝縮器12、減圧装置13、蒸発器14の順に冷媒が循環し、再び密閉型圧縮機11に戻る冷凍サイクルを行う。   First, the operation | movement at the time of the normal driving | operation of the refrigerating-cycle apparatus concerning embodiment is demonstrated with reference to FIG.1, FIG.3, FIG.4 and FIG. During normal operation of the refrigeration cycle apparatus, as shown in FIG. 8, the refrigerant circulates in the order of the hermetic compressor 11, the condenser 12, the decompressor 13, and the evaporator 14, and returns to the hermetic compressor 11 again. Cycle.

密閉型圧縮機11において圧縮された高温高圧の冷媒ガスは、凝縮器12において空気と熱交換して凝縮して液冷媒となる。液冷媒は、減圧装置13において膨張して低温低圧の冷媒ガスとなり、蒸発器14において空気と熱交換して蒸発して再び密閉型圧縮機11において圧縮され、高温高圧の冷媒ガスとなる。   The high-temperature and high-pressure refrigerant gas compressed in the hermetic compressor 11 is condensed by exchanging heat with air in the condenser 12 to become a liquid refrigerant. The liquid refrigerant expands in the decompression device 13 to become low-temperature and low-pressure refrigerant gas, evaporates by exchanging heat with air in the evaporator 14, and is compressed again in the hermetic compressor 11 to become high-temperature and high-pressure refrigerant gas.

密閉型圧縮機11内部において、冷媒ガスは、図1中の破線矢印で示す経路で流れる。冷媒吸入管23を介して密閉型圧縮機11のガス吸入口から吸入された低温低圧の冷媒ガスは、電動機21により駆動される圧縮機構20により圧縮される。こうして高温高圧となった冷媒ガスは、図3および図4において説明した回転子鉄心3の複数の各貫通孔7および各空隙8を通過して、ガス吐出口から冷媒吐出管24を介して吐出される。   Inside the hermetic compressor 11, the refrigerant gas flows along a path indicated by a broken-line arrow in FIG. The low-temperature and low-pressure refrigerant gas sucked from the gas suction port of the hermetic compressor 11 through the refrigerant suction pipe 23 is compressed by the compression mechanism 20 driven by the electric motor 21. The refrigerant gas that has become high temperature and pressure in this manner passes through the plurality of through holes 7 and the gaps 8 of the rotor core 3 described in FIGS. 3 and 4 and is discharged from the gas discharge port via the refrigerant discharge pipe 24. Is done.

つぎに、何らかの要因により密閉型圧縮機11のガス吐出口から吐出される冷媒ガスの温度が異常上昇した場合の動作について、図1、図3、図4および図8を参照して説明する。この場合には、バイパス回路16により凝縮器12の液冷媒吐出口と密閉型圧縮機11のガス吸入口との間をバイパスさせ、図8中の実線矢印で示す経路で冷媒を循環させることにより、低温の液冷媒を密閉型圧縮機11に直接注入させる。これにより、密閉型圧縮機11内部の冷媒温度が急激に低下し、その温度が低下した冷媒が回転子鉄心3の複数の貫通孔7および空隙8を通過する。本実施の形態では、温度が低下した冷媒が空隙8を通過する際に、空隙8に露出した永久磁石5に直接接触するため、効率良く永久磁石5を冷却することができる。   Next, the operation when the temperature of the refrigerant gas discharged from the gas discharge port of the hermetic compressor 11 abnormally rises due to some factor will be described with reference to FIGS. 1, 3, 4 and 8. FIG. In this case, the bypass circuit 16 bypasses between the liquid refrigerant discharge port of the condenser 12 and the gas suction port of the hermetic compressor 11, and the refrigerant is circulated along the path indicated by the solid line arrow in FIG. A low-temperature liquid refrigerant is directly injected into the hermetic compressor 11. Thereby, the refrigerant temperature inside the hermetic compressor 11 rapidly decreases, and the refrigerant whose temperature has decreased passes through the plurality of through holes 7 and the gaps 8 of the rotor core 3. In the present embodiment, when the refrigerant whose temperature has decreased passes through the gap 8, it directly contacts the permanent magnet 5 exposed in the gap 8, so that the permanent magnet 5 can be efficiently cooled.

より具体的には、回転子1に埋設された永久磁石5の温度と、密閉型圧縮機11のガス吐出口付近に設けられた温度センサ15で検出される冷媒ガスの温度との間には相関関係があるので、温度センサ15による検出温度に対して、あらかじめ永久磁石5が高温減磁しない上限温度よりも低い所定温度を閾値として設定しておき、温度センサ15による検出温度がその所定の閾値を超えないように、制御回路25が開閉弁18を制御するようにすればよい。あるいは、温度センサ15で検出される冷媒ガスの温度が上述した所定温度を超えた場合に、開閉弁18を開制御するようにしてもよい。   More specifically, between the temperature of the permanent magnet 5 embedded in the rotor 1 and the temperature of the refrigerant gas detected by the temperature sensor 15 provided near the gas discharge port of the hermetic compressor 11. Since there is a correlation, a predetermined temperature lower than the upper limit temperature at which the permanent magnet 5 is not demagnetized at high temperature is set in advance as a threshold for the temperature detected by the temperature sensor 15, and the temperature detected by the temperature sensor 15 is the predetermined temperature. The control circuit 25 may control the on-off valve 18 so that the threshold value is not exceeded. Alternatively, the opening / closing valve 18 may be controlled to open when the temperature of the refrigerant gas detected by the temperature sensor 15 exceeds the predetermined temperature described above.

なお、上述したように、図4に示した例では、磁石挿入孔6は、永久磁石5の外周面側の角部が露出するように、且つ、永久磁石5の軸側の角部が回転子鉄心3を形成する電磁鋼板に接するように形成されて空隙8が生じている。このように形成された空隙8による効果は、永久磁石5の冷却だけでなく、副次的な効果も有している。ここで、図4に示すようにして生じた空隙8の副次的な効果について、図9を参照して説明する。図9は、図4に示す空隙の副次的な効果を説明するための図である。   As described above, in the example shown in FIG. 4, the magnet insertion hole 6 is rotated so that the corner on the outer peripheral surface side of the permanent magnet 5 is exposed and the corner on the shaft side of the permanent magnet 5 is rotated. A gap 8 is formed so as to be in contact with the magnetic steel sheet forming the core 3. The effect of the gap 8 formed in this way has not only the cooling of the permanent magnet 5 but also a secondary effect. Here, a secondary effect of the gap 8 generated as shown in FIG. 4 will be described with reference to FIG. FIG. 9 is a diagram for explaining a secondary effect of the gap shown in FIG.

隣り合う永久磁石5は、N極とS極とが交互になるように配置されており、図9(a)中に実線矢印で示す方向に磁束が生じる。空隙8は、磁気抵抗として作用するため、永久磁石5の周方向両端部5aが露出するように空隙8を設けた場合、隣接する永久磁石5間、および、自身のN極とS極との間に生じる漏洩磁束が減少する。したがって、この空隙8は、上述した永久磁石5を冷却するという効果に加え、永久磁石5によるトルク力の低下を抑制するという効果も有している。   Adjacent permanent magnets 5 are arranged so that N poles and S poles alternate, and a magnetic flux is generated in the direction indicated by the solid line arrow in FIG. Since the air gap 8 acts as a magnetic resistance, when the air gap 8 is provided so that both circumferential ends 5a of the permanent magnet 5 are exposed, between the adjacent permanent magnets 5 and between its own N pole and S pole. Leakage magnetic flux generated between them decreases. Therefore, in addition to the effect of cooling the permanent magnet 5 described above, the gap 8 also has an effect of suppressing a decrease in torque force due to the permanent magnet 5.

一方、図9(b)に示すように、永久磁石5の周方向両端部5aが露出する空隙8を設けていない場合、回転子鉄心3を形成している電磁鋼板を介して、隣接する永久磁石5間、および、自身のN極とS極との間に図9(b)中の破線矢印で示す漏洩磁束が生じるため、有効に使える磁束量が減って永久磁石5により生じるトルク力が低下する。   On the other hand, as shown in FIG. 9 (b), when there is no gap 8 in which both circumferential ends 5a of the permanent magnet 5 are exposed, the permanent magnets adjacent to each other through the electromagnetic steel sheet forming the rotor core 3 are provided. The leakage magnetic flux indicated by the broken-line arrow in FIG. 9B is generated between the magnets 5 and between its own N pole and S pole, so that the amount of magnetic flux that can be effectively used is reduced and the torque force generated by the permanent magnet 5 is reduced. descend.

つまり、図9(b)に示すように、永久磁石5の周方向両端部5aが露出する空隙8を設けていない場合、上述した永久磁石5を冷却するという効果が得られないばかりか、効率の悪化を招くこととなる。   That is, as shown in FIG. 9B, when the gap 8 that exposes both circumferential ends 5a of the permanent magnet 5 is not provided, not only the effect of cooling the permanent magnet 5 described above is obtained, but also the efficiency. Will be worsened.

また、図9(c)に示すように、永久磁石5の周方向両端部5aの外周側および軸側の両角部を空隙8aに露出させると、永久磁石5が周方向(図9(c)中に示す実線矢印方向)に動く虞がある。   Further, as shown in FIG. 9C, when both the outer peripheral side and axial side corners of both ends 5a in the circumferential direction of the permanent magnet 5 are exposed to the gap 8a, the permanent magnet 5 is moved in the circumferential direction (FIG. 9C). There is a risk of movement in the direction of the solid arrow shown in the figure.

本実施の形態では、図9(a)に示すように、永久磁石5の周方向両端部5aの軸側の2つの角部が、回転子鉄心3を形成している電磁鋼板に接しているので、永久磁石5が周方向に動くのを防止するという効果も有している。   In the present embodiment, as shown in FIG. 9A, the two corners on the axial side of the circumferential both ends 5 a of the permanent magnet 5 are in contact with the electromagnetic steel sheet forming the rotor core 3. Therefore, it also has an effect of preventing the permanent magnet 5 from moving in the circumferential direction.

また、図4では、磁石挿入孔6の周方向両端部6aに空隙8が生じる例を示したが、永久磁石5の冷却効果をより高めるために、空隙の数を増加する、あるいは、空隙に露出する永久磁石5の表面積を大きくすることも可能である。図10は、磁石挿入孔の外周側の面に空隙をさらに設けた例を示す図である。また、図11は、磁石挿入孔の軸側の面に空隙をさらに設けた例を示す図である。   FIG. 4 shows an example in which the gap 8 is generated at both circumferential ends 6 a of the magnet insertion hole 6. However, in order to further increase the cooling effect of the permanent magnet 5, the number of gaps is increased, or It is also possible to increase the surface area of the exposed permanent magnet 5. FIG. 10 is a diagram illustrating an example in which a gap is further provided on the outer peripheral surface of the magnet insertion hole. Moreover, FIG. 11 is a figure which shows the example which further provided the space | gap in the surface at the side of the axis of a magnet insertion hole.

図10(a)に示すように、図4に示した空隙8に加えて、磁石挿入孔6の外周側の面に空隙8bをさらに設けた場合には、永久磁石5の冷却効果を高めることはできるが、回転子1と固定子(図示せず)との間に介在する空隙8bが磁気抵抗として作用するため、回転子1から固定子へ通過する磁束を妨げることとなり好ましくない。また、図10(b)に示すように、エンドプレート4に空隙8bの位置に対応する穴10bを設ける必要があるため、回転子鉄心3やエンドプレート4(図10(b))の外周に薄肉部が生じ、プレス加工が困難となる、また、強度が低下する等の問題が生じることとなる。   As shown in FIG. 10A, in addition to the gap 8 shown in FIG. 4, when the gap 8b is further provided on the outer peripheral surface of the magnet insertion hole 6, the cooling effect of the permanent magnet 5 is enhanced. However, since the gap 8b interposed between the rotor 1 and the stator (not shown) acts as a magnetic resistance, the magnetic flux passing from the rotor 1 to the stator is hindered. Further, as shown in FIG. 10 (b), since it is necessary to provide the end plate 4 with a hole 10b corresponding to the position of the gap 8b, the outer periphery of the rotor core 3 and the end plate 4 (FIG. 10 (b)) is provided. A thin-walled portion is generated, and press working becomes difficult, and problems such as a decrease in strength occur.

一方、図11(a)に示すように、図4に示した空隙8に加えて、磁石挿入孔6の軸側の面に空隙8cをさらに設けた場合には、回転子1から固定子へ通過する磁束を妨げることもなく、また、回転子鉄心3やエンドプレート4の外周に薄肉部が生じることもない。また、図11(b)や図11(c)に示すように、空隙8cに露出する永久磁石5の表面積を維持しつつ、一つの磁石挿入孔6あたりの空隙8cの数を減らすことにより、回転子鉄心3やエンドプレート4のプレス加工における生産性を高めることも可能である。   On the other hand, as shown in FIG. 11A, in addition to the gap 8 shown in FIG. 4, when a gap 8c is further provided on the shaft-side surface of the magnet insertion hole 6, the rotor 1 is moved to the stator. The passing magnetic flux is not obstructed, and a thin portion is not generated on the outer periphery of the rotor core 3 or the end plate 4. Further, as shown in FIG. 11B and FIG. 11C, by maintaining the surface area of the permanent magnet 5 exposed in the gap 8c, by reducing the number of gaps 8c per one magnet insertion hole 6, It is also possible to increase productivity in the press working of the rotor core 3 and the end plate 4.

空気調和機の密閉型圧縮機に用いられる電動機の永久磁石としては、例えば、ネオジム、鉄、およびボロンを主成分として構成される希土類磁石が用いられるが、この希土類磁石は、高温減磁が生じ易い特性を有している。   As a permanent magnet of an electric motor used in a hermetic compressor of an air conditioner, for example, a rare earth magnet mainly composed of neodymium, iron, and boron is used. However, this rare earth magnet causes high temperature demagnetization. It has easy characteristics.

図12は、固定子の巻線電流と減磁率との関係を示す図である。図12において、横軸は巻線電流を示し、縦軸は減磁率を示している。また、図12中において、実線は永久磁石の温度が50℃である場合のグラフを示し、破線は永久磁石の温度が100℃である場合のグラフを示し、一点鎖線は永久磁石の温度が150℃である場合のグラフを示している。   FIG. 12 is a diagram showing the relationship between the winding current of the stator and the demagnetization factor. In FIG. 12, the horizontal axis indicates the winding current, and the vertical axis indicates the demagnetization factor. In FIG. 12, the solid line shows a graph when the temperature of the permanent magnet is 50 ° C., the broken line shows the graph when the temperature of the permanent magnet is 100 ° C., and the alternate long and short dash line shows the temperature of the permanent magnet at 150 ° C. The graph in the case of ° C. is shown.

図12に示すように、永久磁石の温度が高い程、減磁が発生する巻線電流が小さくなる。また、ある電流値で減磁し始めると、その電流値以上となる領域では、急激に減磁率が大きくなる。減磁率が大きくなると、制御性が保たれなくなるため、減磁率の保障範囲は、例えば1%以内に抑える必要がある。この減磁率の保障範囲の上限を「臨界減磁率」という。   As shown in FIG. 12, the higher the temperature of the permanent magnet, the smaller the winding current at which demagnetization occurs. Further, when demagnetization starts at a certain current value, the demagnetization rate increases rapidly in the region where the current value is exceeded. When the demagnetization factor increases, the controllability cannot be maintained. Therefore, the guaranteed range of the demagnetization factor must be suppressed to within 1%, for example. The upper limit of the guaranteed range of demagnetization factor is called “critical demagnetization factor”.

なお、減磁を防ぐ他の手法として、永久磁石を厚くする、あるいは、永久磁石に含まれるジスプロシウム(Dysprosium:Dy)の含有量を増やす手法が挙げられる。図13は、Dy含有率に対する温度特性を示す図である。図13において、横軸はDy含有率を示し、縦軸は永久磁石の温度を示している。また、図13に示すグラフは、臨界減磁率(ここでは1%)における温度特性を示している。   In addition, as another method for preventing demagnetization, there is a method of increasing the thickness of the permanent magnet or increasing the content of dysprosium (Dyprosium: Dy) contained in the permanent magnet. FIG. 13 is a diagram showing temperature characteristics with respect to the Dy content. In FIG. 13, the horizontal axis represents the Dy content, and the vertical axis represents the temperature of the permanent magnet. Further, the graph shown in FIG. 13 shows the temperature characteristics at the critical demagnetization factor (here, 1%).

図13に示すように、Dy含有率が大きい程、臨界減磁率に達する温度が高くなる。つまり、永久磁石にDyが多く含まれることによって、より高温な環境でも減磁することなく使用することが可能となる。   As shown in FIG. 13, the higher the Dy content, the higher the temperature at which the critical demagnetization rate is reached. In other words, since the permanent magnet contains a large amount of Dy, it can be used without demagnetization even in a higher temperature environment.

本実施の形態では、図3〜図7および図9〜図12を用いて説明したように、磁石挿入孔6に永久磁石5を挿入した際に、冷媒流路となる空隙8,8cが生じるように磁石挿入孔6を形成し、この空隙8,8cに低温の冷媒を通すことにより、永久磁石5を冷却して高温減磁を抑制するようにした。このため、永久磁石を厚くする、あるいは、希少資源であり高価な上に、含有量を増やし過ぎると磁力が低下するDyの含有量を増やすことなく、永久磁石5の高温減磁を抑制することができるので、高効率化や低コスト化を図ることが可能となる。   In the present embodiment, as described with reference to FIGS. 3 to 7 and FIGS. 9 to 12, when the permanent magnet 5 is inserted into the magnet insertion hole 6, voids 8 and 8 c serving as a refrigerant flow path are generated. In this manner, the magnet insertion hole 6 is formed, and a low-temperature refrigerant is passed through the gaps 8 and 8c, whereby the permanent magnet 5 is cooled to suppress high-temperature demagnetization. For this reason, it is possible to suppress the high-temperature demagnetization of the permanent magnet 5 without increasing the thickness of the permanent magnet or increasing the content of Dy, which is a scarce resource and expensive, and decreases the magnetic force when the content is excessively increased. Therefore, it becomes possible to achieve high efficiency and low cost.

以上説明したように、実施の形態の密閉型圧縮機、その密閉型圧縮機を備えた冷凍サイクル装置、およびその冷凍サイクル装置を備えた空気調和機によれば、磁石挿入孔に永久磁石を挿入した際に、磁石挿入孔の周方向両端部に空隙が生じるように磁石挿入孔を形成し、その空隙を冷媒が通流するための冷媒流路として用いるようにしたので、冷凍サイクル装置に凝縮器の液冷媒吐出口と密閉型圧縮機のガス吸入口との間をバイパスするバイパス回路を設け、永久磁石の温度が異常上昇した場合に、バイパス回路により低温の液冷媒を密閉型圧縮機に直接注入することにより、温度が低下した冷媒が磁石挿入孔の周方向両端部に生じた空隙を通り、その空隙に露出した永久磁石の表面に直接接触するため、効率良く永久磁石を冷却することができ、永久磁石の高温減磁の抑制効果を高めることができる。   As described above, according to the hermetic compressor of the embodiment, the refrigeration cycle apparatus including the hermetic compressor, and the air conditioner including the refrigeration cycle apparatus, the permanent magnet is inserted into the magnet insertion hole. Since the magnet insertion holes are formed so that gaps are generated at both ends in the circumferential direction of the magnet insertion holes and the gaps are used as refrigerant flow paths for the refrigerant to flow, A bypass circuit that bypasses between the liquid refrigerant discharge port of the compressor and the gas suction port of the hermetic compressor is provided, and when the temperature of the permanent magnet rises abnormally, the low-temperature liquid refrigerant is supplied to the hermetic compressor by the bypass circuit. By directly injecting, the refrigerant whose temperature has decreased passes through the gaps formed at both ends in the circumferential direction of the magnet insertion hole and directly contacts the surface of the permanent magnet exposed in the gaps, so that the permanent magnets can be efficiently cooled. But Come, it is possible to enhance the effect of suppressing the high temperature demagnetization of the permanent magnet.

また、磁石挿入孔の周方向両端部に生じた空隙は、磁気抵抗として作用するため、隣接する永久磁石間、および、自身のN極とS極との間に生じる漏洩磁束が減少し、永久磁石によるトルク力の低下を抑制することができる。   In addition, since the air gap generated at both ends in the circumferential direction of the magnet insertion hole acts as a magnetic resistance, the leakage magnetic flux generated between adjacent permanent magnets and between its own N and S poles is reduced, and the A decrease in torque force due to the magnet can be suppressed.

また、永久磁石の周方向両端部の軸側の角部が、回転子鉄心を形成している電磁鋼板に接しているので、回転子鉄心に埋設された永久磁石が周方向に動くのを防止することができる。   In addition, the axial corners of both ends of the permanent magnet in contact with the magnetic steel sheet forming the rotor core prevent the permanent magnet embedded in the rotor core from moving in the circumferential direction. can do.

また、回転子鉄心に設けられた複数の各貫通孔および各空隙を塞がないように、隣り合う永久磁石の周方向端部を含む各磁極間部周辺位置に対応して切り欠かれた形状に加工され、回転子鉄心を軸方向に挟むエンドプレートを備えることにより、貫通孔および空隙に流れる冷媒の流れを妨げることなく、回転子鉄心に埋設された永久磁石が軸方向に動くのを防止することができる。   Also, a shape that is cut out corresponding to the position around each magnetic pole part including the circumferential end of the adjacent permanent magnet so as not to block the plurality of through holes and the gaps provided in the rotor core This prevents the permanent magnets embedded in the rotor core from moving in the axial direction without interfering with the flow of the refrigerant flowing through the through holes and gaps. can do.

あるいは、回転子鉄心に設けられた複数の各貫通孔および各空隙の位置に対応して、貫通孔および空隙の形状と略同一形状の穴をエンドプレートに設けることにより、永久磁石が欠けた場合でも、その破片が飛散するのを防止することができる。   Alternatively, if permanent magnets are missing by providing holes in the end plate that have substantially the same shape as the through-holes and gaps corresponding to the positions of the multiple through-holes and gaps provided in the rotor core However, it is possible to prevent the fragments from scattering.

また、磁石挿入孔の軸側の面に空隙がさらに生じるように、磁石挿入孔を形成することにより、回転子から固定子へ通過する磁束を妨げることなく、また、回転子鉄心やエンドプレートの強度やプレス加工における生産性を損ねることなく、永久磁石の冷却効果をより高めることができる。   In addition, by forming the magnet insertion hole so that a gap is further generated on the shaft side surface of the magnet insertion hole, the magnetic flux passing from the rotor to the stator is not obstructed, and the rotor iron core and the end plate The permanent magnet cooling effect can be further enhanced without impairing strength and productivity in press working.

また、永久磁石を厚くする、あるいは、ジスプロシウムの含有量を増やす等の手法を用いることなく、永久磁石の高温減磁を抑制することができるので、高効率化や低コスト化を図ることが可能となる。   In addition, high temperature demagnetization of permanent magnets can be suppressed without increasing the thickness of permanent magnets or using techniques such as increasing the content of dysprosium, enabling higher efficiency and lower costs. It becomes.

また、永久磁石の高温減磁の抑制効果を高めることにより、固定子の巻線電流をより増加させることが可能となるので、電動機の高出力化を図ることができる。   Further, by increasing the effect of suppressing the high temperature demagnetization of the permanent magnet, it becomes possible to further increase the winding current of the stator, so that the output of the motor can be increased.

また、従来の電動機と同等な出力を得る場合には、保磁力のより小さい永久磁石を採用する、あるいは、永久磁石をより薄く設計することにより、コストの低減を図ることが可能となる。   In addition, in order to obtain an output equivalent to that of a conventional electric motor, it is possible to reduce the cost by adopting a permanent magnet having a smaller coercive force or designing a thinner permanent magnet.

なお、以上の実施の形態に示した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは言うまでもない。   Note that the configuration shown in the above embodiment is an example of the configuration of the present invention, and can be combined with another known technique, and a part thereof is omitted without departing from the gist of the present invention. Needless to say, it is possible to change the configuration.

1 回転子
2 シャフト
2a シャフト挿入孔
3 回転子鉄心
4 エンドプレート
5 永久磁石
5a 永久磁石の周方向両端部
6 磁石挿入孔
6a 磁石挿入孔の周方向両端部
7 貫通孔
8,8a,8b,8c 空隙
9 切り欠き
10,10a,10b 穴
11 密閉型圧縮機
12 凝縮器
13 減圧装置
14 蒸発器
15 温度センサ
16 バイパス回路(液インジェクション回路)
17 減圧装置
18 開閉弁
19 密閉容器
20 圧縮機構
21 電動機
22 固定子
23 冷媒吸入管
24 冷媒吐出管
25 制御回路
DESCRIPTION OF SYMBOLS 1 Rotor 2 Shaft 2a Shaft insertion hole 3 Rotor core 4 End plate 5 Permanent magnet 5a Both ends of the permanent magnet in the circumferential direction 6 Magnet insertion hole 6a Both ends in the circumferential direction of the magnet insertion hole 7 Through holes 8, 8a, 8b, 8c Air gap 9 Notch 10, 10a, 10b Hole 11 Sealed compressor 12 Condenser 13 Pressure reducing device 14 Evaporator 15 Temperature sensor 16 Bypass circuit (liquid injection circuit)
DESCRIPTION OF SYMBOLS 17 Pressure reducing device 18 On-off valve 19 Sealed container 20 Compression mechanism 21 Electric motor 22 Stator 23 Refrigerant suction pipe 24 Refrigerant discharge pipe 25 Control circuit

Claims (12)

上下が閉塞された円筒状の密閉容器内に設置された電動機と、前記密閉容器内に前記電動機と共に設置され、該電動機により駆動される圧縮機構とを具備する密閉型圧縮機であって、
前記電動機の回転子は、
複数の磁石挿入孔が周方向外周部に沿って等角度間隔で設けられた電磁鋼板を複数枚積層してなる回転子鉄心と、
隣り合う前記磁石挿入孔に極性を交互にして挿入され磁極を形成する複数の永久磁石と、
を備え、
複数の前記磁石挿入孔は、前記永久磁石を挿入した際に、該磁石挿入孔の周方向両端部に空隙が生じるように形成され、
前記空隙を冷媒が通流するための冷媒流路として用いることを特徴とする密閉型圧縮機。
A hermetic compressor comprising: an electric motor installed in a cylindrical sealed container whose top and bottom are closed; and a compression mechanism that is installed in the sealed container together with the electric motor and driven by the electric motor,
The rotor of the electric motor is
A rotor core formed by laminating a plurality of electromagnetic steel plates each having a plurality of magnet insertion holes provided at equiangular intervals along the circumferential outer periphery;
A plurality of permanent magnets that are inserted alternately into the magnet insertion holes adjacent to each other to form magnetic poles;
With
The plurality of magnet insertion holes are formed such that gaps are generated at both ends in the circumferential direction of the magnet insertion holes when the permanent magnet is inserted,
A hermetic compressor, wherein the air gap is used as a refrigerant flow path for the refrigerant to flow therethrough.
前記磁石挿入孔は、前記永久磁石の外周側の角部が前記空隙に露出するように形成されたことを特徴とする請求項1に記載の密閉型圧縮機。   2. The hermetic compressor according to claim 1, wherein the magnet insertion hole is formed such that a corner on an outer peripheral side of the permanent magnet is exposed to the gap. 前記磁石挿入孔は、前記永久磁石の軸側の角部が前記回転子鉄心を形成する電磁鋼板に接するように形成されたことを特徴とする請求項1または2に記載の密閉型圧縮機。   3. The hermetic compressor according to claim 1, wherein the magnet insertion hole is formed such that a corner portion on the shaft side of the permanent magnet is in contact with an electromagnetic steel plate forming the rotor core. 前記磁石挿入孔は、前記永久磁石を挿入した際に、該磁石挿入孔の軸側の面に空隙がさらに生じるように形成されたことを特徴とする請求項1〜3のいずれか一項に記載の密閉型圧縮機。   The said magnet insertion hole is formed so that a space | gap may further arise in the surface at the side of the axis | shaft of this magnet insertion hole, when the said permanent magnet is inserted. The hermetic compressor as described. 前記各空隙を塞がないように加工され、前記回転子鉄心を軸方向に挟むエンドプレートを備えることを特徴とする請求項1〜4のいずれか一項に記載の密閉型圧縮機。   The hermetic compressor according to any one of claims 1 to 4, further comprising an end plate that is processed so as not to block each of the gaps and sandwiches the rotor core in the axial direction. 前記エンドプレートは、隣り合う前記永久磁石の周方向端部を含む各磁極間部周辺位置に対応して切り欠かれたことを特徴とする請求項5に記載の密閉型圧縮機。   6. The hermetic compressor according to claim 5, wherein the end plate is cut out in correspondence with a peripheral position between each magnetic pole portion including a circumferential end portion of the adjacent permanent magnet. 前記エンドプレートは、前記各空隙の位置に対応して、該各空隙と略同一形状の穴が設けられたことを特徴とする請求項5に記載の密閉型圧縮機。   6. The hermetic compressor according to claim 5, wherein the end plate is provided with a hole having substantially the same shape as each gap corresponding to the position of each gap. 圧縮機、凝縮器、減圧装置、および蒸発器により冷凍サイクルを行う冷凍サイクル装置であって、
請求項1〜7のいずれか一項に記載の密閉型圧縮機を備え、
前記永久磁石の温度が異常上昇した場合に、前記凝縮器の液冷媒吐出口と前記密閉型圧縮機のガス吸入口との間をバイパスして低温の液冷媒を前記密閉型圧縮機に直接注入することを特徴とする冷凍サイクル装置。
A refrigeration cycle apparatus that performs a refrigeration cycle by a compressor, a condenser, a decompression device, and an evaporator,
A hermetic compressor according to any one of claims 1 to 7,
When the temperature of the permanent magnet rises abnormally, a low-temperature liquid refrigerant is directly injected into the hermetic compressor by bypassing between the liquid refrigerant discharge port of the condenser and the gas suction port of the hermetic compressor. A refrigeration cycle apparatus characterized by:
前記密閉型圧縮機のガス吐出口の温度を検出する温度センサと、
前記凝縮器の液冷媒吐出口と前記密閉型圧縮機のガス吸入口との間に減圧装置と開閉弁とが直列に接続され構成されたバイパス回路と、
前記温度センサの検出温度に基づいて、前記開閉弁を制御する制御回路と、
を備えることを特徴とする請求項8に記載の冷凍サイクル装置。
A temperature sensor for detecting the temperature of the gas outlet of the hermetic compressor;
A bypass circuit configured by connecting a pressure reducing device and an on-off valve in series between a liquid refrigerant discharge port of the condenser and a gas suction port of the hermetic compressor;
A control circuit for controlling the on-off valve based on a temperature detected by the temperature sensor;
The refrigeration cycle apparatus according to claim 8, comprising:
前記制御回路は、前記温度センサの検出温度があらかじめ設定した所定温度を超えないように、前記開閉弁を制御することを特徴とする請求項9に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 9, wherein the control circuit controls the on-off valve so that a temperature detected by the temperature sensor does not exceed a predetermined temperature set in advance. 前記制御回路は、前記温度センサの検出温度があらかじめ設定した所定温度を超えた場合に、前記開閉弁を開状態に制御することを特徴とする請求項9に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 9, wherein the control circuit controls the open / close valve to be in an open state when a temperature detected by the temperature sensor exceeds a predetermined temperature set in advance. 請求項8〜11のいずれか一項に記載の冷凍サイクル装置を備えることを特徴とする空気調和機。   An air conditioner comprising the refrigeration cycle apparatus according to any one of claims 8 to 11.
JP2011233995A 2011-10-25 2011-10-25 Hermetic compressor, refrigeration cycle apparatus including the hermetic compressor, and air conditioner including the refrigeration cycle apparatus Active JP5579149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011233995A JP5579149B2 (en) 2011-10-25 2011-10-25 Hermetic compressor, refrigeration cycle apparatus including the hermetic compressor, and air conditioner including the refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011233995A JP5579149B2 (en) 2011-10-25 2011-10-25 Hermetic compressor, refrigeration cycle apparatus including the hermetic compressor, and air conditioner including the refrigeration cycle apparatus

Publications (2)

Publication Number Publication Date
JP2013093956A true JP2013093956A (en) 2013-05-16
JP5579149B2 JP5579149B2 (en) 2014-08-27

Family

ID=48616647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011233995A Active JP5579149B2 (en) 2011-10-25 2011-10-25 Hermetic compressor, refrigeration cycle apparatus including the hermetic compressor, and air conditioner including the refrigeration cycle apparatus

Country Status (1)

Country Link
JP (1) JP5579149B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031477A1 (en) * 2014-08-25 2016-03-03 三菱電機株式会社 Electric motor, compressor, and refrigeration-cycle device
WO2016203563A1 (en) * 2015-06-17 2016-12-22 三菱電機株式会社 Permanent magnet embedded-type electric motor for compressor, compressor, and refrigeration cycle device
KR20170046905A (en) * 2015-10-22 2017-05-04 한국전기연구원 Iron core structure of electric machinery
WO2017163383A1 (en) * 2016-03-24 2017-09-28 三菱電機株式会社 Permanent-magnet electric motor, compressor, and air-conditioner
WO2019146006A1 (en) * 2018-01-24 2019-08-01 三菱電機株式会社 Electric motor, compressor, and air-conditioner device
JPWO2018216168A1 (en) * 2017-05-25 2019-11-07 三菱電機株式会社 Electric motor, compressor and air conditioner
KR20200104781A (en) * 2019-02-27 2020-09-04 가부시끼가이샤 도시바 Rotary electrical machine
WO2023286125A1 (en) * 2021-07-12 2023-01-19 三菱電機株式会社 Rotor, electric motor, compressor, and refrigeration cycle device
JP7393706B1 (en) * 2023-02-28 2023-12-07 ダイキン工業株式会社 Temperature estimation device and air conditioner

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002345188A (en) * 2001-05-14 2002-11-29 Nissan Motor Co Ltd Dynamo-electric rotating machine
JP2004343915A (en) * 2003-05-16 2004-12-02 Nissan Motor Co Ltd Electric motor
JP2008029184A (en) * 2006-06-20 2008-02-07 Mitsubishi Electric Corp Rotor, manufacturing method therefor, closed-type compressor, and refrigeration cycle device
JP2008136329A (en) * 2006-11-29 2008-06-12 Hitachi Appliances Inc Refrigeration system
WO2010058609A1 (en) * 2008-11-19 2010-05-27 三菱電機株式会社 Rotor of motor and motor and fan and compressor
JP2010220340A (en) * 2009-03-16 2010-09-30 Toyota Motor Corp Rotary electric machine
JP2011078283A (en) * 2009-10-01 2011-04-14 Mitsubishi Electric Corp Rotor for permanent-embedded motor, blower, and compressor
JP2011193623A (en) * 2010-03-15 2011-09-29 Nippon Soken Inc Rotary electric machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002345188A (en) * 2001-05-14 2002-11-29 Nissan Motor Co Ltd Dynamo-electric rotating machine
JP2004343915A (en) * 2003-05-16 2004-12-02 Nissan Motor Co Ltd Electric motor
JP2008029184A (en) * 2006-06-20 2008-02-07 Mitsubishi Electric Corp Rotor, manufacturing method therefor, closed-type compressor, and refrigeration cycle device
JP2008136329A (en) * 2006-11-29 2008-06-12 Hitachi Appliances Inc Refrigeration system
WO2010058609A1 (en) * 2008-11-19 2010-05-27 三菱電機株式会社 Rotor of motor and motor and fan and compressor
JP2010220340A (en) * 2009-03-16 2010-09-30 Toyota Motor Corp Rotary electric machine
JP2011078283A (en) * 2009-10-01 2011-04-14 Mitsubishi Electric Corp Rotor for permanent-embedded motor, blower, and compressor
JP2011193623A (en) * 2010-03-15 2011-09-29 Nippon Soken Inc Rotary electric machine

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016031477A1 (en) * 2014-08-25 2017-04-27 三菱電機株式会社 Electric motor, compressor and refrigeration cycle apparatus
US10468953B2 (en) 2014-08-25 2019-11-05 Mitsubishi Electric Corporation Electric motor, compressor, and refrigerating cycle apparatus
WO2016031477A1 (en) * 2014-08-25 2016-03-03 三菱電機株式会社 Electric motor, compressor, and refrigeration-cycle device
US10879760B2 (en) 2015-06-17 2020-12-29 Mitsubishi Electric Corporation Permanent-magnet-embedded electric motor for compressor, compressor, and refrigeration cycle device
WO2016203563A1 (en) * 2015-06-17 2016-12-22 三菱電機株式会社 Permanent magnet embedded-type electric motor for compressor, compressor, and refrigeration cycle device
KR20170046905A (en) * 2015-10-22 2017-05-04 한국전기연구원 Iron core structure of electric machinery
KR102297448B1 (en) * 2015-10-22 2021-09-02 강도현 Iron core structure of electric machinery
WO2017163383A1 (en) * 2016-03-24 2017-09-28 三菱電機株式会社 Permanent-magnet electric motor, compressor, and air-conditioner
JPWO2017163383A1 (en) * 2016-03-24 2018-07-26 三菱電機株式会社 Permanent magnet motor, compressor, and air conditioner
JPWO2018216168A1 (en) * 2017-05-25 2019-11-07 三菱電機株式会社 Electric motor, compressor and air conditioner
US11296560B2 (en) 2017-05-25 2022-04-05 Mitsubishi Electric Corporation Motor, compressor, and air conditioner
JPWO2019146006A1 (en) * 2018-01-24 2020-11-19 三菱電機株式会社 Electric motors, compressors and air conditioners
WO2019146006A1 (en) * 2018-01-24 2019-08-01 三菱電機株式会社 Electric motor, compressor, and air-conditioner device
US11258319B2 (en) 2018-01-24 2022-02-22 Mitsubishi Electric Corporation Motor, compressor, and air conditioning apparatus
KR20200104781A (en) * 2019-02-27 2020-09-04 가부시끼가이샤 도시바 Rotary electrical machine
KR102286885B1 (en) * 2019-02-27 2021-08-09 가부시끼가이샤 도시바 Rotary electrical machine
WO2023286125A1 (en) * 2021-07-12 2023-01-19 三菱電機株式会社 Rotor, electric motor, compressor, and refrigeration cycle device
JP7393706B1 (en) * 2023-02-28 2023-12-07 ダイキン工業株式会社 Temperature estimation device and air conditioner
WO2024181421A1 (en) * 2023-02-28 2024-09-06 ダイキン工業株式会社 Temperature estimation device and air-conditioning device

Also Published As

Publication number Publication date
JP5579149B2 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
JP5579149B2 (en) Hermetic compressor, refrigeration cycle apparatus including the hermetic compressor, and air conditioner including the refrigeration cycle apparatus
JP5518026B2 (en) Rotor, electric motor equipped with the rotor, compressor equipped with the electric motor, refrigeration cycle apparatus equipped with the compressor, and air conditioner equipped with the refrigeration cycle apparatus
CN108352737B (en) Motor, rotor, compressor, and refrigeration and air-conditioning apparatus
US10284030B2 (en) Permanent magnet embedded electric motor, compressor, and a refrigerating and air conditioning device
CN108352741B (en) Motor, rotor, compressor, and refrigeration and air-conditioning apparatus
KR20180040662A (en) Permanent magnet embedded type electric motor, compressor and refrigeration air-conditioning device
US10116176B2 (en) Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
US10027192B2 (en) Motor with permanent magnet embedded therein, and compressor
JP6689449B2 (en) Rotors, electric motors, compressors, blowers, and air conditioners
JP6351732B2 (en) Compressor motor, refrigeration cycle equipment
JP6824333B2 (en) Electric motors, rotors, compressors and refrigeration and air conditioners
EP3324515B1 (en) Rotor, electric motor, compressor, and refrigerator/air conditioning equipment
KR20180099851A (en) Rotor, electric motor, compressor, and refrigeration air conditioner
WO2013114541A1 (en) Embedded permanent magnet electric motor and compressor
JP2009071934A (en) Polarization method for electric compressor rotor, electric compressor, and refrigerating cycle device
JP5619305B2 (en) Permanent magnet embedded electric motor and compressor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140708

R150 Certificate of patent or registration of utility model

Ref document number: 5579149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250