WO2017163383A1 - Permanent-magnet electric motor, compressor, and air-conditioner - Google Patents

Permanent-magnet electric motor, compressor, and air-conditioner Download PDF

Info

Publication number
WO2017163383A1
WO2017163383A1 PCT/JP2016/059476 JP2016059476W WO2017163383A1 WO 2017163383 A1 WO2017163383 A1 WO 2017163383A1 JP 2016059476 W JP2016059476 W JP 2016059476W WO 2017163383 A1 WO2017163383 A1 WO 2017163383A1
Authority
WO
WIPO (PCT)
Prior art keywords
portions
rotor core
axial direction
grooves
permanent magnet
Prior art date
Application number
PCT/JP2016/059476
Other languages
French (fr)
Japanese (ja)
Inventor
馬場 和彦
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018506716A priority Critical patent/JP6526315B2/en
Priority to PCT/JP2016/059476 priority patent/WO2017163383A1/en
Publication of WO2017163383A1 publication Critical patent/WO2017163383A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/18Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having horse-shoe armature cores

Definitions

  • the present invention relates to a permanent magnet motor in which a permanent magnet is arranged inside a rotor core, a compressor including the permanent magnet motor, and an air conditioner including the compressor.
  • a rotor core of a permanent magnet motor is provided with a plurality of groove-shaped cooling channels extending in the axial direction on an inner peripheral side contact surface or an outer peripheral side contact surface with a permanent magnet in a magnet hole.
  • Patent Document 1 since the plurality of groove-shaped cooling channels are provided only on one of the inner peripheral side contact surface and the outer peripheral side contact surface, the cooling effect of the permanent magnet is limited. In order to improve the cooling effect, the width of the cooling channel may be enlarged, but the cooling channel suppresses the passage of the magnetic flux of the permanent magnet, so the magnetic flux of the permanent magnet cannot be used effectively, It may lead to a decrease in the efficiency of the motor.
  • the present invention has been made in view of the above, and suppresses a temperature increase of a permanent magnet due to an eddy current, can improve the demagnetization resistance of the permanent magnet, and can improve the efficiency of the electric motor.
  • the purpose is to obtain an electric motor.
  • a permanent magnet motor includes an annular stator core, and a plurality of magnets arranged coaxially with the stator core inside the stator core.
  • a plurality of magnet holes arranged in a circumferential direction and extending in the axial direction from the first end surface to the second end surface; and disposed in the plurality of magnet holes.
  • each of the plurality of inner surfaces includes a first surface arranged on the outer side of the rotor core in a radial direction of the rotor core and the radial direction of the rotor core. And a second surface disposed inside Each of the plurality of permanent magnets has a third surface facing the first surface and a fourth surface facing the second surface, and the first surface is the first surface.
  • the second surface extends from the first end surface to the second end surface in the axial direction and is arranged along the fourth surface in a cross section of the rotor core perpendicular to the axial direction.
  • a plurality of second grooves, and the fourth surface includes a plurality of second portions exposed in the plurality of second grooves, and the fourth surface includes the plurality of second grooves.
  • the total length of the plurality of first portions is greater than the total length of the plurality of second portions. Is also big.
  • the present invention there is an effect that the temperature increase of the permanent magnet due to the eddy current can be suppressed, the demagnetization resistance of the permanent magnet can be improved, and the efficiency of the electric motor can be improved.
  • FIG. 1 is a cross-sectional view showing a configuration of a permanent magnet motor according to Embodiment 1.
  • FIG. Cross-sectional view showing the configuration of the rotor core in the first embodiment Partial enlarged view of the rotor core shown in FIG.
  • Partial enlarged cross-sectional view showing the configuration of the rotor according to the first modification of the first embodiment
  • Vertical sectional view showing the configuration of the compressor according to the second embodiment
  • FIG. 1 is a cross-sectional view showing the configuration of the permanent magnet motor according to the present embodiment. 1 is a cross-sectional view perpendicular to the axial direction of the rotor core.
  • the electric motor 1 is a permanent magnet electric motor according to the present embodiment.
  • the electric motor 1 includes an annular stator 2 and a rotor 3 disposed inside the stator 2.
  • the rotor 3 is disposed inside the stator 2 so as to be rotatable through the gap 20.
  • the stator 2 includes an annular stator core 21 and a coil 22 wound around the stator core 21.
  • the stator core 21 includes an annular yoke 23 and a plurality of teeth 24 protruding from the yoke 23. Each of the plurality of teeth 24 protrudes from the yoke 23 inward in the radial direction of the yoke 23.
  • the stator core 21 is formed by punching electromagnetic steel sheets according to the planar shape of the stator core 21 and laminating a plurality of punched electromagnetic steel sheets in the axial direction of the stator core 21.
  • the plurality of teeth 24 are arranged at equal intervals in the circumferential direction of the yoke 23. Between adjacent teeth 24, a slot 25, which is a space, is formed.
  • the coil 22 is wound around a plurality of teeth 24. In the illustrated example, the number of teeth 24 is nine, but is not limited thereto.
  • the rotor 3 includes an annular rotor core 4 and a plurality of permanent magnets 6 arranged inside the rotor core 4.
  • the rotor core 4 is arranged coaxially with the stator core 21. That is, the axis of the rotor core 4 coincides with the axis of the stator core 21.
  • the “axial direction” is the axial direction of the rotor core 4
  • the “radial direction” is the radial direction of the rotor core 4
  • the “circumferential direction” is the rotor core. 4 circumferential directions.
  • the rotor core 4 is formed with a shaft hole 7 at the center.
  • a shaft (not shown) is fitted into the shaft hole 7.
  • the rotor core 4 has a plurality of magnet holes 5 arranged in the circumferential direction.
  • the plurality of magnet holes 5 are formed in the rotor core 4 at equal intervals in the circumferential direction.
  • the plurality of magnet holes 5 are arranged at equidistant positions in the radial direction from the center of the rotor core 4.
  • the plurality of magnet holes 5 have the same shape and the same size.
  • the plurality of magnet holes 5 penetrates the rotor core 4 in the axial direction.
  • the magnet hole 5 extends in a direction orthogonal to the radial direction, and the length in the direction orthogonal to the radial direction is larger than the length in the radial direction.
  • the rotor core 4 is formed by punching out electromagnetic steel sheets according to the planar shape of the rotor core 4 and laminating a plurality of punched electromagnetic steel sheets in the axial direction.
  • a plurality of permanent magnets 6 are disposed in the plurality of magnet holes 5.
  • the permanent magnet 6 is fixed to the rotor core 4 by adhesion or press fitting.
  • the permanent magnet 6 has a flat plate shape and a rectangular cross section.
  • the permanent magnet 6 extends in a direction orthogonal to the radial direction, and the length in the direction orthogonal to the radial direction is larger than the length in the radial direction. That is, the longitudinal direction of the permanent magnet 6 is a direction orthogonal to the radial direction, and the short direction of the permanent magnet 6 is the radial direction.
  • the permanent magnet 6 is a rare earth magnet or a ferrite magnet.
  • the permanent magnet 6 is a rare earth magnet containing iron, neodymium and boron, and the rare earth magnet does not contain dysprosium, or the dysprosium content contained in the rare earth magnet is 3% by weight or less. Can do.
  • the plurality of permanent magnets 6 have the same shape and the same size.
  • the plurality of permanent magnets 6 are arranged so that the polarities of the magnetic poles on the outer peripheral side are alternated in the circumferential direction.
  • the number of poles of the electric motor 1 is 6, and the number of the magnet holes 5 and the number of the permanent magnets 6 are each 6.
  • the number of magnet holes 5 and the number of permanent magnets 6 are determined according to the number of poles.
  • FIGS. 2 is a cross-sectional view showing the structure of the rotor core
  • FIG. 3 is a partially enlarged view of the rotor core shown in FIG. 2
  • FIG. 4 is a cross-sectional view showing the structure of the rotor
  • FIG. 5 is the rotation shown in FIG.
  • FIG. 6 is an AA cross-sectional view shown in FIG. FIG. 6 is a part of a longitudinal sectional view of the rotor core 4 including the axis of the rotor core 4.
  • the rotor core 4 has a cylindrical outer peripheral surface 18a and a cylindrical inner peripheral surface 18b arranged coaxially with the outer peripheral surface 18a.
  • the inner peripheral surface 18 b forms the shaft hole 7.
  • the rotor core 4 has end faces 18c and 18d that are separated from each other in the axial direction.
  • the end face 18c is a first end face, and the end face 18d is a second end face.
  • the axis of the rotor core 4 is indicated by an axis 30.
  • the end faces 18 c and 18 d are parallel to each other and perpendicular to the axis 30.
  • the rotor core 4 includes a core portion 4a disposed on the inner side in the radial direction from the plurality of magnet holes 5, and a plurality of core portions 4b disposed on the outer side in the radial direction from the plurality of magnet holes 5, respectively. .
  • the rotor core 4 has a plurality of inner surfaces 8 that form a plurality of magnet holes 5.
  • the plurality of magnet holes 5 extend in the axial direction from the end surface 18c to the end surface 18d.
  • the plurality of magnet holes 5 extend parallel to the shaft 30.
  • the magnet hole 5 is a portion into which the permanent magnet 6 is substantially inserted, and has a rectangular shape according to the shape of the permanent magnet 6.
  • the inner surface 8 has a surface 8 a disposed on the outer side in the radial direction in the rotor core 4 and a surface 8 b disposed on the inner side in the radial direction in the rotor core 4.
  • the surface 8a is a first surface
  • the surface 8b is a second surface. That is, the surface 8a is disposed on the outer side in the radial direction with respect to the surface 8b, and the surface 8b is disposed on the inner side in the radial direction with respect to the surface 8a.
  • the surface 8a is formed on the core portion 4b, and the surface 8b is formed on the core portion 4a.
  • the surface 8a has a plurality of grooves 9a.
  • the plurality of grooves 9a includes a groove 9a1, a groove 9a2, a groove 9a3, a groove 9a4, and a groove 9a5.
  • the plurality of grooves 9a extend in the axial direction from the end surface 18c to the end surface 18d. That is, the plurality of grooves 9 a penetrate the rotor core 4.
  • the plurality of grooves 9 a extend in parallel to the shaft 30.
  • the plurality of grooves 9a are arranged apart from each other in the cross section of the rotor core 4 perpendicular to the axial direction.
  • the surface 8b has a plurality of grooves 9b.
  • the plurality of grooves 9b includes a groove 9b1, a groove 9b2, a groove 9b3, and a groove 9b4.
  • the plurality of grooves 9b extend in the axial direction from the end surface 18c to the end surface 18d. That is, the plurality of grooves 9 b penetrate the rotor core 4.
  • the plurality of grooves 9 b extend parallel to the shaft 30.
  • the plurality of grooves 9b are spaced apart from each other in the cross section of the rotor core 4 perpendicular to the axial direction.
  • the plurality of grooves 9a communicate with the magnet hole 5 over the entire length of the rotor core 4 in the axial direction.
  • the plurality of grooves 9b communicate with the magnet hole 5 over the entire length of the rotor core 4 in the axial direction.
  • the plurality of grooves 9a and the plurality of grooves 9b are cooling grooves.
  • the permanent magnet 6 has a surface 6 a facing the surface 8 a constituting the inner surface 8 and a surface 6 b facing the surface 8 b constituting the inner surface 8.
  • the surface 6a is a third surface
  • the surface 6b is a fourth surface.
  • the surfaces 6a and 6b are magnetic pole surfaces of the permanent magnet 6 having different polarities.
  • the plurality of grooves 9a are arranged along the surface 6a in the cross section of the rotor core 4 perpendicular to the axial direction. Further, the surface 6a has a plurality of portions 6a1 to 6a5 exposed in the plurality of grooves 9a. Specifically, the part 6a1 is exposed in the groove 9a1, the part 6a2 is exposed in the groove 9a2, the part 6a3 is exposed in the groove 9a3, the part 6a4 is exposed in the groove 9a4, and the part 6a5 is exposed in the groove 9a5.
  • the plurality of portions 6a1 to 6a5 are a plurality of first portions. The surface 6a is in contact with the surface 8a except for the plurality of portions 6a1 to 6a5.
  • the plurality of grooves 9b are arranged along the surface 6b in the cross section of the rotor core 4 perpendicular to the axial direction. Further, the surface 6b has a plurality of portions 6b1 to 6b4 exposed in the plurality of grooves 9b. Specifically, the part 6b1 is exposed in the groove 9b1, the part 6b2 is exposed in the groove 9b2, the part 6b3 is exposed in the groove 9b3, and the part 6b4 is exposed in the groove 9a4.
  • the plurality of portions 6b1 to 6b4 are a plurality of second portions.
  • the surface 6b is in contact with the surface 8b except for the plurality of portions 6b1 to 6b4.
  • the permanent magnet 6 further has a surface 6c disposed at one end in the longitudinal direction and a surface 6d disposed at the other end in the longitudinal direction.
  • the surfaces 6 c and 6 d are parallel to each other and parallel to the axis 30.
  • the permanent magnet 6 further has a surface 6e disposed at one end in the axial direction and a surface 6f disposed at the other end in the axial direction.
  • the surfaces 6 e and 6 f are parallel to each other and are perpendicular to the axis 30. Further, the surface 6e is flush with the end surface 18c, and the surface 6f is flush with the end surface 18d. That is, the permanent magnet 6 extends in the axial direction from the end surface 18c to the end surface 18d.
  • Flux barrier portions 10a and 10b are provided on both sides of the permanent magnet 6 in the longitudinal direction.
  • the flux barrier portions 10a and 10b are grooves 15a and 15b formed in portions of the inner surface 8 excluding the surfaces 8a and 8b, respectively.
  • the grooves 15a and 15b extend in the axial direction from the end surface 18c to the end surface 18d. That is, the grooves 15 a and 15 b penetrate the rotor core 4.
  • the grooves 15 a and 15 b extend parallel to the shaft 30.
  • the grooves 15a and 15b communicate with the magnet hole 5 over the entire length of the rotor core 4 in the axial direction.
  • the flux barrier portions 10a and 10b bring the magnetic flux density distribution of the outer peripheral surface 18a of the rotor 3 closer to a sine wave, and the magnetic flux of the adjacent permanent magnet 6 is short-circuited via the rotor core 4, that is, suppresses leakage magnetic flux. .
  • a thin iron core 4c extending in the circumferential direction is formed between the flux barrier portion 10a and the outer peripheral surface 18a.
  • a thin iron core portion 4d extending in the circumferential direction is formed between the flux barrier portion 10b and the outer peripheral surface 18a.
  • the thickness in the radial direction of the thin core portions 4c and 4d is equal to or greater than the thickness of the electromagnetic steel plate of the rotor core 4.
  • the rotor core 4 is formed with protrusions 4e and 4f that regulate the circumferential displacement of the permanent magnet 6. Specifically, the protrusions 4e and 4f are formed on the core 4a. A configuration in which the protrusions 4e and 4f are not provided is also possible.
  • FIG. 7 is a diagram for explaining the length relationship in FIG.
  • the length of the part 6a1 is Wa1
  • the length of the part 6a2 is Wa2
  • the length of the part 6a3 is Wa3
  • the length of the part 6a4 is Wa4
  • the length of the portion 6a5 is Wa5
  • the length of the portion 6b1 is Wb1
  • the length of the portion 6b2 is Wb2
  • the length of the portion 6b3 is Wb3
  • the length of the portion 6b4 is Wb4.
  • the length of the permanent magnet 6 in the longitudinal direction is Wm.
  • the total length of the plurality of portions 6a1 to 6a5 is larger than the total length of the plurality of portions 6b1 to 6b4. That is, the relationship of Wa1 + Wa2 + Wa3 + Wa4 + Wa5> Wb1 + Wb2 + Wb3 + Wb4 is established.
  • the total area of the plurality of grooves 9a is larger than the total area of the plurality of grooves 9b in the cross section of the rotor core 4 perpendicular to the axial direction. That is, in the cross section of the rotor core 4 perpendicular to the axial direction, the sum of the area of the groove 9a1, the area of the groove 9a2, the area of the groove 9a3, the area of the groove 9a4, and the area of the groove 9a5 is It is larger than the sum of the area of 9b2, the area of the groove 9b3, and the area of the groove 9b4.
  • the total length of the plurality of portions 6a1 to 6a5 is larger than the total length of the portion where the surface 6a and the surface 8a are in contact.
  • Wm / 2 ⁇ Wa1 + Wa2 + Wa3 + Wa4 + Wa5 The relationship holds.
  • the total length of the plurality of portions 6b1 to 6b4 is larger than the total length of the portion where the surface 6b and the surface 8b contact.
  • Wm / 2 ⁇ Wb1 + Wb2 + Wb3 + Wb4 The relationship holds.
  • Wa1 Wa5
  • any of the lengths of the two portions 6a1 and 6a5 located at both ends of the plurality of portions 6a1 to 6a5 in the arrangement direction of the plurality of portions 6a1 to 6a5 is greater than any of the lengths of the other portions 6a2 to 6a4. Is also big.
  • each of the plurality of grooves 9a has a width in the direction along the surface 6a that is away from the surface 6a, that is, from the inner side in the radial direction. It forms so that it may become small as it goes to the outer side in radial direction. That is, the width of each of the plurality of grooves 9a is the largest on the surface 6a and is equal to the length of the corresponding one of the plurality of portions 6a1 to 6a5.
  • each of the plurality of grooves 9b has a width in the direction along the surface 6b that increases from the surface 6b, that is, from the outer side in the radial direction to the inner side in the radial direction. It is formed to become smaller as it goes. That is, the width of each of the plurality of grooves 9b is the largest on the surface 6b and is equal to the length of the corresponding one of the plurality of portions 6b1 to 6b4.
  • the plurality of grooves 9a and the plurality of grooves 9b are arranged in a staggered manner in the cross section of the rotor core 4 perpendicular to the axial direction. Specifically, the plurality of grooves 9a and the plurality of grooves 9b are arranged in a staggered manner along the surface 6a or the surface 6b. Alternatively, the plurality of grooves 9 a and the plurality of grooves 9 b are arranged in a staggered manner along the longitudinal direction of the permanent magnet 6.
  • the groove 9a2, the groove 9a3, and the groove 9a4 have the same shape and the same size. Specifically, each of the groove 9a2, the groove 9a3, and the groove 9a4 has an arc shape whose center angle is less than 180 °.
  • the groove 9a1 and the groove 9a5 have the same shape and the same size when one of the groove 9a1 and the groove 9a5 is inverted.
  • the groove 9b1, the groove 9b2, the groove 9b3, and the groove 9a4 have the same shape and the same size. Specifically, each of the groove 9b1, the groove 9b2, the groove 9b3, and the groove 9a4 has an arc shape whose center angle is less than 180 °.
  • the total length of the plurality of portions 6a1 to 6a5 is larger than the total length of the plurality of portions 6b1 to 6b4.
  • the temperature rise of the permanent magnet 6 due to the eddy current is not uniform within the permanent magnet 6, and the outer side in the radial direction is higher than the inner side.
  • the outside of the permanent magnet 6 having a higher temperature rise can be further cooled.
  • the total length of the plurality of portions 6b1 to 6b4 exposed in the plurality of grooves 9b is relatively small inside the permanent magnet 6 where the temperature rise is relatively low, the magnetic flux of the permanent magnet 6 is effectively used. As a result, the efficiency of the electric motor 1 is improved.
  • the plurality of grooves 9a and the plurality of grooves 9b are arranged in a staggered manner in the cross section of the rotor core 4 perpendicular to the axial direction.
  • the magnetic flux of the permanent magnet 6 can be used more effectively than in the case where the plurality of grooves 9a are arranged to face each other in the radial direction with the plurality of grooves 9b via the permanent magnet 6. Increases efficiency.
  • the total length of the plurality of portions 6a1 to 6a5 is larger than the total length of the plurality of portions 6b1 to 6b4, and the plurality of grooves 9a and The plurality of grooves 9b are arranged in a staggered manner in the cross section of the rotor core 4 perpendicular to the axial direction.
  • any one of the configurations may be realized.
  • the total area of the plurality of grooves 9a is larger than the total area of the plurality of grooves 9b in the cross section of the rotor core 4 perpendicular to the axial direction.
  • the total length of the plurality of portions 6a1 to 6a5 is larger than the total length of the plurality of portions 6b1 to 6b4, and the total area of the plurality of grooves 9a is the plurality of grooves 9b.
  • a configuration with a total area of less than or equal to is also possible.
  • the total length of the plurality of portions 6a1 to 6a5 is larger than the total length of the portion where the surface 6a and the surface 8a are in contact. Thereby, the cooling of the surface 6a of the permanent magnet 6 can be further enhanced.
  • a configuration in which the total length of the plurality of portions 6a1 to 6a5 is equal to or less than the total length of the portion where the surface 6a and the surface 8a are in contact is possible.
  • the total length of the plurality of portions 6b1 to 6b4 is larger than the total length of the portion where the surface 6b and the surface 8b are in contact with each other.
  • the cooling of 6b can be further increased.
  • a configuration in which the total length of the plurality of portions 6b1 to 6b4 is equal to or less than the total length of the portion where the surface 6b and the surface 8b contact is possible.
  • the lengths of the two portions 6a1 and 6a5 located at both ends in the arrangement direction of the plurality of portions 6a1 to 6a5 among the plurality of portions 6a1 to 6a5 are the other portions 6a2 to 6a4. Greater than any of the lengths.
  • the temperature rise of the permanent magnet 6 due to the eddy current is not uniform within the permanent magnet 6 and is higher at both ends in the longitudinal direction of the permanent magnet 6 than at the center. Therefore, the cooling of the permanent magnet 6 can be further enhanced by making the lengths of the two portions 6a1 and 6a5 located at both ends in the arrangement direction larger than the lengths of the other portions 6a2 to 6a4. In general, such a configuration is possible if the number of first portions is three or more.
  • the structure by which the length of the two parts 6a1 and 6a5 located at both ends in the arrangement direction is equal to or shorter than the lengths of the other parts 6a2 to 6a4 is also possible.
  • the lengths of the plurality of portions 6b1 to 6b4 are equal to each other, the lengths of the two portions 6b1 and 6b4 positioned at both ends in the arrangement direction of the plurality of portions 6b1 to 6b4 among the plurality of portions 6b1 to 6b4 It is possible to adopt a configuration in which both are longer than any of the other portions 6b2 and 6b3. In general, such a configuration is possible if the number of second portions is three or more.
  • the lengths of the plurality of portions 6a1 to 6a5 can be configured to increase from the center in the longitudinal direction of the permanent magnet 6 toward each end. Specifically, it can be configured such that a relationship of Wa1> Wa2> Wa3 and Wa5> Wa4> Wa3 is established. Even in this case, it is possible to obtain the same effect as when the lengths of the two portions 6a1 and 6a5 located at both ends in the arrangement direction are longer than the lengths of the other portions 6a2 to 6a4. The same applies to the lengths of the plurality of portions 6b1 to 6b4.
  • each of the plurality of grooves 9a is formed such that the width in the direction along the surface 6a decreases as the distance from the surface 6a increases. Yes. Thereby, the magnetic flux of the permanent magnet 6 can easily pass through the rotor core 4, leading to effective use of the magnetic flux of the permanent magnet 6, and the efficiency of the electric motor 1 can be improved.
  • the width in the direction along each surface 6a of the plurality of grooves 9a becomes larger as it is closer to the surface 6a, the surface 6a of the permanent magnet 6 can be efficiently cooled.
  • channel 9a is not so large that it is close to the surface 6a is also possible.
  • each of the plurality of grooves 9b is formed such that the width in the direction along the surface 6b decreases as the distance from the surface 6b increases.
  • the efficiency of the electric motor 1 can be improved by effectively using the magnetic flux, and the surface 6b of the permanent magnet 6 can be efficiently cooled.
  • channel 9b is not so large that it is close to the surface 6b is also possible.
  • At least one of the plurality of grooves 9a may have an arc shape with a central angle of 180 ° or less. Thereby, the process at the time of punching an electromagnetic steel plate and forming the some groove
  • at least one of the plurality of grooves 9b may have an arc shape with a central angle of 180 ° or less.
  • the shape of the groove 9a or the groove 9b can be a rectangle or a triangle in addition to the arc shape.
  • the rare earth magnet having a small coercive force means that the content of dysprosium added to increase the coercive force is 3% by weight or less.
  • the permanent magnet 6 is a rare earth magnet containing iron, neodymium, and boron, and does not contain dysprosium, or a rare earth magnet containing 3% by weight or less of dysprosium. it can.
  • flux barrier portions 10a and 10b are provided on both sides of the permanent magnet 6 in the longitudinal direction.
  • the flux barrier portions 10a and 10b are air gaps, and can be used as cooling grooves in the same manner as the plurality of grooves 9a and the plurality of grooves 9b.
  • a configuration in which the flux barrier portions 10a and 10b are not provided, that is, a configuration in which the grooves 15a and 15b are not provided is also possible.
  • the flux barrier portions 10a and 10b may not be voids, and the grooves 15a and 15b may be filled with a nonmagnetic material such as resin.
  • the shape of the permanent magnet 6 is not limited to the illustrated example.
  • the plurality of permanent magnets 6 are respectively arranged at positions corresponding to sides of a virtual regular polygon having the same number of corners as the number of permanent magnets 6 and arranged at equal intervals in the circumferential direction.
  • the arrangement of the plurality of permanent magnets 6 is not limited to this.
  • the number of the grooves 9a is five and the number of the grooves 9b is four.
  • the present invention is not limited to this.
  • FIG. 8 is a partial enlarged cross-sectional view showing the configuration of the rotor according to the first modification of the present embodiment.
  • the same components as those shown in FIGS. 2 to 7 are denoted by the same reference numerals.
  • grooves 9b5 and 9b6 are formed in the surface 8b.
  • the grooves 9b5 and 9b6 are opposed to the grooves 9a1 and 9a5 in the radial direction through the permanent magnet 6, respectively.
  • the length of the portion 6b5 exposed in the groove 9b5 is Wb5
  • the length of the portion 6b6 exposed in the groove 9b6 is Wb6.
  • the parts 6b5 and 6b6 are included in the surface 6b shown in FIG.
  • the grooves 9b5 and 9b6 are arranged facing both ends in the longitudinal direction of the permanent magnet 6 in the cross section of the rotor core 4 perpendicular to the axial direction, the grooves 9b5 and 9b6 in the longitudinal direction of the permanent magnet 6 having a higher temperature rise. Both end portions can be efficiently cooled.
  • the effects according to the other configurations of the present modification are as described above.
  • FIG. 9 is a partially enlarged cross-sectional view showing the configuration of the rotor according to the second modification of the present embodiment.
  • the same components as those shown in FIGS. 2 to 7 are denoted by the same reference numerals.
  • FIG. 9 a plurality of grooves 9b11 to 9b15 are formed on the surface 8b.
  • the length of the portion 6b11 exposed in the groove 9b11 is Wb11
  • the length of the portion 6b12 exposed in the groove 9b12 is Wb12
  • the length of the portion 6b13 exposed in the groove 9b13 is Wb13
  • the length of the portion 6b14 exposed in the groove 9b14 is Wb15.
  • the parts 6b11 to 6b15 are included in the face 6b shown in FIG.
  • FIG. 9 shows an example in which the plurality of grooves 9a and the plurality of grooves 9b are not arranged in a staggered manner. That is, the grooves 9b11 to 9b15 are opposed to the grooves 9a1 to 9a5 via the permanent magnet 6 in the radial direction, respectively.
  • the effects according to the configuration of the present modification are as described above.
  • FIG. 10 is a longitudinal sectional view showing the configuration of the compressor according to the present embodiment.
  • the same components as those shown in FIGS. 1 to 7 are denoted by the same reference numerals.
  • the compressor 50 includes a compression unit 52 disposed in the sealed container 51, the electric motor 1 disposed above the compression unit 52 in the sealed container 51, and an accumulator 53 disposed outside the sealed container 51.
  • a mechanism such as scroll, rotary, or reciprocation is applied to the compression unit 52.
  • the sealed container 51 is formed by processing a steel plate into a cylindrical shape by drawing.
  • the sealed container 51 is provided with a suction pipe 54 and a discharge pipe 55. Refrigerating machine oil for lubrication is stored at the bottom of the sealed container 51.
  • the electric motor 1 is the electric motor according to the first embodiment.
  • the stator core 21 is fixed to the inner peripheral surface of the sealed container 51 by welding, shrink fitting, cold fitting, or press fitting. Electric power is supplied to the coil 22 from a terminal 65 fixed to the sealed container 51.
  • a shaft 56 is fixed to the rotor core 4. The shaft 56 has an eccentric portion 57 at the tip.
  • the compression part 52 includes a cylindrical cylinder 59 including a compression chamber 58, an annular piston 60 slidably fitted to an eccentric part 57 disposed in the cylinder 59, and a shaft above the eccentric part 57. 56, an upper frame 61 bearing the shaft 56, a lower frame 62 bearing the shaft 56 below the eccentric portion 57, an upper discharge muffler 63 attached to the upper frame 61, and a lower discharge muffler attached to the lower frame 62. 64.
  • the cylinder 59 is fixed to the inner peripheral surface of the sealed container 51 by welding, shrink fitting, cold fitting, or press fitting.
  • a vane for separating the suction side and the compression side is provided in the cylinder 59, but the illustration is omitted.
  • the operation of the compressor 50 will be described.
  • the accumulator 53 supplies refrigerant gas to the compression unit 52 via a suction pipe 54 provided in the sealed container 51.
  • the refrigerant gas supplied from the accumulator 53 is introduced into the cylinder 59.
  • the compressed refrigerant gas sequentially passes through a hole (not shown) and the upper discharge muffler 63 in the upper frame 61 or sequentially passes through a hole (not shown) and the lower discharge muffler 64 in the lower frame 62 to enter the space in the sealed container 51. After being discharged, it passes through the plurality of grooves 9 a, the plurality of grooves 9 b, or the gap 20, rises in the sealed container 51, and is supplied to the high-pressure side of the refrigeration cycle via the discharge pipe 55 provided in the sealed container 51. Is done.
  • the main flow paths of the refrigerant gas are indicated by arrows.
  • the refrigerant gas passing through the plurality of grooves 9a and the plurality of grooves 9b passes while contacting the surface of the permanent magnet 6. At this time, the refrigerant gas takes the heat of the permanent magnet 6 generated by the eddy current, and the temperature of the permanent magnet 6 is lowered. Since the permanent magnet 6 has a characteristic that it is more likely to be demagnetized as the temperature becomes higher, by reducing the temperature of the permanent magnet 6, the demagnetization resistance of the permanent magnet 6 is improved, and the compressor 50 is highly reliable and highly efficient. Can be provided.
  • FIG. 11 is a diagram showing a refrigeration cycle of the air conditioner according to the present embodiment.
  • the refrigeration cycle 70 includes a compressor 50, a four-way valve 71 that switches the flow of refrigerant discharged from the compressor 50, an outdoor heat exchanger 72 that performs heat exchange outdoors, an expansion valve 73 that reduces the pressure of the refrigerant, An indoor heat exchanger 74 that performs heat exchange indoors, a compressor 50, a four-way valve 71, an outdoor heat exchanger 72, an expansion valve 73, a refrigerant pipe 75 that connects the indoor heat exchanger 74 to each other, a compressor 50, And an expansion valve 73 and a control unit 36 for controlling the four-way valve 71.
  • the compressor 50 is the compressor of the second embodiment.
  • FIG. 12 is a diagram showing a configuration of the air conditioner according to the present embodiment.
  • the air conditioner 200 includes an indoor unit 210 and an outdoor unit 220 connected to the indoor unit 210.
  • the outdoor unit 220 includes a compressor 50.
  • the air conditioner 200 since the air conditioner 200 includes the compressor 50, the air conditioner 200 having excellent demagnetization resistance, high reliability, and high efficiency can be obtained.
  • the electric motor 1 of Embodiment 1 can also be used for the fan 221 of the outdoor unit 220. Moreover, the electric motor 1 of Embodiment 1 can also be used for electrical equipment other than the air conditioner 200. Even in this case, the same effect as in the present embodiment can be obtained.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Abstract

A rotor core 4 of the permanent-magnet electric motor has inner surfaces that form magnet holes for disposing permanent magnets 6 therein, and each of the inner surfaces has a first surface that is disposed on the outer side in a radial direction and second surface that is disposed on the inner side in the radial direction. The first surface has multiple grooves 9a1 through 9a5, and the second surface has multiple grooves 9b1 through 9b4. In addition, the permanent magnet 6 has a third surface that faces the first surface and a fourth surface that faces the second surface. The third surface has multiple portions 6a1 through 6a5 that are exposed to the multiple grooves 9a1 through 9a5. The fourth surface has multiple portions 6b1 through 6b4 that are exposed to the multiple grooves 9b1 through 9b4. In a cross-section of the rotor core 4 perpendicular to an axial direction, the total length of the multiple grooves 9a1 through 9a5 is longer than the total length of the multiple portions 6b1 through 6b4.

Description

永久磁石電動機、圧縮機、および空気調和機Permanent magnet motor, compressor, and air conditioner
 本発明は、回転子コアの内部に永久磁石が配置された永久磁石電動機、この永久磁石電動機を備えた圧縮機、およびこの圧縮機を備えた空気調和機に関する。 The present invention relates to a permanent magnet motor in which a permanent magnet is arranged inside a rotor core, a compressor including the permanent magnet motor, and an air conditioner including the compressor.
 一般に、永久磁石電動機では、固定子のコイル電流による磁界が永久磁石の表面で変動することに伴い、永久磁石の表面に渦電流が発生し、この渦電流による発熱が永久磁石の温度を上昇させる。永久磁石は高温になるほど減磁し易いため、永久磁石の温度上昇を抑制することは、従来からの課題となっている。 In general, in a permanent magnet motor, an eddy current is generated on the surface of the permanent magnet as the magnetic field due to the coil current of the stator fluctuates on the surface of the permanent magnet, and the heat generated by the eddy current increases the temperature of the permanent magnet. . Since permanent magnets are more likely to be demagnetized at higher temperatures, it has been a conventional problem to suppress the temperature rise of the permanent magnets.
 特許文献1では、永久磁石電動機の回転子コアにおいて、磁石孔における永久磁石との内周側接触面または外周側接触面に軸方向に伸びる複数の溝状の冷却流路を設けている。 In Patent Document 1, a rotor core of a permanent magnet motor is provided with a plurality of groove-shaped cooling channels extending in the axial direction on an inner peripheral side contact surface or an outer peripheral side contact surface with a permanent magnet in a magnet hole.
特開2007-104888号公報JP 2007-104888 A
 特許文献1では、複数の溝状の冷却流路は内周側接触面および外周側接触面の一方のみに設けられているため、永久磁石の冷却効果が制限される。冷却効果を向上させるためには、冷却流路の幅を拡大すればよいが、冷却流路は永久磁石の磁束の通過を抑制するので、永久磁石の磁束を有効に利用することができず、電動機の効率の低下につながる可能性がある。 In Patent Document 1, since the plurality of groove-shaped cooling channels are provided only on one of the inner peripheral side contact surface and the outer peripheral side contact surface, the cooling effect of the permanent magnet is limited. In order to improve the cooling effect, the width of the cooling channel may be enlarged, but the cooling channel suppresses the passage of the magnetic flux of the permanent magnet, so the magnetic flux of the permanent magnet cannot be used effectively, It may lead to a decrease in the efficiency of the motor.
 本発明は、上記に鑑みてなされたものであって、渦電流による永久磁石の温度上昇を抑制し、永久磁石の減磁耐力を向上させるとともに、電動機の効率を向上させることが可能な永久磁石電動機を得ることを目的とする。 The present invention has been made in view of the above, and suppresses a temperature increase of a permanent magnet due to an eddy current, can improve the demagnetization resistance of the permanent magnet, and can improve the efficiency of the electric motor. The purpose is to obtain an electric motor.
 上述した課題を解決し、目的を達成するために、本発明に係る永久磁石電動機は、環状の固定子コアと、前記固定子コアの内側で前記固定子コアと同軸で配置され、複数の磁石孔を有するとともに、第1の端面と第2の端面と複数の内面とを有し、前記第1の端面および前記第2の端面は軸方向に互いに離間し、前記複数の内面は前記複数の磁石孔を形成し、前記複数の磁石孔は周方向に配列されかつ前記第1の端面から前記第2の端面まで前記軸方向に伸びる環状の回転子コアと、前記複数の磁石孔内に配置される複数の永久磁石と、を備え、前記複数の内面の各々は、前記回転子コアにおいて前記回転子コアの径方向における外側に配置される第1の面と前記回転子コアにおいて前記径方向における内側に配置される第2の面とを有し、前記複数の永久磁石の各々は、前記第1の面と面する第3の面と前記第2の面と面する第4の面とを有し、前記第1の面は、前記第1の端面から前記第2の端面まで前記軸方向に伸びかつ前記軸方向に垂直な前記回転子コアの断面において前記第3の面に沿って配列される複数の第1の溝を有し、前記第3の面は、前記複数の第1の溝に露出する複数の第1の部分を有し、前記第3の面は、前記複数の第1の部分を除き、前記第1の面と接触し、前記第2の面は、前記第1の端面から前記第2の端面まで前記軸方向に伸びかつ前記軸方向に垂直な前記回転子コアの断面において前記第4の面に沿って配列される複数の第2の溝を有し、前記第4の面は、前記複数の第2の溝に露出する複数の第2の部分を有し、前記第4の面は、前記複数の第2の部分を除き、前記第2の面と接触し、前記軸方向に垂直な前記回転子コアの断面において、前記複数の第1の部分の全長は、前記複数の第2の部分の全長よりも大きい。 In order to solve the above-described problems and achieve the object, a permanent magnet motor according to the present invention includes an annular stator core, and a plurality of magnets arranged coaxially with the stator core inside the stator core. A first end surface, a second end surface, and a plurality of inner surfaces, wherein the first end surface and the second end surface are axially spaced from each other, and the plurality of inner surfaces are the plurality of the plurality of inner surfaces. A plurality of magnet holes arranged in a circumferential direction and extending in the axial direction from the first end surface to the second end surface; and disposed in the plurality of magnet holes. A plurality of permanent magnets, wherein each of the plurality of inner surfaces includes a first surface arranged on the outer side of the rotor core in a radial direction of the rotor core and the radial direction of the rotor core. And a second surface disposed inside Each of the plurality of permanent magnets has a third surface facing the first surface and a fourth surface facing the second surface, and the first surface is the first surface. A plurality of first grooves arranged along the third surface in a cross section of the rotor core extending in the axial direction from the end surface to the second end surface and perpendicular to the axial direction; 3 surface has a plurality of first portions exposed in the plurality of first grooves, and the third surface is in contact with the first surface except for the plurality of first portions. The second surface extends from the first end surface to the second end surface in the axial direction and is arranged along the fourth surface in a cross section of the rotor core perpendicular to the axial direction. A plurality of second grooves, and the fourth surface includes a plurality of second portions exposed in the plurality of second grooves, and the fourth surface includes the plurality of second grooves. In the cross section of the rotor core that is in contact with the second surface and perpendicular to the axial direction except for the second portion, the total length of the plurality of first portions is greater than the total length of the plurality of second portions. Is also big.
 この発明によれば、渦電流による永久磁石の温度上昇を抑制し、永久磁石の減磁耐力を向上させるとともに、電動機の効率を向上させることができる、という効果を奏する。 According to the present invention, there is an effect that the temperature increase of the permanent magnet due to the eddy current can be suppressed, the demagnetization resistance of the permanent magnet can be improved, and the efficiency of the electric motor can be improved.
実施の形態1に係る永久磁石電動機の構成を示す横断面図1 is a cross-sectional view showing a configuration of a permanent magnet motor according to Embodiment 1. FIG. 実施の形態1における回転子コアの構成を示す横断面図Cross-sectional view showing the configuration of the rotor core in the first embodiment 図2に示す回転子コアの部分拡大図Partial enlarged view of the rotor core shown in FIG. 実施の形態1における回転子の構成を示す横断面図Cross-sectional view showing the configuration of the rotor in the first embodiment 図4に示す回転子の部分拡大図Partial enlarged view of the rotor shown in FIG. 図4に示すA-A断面図AA sectional view shown in FIG. 図6における長さの関係を説明するための図The figure for demonstrating the relationship of the length in FIG. 実施の形態1の変形例1に係る回転子の構成を示す部分拡大横断面図Partial enlarged cross-sectional view showing the configuration of the rotor according to the first modification of the first embodiment 実施の形態1の変形例2に係る回転子の構成を示す部分拡大横断面図Partial enlarged cross-sectional view showing the configuration of the rotor according to the second modification of the first embodiment 実施の形態2に係る圧縮機の構成を示す縦断面図Vertical sectional view showing the configuration of the compressor according to the second embodiment 実施の形態3に係る空気調和機の冷凍サイクルを示す図The figure which shows the refrigerating cycle of the air conditioner which concerns on Embodiment 3. FIG. 実施の形態3に係る空気調和機の構成を示す図The figure which shows the structure of the air conditioner which concerns on Embodiment 3. FIG.
 以下に、本発明に係る永久磁石電動機、圧縮機、および空気調和機の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of a permanent magnet electric motor, a compressor, and an air conditioner according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本実施の形態に係る永久磁石電動機の構成を示す横断面図である。なお、図1に示す横断面図は、回転子コアの軸方向に垂直な断面によるものである。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing the configuration of the permanent magnet motor according to the present embodiment. 1 is a cross-sectional view perpendicular to the axial direction of the rotor core.
 電動機1は、本実施の形態に係る永久磁石電動機である。電動機1は、環状の固定子2と、固定子2の内側に配置された回転子3とを備える。回転子3は、空隙20を介して回転自在に固定子2の内側に配置される。 The electric motor 1 is a permanent magnet electric motor according to the present embodiment. The electric motor 1 includes an annular stator 2 and a rotor 3 disposed inside the stator 2. The rotor 3 is disposed inside the stator 2 so as to be rotatable through the gap 20.
 固定子2は、環状の固定子コア21と、固定子コア21に巻回されたコイル22とを備える。固定子コア21は、環状のヨーク23と、ヨーク23から突出する複数のティース24とを備える。複数のティース24の各々は、ヨーク23の径方向における内向きにヨーク23から突出する。固定子コア21は、固定子コア21の平面形状に応じて電磁鋼板を打ち抜き、打ち抜かれた電磁鋼板を固定子コア21の軸方向に複数枚積層して形成される。 The stator 2 includes an annular stator core 21 and a coil 22 wound around the stator core 21. The stator core 21 includes an annular yoke 23 and a plurality of teeth 24 protruding from the yoke 23. Each of the plurality of teeth 24 protrudes from the yoke 23 inward in the radial direction of the yoke 23. The stator core 21 is formed by punching electromagnetic steel sheets according to the planar shape of the stator core 21 and laminating a plurality of punched electromagnetic steel sheets in the axial direction of the stator core 21.
 複数のティース24は、ヨーク23の周方向に等間隔で配列されている。隣り合うティース24間には、空間部であるスロット25が形成されている。コイル22は複数のティース24に巻回されている。図示例では、ティース24の個数は9個であるが、これに限定されるものではない。 The plurality of teeth 24 are arranged at equal intervals in the circumferential direction of the yoke 23. Between adjacent teeth 24, a slot 25, which is a space, is formed. The coil 22 is wound around a plurality of teeth 24. In the illustrated example, the number of teeth 24 is nine, but is not limited thereto.
 回転子3は、環状の回転子コア4と、回転子コア4の内部に配置された複数の永久磁石6とを備える。回転子コア4は、固定子コア21と同軸で配置される。すなわち、回転子コア4の軸は、固定子コア21の軸と一致する。なお、以下では、特に明記をしない限りは、「軸方向」は回転子コア4の軸方向であり、「径方向」は回転子コア4の径方向であり、「周方向」は回転子コア4の周方向である。 The rotor 3 includes an annular rotor core 4 and a plurality of permanent magnets 6 arranged inside the rotor core 4. The rotor core 4 is arranged coaxially with the stator core 21. That is, the axis of the rotor core 4 coincides with the axis of the stator core 21. In the following description, unless otherwise specified, the “axial direction” is the axial direction of the rotor core 4, the “radial direction” is the radial direction of the rotor core 4, and the “circumferential direction” is the rotor core. 4 circumferential directions.
 回転子コア4には、中央部に軸孔7が形成されている。軸孔7には、図示しないシャフトが嵌め込まれる。 The rotor core 4 is formed with a shaft hole 7 at the center. A shaft (not shown) is fitted into the shaft hole 7.
 回転子コア4には、複数の磁石孔5が周方向に配列されている。複数の磁石孔5は、周方向に等間隔で回転子コア4に形成されている。複数の磁石孔5は、回転子コア4の中心から径方向に互いに等距離の位置に配置されている。複数の磁石孔5は、互いに同じ形状でかつ同じ大きさである。複数の磁石孔5は、回転子コア4を軸方向に貫通する。 The rotor core 4 has a plurality of magnet holes 5 arranged in the circumferential direction. The plurality of magnet holes 5 are formed in the rotor core 4 at equal intervals in the circumferential direction. The plurality of magnet holes 5 are arranged at equidistant positions in the radial direction from the center of the rotor core 4. The plurality of magnet holes 5 have the same shape and the same size. The plurality of magnet holes 5 penetrates the rotor core 4 in the axial direction.
 磁石孔5は、径方向と直交する方向に伸びており、径方向と直交する方向の長さが径方向の長さよりも大きい。回転子コア4は、回転子コア4の平面形状に応じて電磁鋼板を打ち抜き、打ち抜かれた電磁鋼板を軸方向に複数枚積層して形成される。 The magnet hole 5 extends in a direction orthogonal to the radial direction, and the length in the direction orthogonal to the radial direction is larger than the length in the radial direction. The rotor core 4 is formed by punching out electromagnetic steel sheets according to the planar shape of the rotor core 4 and laminating a plurality of punched electromagnetic steel sheets in the axial direction.
 複数の磁石孔5内には、複数の永久磁石6が配置されている。永久磁石6は、接着または圧入により回転子コア4に固定されている。 A plurality of permanent magnets 6 are disposed in the plurality of magnet holes 5. The permanent magnet 6 is fixed to the rotor core 4 by adhesion or press fitting.
 永久磁石6は、平板状であり、断面矩形状である。永久磁石6は、径方向と直交する方向に伸びており、径方向と直交する方向の長さが径方向の長さよりも大きい。すなわち、永久磁石6の長手方向は径方向と直交する方向であり、永久磁石6の短手方向は径方向である。永久磁石6は、希土類磁石またはフェライト磁石である。永久磁石6は、鉄、ネオジウムおよびボロンを含む希土類磁石であり、この希土類磁石にはディスプロシウムが含まれず、またはこの希土類磁石に含まれるディスプロシウムの含有量が3重量%以下とすることができる。 The permanent magnet 6 has a flat plate shape and a rectangular cross section. The permanent magnet 6 extends in a direction orthogonal to the radial direction, and the length in the direction orthogonal to the radial direction is larger than the length in the radial direction. That is, the longitudinal direction of the permanent magnet 6 is a direction orthogonal to the radial direction, and the short direction of the permanent magnet 6 is the radial direction. The permanent magnet 6 is a rare earth magnet or a ferrite magnet. The permanent magnet 6 is a rare earth magnet containing iron, neodymium and boron, and the rare earth magnet does not contain dysprosium, or the dysprosium content contained in the rare earth magnet is 3% by weight or less. Can do.
 複数の永久磁石6は、互いに同じ形状でかつ同じ大きさである。複数の永久磁石6は、外周側の磁極の極性が周方向に交互となるように配置される。 The plurality of permanent magnets 6 have the same shape and the same size. The plurality of permanent magnets 6 are arranged so that the polarities of the magnetic poles on the outer peripheral side are alternated in the circumferential direction.
 なお、図示例では、電動機1の極数は6であり、磁石孔5の個数および永久磁石6の個数はそれぞれ6個である。磁石孔5の個数および永久磁石6の個数は、極数に応じて決まる。 In the illustrated example, the number of poles of the electric motor 1 is 6, and the number of the magnet holes 5 and the number of the permanent magnets 6 are each 6. The number of magnet holes 5 and the number of permanent magnets 6 are determined according to the number of poles.
 次に、図2から図6を参照して、回転子3の構成を詳細に説明する。図2は回転子コアの構成を示す横断面図、図3は図2に示す回転子コアの部分拡大図、図4は回転子の構成を示す横断面図、図5は図4に示す回転子の部分拡大図、図6は図4に示すA-A断面図である。なお、図6は、回転子コア4の軸を含む回転子コア4の縦断面図の一部である。 Next, the configuration of the rotor 3 will be described in detail with reference to FIGS. 2 is a cross-sectional view showing the structure of the rotor core, FIG. 3 is a partially enlarged view of the rotor core shown in FIG. 2, FIG. 4 is a cross-sectional view showing the structure of the rotor, and FIG. 5 is the rotation shown in FIG. FIG. 6 is an AA cross-sectional view shown in FIG. FIG. 6 is a part of a longitudinal sectional view of the rotor core 4 including the axis of the rotor core 4.
 回転子コア4は、円筒状の外周面18aと、外周面18aと同軸で配置された円筒状の内周面18bとを有する。内周面18bは軸孔7を形成する。また、回転子コア4は、軸方向に互いに離間する端面18c,18dを有する。端面18cは第1の端面、端面18dは第2の端面である。なお、図6では、回転子コア4の軸が軸30で示されている。端面18c,18dは、互いに平行であり、軸30に対して垂直である。 The rotor core 4 has a cylindrical outer peripheral surface 18a and a cylindrical inner peripheral surface 18b arranged coaxially with the outer peripheral surface 18a. The inner peripheral surface 18 b forms the shaft hole 7. The rotor core 4 has end faces 18c and 18d that are separated from each other in the axial direction. The end face 18c is a first end face, and the end face 18d is a second end face. In FIG. 6, the axis of the rotor core 4 is indicated by an axis 30. The end faces 18 c and 18 d are parallel to each other and perpendicular to the axis 30.
 回転子コア4は、複数の磁石孔5よりも径方向における内側に配置されるコア部4aと、複数の磁石孔5よりもそれぞれ径方向における外側に配置される複数のコア部4bとを有する。 The rotor core 4 includes a core portion 4a disposed on the inner side in the radial direction from the plurality of magnet holes 5, and a plurality of core portions 4b disposed on the outer side in the radial direction from the plurality of magnet holes 5, respectively. .
 回転子コア4は、複数の磁石孔5を形成する複数の内面8を有する。複数の磁石孔5は、端面18cから端面18dまで軸方向に伸びる。複数の磁石孔5は、軸30に平行に伸びている。磁石孔5は、実質的に永久磁石6が挿入される部分であり、永久磁石6の形状に応じて矩形状である。 The rotor core 4 has a plurality of inner surfaces 8 that form a plurality of magnet holes 5. The plurality of magnet holes 5 extend in the axial direction from the end surface 18c to the end surface 18d. The plurality of magnet holes 5 extend parallel to the shaft 30. The magnet hole 5 is a portion into which the permanent magnet 6 is substantially inserted, and has a rectangular shape according to the shape of the permanent magnet 6.
 内面8は、回転子コア4において径方向における外側に配置される面8aと、回転子コア4において径方向における内側に配置される面8bとを有する。面8aは第1の面、面8bは第2の面である。すなわち、面8aは面8bに対して径方向における外側に配置され、面8bは面8aに対して径方向における内側に配置される。面8aはコア部4bに形成され、面8bはコア部4aに形成される。 The inner surface 8 has a surface 8 a disposed on the outer side in the radial direction in the rotor core 4 and a surface 8 b disposed on the inner side in the radial direction in the rotor core 4. The surface 8a is a first surface, and the surface 8b is a second surface. That is, the surface 8a is disposed on the outer side in the radial direction with respect to the surface 8b, and the surface 8b is disposed on the inner side in the radial direction with respect to the surface 8a. The surface 8a is formed on the core portion 4b, and the surface 8b is formed on the core portion 4a.
 面8aは、複数の溝9aを有する。具体的には、複数の溝9aは、溝9a1、溝9a2、溝9a3、溝9a4、および溝9a5からなる。複数の溝9aは、端面18cから端面18dまで軸方向に伸びる。すなわち、複数の溝9aは、回転子コア4を貫通している。複数の溝9aは、軸30に平行に伸びている。また、複数の溝9aは、軸方向に垂直な回転子コア4の断面において、互いに離間して配置されている。 The surface 8a has a plurality of grooves 9a. Specifically, the plurality of grooves 9a includes a groove 9a1, a groove 9a2, a groove 9a3, a groove 9a4, and a groove 9a5. The plurality of grooves 9a extend in the axial direction from the end surface 18c to the end surface 18d. That is, the plurality of grooves 9 a penetrate the rotor core 4. The plurality of grooves 9 a extend in parallel to the shaft 30. In addition, the plurality of grooves 9a are arranged apart from each other in the cross section of the rotor core 4 perpendicular to the axial direction.
 面8bは、複数の溝9bを有する。具体的には、複数の溝9bは、溝9b1、溝9b2、溝9b3、および溝9b4からなる。複数の溝9bは、端面18cから端面18dまで軸方向に伸びる。すなわち、複数の溝9bは、回転子コア4を貫通している。複数の溝9bは、軸30に平行に伸びている。また、複数の溝9bは、軸方向に垂直な回転子コア4の断面において、互いに離間して配置されている。 The surface 8b has a plurality of grooves 9b. Specifically, the plurality of grooves 9b includes a groove 9b1, a groove 9b2, a groove 9b3, and a groove 9b4. The plurality of grooves 9b extend in the axial direction from the end surface 18c to the end surface 18d. That is, the plurality of grooves 9 b penetrate the rotor core 4. The plurality of grooves 9 b extend parallel to the shaft 30. In addition, the plurality of grooves 9b are spaced apart from each other in the cross section of the rotor core 4 perpendicular to the axial direction.
 このように、複数の溝9aは、軸方向における回転子コア4の全長にわたって磁石孔5と連通している。同様に、複数の溝9bは、軸方向における回転子コア4の全長にわたって磁石孔5と連通している。複数の溝9aおよび複数の溝9bは冷却溝である。 Thus, the plurality of grooves 9a communicate with the magnet hole 5 over the entire length of the rotor core 4 in the axial direction. Similarly, the plurality of grooves 9b communicate with the magnet hole 5 over the entire length of the rotor core 4 in the axial direction. The plurality of grooves 9a and the plurality of grooves 9b are cooling grooves.
 永久磁石6は、内面8を構成する面8aに面する面6aと、内面8を構成する面8bに面する面6bとを有する。面6aは第3の面、面6bは第4の面である。面6a,6bは、互いに極性の異なる永久磁石6の磁極面である。 The permanent magnet 6 has a surface 6 a facing the surface 8 a constituting the inner surface 8 and a surface 6 b facing the surface 8 b constituting the inner surface 8. The surface 6a is a third surface, and the surface 6b is a fourth surface. The surfaces 6a and 6b are magnetic pole surfaces of the permanent magnet 6 having different polarities.
 複数の溝9aは、軸方向に垂直な回転子コア4の断面において、面6aに沿って配列される。また、面6aは、複数の溝9aに露出する複数の部分6a1から6a5を有する。具体的には、部分6a1は溝9a1に露出し、部分6a2は溝9a2に露出し、部分6a3は溝9a3に露出し、部分6a4は溝9a4に露出し、部分6a5は溝9a5に露出する。複数の部分6a1から6a5は、複数の第1の部分である。面6aは、複数の部分6a1から6a5を除き、面8aと接触する。 The plurality of grooves 9a are arranged along the surface 6a in the cross section of the rotor core 4 perpendicular to the axial direction. Further, the surface 6a has a plurality of portions 6a1 to 6a5 exposed in the plurality of grooves 9a. Specifically, the part 6a1 is exposed in the groove 9a1, the part 6a2 is exposed in the groove 9a2, the part 6a3 is exposed in the groove 9a3, the part 6a4 is exposed in the groove 9a4, and the part 6a5 is exposed in the groove 9a5. The plurality of portions 6a1 to 6a5 are a plurality of first portions. The surface 6a is in contact with the surface 8a except for the plurality of portions 6a1 to 6a5.
 複数の溝9bは、軸方向に垂直な回転子コア4の断面において、面6bに沿って配列される。また、面6bは、複数の溝9bに露出する複数の部分6b1から6b4を有する。具体的には、部分6b1は溝9b1に露出し、部分6b2は溝9b2に露出し、部分6b3は溝9b3に露出し、部分6b4は溝9a4に露出する。複数の部分6b1から6b4は、複数の第2の部分である。面6bは、複数の部分6b1から6b4を除き、面8bと接触する。 The plurality of grooves 9b are arranged along the surface 6b in the cross section of the rotor core 4 perpendicular to the axial direction. Further, the surface 6b has a plurality of portions 6b1 to 6b4 exposed in the plurality of grooves 9b. Specifically, the part 6b1 is exposed in the groove 9b1, the part 6b2 is exposed in the groove 9b2, the part 6b3 is exposed in the groove 9b3, and the part 6b4 is exposed in the groove 9a4. The plurality of portions 6b1 to 6b4 are a plurality of second portions. The surface 6b is in contact with the surface 8b except for the plurality of portions 6b1 to 6b4.
 永久磁石6は、さらに、長手方向の一端に配置される面6cと、長手方向の他端に配置される面6dとを有する。面6c,6dは、互いに平行であり、軸30に平行である。 The permanent magnet 6 further has a surface 6c disposed at one end in the longitudinal direction and a surface 6d disposed at the other end in the longitudinal direction. The surfaces 6 c and 6 d are parallel to each other and parallel to the axis 30.
 永久磁石6は、さらに、軸方向の一端に配置される面6eと、軸方向の他端に配置される面6fとを有する。面6e,6fは、互いに平行であり、軸30に対して垂直である。また、面6eは端面18cと面一であり、面6fは端面18dと面一である。すなわち、永久磁石6は、端面18cから端面18dまで軸方向に伸びる。 The permanent magnet 6 further has a surface 6e disposed at one end in the axial direction and a surface 6f disposed at the other end in the axial direction. The surfaces 6 e and 6 f are parallel to each other and are perpendicular to the axis 30. Further, the surface 6e is flush with the end surface 18c, and the surface 6f is flush with the end surface 18d. That is, the permanent magnet 6 extends in the axial direction from the end surface 18c to the end surface 18d.
 永久磁石6の長手方向における両側には、フラックスバリア部10a,10bが設けられている。フラックスバリア部10a,10bは、それぞれ、内面8のうち面8a,8bを除いた部分に形成された溝15a,15bである。溝15a,15bは、端面18cから端面18dまで軸方向に伸びる。すなわち、溝15a,15bは、回転子コア4を貫通する。溝15a,15bは、軸30に平行に伸びている。溝15a,15bは、軸方向における回転子コア4の全長にわたって磁石孔5と連通している。 Flux barrier portions 10a and 10b are provided on both sides of the permanent magnet 6 in the longitudinal direction. The flux barrier portions 10a and 10b are grooves 15a and 15b formed in portions of the inner surface 8 excluding the surfaces 8a and 8b, respectively. The grooves 15a and 15b extend in the axial direction from the end surface 18c to the end surface 18d. That is, the grooves 15 a and 15 b penetrate the rotor core 4. The grooves 15 a and 15 b extend parallel to the shaft 30. The grooves 15a and 15b communicate with the magnet hole 5 over the entire length of the rotor core 4 in the axial direction.
 フラックスバリア部10a,10bは、回転子3の外周面18aの磁束密度分布を正弦波に近づけ、隣り合う永久磁石6の磁束が回転子コア4を介して短絡すること、すなわち漏れ磁束を抑制する。 The flux barrier portions 10a and 10b bring the magnetic flux density distribution of the outer peripheral surface 18a of the rotor 3 closer to a sine wave, and the magnetic flux of the adjacent permanent magnet 6 is short-circuited via the rotor core 4, that is, suppresses leakage magnetic flux. .
 フラックスバリア部10aと外周面18aとの間には、周方向に伸びる薄肉鉄心部4cが形成されている。同様に、フラックスバリア部10bと外周面18aとの間には、周方向に伸びる薄肉鉄心部4dが形成されている。薄肉鉄心部4c,4dの径方向の厚みは、回転子コア4の電磁鋼板の板厚以上である。これにより、電磁鋼板を打ち抜くときに、薄肉鉄心部4c,4dがねじれることが抑制される。また、回転子3の回転時に、薄肉鉄心部4c,4dが切断されることが抑制される。 A thin iron core 4c extending in the circumferential direction is formed between the flux barrier portion 10a and the outer peripheral surface 18a. Similarly, a thin iron core portion 4d extending in the circumferential direction is formed between the flux barrier portion 10b and the outer peripheral surface 18a. The thickness in the radial direction of the thin core portions 4c and 4d is equal to or greater than the thickness of the electromagnetic steel plate of the rotor core 4. Thereby, when punching out the electromagnetic steel sheet, the thin core portions 4c and 4d are suppressed from being twisted. Further, the thin iron core portions 4c and 4d are suppressed from being cut when the rotor 3 rotates.
 回転子コア4には、永久磁石6の周方向の位置ずれを規制する突起部4e,4fが形成されている。詳細には、突起部4e,4fはコア部4aに形成されている。なお、突起部4e,4fを設けない構成も可能である。 The rotor core 4 is formed with protrusions 4e and 4f that regulate the circumferential displacement of the permanent magnet 6. Specifically, the protrusions 4e and 4f are formed on the core 4a. A configuration in which the protrusions 4e and 4f are not provided is also possible.
 次に、図2から図6に加えて、図7も参照して、複数の溝9aおよび複数の溝9bの詳細について説明する。図7は、図6における長さの関係を説明するための図である。 Next, details of the plurality of grooves 9a and the plurality of grooves 9b will be described with reference to FIG. 7 in addition to FIGS. FIG. 7 is a diagram for explaining the length relationship in FIG.
 図7に示すように、軸方向に垂直な回転子コア4の断面において、部分6a1の長さをWa1、部分6a2の長さをWa2、部分6a3の長さをWa3、部分6a4の長さをWa4、部分6a5の長さをWa5とし、部分6b1の長さをWb1、部分6b2の長さをWb2、部分6b3の長さをWb3、部分6b4の長さをWb4とする。また、永久磁石6の長手方向の長さをWmとする。 As shown in FIG. 7, in the cross section of the rotor core 4 perpendicular to the axial direction, the length of the part 6a1 is Wa1, the length of the part 6a2 is Wa2, the length of the part 6a3 is Wa3, and the length of the part 6a4 is Wa4, the length of the portion 6a5 is Wa5, the length of the portion 6b1 is Wb1, the length of the portion 6b2 is Wb2, the length of the portion 6b3 is Wb3, and the length of the portion 6b4 is Wb4. The length of the permanent magnet 6 in the longitudinal direction is Wm.
 本実施の形態では、軸方向に垂直な回転子コア4の断面において、複数の部分6a1から6a5の全長は、複数の部分6b1から6b4の全長よりも大きい。すなわち、Wa1+Wa2+Wa3+Wa4+Wa5>Wb1+Wb2+Wb3+Wb4の関係が成り立つ。 In the present embodiment, in the cross section of the rotor core 4 perpendicular to the axial direction, the total length of the plurality of portions 6a1 to 6a5 is larger than the total length of the plurality of portions 6b1 to 6b4. That is, the relationship of Wa1 + Wa2 + Wa3 + Wa4 + Wa5> Wb1 + Wb2 + Wb3 + Wb4 is established.
 また、本実施の形態では、軸方向に垂直な回転子コア4の断面において、複数の溝9aの総面積は、複数の溝9bの総面積よりも大きい。すなわち、軸方向に垂直な回転子コア4の断面において、溝9a1の面積と溝9a2の面積と溝9a3の面積と溝9a4の面積と溝9a5の面積との和は、溝9b1の面積と溝9b2の面積と溝9b3の面積と溝9b4の面積との和よりも大きい。 In the present embodiment, the total area of the plurality of grooves 9a is larger than the total area of the plurality of grooves 9b in the cross section of the rotor core 4 perpendicular to the axial direction. That is, in the cross section of the rotor core 4 perpendicular to the axial direction, the sum of the area of the groove 9a1, the area of the groove 9a2, the area of the groove 9a3, the area of the groove 9a4, and the area of the groove 9a5 is It is larger than the sum of the area of 9b2, the area of the groove 9b3, and the area of the groove 9b4.
 また、本実施の形態では、軸方向に垂直な回転子コア4の断面において、複数の部分6a1から6a5の全長は、面6aと面8aとが接触する部分の全長よりも大きい。具体的には、
 Wm/2<Wa1+Wa2+Wa3+Wa4+Wa5
 の関係が成り立つ。
In the present embodiment, in the cross section of the rotor core 4 perpendicular to the axial direction, the total length of the plurality of portions 6a1 to 6a5 is larger than the total length of the portion where the surface 6a and the surface 8a are in contact. In particular,
Wm / 2 <Wa1 + Wa2 + Wa3 + Wa4 + Wa5
The relationship holds.
 同様に、軸方向に垂直な回転子コア4の断面において、複数の部分6b1から6b4の全長は、面6bと面8bとが接触する部分の全長よりも大きい。具体的には、
 Wm/2<Wb1+Wb2+Wb3+Wb4
 の関係が成り立つ。
Similarly, in the cross section of the rotor core 4 perpendicular to the axial direction, the total length of the plurality of portions 6b1 to 6b4 is larger than the total length of the portion where the surface 6b and the surface 8b contact. In particular,
Wm / 2 <Wb1 + Wb2 + Wb3 + Wb4
The relationship holds.
 また、図示例では、以下の関係が成り立つ。
 Wa1=Wa5,
 Wa2=Wa3=Wa4,
 Wa1>Wa2
 特に、複数の部分6a1から6a5のうち複数の部分6a1から6a5の配列方向の両端に位置する2つの部分6a1,6a5の長さのいずれもが、他の部分6a2から6a4の長さのいずれよりも大きい。
In the illustrated example, the following relationship holds.
Wa1 = Wa5
Wa2 = Wa3 = Wa4
Wa1> Wa2
In particular, any of the lengths of the two portions 6a1 and 6a5 located at both ends of the plurality of portions 6a1 to 6a5 in the arrangement direction of the plurality of portions 6a1 to 6a5 is greater than any of the lengths of the other portions 6a2 to 6a4. Is also big.
 さらに、図示例では、以下の関係が成り立つ。
 Wb1=Wb2=Wa3=Wa4
Further, in the illustrated example, the following relationship holds.
Wb1 = Wb2 = Wa3 = Wa4
 また、本実施の形態では、軸方向に垂直な回転子コア4の断面において、複数の溝9aの各々は、面6aに沿う方向における幅が、面6aから離れるに従って、すなわち径方向における内側から径方向における外側に向かうに従って、小さくなるように形成されている。つまり、複数の溝9aの各々の幅は、面6a上で最も大きく、複数の部分6a1から6a5のうちの対応するものの長さに等しい。 Further, in the present embodiment, in the cross section of the rotor core 4 perpendicular to the axial direction, each of the plurality of grooves 9a has a width in the direction along the surface 6a that is away from the surface 6a, that is, from the inner side in the radial direction. It forms so that it may become small as it goes to the outer side in radial direction. That is, the width of each of the plurality of grooves 9a is the largest on the surface 6a and is equal to the length of the corresponding one of the plurality of portions 6a1 to 6a5.
 同様に、軸方向に垂直な回転子コア4の断面において、複数の溝9bの各々は、面6bに沿う方向における幅が、面6bから離れるに従って、すなわち径方向における外側から径方向における内側に向かうに従って、小さくなるように形成されている。つまり、複数の溝9bの各々の幅は、面6b上で最も大きく、複数の部分6b1から6b4のうちの対応するものの長さに等しい。 Similarly, in the cross section of the rotor core 4 perpendicular to the axial direction, each of the plurality of grooves 9b has a width in the direction along the surface 6b that increases from the surface 6b, that is, from the outer side in the radial direction to the inner side in the radial direction. It is formed to become smaller as it goes. That is, the width of each of the plurality of grooves 9b is the largest on the surface 6b and is equal to the length of the corresponding one of the plurality of portions 6b1 to 6b4.
 また、本実施の形態では、複数の溝9aおよび複数の溝9bは、軸方向に垂直な回転子コア4の断面において、千鳥状に配置されている。詳細には、複数の溝9aおよび複数の溝9bは、面6aまたは面6bに沿って、千鳥状に配置されている。あるいは、複数の溝9aおよび複数の溝9bは、永久磁石6の長手方向に沿って、千鳥状に配置されている。 In the present embodiment, the plurality of grooves 9a and the plurality of grooves 9b are arranged in a staggered manner in the cross section of the rotor core 4 perpendicular to the axial direction. Specifically, the plurality of grooves 9a and the plurality of grooves 9b are arranged in a staggered manner along the surface 6a or the surface 6b. Alternatively, the plurality of grooves 9 a and the plurality of grooves 9 b are arranged in a staggered manner along the longitudinal direction of the permanent magnet 6.
 また、図示例では、溝9a2、溝9a3および溝9a4は、互いに同じ形状でかつ同じ大きさである。具体的には、溝9a2、溝9a3および溝9a4は、それぞれ、中心角が180°未満である円弧形状を有する。溝9a1および溝9a5は、溝9a1および溝9a5のうちの一方を反転すると、互いに同じ形状でかつ同じ大きさである。 In the illustrated example, the groove 9a2, the groove 9a3, and the groove 9a4 have the same shape and the same size. Specifically, each of the groove 9a2, the groove 9a3, and the groove 9a4 has an arc shape whose center angle is less than 180 °. The groove 9a1 and the groove 9a5 have the same shape and the same size when one of the groove 9a1 and the groove 9a5 is inverted.
 また、図示例では、溝9b1、溝9b2、溝9b3および溝9a4は、互いに同じ形状でかつ同じ大きさである。具体的には、溝9b1、溝9b2、溝9b3および溝9a4は、それぞれ、中心角が180°未満である円弧形状を有する。 In the illustrated example, the groove 9b1, the groove 9b2, the groove 9b3, and the groove 9a4 have the same shape and the same size. Specifically, each of the groove 9b1, the groove 9b2, the groove 9b3, and the groove 9a4 has an arc shape whose center angle is less than 180 °.
 本実施の形態の効果について説明する。本実施の形態では、磁石孔5を形成する内面8のうち径方向における外側に配置される面8aに複数の溝9aを設けるとともに、磁石孔5を形成する内面8のうち径方向における内側に配置される面8bに複数の溝9bを設けている。 The effect of this embodiment will be described. In this Embodiment, while providing the some groove | channel 9a in the surface 8a arrange | positioned on the outer side in radial direction among the inner surfaces 8 which form the magnet hole 5, inside the radial direction among the inner surfaces 8 which form the magnet hole 5, A plurality of grooves 9b are provided on the surface 8b to be arranged.
 このような構成により、複数の溝9aおよび複数の溝9b内に永久磁石6よりも温度の低い気体または液体を通過させることで、永久磁石6の面6a,6bを直接冷却することができ、渦電流による永久磁石6の温度上昇を抑制し、永久磁石6の減磁耐力を向上させるとともに、電動機1の効率を向上させることができる。なお、気体の例としては、空気または冷媒ガスが、液体の例としては、液冷媒または油が挙げられる。 With such a configuration, by allowing a gas or liquid having a temperature lower than that of the permanent magnet 6 to pass through the plurality of grooves 9a and the plurality of grooves 9b, the surfaces 6a and 6b of the permanent magnet 6 can be directly cooled, The temperature rise of the permanent magnet 6 due to the eddy current can be suppressed, the demagnetization resistance of the permanent magnet 6 can be improved, and the efficiency of the electric motor 1 can be improved. Examples of gas include air or refrigerant gas, and examples of liquid include liquid refrigerant or oil.
 本実施の形態では、軸方向に垂直な回転子コア4の断面において、複数の部分6a1から6a5の全長は、複数の部分6b1から6b4の全長よりも大きい。 In the present embodiment, in the cross section of the rotor core 4 perpendicular to the axial direction, the total length of the plurality of portions 6a1 to 6a5 is larger than the total length of the plurality of portions 6b1 to 6b4.
 渦電流による永久磁石6の温度上昇は、永久磁石6内で一様ではなく、径方向における外側は内側に比べてより高い。本実施の形態のように、複数の部分6a1から6a5の全長を複数の部分6b1から6b4の全長よりも大きくすることで、温度上昇がより高い永久磁石6の外側をより冷却することができる。 The temperature rise of the permanent magnet 6 due to the eddy current is not uniform within the permanent magnet 6, and the outer side in the radial direction is higher than the inner side. As in the present embodiment, by making the total length of the plurality of portions 6a1 to 6a5 larger than the total length of the plurality of portions 6b1 to 6b4, the outside of the permanent magnet 6 having a higher temperature rise can be further cooled.
 また、温度上昇が相対的に低い永久磁石6の内側では、複数の溝9bに露出する複数の部分6b1から6b4の全長を相対的に小さくしているので、永久磁石6の磁束の有効利用につながり、電動機1の効率が向上する。 Moreover, since the total length of the plurality of portions 6b1 to 6b4 exposed in the plurality of grooves 9b is relatively small inside the permanent magnet 6 where the temperature rise is relatively low, the magnetic flux of the permanent magnet 6 is effectively used. As a result, the efficiency of the electric motor 1 is improved.
 また、本実施の形態では、複数の溝9aおよび複数の溝9bは、軸方向に垂直な回転子コア4の断面において、千鳥状に配置されている。これにより、複数の溝9aが永久磁石6を介して複数の溝9bと径方向に互いに対向して配置された場合に比べて、永久磁石6の磁束を有効に利用することができ、電動機1の効率が向上する。 In the present embodiment, the plurality of grooves 9a and the plurality of grooves 9b are arranged in a staggered manner in the cross section of the rotor core 4 perpendicular to the axial direction. As a result, the magnetic flux of the permanent magnet 6 can be used more effectively than in the case where the plurality of grooves 9a are arranged to face each other in the radial direction with the plurality of grooves 9b via the permanent magnet 6. Increases efficiency.
 なお、本実施の形態では、軸方向に垂直な回転子コア4の断面において、複数の部分6a1から6a5の全長は、複数の部分6b1から6b4の全長よりも大きく、かつ、複数の溝9aおよび複数の溝9bは、軸方向に垂直な回転子コア4の断面において、千鳥状に配置されるとしたが、いずれか一方が実現される構成でもよい。 In the present embodiment, in the cross section of the rotor core 4 perpendicular to the axial direction, the total length of the plurality of portions 6a1 to 6a5 is larger than the total length of the plurality of portions 6b1 to 6b4, and the plurality of grooves 9a and The plurality of grooves 9b are arranged in a staggered manner in the cross section of the rotor core 4 perpendicular to the axial direction. However, any one of the configurations may be realized.
 また、本実施の形態では、軸方向に垂直な回転子コア4の断面において、複数の溝9aの総面積は、複数の溝9bの総面積よりも大きい。これにより、温度上昇がより高い永久磁石6の外側をより効果的に冷却することができる。 In the present embodiment, the total area of the plurality of grooves 9a is larger than the total area of the plurality of grooves 9b in the cross section of the rotor core 4 perpendicular to the axial direction. Thereby, the outer side of the permanent magnet 6 with a higher temperature rise can be cooled more effectively.
 なお、軸方向に垂直な回転子コア4の断面において、複数の部分6a1から6a5の全長が複数の部分6b1から6b4の全長よりも大きく、かつ、複数の溝9aの総面積が複数の溝9bの総面積以下となる構成も可能である。 In the cross section of the rotor core 4 perpendicular to the axial direction, the total length of the plurality of portions 6a1 to 6a5 is larger than the total length of the plurality of portions 6b1 to 6b4, and the total area of the plurality of grooves 9a is the plurality of grooves 9b. A configuration with a total area of less than or equal to is also possible.
 また、本実施の形態では、軸方向に垂直な回転子コア4の断面において、複数の部分6a1から6a5の全長は、面6aと面8aとが接触する部分の全長よりも大きい。これにより、永久磁石6の面6aの冷却をより高めることができる。なお、軸方向に垂直な回転子コア4の断面において、複数の部分6a1から6a5の全長が、面6aと面8aとが接触する部分の全長以下となる構成も可能である。 In the present embodiment, in the cross section of the rotor core 4 perpendicular to the axial direction, the total length of the plurality of portions 6a1 to 6a5 is larger than the total length of the portion where the surface 6a and the surface 8a are in contact. Thereby, the cooling of the surface 6a of the permanent magnet 6 can be further enhanced. In addition, in the cross section of the rotor core 4 perpendicular to the axial direction, a configuration in which the total length of the plurality of portions 6a1 to 6a5 is equal to or less than the total length of the portion where the surface 6a and the surface 8a are in contact is possible.
 同様に、軸方向に垂直な回転子コア4の断面において、複数の部分6b1から6b4の全長は、面6bと面8bとが接触する部分の全長よりも大きくすることで、永久磁石6の面6bの冷却をより高めることができる。なお、軸方向に垂直な回転子コア4の断面において、複数の部分6b1から6b4の全長が、面6bと面8bとが接触する部分の全長以下となる構成も可能である。 Similarly, in the cross section of the rotor core 4 perpendicular to the axial direction, the total length of the plurality of portions 6b1 to 6b4 is larger than the total length of the portion where the surface 6b and the surface 8b are in contact with each other. The cooling of 6b can be further increased. In addition, in the cross section of the rotor core 4 perpendicular to the axial direction, a configuration in which the total length of the plurality of portions 6b1 to 6b4 is equal to or less than the total length of the portion where the surface 6b and the surface 8b contact is possible.
 また、本実施の形態では、複数の部分6a1から6a5のうち複数の部分6a1から6a5の配列方向の両端に位置する2つの部分6a1,6a5の長さのいずれもが、他の部分6a2から6a4の長さのいずれよりも大きい。渦電流による永久磁石6の温度上昇は、永久磁石6内で一様ではなく、永久磁石6の長手方向における両端部では中央部に比べてより高い。従って、配列方向の両端に位置する2つの部分6a1,6a5の長さを他の部分6a2から6a4の長さよりも大きくすることで、永久磁石6の冷却をより高めることができる。一般に、このような構成は第1の部分の個数が3以上であれば可能である。 In the present embodiment, the lengths of the two portions 6a1 and 6a5 located at both ends in the arrangement direction of the plurality of portions 6a1 to 6a5 among the plurality of portions 6a1 to 6a5 are the other portions 6a2 to 6a4. Greater than any of the lengths. The temperature rise of the permanent magnet 6 due to the eddy current is not uniform within the permanent magnet 6 and is higher at both ends in the longitudinal direction of the permanent magnet 6 than at the center. Therefore, the cooling of the permanent magnet 6 can be further enhanced by making the lengths of the two portions 6a1 and 6a5 located at both ends in the arrangement direction larger than the lengths of the other portions 6a2 to 6a4. In general, such a configuration is possible if the number of first portions is three or more.
 なお、配列方向の両端に位置する2つの部分6a1,6a5の長さが他の部分6a2から6a4の長さ以下とする構成も可能である。 In addition, the structure by which the length of the two parts 6a1 and 6a5 located at both ends in the arrangement direction is equal to or shorter than the lengths of the other parts 6a2 to 6a4 is also possible.
 また、複数の部分6b1から6b4の長さは互いに等しいとしたが、複数の部分6b1から6b4のうち複数の部分6b1から6b4の配列方向の両端に位置する2つの部分6b1,6b4の長さのいずれもが、他の部分6b2,6b3の長さのいずれよりも大きいとする構成も可能である。一般に、このような構成は第2の部分の個数が3以上であれば可能である。 In addition, although the lengths of the plurality of portions 6b1 to 6b4 are equal to each other, the lengths of the two portions 6b1 and 6b4 positioned at both ends in the arrangement direction of the plurality of portions 6b1 to 6b4 among the plurality of portions 6b1 to 6b4 It is possible to adopt a configuration in which both are longer than any of the other portions 6b2 and 6b3. In general, such a configuration is possible if the number of second portions is three or more.
 また、複数の部分6a1から6a5の長さは、永久磁石6の長手方向における中心から各端に向かうにつれて大きくする構成も可能である。具体的には、Wa1>Wa2>Wa3かつWa5>Wa4>Wa3の関係が成り立つように構成することもできる。この場合でも、配列方向の両端に位置する2つの部分6a1,6a5の長さが他の部分6a2から6a4の長さよりも大きいとした場合と同様の効果を得ることができる。複数の部分6b1から6b4の長さについても同様である。 Further, the lengths of the plurality of portions 6a1 to 6a5 can be configured to increase from the center in the longitudinal direction of the permanent magnet 6 toward each end. Specifically, it can be configured such that a relationship of Wa1> Wa2> Wa3 and Wa5> Wa4> Wa3 is established. Even in this case, it is possible to obtain the same effect as when the lengths of the two portions 6a1 and 6a5 located at both ends in the arrangement direction are longer than the lengths of the other portions 6a2 to 6a4. The same applies to the lengths of the plurality of portions 6b1 to 6b4.
 また、本実施の形態では、軸方向に垂直な回転子コア4の断面において、複数の溝9aの各々は、面6aに沿う方向における幅が、面6aから離れるに従って小さくなるように形成されている。これにより、永久磁石6の磁束が回転子コア4を通過しやすくなり、永久磁石6の磁束の有効利用につながり、電動機1の効率を向上させることができる。 Further, in the present embodiment, in the cross section of the rotor core 4 perpendicular to the axial direction, each of the plurality of grooves 9a is formed such that the width in the direction along the surface 6a decreases as the distance from the surface 6a increases. Yes. Thereby, the magnetic flux of the permanent magnet 6 can easily pass through the rotor core 4, leading to effective use of the magnetic flux of the permanent magnet 6, and the efficiency of the electric motor 1 can be improved.
 また、複数の溝9aの各々の面6aに沿う方向における幅は、面6aに近いほど大きくなるので、永久磁石6の面6aを効率よく冷却することができる。なお、複数の溝9aの各々の面6aに沿う方向における幅が、面6aに近いほど大きくならない構成も可能である。 In addition, since the width in the direction along each surface 6a of the plurality of grooves 9a becomes larger as it is closer to the surface 6a, the surface 6a of the permanent magnet 6 can be efficiently cooled. In addition, the structure where the width | variety in the direction in alignment with each surface 6a of the some groove | channel 9a is not so large that it is close to the surface 6a is also possible.
 同様に、軸方向に垂直な回転子コア4の断面において、複数の溝9bの各々は、面6bに沿う方向における幅が、面6bから離れるに従って小さくなるように形成することで、永久磁石6の磁束を有効に利用して電動機1の効率を向上させるとともに、永久磁石6の面6bを効率よく冷却することができる。なお、複数の溝9bの各々の面6bに沿う方向における幅が、面6bに近いほど大きくならない構成も可能である。 Similarly, in the cross section of the rotor core 4 perpendicular to the axial direction, each of the plurality of grooves 9b is formed such that the width in the direction along the surface 6b decreases as the distance from the surface 6b increases. The efficiency of the electric motor 1 can be improved by effectively using the magnetic flux, and the surface 6b of the permanent magnet 6 can be efficiently cooled. In addition, the structure where the width | variety in the direction in alignment with each surface 6b of the some groove | channel 9b is not so large that it is close to the surface 6b is also possible.
 また、複数の溝9aのうちの少なくとも一つの形状は、中心角が180°以下である円弧状とすることができる。これにより、電磁鋼板を打ち抜いて複数の溝9aを形成する際の加工が容易となる。同様に、複数の溝9bのうちの少なくとも一つの形状は、中心角が180°以下である円弧状とすることができる。なお、溝9aまたは溝9bの形状は、円弧状以外にも矩形または三角形も可能である。 In addition, at least one of the plurality of grooves 9a may have an arc shape with a central angle of 180 ° or less. Thereby, the process at the time of punching an electromagnetic steel plate and forming the some groove | channel 9a becomes easy. Similarly, at least one of the plurality of grooves 9b may have an arc shape with a central angle of 180 ° or less. In addition, the shape of the groove 9a or the groove 9b can be a rectangle or a triangle in addition to the arc shape.
 また、永久磁石6の減磁耐力が向上することにより、保磁力の小さい希土類磁石の使用が可能となり、低コスト化が図れる。保磁力の小さい希土類磁石とは保磁力を増大させるために添加されるディスプロシウムの含有量が3重量%以下を指す。 Further, by improving the demagnetization resistance of the permanent magnet 6, it is possible to use a rare earth magnet having a small coercive force, and the cost can be reduced. The rare earth magnet having a small coercive force means that the content of dysprosium added to increase the coercive force is 3% by weight or less.
 すなわち、本実施の形態では、永久磁石6は、鉄、ネオジウムおよびボロンを含む希土類磁石であって、ディスプロシウムを含まず、または3重量%以下のディスプロシウムを含む希土類磁石とすることができる。 That is, in the present embodiment, the permanent magnet 6 is a rare earth magnet containing iron, neodymium, and boron, and does not contain dysprosium, or a rare earth magnet containing 3% by weight or less of dysprosium. it can.
 本実施の形態では、永久磁石6の長手方向における両側にフラックスバリア部10a,10bが設けられている。フラックスバリア部10a,10bは空隙であり、複数の溝9aおよび複数の溝9bと同様に冷却溝として利用することができる。なお、フラックスバリア部10a,10bを設けない構成、すなわち、溝15a,15bを設けない構成も可能である。 In the present embodiment, flux barrier portions 10a and 10b are provided on both sides of the permanent magnet 6 in the longitudinal direction. The flux barrier portions 10a and 10b are air gaps, and can be used as cooling grooves in the same manner as the plurality of grooves 9a and the plurality of grooves 9b. A configuration in which the flux barrier portions 10a and 10b are not provided, that is, a configuration in which the grooves 15a and 15b are not provided is also possible.
 また、フラックスバリア部10a,10bは、空隙でなくてもよく、溝15a,15bを樹脂のような非磁性材料で埋めてもよい。 Further, the flux barrier portions 10a and 10b may not be voids, and the grooves 15a and 15b may be filled with a nonmagnetic material such as resin.
 なお、永久磁石6の形状は、図示例に限定されない。また、図示例では、複数の永久磁石6は、永久磁石6の個数と同じ角数の仮想的な正多角形の辺に対応する位置にそれぞれ配置され、周方向に等間隔に配列されているが、複数の永久磁石6の配置はこれに限定されない。 The shape of the permanent magnet 6 is not limited to the illustrated example. In the illustrated example, the plurality of permanent magnets 6 are respectively arranged at positions corresponding to sides of a virtual regular polygon having the same number of corners as the number of permanent magnets 6 and arranged at equal intervals in the circumferential direction. However, the arrangement of the plurality of permanent magnets 6 is not limited to this.
 また、本実施の形態では、溝9aの個数を5個、溝9bの個数を4個としたが、これに限定されない。 In this embodiment, the number of the grooves 9a is five and the number of the grooves 9b is four. However, the present invention is not limited to this.
 図8は、本実施の形態の変形例1に係る回転子の構成を示す部分拡大横断面図である。なお、図8では、図2から図7に示す構成要素と同一の構成要素には同一の符号を付している。 FIG. 8 is a partial enlarged cross-sectional view showing the configuration of the rotor according to the first modification of the present embodiment. In FIG. 8, the same components as those shown in FIGS. 2 to 7 are denoted by the same reference numerals.
 図8では、図7に示す構成に加えて、面8bに溝9b5,9b6が形成されている。溝9b5,9b6は、永久磁石6を介して、それぞれ溝9a1,9a5と径方向に互いに対向している。また、溝9b5に露出する部分6b5の長さはWb5、溝9b6に露出する部分6b6の長さはWb6である。部分6b5,6b6は、図5で示した面6bに含まれる。 In FIG. 8, in addition to the configuration shown in FIG. 7, grooves 9b5 and 9b6 are formed in the surface 8b. The grooves 9b5 and 9b6 are opposed to the grooves 9a1 and 9a5 in the radial direction through the permanent magnet 6, respectively. The length of the portion 6b5 exposed in the groove 9b5 is Wb5, and the length of the portion 6b6 exposed in the groove 9b6 is Wb6. The parts 6b5 and 6b6 are included in the surface 6b shown in FIG.
 図8では、Wa1+Wa2+Wa3+Wa4+Wa5>Wb1+Wb2+Wb3+Wb4+Wb5+Wb6の関係が成り立っている。また、Wm/2<Wa1+Wa2+Wa3+Wa4+Wa5の関係に加えて、Wm/2<Wb1+Wb2+Wb3+Wb4+Wb5+Wb6の関係が成り立っている。 In FIG. 8, a relationship of Wa1 + Wa2 + Wa3 + Wa4 + Wa5> Wb1 + Wb2 + Wb3 + Wb4 + Wb5 + Wb6 is established. In addition to the relationship of Wm / 2 <Wa1 + Wa2 + Wa3 + Wa4 + Wa5, the relationship of Wm / 2 <Wb1 + Wb2 + Wb3 + Wb4 + Wb5 + Wb6 is established.
 溝9b5,9b6は、軸方向に垂直な回転子コア4の断面において、永久磁石6の長手方向における両端部に面して配置されているので、温度上昇のより大きい永久磁石6の長手方向における両端部を効率よく冷却することができる。本変形例のその他の構成に応じた効果は上記した通りである。 Since the grooves 9b5 and 9b6 are arranged facing both ends in the longitudinal direction of the permanent magnet 6 in the cross section of the rotor core 4 perpendicular to the axial direction, the grooves 9b5 and 9b6 in the longitudinal direction of the permanent magnet 6 having a higher temperature rise. Both end portions can be efficiently cooled. The effects according to the other configurations of the present modification are as described above.
 図9は、本実施の形態の変形例2に係る回転子の構成を示す部分拡大横断面図である。なお、図9では、図2から図7に示す構成要素と同一の構成要素には同一の符号を付している。 FIG. 9 is a partially enlarged cross-sectional view showing the configuration of the rotor according to the second modification of the present embodiment. In FIG. 9, the same components as those shown in FIGS. 2 to 7 are denoted by the same reference numerals.
 図9に示す構成と図7に示す構成との差異は、図9では、面8bに複数の溝9b11から9b15が形成されている点である。また、溝9b11に露出する部分6b11の長さはWb11、溝9b12に露出する部分6b12の長さはWb12、溝9b13に露出する部分6b13の長さはWb13、溝9b14に露出する部分6b14の長さはWb14、溝9b15に露出する部分6b15の長さはWb15である。部分6b11から6b15は、図5で示した面6bに含まれる。 The difference between the configuration shown in FIG. 9 and the configuration shown in FIG. 7 is that, in FIG. 9, a plurality of grooves 9b11 to 9b15 are formed on the surface 8b. The length of the portion 6b11 exposed in the groove 9b11 is Wb11, the length of the portion 6b12 exposed in the groove 9b12 is Wb12, the length of the portion 6b13 exposed in the groove 9b13 is Wb13, and the length of the portion 6b14 exposed in the groove 9b14. The length of the portion 6b15 exposed in the groove 9b15 is Wb15. The parts 6b11 to 6b15 are included in the face 6b shown in FIG.
 図9では、Wa1+Wa2+Wa3+Wa4+Wa5>Wb11+Wb12+Wb13+Wb14+Wb15の関係が成り立っている。また、Wm/2<Wa1+Wa2+Wa3+Wa4+Wa5の関係に加えて、Wm/2<Wb11+Wb12+Wb13+Wb14+Wb15の関係が成り立っている。図9では、複数の溝9aおよび複数の溝9bが千鳥状に配置されない場合の例を示している。すなわち、溝9b11から9b15は、永久磁石6を介して、それぞれ溝9a1から9a5と径方向に互いに対向している。本変形例の構成に応じた効果は上記した通りである。 In FIG. 9, the relationship of Wa1 + Wa2 + Wa3 + Wa4 + Wa5> Wb11 + Wb12 + Wb13 + Wb14 + Wb15 is established. In addition to the relationship of Wm / 2 <Wa1 + Wa2 + Wa3 + Wa4 + Wa5, the relationship of Wm / 2 <Wb11 + Wb12 + Wb13 + Wb14 + Wb15 is established. FIG. 9 shows an example in which the plurality of grooves 9a and the plurality of grooves 9b are not arranged in a staggered manner. That is, the grooves 9b11 to 9b15 are opposed to the grooves 9a1 to 9a5 via the permanent magnet 6 in the radial direction, respectively. The effects according to the configuration of the present modification are as described above.
実施の形態2.
 図10は、本実施の形態に係る圧縮機の構成を示す縦断面図である。なお、図10では、図1から図7に示す構成要素と同一の構成要素には同一の符号を付している。
Embodiment 2. FIG.
FIG. 10 is a longitudinal sectional view showing the configuration of the compressor according to the present embodiment. In FIG. 10, the same components as those shown in FIGS. 1 to 7 are denoted by the same reference numerals.
 圧縮機50は、密閉容器51内に配置された圧縮部52と、密閉容器51内で圧縮部52の上方に配置された電動機1と、密閉容器51外に配置されたアキュムレータ53とを備える。圧縮部52には、スクロール、ロータリ、またはレシプロといった機構が適用される。 The compressor 50 includes a compression unit 52 disposed in the sealed container 51, the electric motor 1 disposed above the compression unit 52 in the sealed container 51, and an accumulator 53 disposed outside the sealed container 51. A mechanism such as scroll, rotary, or reciprocation is applied to the compression unit 52.
 密閉容器51は、鋼板を絞り加工により円筒形状に加工して形成される。密閉容器51には、吸入パイプ54と吐出パイプ55とが設けられる。密閉容器51の底部には潤滑用の冷凍機油が貯留される。 The sealed container 51 is formed by processing a steel plate into a cylindrical shape by drawing. The sealed container 51 is provided with a suction pipe 54 and a discharge pipe 55. Refrigerating machine oil for lubrication is stored at the bottom of the sealed container 51.
 電動機1は、実施の形態1の電動機である。固定子コア21は、密閉容器51の内周面に溶接、焼嵌め、冷嵌め、または圧入により固定される。コイル22には、密閉容器51に固定された端子65から電力が供給される。回転子コア4にはシャフト56が固定されている。シャフト56は先端部に偏心部57を有する。 The electric motor 1 is the electric motor according to the first embodiment. The stator core 21 is fixed to the inner peripheral surface of the sealed container 51 by welding, shrink fitting, cold fitting, or press fitting. Electric power is supplied to the coil 22 from a terminal 65 fixed to the sealed container 51. A shaft 56 is fixed to the rotor core 4. The shaft 56 has an eccentric portion 57 at the tip.
 圧縮部52は、圧縮室58を含む円筒状のシリンダ59と、シリンダ59内に配置される偏心部57に摺動自在に嵌合された環状のピストン60と、偏心部57よりも上側でシャフト56を軸受する上部フレーム61と、偏心部57よりも下側でシャフト56を軸受する下部フレーム62と、上部フレーム61に装着された上部吐出マフラ63と、下部フレーム62に装着された下部吐出マフラ64とを有する。 The compression part 52 includes a cylindrical cylinder 59 including a compression chamber 58, an annular piston 60 slidably fitted to an eccentric part 57 disposed in the cylinder 59, and a shaft above the eccentric part 57. 56, an upper frame 61 bearing the shaft 56, a lower frame 62 bearing the shaft 56 below the eccentric portion 57, an upper discharge muffler 63 attached to the upper frame 61, and a lower discharge muffler attached to the lower frame 62. 64.
 シリンダ59は、密閉容器51の内周面に溶接、焼嵌め、冷嵌め、または圧入により固定される。シリンダ59内には吸入側と圧縮側とを分離するベーンが設けられるが、図示は省略している。 The cylinder 59 is fixed to the inner peripheral surface of the sealed container 51 by welding, shrink fitting, cold fitting, or press fitting. A vane for separating the suction side and the compression side is provided in the cylinder 59, but the illustration is omitted.
 圧縮機50の動作を説明する。アキュムレータ53は、密閉容器51に設けられた吸入パイプ54を介して圧縮部52に冷媒ガスを供給する。アキュムレータ53から供給された冷媒ガスは、シリンダ59内に導入される。 The operation of the compressor 50 will be described. The accumulator 53 supplies refrigerant gas to the compression unit 52 via a suction pipe 54 provided in the sealed container 51. The refrigerant gas supplied from the accumulator 53 is introduced into the cylinder 59.
 一方、電動機1に通電されると、回転子3が回転し、シャフト56に連動してピストン60がシリンダ59の内周面に沿って偏心回転する。これにより、シリンダ59内に導入された冷媒ガスは圧縮室58内で圧縮される。 On the other hand, when the electric motor 1 is energized, the rotor 3 rotates, and the piston 60 rotates eccentrically along the inner peripheral surface of the cylinder 59 in conjunction with the shaft 56. Thereby, the refrigerant gas introduced into the cylinder 59 is compressed in the compression chamber 58.
 圧縮された冷媒ガスは、上部フレーム61の図示しない孔および上部吐出マフラ63を順に通過し、または下部フレーム62の図示しない孔および下部吐出マフラ64を順に通過して、密閉容器51内の空間に吐出された後、複数の溝9a、複数の溝9b、または空隙20を通過して密閉容器51内を上昇し、密閉容器51に設けられた吐出パイプ55を介して冷凍サイクルの高圧側へ供給される。なお、図10では、冷媒ガスの主な流路を矢印で示している。 The compressed refrigerant gas sequentially passes through a hole (not shown) and the upper discharge muffler 63 in the upper frame 61 or sequentially passes through a hole (not shown) and the lower discharge muffler 64 in the lower frame 62 to enter the space in the sealed container 51. After being discharged, it passes through the plurality of grooves 9 a, the plurality of grooves 9 b, or the gap 20, rises in the sealed container 51, and is supplied to the high-pressure side of the refrigeration cycle via the discharge pipe 55 provided in the sealed container 51. Is done. In addition, in FIG. 10, the main flow paths of the refrigerant gas are indicated by arrows.
 このような圧縮機50では、複数の溝9aおよび複数の溝9bを通過する冷媒ガスは永久磁石6の表面と接触しながら通過する。このとき、渦電流によって発生した永久磁石6の熱を冷媒ガスが奪い、永久磁石6の温度を低下させる。永久磁石6は高温になるほど減磁し易いという特性を有するため、永久磁石6の温度を低下させることにより、永久磁石6の減磁耐力を改善し、信頼性が高く、高効率な圧縮機50を提供することができる。 In such a compressor 50, the refrigerant gas passing through the plurality of grooves 9a and the plurality of grooves 9b passes while contacting the surface of the permanent magnet 6. At this time, the refrigerant gas takes the heat of the permanent magnet 6 generated by the eddy current, and the temperature of the permanent magnet 6 is lowered. Since the permanent magnet 6 has a characteristic that it is more likely to be demagnetized as the temperature becomes higher, by reducing the temperature of the permanent magnet 6, the demagnetization resistance of the permanent magnet 6 is improved, and the compressor 50 is highly reliable and highly efficient. Can be provided.
実施の形態3.
 図11は、本実施の形態に係る空気調和機の冷凍サイクルを示す図である。冷凍サイクル70は、圧縮機50と、圧縮機50から吐出される冷媒の流れを切り替える四方弁71と、室外で熱交換を行う室外熱交換器72と、冷媒の圧力を下げる膨張弁73と、室内で熱交換を行う室内熱交換器74と、圧縮機50、四方弁71、室外熱交換器72、膨張弁73、および室内熱交換器74を互いに接続する冷媒配管75と、圧縮機50、膨張弁73、および四方弁71を制御する制御部36とを備える。圧縮機50は、実施の形態2の圧縮機である。
Embodiment 3 FIG.
FIG. 11 is a diagram showing a refrigeration cycle of the air conditioner according to the present embodiment. The refrigeration cycle 70 includes a compressor 50, a four-way valve 71 that switches the flow of refrigerant discharged from the compressor 50, an outdoor heat exchanger 72 that performs heat exchange outdoors, an expansion valve 73 that reduces the pressure of the refrigerant, An indoor heat exchanger 74 that performs heat exchange indoors, a compressor 50, a four-way valve 71, an outdoor heat exchanger 72, an expansion valve 73, a refrigerant pipe 75 that connects the indoor heat exchanger 74 to each other, a compressor 50, And an expansion valve 73 and a control unit 36 for controlling the four-way valve 71. The compressor 50 is the compressor of the second embodiment.
 図12は、本実施の形態に係る空気調和機の構成を示す図である。空気調和機200は、室内機210と、室内機210に接続された室外機220とを備える。室外機220は圧縮機50を備える。 FIG. 12 is a diagram showing a configuration of the air conditioner according to the present embodiment. The air conditioner 200 includes an indoor unit 210 and an outdoor unit 220 connected to the indoor unit 210. The outdoor unit 220 includes a compressor 50.
 本実施の形態によれば、空気調和機200が圧縮機50を備えているので、減磁耐力に優れ、信頼性が高く、高効率な空気調和機200を得ることができる。 According to the present embodiment, since the air conditioner 200 includes the compressor 50, the air conditioner 200 having excellent demagnetization resistance, high reliability, and high efficiency can be obtained.
 なお、実施の形態1の電動機1は、室外機220のファン221に用いることもできる。また、実施の形態1の電動機1は、空気調和機200以外の電気機器に用いることもできる。この場合でも、本実施の形態と同様の効果を得ることができる。 In addition, the electric motor 1 of Embodiment 1 can also be used for the fan 221 of the outdoor unit 220. Moreover, the electric motor 1 of Embodiment 1 can also be used for electrical equipment other than the air conditioner 200. Even in this case, the same effect as in the present embodiment can be obtained.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 電動機、2 固定子、3 回転子、4 回転子コア、4a,4b コア部、4c,4d 薄肉鉄心部、4e,4f 突起部、5 磁石孔、6 永久磁石、6a,6b,6c,6d,6e,6f,8a,8b 面、6a1,6a2,6a3,6a4,6a5,6b1,6b2,6b3,6b4,6b5,6b6,6b11,6b12,6b13,6b14,6b15 部分、7 軸孔、8 内面、9a,9a1,9a2,9a3,9a4,9a5,9b,9b1,9b2,9b3,9b4,9b5,9b6,9b11,9b12,9b13,9b14,9b15,15a,15b 溝、10a,10b フラックスバリア部、18a 外周面、18b 内周面、18c,18d 端面、20 空隙、21 固定子コア、22 コイル、23 ヨーク、24 ティース、25 スロット、30 軸、36 制御部、50 圧縮機、51 密閉容器、52 圧縮部、53 アキュムレータ、54 吸入パイプ、55 吐出パイプ、56 シャフト、57 偏心部、58 圧縮室、59 シリンダ、60 ピストン、61 上部フレーム、62 下部フレーム、63 上部吐出マフラ、64 下部吐出マフラ、65 端子、70 冷凍サイクル、71 四方弁、72 室外熱交換器、73 膨張弁、74 室内熱交換器、75 冷媒配管、200 空気調和機、210 室内機、220 室外機、221 ファン。 1 Electric motor, 2 stator, 3 rotor, 4 rotor core, 4a, 4b core, 4c, 4d thin core, 4e, 4f protrusion, 5 magnet hole, 6 permanent magnet, 6a, 6b, 6c, 6d , 6e, 6f, 8a, 8b, 6a1, 6a2, 6a3, 6a4, 6a5, 6b1, 6b2, 6b3, 6b4, 6b5, 6b6, 6b11, 6b12, 6b13, 6b14, 6b15, 7 shaft hole, 8 inner surface, 9a, 9a1, 9a2, 9a3, 9a4, 9a5, 9b, 9b1, 9b2, 9b3, 9b4, 9b5, 9b6, 9b11, 9b12, 9b13, 9b14, 9b15, 15a, 15b groove, 10a, 10b flux barrier part, 18a outer periphery Surface, 18b inner peripheral surface, 18c, 18d end face, 20 air gap, 21 stator core, 22 coils, 2 York, 24 teeth, 25 slots, 30 shafts, 36 control unit, 50 compressor, 51 airtight container, 52 compression unit, 53 accumulator, 54 suction pipe, 55 discharge pipe, 56 shaft, 57 eccentric part, 58 compression chamber, 59 Cylinder, 60 piston, 61 upper frame, 62 lower frame, 63 upper discharge muffler, 64 lower discharge muffler, 65 terminals, 70 refrigeration cycle, 71 four-way valve, 72 outdoor heat exchanger, 73 expansion valve, 74 indoor heat exchanger, 75 refrigerant piping, 200 air conditioner, 210 indoor unit, 220 outdoor unit, 221 fan.

Claims (15)

  1.  環状の固定子コアと、
     前記固定子コアの内側で前記固定子コアと同軸で配置され、複数の磁石孔を有するとともに、第1の端面と第2の端面と複数の内面とを有し、前記第1の端面および前記第2の端面は軸方向に互いに離間し、前記複数の内面は前記複数の磁石孔を形成し、前記複数の磁石孔は周方向に配列されかつ前記第1の端面から前記第2の端面まで前記軸方向に伸びる環状の回転子コアと、
     前記複数の磁石孔内に配置される複数の永久磁石と、
     を備え、
     前記複数の内面の各々は、前記回転子コアにおいて前記回転子コアの径方向における外側に配置される第1の面と前記回転子コアにおいて前記径方向における内側に配置される第2の面とを有し、
     前記複数の永久磁石の各々は、前記第1の面と面する第3の面と前記第2の面と面する第4の面とを有し、
     前記第1の面は、前記第1の端面から前記第2の端面まで前記軸方向に伸びかつ前記軸方向に垂直な前記回転子コアの断面において前記第3の面に沿って配列される複数の第1の溝を有し、
     前記第3の面は、前記複数の第1の溝に露出する複数の第1の部分を有し、
     前記第3の面は、前記複数の第1の部分を除き、前記第1の面と接触し、
     前記第2の面は、前記第1の端面から前記第2の端面まで前記軸方向に伸びかつ前記軸方向に垂直な前記回転子コアの断面において前記第4の面に沿って配列される複数の第2の溝を有し、
     前記第4の面は、前記複数の第2の溝に露出する複数の第2の部分を有し、
     前記第4の面は、前記複数の第2の部分を除き、前記第2の面と接触し、
     前記軸方向に垂直な前記回転子コアの断面において、前記複数の第1の部分の全長は、前記複数の第2の部分の全長よりも大きい永久磁石電動機。
    An annular stator core;
    The stator core is disposed coaxially with the stator core, has a plurality of magnet holes, and has a first end surface, a second end surface, and a plurality of inner surfaces, the first end surface and the The second end surfaces are spaced apart from each other in the axial direction, the plurality of inner surfaces form the plurality of magnet holes, the plurality of magnet holes arranged in a circumferential direction, and from the first end surface to the second end surface An annular rotor core extending in the axial direction;
    A plurality of permanent magnets disposed in the plurality of magnet holes;
    With
    Each of the plurality of inner surfaces includes a first surface disposed on the outer side in the radial direction of the rotor core in the rotor core, and a second surface disposed on the inner side in the radial direction in the rotor core. Have
    Each of the plurality of permanent magnets has a third surface facing the first surface and a fourth surface facing the second surface;
    The plurality of first surfaces are arranged along the third surface in a cross section of the rotor core extending in the axial direction from the first end surface to the second end surface and perpendicular to the axial direction. A first groove of
    The third surface has a plurality of first portions exposed in the plurality of first grooves,
    The third surface is in contact with the first surface except for the plurality of first portions,
    The second surface extends in the axial direction from the first end surface to the second end surface and is arranged along the fourth surface in a cross section of the rotor core perpendicular to the axial direction. A second groove of
    The fourth surface has a plurality of second portions exposed in the plurality of second grooves,
    The fourth surface is in contact with the second surface except for the plurality of second portions,
    In the cross section of the rotor core perpendicular to the axial direction, a total length of the plurality of first portions is larger than a total length of the plurality of second portions.
  2.  前記軸方向に垂直な前記回転子コアの断面において、前記複数の第1の部分の総面積は、前記複数の第2の部分の総面積よりも大きい請求項1に記載の永久磁石電動機。 The permanent magnet motor according to claim 1, wherein a total area of the plurality of first portions is larger than a total area of the plurality of second portions in a cross section of the rotor core perpendicular to the axial direction.
  3.  前記軸方向に垂直な前記回転子コアの断面において、前記複数の第1の部分の全長は、前記第3の面と前記第1の面とが接触する部分の全長よりも大きい請求項1に記載の永久磁石電動機。 In the cross section of the rotor core perpendicular to the axial direction, the overall length of the plurality of first portions is larger than the overall length of the portion where the third surface and the first surface are in contact with each other. The permanent magnet motor described.
  4.  前記軸方向に垂直な前記回転子コアの断面において、前記複数の第2の部分の全長は、前記第4の面と前記第2の面とが接触する部分の全長よりも大きい請求項1に記載の永久磁石電動機。 In the cross section of the rotor core perpendicular to the axial direction, the overall length of the plurality of second portions is larger than the overall length of the portion where the fourth surface and the second surface are in contact with each other. The permanent magnet motor described.
  5.  前記複数の第1の部分の個数は3以上であり、
     前記軸方向に垂直な前記回転子コアの断面において、前記複数の第1の部分のうち前記複数の第1の部分の配列方向の両端に位置する2つの第1の部分の長さのいずれもが、他の第1の部分の長さのいずれよりも大きい請求項1に記載の永久磁石電動機。
    The number of the plurality of first portions is 3 or more,
    In the cross section of the rotor core perpendicular to the axial direction, both of the lengths of two first portions located at both ends in the arrangement direction of the plurality of first portions among the plurality of first portions. The permanent magnet motor according to claim 1, wherein is longer than any of the lengths of the other first portions.
  6.  前記複数の第2の部分の個数は3以上であり、
     前記軸方向に垂直な前記回転子コアの断面において、前記複数の第2の部分のうち前記複数の第2の部分の配列方向の両端に位置する2つの第2の部分の長さのいずれもが、他の第2の部分の長さのいずれよりも大きい請求項1に記載の永久磁石電動機。
    The number of the plurality of second portions is 3 or more,
    In the cross section of the rotor core perpendicular to the axial direction, any of the lengths of two second portions located at both ends in the arrangement direction of the plurality of second portions among the plurality of second portions The permanent magnet motor according to claim 1, wherein is longer than any of the lengths of the other second portions.
  7.  前記軸方向に垂直な前記回転子コアの断面において、前記複数の第1の溝の各々は、前記第3の面に沿う方向における幅が前記径方向における内側から前記径方向における外側に向かうに従って小さくなるように形成されている請求項1に記載の永久磁石電動機。 In the cross section of the rotor core perpendicular to the axial direction, each of the plurality of first grooves has a width in a direction along the third surface that extends from an inner side in the radial direction to an outer side in the radial direction. The permanent magnet motor according to claim 1, wherein the permanent magnet motor is formed to be small.
  8.  前記軸方向に垂直な前記回転子コアの断面において、前記複数の第2の溝の各々は、前記第4の面に沿う方向における幅が前記径方向における外側から前記径方向における内側に向かうに従って小さくなるように形成されている請求項1に記載の永久磁石電動機。 In the cross section of the rotor core perpendicular to the axial direction, each of the plurality of second grooves has a width in a direction along the fourth surface that increases from an outer side in the radial direction toward an inner side in the radial direction. The permanent magnet motor according to claim 1, wherein the permanent magnet motor is formed to be small.
  9.  前記複数の第1の溝のうちの少なくとも1つの形状は、中心角が180°以下である円弧形状である請求項1に記載の永久磁石電動機。 The permanent magnet electric motor according to claim 1, wherein at least one of the plurality of first grooves has an arc shape having a central angle of 180 ° or less.
  10.  前記複数の第2の溝のうちの少なくとも1つの形状は、中心角が180°以下である円弧形状である請求項1に記載の永久磁石電動機。 2. The permanent magnet motor according to claim 1, wherein at least one of the plurality of second grooves has an arc shape having a central angle of 180 ° or less.
  11.  前記軸方向に垂直な前記回転子コアの断面において、前記複数の第1の溝および前記複数の第2の溝は、千鳥状に配置されている請求項1に記載の永久磁石電動機。 The permanent magnet motor according to claim 1, wherein the plurality of first grooves and the plurality of second grooves are arranged in a staggered manner in a cross section of the rotor core perpendicular to the axial direction.
  12.  前記複数の永久磁石の各々は、鉄、ネオジウムおよびボロンを含む希土類磁石であり、前記希土類磁石にはディスプロシウムが含まれず、または前記希土類磁石に含まれるディスプロシウムの含有量が3重量%以下である請求項1に記載の永久磁石電動機。 Each of the plurality of permanent magnets is a rare earth magnet containing iron, neodymium and boron, and the rare earth magnet does not contain dysprosium, or the content of dysprosium contained in the rare earth magnet is 3% by weight. The permanent magnet motor according to claim 1, wherein:
  13.  環状の固定子コアと、
     前記固定子コアの内側で前記固定子コアと同軸で配置され、複数の磁石孔を有するとともに、第1の端面と第2の端面と複数の内面とを有し、前記第1の端面および前記第2の端面は軸方向に互いに離間し、前記複数の内面は前記複数の磁石孔を形成し、前記複数の磁石孔は周方向に配列されかつ前記第1の端面から前記第2の端面まで前記軸方向に伸びる環状の回転子コアと、
     前記複数の磁石孔内に配置される複数の永久磁石と、
     を備え、
     前記複数の内面の各々は、前記回転子コアにおいて前記回転子コアの径方向における外側に配置される第1の面と前記回転子コアにおいて前記径方向における内側に配置される第2の面とを有し、
     前記複数の永久磁石の各々は、前記第1の面と面する第3の面と前記第2の面と面する第4の面とを有し、
     前記第1の面は、前記第1の端面から前記第2の端面まで前記軸方向に伸びかつ前記軸方向に垂直な前記回転子コアの断面において前記第3の面に沿って配列される複数の第1の溝を有し、
     前記第3の面は、前記複数の第1の溝に露出する複数の第1の部分を有し、
     前記第3の面は、前記複数の第1の部分を除き、前記第1の面と接触し、
     前記第2の面は、前記第1の端面から前記第2の端面まで前記軸方向に伸びかつ前記軸方向に垂直な前記回転子コアの断面において前記第4の面に沿って配列される複数の第2の溝を有し、
     前記第4の面は、前記複数の第2の溝に露出する複数の第2の部分を有し、
     前記第4の面は、前記複数の第2の部分を除き、前記第2の面と接触し、
     前記軸方向に垂直な前記回転子コアの断面において、前記複数の第1の溝および前記複数の第2の溝は、千鳥状に配置されている永久磁石電動機。
    An annular stator core;
    The stator core is disposed coaxially with the stator core, has a plurality of magnet holes, and has a first end surface, a second end surface, and a plurality of inner surfaces, the first end surface and the The second end surfaces are spaced apart from each other in the axial direction, the plurality of inner surfaces form the plurality of magnet holes, the plurality of magnet holes arranged in a circumferential direction, and from the first end surface to the second end surface An annular rotor core extending in the axial direction;
    A plurality of permanent magnets disposed in the plurality of magnet holes;
    With
    Each of the plurality of inner surfaces includes a first surface disposed on the outer side in the radial direction of the rotor core in the rotor core, and a second surface disposed on the inner side in the radial direction in the rotor core. Have
    Each of the plurality of permanent magnets has a third surface facing the first surface and a fourth surface facing the second surface;
    The plurality of first surfaces are arranged along the third surface in a cross section of the rotor core extending in the axial direction from the first end surface to the second end surface and perpendicular to the axial direction. A first groove of
    The third surface has a plurality of first portions exposed in the plurality of first grooves,
    The third surface is in contact with the first surface except for the plurality of first portions,
    The second surface extends in the axial direction from the first end surface to the second end surface and is arranged along the fourth surface in a cross section of the rotor core perpendicular to the axial direction. A second groove of
    The fourth surface has a plurality of second portions exposed in the plurality of second grooves,
    The fourth surface is in contact with the second surface except for the plurality of second portions,
    In the cross section of the rotor core perpendicular to the axial direction, the plurality of first grooves and the plurality of second grooves are arranged in a staggered manner.
  14.  請求項1から13のいずれか1項に記載された永久磁石電動機を備えた圧縮機。 A compressor provided with the permanent magnet motor according to any one of claims 1 to 13.
  15.  請求項14に記載された圧縮機を備えた空気調和機。 An air conditioner comprising the compressor according to claim 14.
PCT/JP2016/059476 2016-03-24 2016-03-24 Permanent-magnet electric motor, compressor, and air-conditioner WO2017163383A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018506716A JP6526315B2 (en) 2016-03-24 2016-03-24 Permanent magnet motor, compressor, and air conditioner
PCT/JP2016/059476 WO2017163383A1 (en) 2016-03-24 2016-03-24 Permanent-magnet electric motor, compressor, and air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/059476 WO2017163383A1 (en) 2016-03-24 2016-03-24 Permanent-magnet electric motor, compressor, and air-conditioner

Publications (1)

Publication Number Publication Date
WO2017163383A1 true WO2017163383A1 (en) 2017-09-28

Family

ID=59900047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059476 WO2017163383A1 (en) 2016-03-24 2016-03-24 Permanent-magnet electric motor, compressor, and air-conditioner

Country Status (2)

Country Link
JP (1) JP6526315B2 (en)
WO (1) WO2017163383A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021182866A (en) * 2017-12-28 2021-11-25 株式会社デンソー Rotary electric machine
WO2023037794A1 (en) * 2021-09-09 2023-03-16 パナソニックIpマネジメント株式会社 Rotor, motor, and rotor manufacturing method
US11664693B2 (en) 2017-12-28 2023-05-30 Denso Corporation Rotating electrical machine
US11664708B2 (en) 2017-07-21 2023-05-30 Denso Corporation Rotating electrical machine
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
US11863023B2 (en) 2017-12-28 2024-01-02 Denso Corporation Rotating electrical machine
US11962194B2 (en) 2017-12-28 2024-04-16 Denso Corporation Rotating electric machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002345188A (en) * 2001-05-14 2002-11-29 Nissan Motor Co Ltd Dynamo-electric rotating machine
JP2013093956A (en) * 2011-10-25 2013-05-16 Mitsubishi Electric Corp Sealed compressor, refrigeration cycle device incorporating sealed compressor, and air conditioner incorporating refrigeration cycle device
WO2014068753A1 (en) * 2012-11-01 2014-05-08 三菱電機株式会社 Electric motor with embedded permanent magnet, compressor, and refrigeration and air conditioning equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002345188A (en) * 2001-05-14 2002-11-29 Nissan Motor Co Ltd Dynamo-electric rotating machine
JP2013093956A (en) * 2011-10-25 2013-05-16 Mitsubishi Electric Corp Sealed compressor, refrigeration cycle device incorporating sealed compressor, and air conditioner incorporating refrigeration cycle device
WO2014068753A1 (en) * 2012-11-01 2014-05-08 三菱電機株式会社 Electric motor with embedded permanent magnet, compressor, and refrigeration and air conditioning equipment

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
US11664708B2 (en) 2017-07-21 2023-05-30 Denso Corporation Rotating electrical machine
US11664707B2 (en) 2017-07-21 2023-05-30 Denso Corporation Rotating electrical machine
US11824428B2 (en) 2017-07-21 2023-11-21 Denso Corporation Rotating electrical machine
US11831228B2 (en) 2017-07-21 2023-11-28 Denso Corporation Rotating electrical machine
US11962228B2 (en) 2017-07-21 2024-04-16 Denso Corporation Rotating electrical machine
JP2021182866A (en) * 2017-12-28 2021-11-25 株式会社デンソー Rotary electric machine
JP7259898B2 (en) 2017-12-28 2023-04-18 株式会社デンソー Rotating electric machine
US11664693B2 (en) 2017-12-28 2023-05-30 Denso Corporation Rotating electrical machine
US11863023B2 (en) 2017-12-28 2024-01-02 Denso Corporation Rotating electrical machine
US11962194B2 (en) 2017-12-28 2024-04-16 Denso Corporation Rotating electric machine
WO2023037794A1 (en) * 2021-09-09 2023-03-16 パナソニックIpマネジメント株式会社 Rotor, motor, and rotor manufacturing method

Also Published As

Publication number Publication date
JPWO2017163383A1 (en) 2018-07-26
JP6526315B2 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
WO2017163383A1 (en) Permanent-magnet electric motor, compressor, and air-conditioner
US10483816B2 (en) Motor, rotor, compressor, and refrigeration and air conditioning apparatus
US11018535B2 (en) Motor, rotor, compressor, and refrigeration and air conditioning apparatus
JP5971669B2 (en) Permanent magnet embedded motor and compressor
JP6942246B2 (en) Rotors, motors, compressors and air conditioners
WO2017179115A1 (en) Electric motor, compressor, and refrigeration cycle device
WO2018179063A1 (en) Rotor, electric motor, compressor, fan, and air conditioning device
JP6526316B2 (en) Rotor, electric motor, compressor, and refrigeration air conditioner
JP6625216B2 (en) Rotor, electric motor, blower, compressor and air conditioner
JP7038827B2 (en) Stator, motor, compressor and air conditioner
CN114503397A (en) Rotor, motor, compressor, and air conditioner
US11888353B2 (en) Motor, compressor, and air conditioner
US20230208223A1 (en) Motor, compressor, and refrigeration cycle apparatus
WO2022208740A1 (en) Motor, compressor, and refrigeration cycle device
JP7256432B1 (en) Rotors, motors, compressors and air conditioners
WO2017216964A1 (en) Rotor, electric motor, and compressor
WO2023112078A1 (en) Stator, motor, compressor, and refrigeration cycle device
JP7154373B2 (en) Electric motors, compressors, and air conditioners
WO2015198444A1 (en) Interior permanent magnet electric motor, compressor, and refrigerating and air-conditioning device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018506716

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895419

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16895419

Country of ref document: EP

Kind code of ref document: A1