JP5518026B2 - Rotor, electric motor equipped with the rotor, compressor equipped with the electric motor, refrigeration cycle apparatus equipped with the compressor, and air conditioner equipped with the refrigeration cycle apparatus - Google Patents

Rotor, electric motor equipped with the rotor, compressor equipped with the electric motor, refrigeration cycle apparatus equipped with the compressor, and air conditioner equipped with the refrigeration cycle apparatus Download PDF

Info

Publication number
JP5518026B2
JP5518026B2 JP2011229736A JP2011229736A JP5518026B2 JP 5518026 B2 JP5518026 B2 JP 5518026B2 JP 2011229736 A JP2011229736 A JP 2011229736A JP 2011229736 A JP2011229736 A JP 2011229736A JP 5518026 B2 JP5518026 B2 JP 5518026B2
Authority
JP
Japan
Prior art keywords
compressor
refrigeration cycle
rotor
cycle apparatus
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011229736A
Other languages
Japanese (ja)
Other versions
JP2013090479A (en
Inventor
直弘 桶谷
和慶 土田
昌弘 仁吾
和彦 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011229736A priority Critical patent/JP5518026B2/en
Publication of JP2013090479A publication Critical patent/JP2013090479A/en
Application granted granted Critical
Publication of JP5518026B2 publication Critical patent/JP5518026B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、回転子、その回転子を備えた電動機、その電動機を備えた圧縮機、その圧縮機を備えた冷凍サイクル装置、およびその冷凍サイクル装置を備えた空気調和機に関する。   The present invention relates to a rotor, an electric motor including the rotor, a compressor including the electric motor, a refrigeration cycle apparatus including the compressor, and an air conditioner including the refrigeration cycle apparatus.

一般に、永久磁石は、高温状態で強い反磁界に曝されると、磁化方向が反転して、減磁、つまり、磁力が弱くなる現象が発生することが知られている。   In general, it is known that when a permanent magnet is exposed to a strong demagnetizing field in a high temperature state, the magnetization direction is reversed and demagnetization, that is, a phenomenon in which the magnetic force is weakened occurs.

回転子鉄心に永久磁石を組み込んだ永久磁石型電動機では、固定子の巻線電流の増加に伴い、永久磁石にかかる反磁界が大きくなり、巻線電流値がある値を超えると、急激に減磁率が上昇する。この現象は、永久磁石の温度が高いほど生じ易く、一旦減磁率が上昇した後に永久磁石の温度を常温に戻しても磁力が回復しない不可逆減磁が生じた場合には、電動機としての性能が著しく劣化することとなる。以下、この永久磁石の温度上昇により生じる減磁を「高温減磁」という。   In a permanent magnet type motor with a permanent magnet built into the rotor core, the demagnetizing field applied to the permanent magnet increases as the stator winding current increases. When the winding current exceeds a certain value, it decreases rapidly. Magnetic susceptibility increases. This phenomenon is more likely to occur as the temperature of the permanent magnet increases.If irreversible demagnetization occurs in which the magnetic force does not recover even if the temperature of the permanent magnet is returned to room temperature after the demagnetization rate has once increased, the performance as a motor is reduced. It will deteriorate significantly. Hereinafter, the demagnetization caused by the temperature rise of the permanent magnet is referred to as “high temperature demagnetization”.

従来、回転子鉄心の外周面に永久磁石を貼り付けた構造の表面磁石型電動機(SPMモータ:Surface Permanent Magnet Motor)において、永久磁石の外周面すなわち固定子に対向した面に一周に亘って形成された幅狭の溝部を回転軸方向に等間隔に複数本設け、この溝部によって永久磁石の表面積を大きくすることにより、永久磁石を冷却し易くし、永久磁石の温度上昇を抑制して、永久磁石の磁気特性の低下を抑制する、つまり、永久磁石の高温減磁を抑制する技術が開示されている(例えば、特許文献1)。   Conventionally, in a surface magnet type motor (SPM motor: Surface Permanent Magnet Motor) having a structure in which a permanent magnet is attached to the outer peripheral surface of a rotor core, it is formed over the outer peripheral surface of the permanent magnet, that is, the surface facing the stator. A plurality of narrow grooves are provided at equal intervals in the rotation axis direction, and the surface area of the permanent magnets is increased by the grooves, thereby facilitating the cooling of the permanent magnets and suppressing the temperature rise of the permanent magnets. A technique for suppressing a decrease in magnetic properties of a magnet, that is, suppressing high temperature demagnetization of a permanent magnet is disclosed (for example, Patent Document 1).

特開2001−078401号公報JP 2001-074011 A

しかしながら、上記従来技術は、表面磁石型電動機に対する技術であり、回転子鉄心の内部に永久磁石を埋め込んだ構造の埋込磁石型電動機(IPMモータ:Interior Permanent Magnet Motor)を含む永久磁石型電動機に対する汎用的な技術ではない。また、永久磁石を冷却すべき流体は永久磁石の表面を軸方向に流れるのに対し、上記従来技術では、永久磁石の周方向に溝部が設けられているため、十分な冷却効果が得られず、永久磁石の高温減磁の抑制効果が小さい、という問題があった。   However, the above prior art is a technique for a surface magnet type electric motor, and for a permanent magnet type electric motor including an interior permanent magnet motor (IPM motor) having a structure in which a permanent magnet is embedded in a rotor core. It is not a general-purpose technology. In addition, the fluid that should cool the permanent magnet flows in the axial direction on the surface of the permanent magnet. On the other hand, in the above-described prior art, since the groove is provided in the circumferential direction of the permanent magnet, a sufficient cooling effect cannot be obtained. There is a problem that the effect of suppressing the high temperature demagnetization of the permanent magnet is small.

本発明は、上記に鑑みてなされたものであって、回転子鉄心の内部に埋め込まれた永久磁石の高温減磁の抑制効果を高めることが可能な回転子を提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a rotor capable of enhancing the effect of suppressing high temperature demagnetization of a permanent magnet embedded in a rotor core.

上述した課題を解決し、目的を達成するため、本発明にかかる回転子は、複数の磁石挿入孔が周方向外周部に沿って等角度間隔で設けられた電磁鋼板を複数枚積層してなる回転子鉄心と、隣り合う前記磁石挿入孔に極性を交互にして挿入され磁極を形成する複数の永久磁石と、を備え、複数の前記磁石挿入孔は、前記永久磁石を挿入した際に、該磁石挿入孔の周方向両端部に空隙が生じるように形成され、前記永久磁石は、前記空隙に露出する周方向両端部の横断面が波状の凹凸形状となるように、軸方向に平行な溝部が形成され、前記空隙を冷媒が通流するための冷媒流路として用いることを特徴とする。   In order to solve the above-described problems and achieve the object, the rotor according to the present invention is formed by laminating a plurality of electromagnetic steel plates in which a plurality of magnet insertion holes are provided at equiangular intervals along the circumferential outer periphery. A rotor iron core and a plurality of permanent magnets that are inserted alternately into the magnet insertion holes adjacent to each other to form magnetic poles, and the plurality of magnet insertion holes, when the permanent magnets are inserted, Grooves are formed in parallel to the axial direction so that a gap is formed at both ends in the circumferential direction of the magnet insertion hole, and the cross section of both ends in the circumferential direction exposed in the gap has a wavy uneven shape. And is used as a refrigerant flow path for the refrigerant to flow through the gap.

本発明によれば、回転子鉄心の内部に埋め込まれた永久磁石の高温減磁の抑制効果を高めることができる、という効果を奏する。   According to the present invention, there is an effect that the effect of suppressing the high temperature demagnetization of the permanent magnet embedded in the rotor core can be enhanced.

図1は、実施の形態にかかる回転子の側面図である。FIG. 1 is a side view of a rotor according to an embodiment. 図2は、実施の形態にかかる回転子の横断面図である。FIG. 2 is a cross-sectional view of the rotor according to the embodiment. 図3は、実施の形態にかかる回転子の磁極部の拡大図である。FIG. 3 is an enlarged view of a magnetic pole portion of the rotor according to the embodiment. 図4は、実施の形態におけるエンドプレートの一形状例を示す図である。FIG. 4 is a diagram illustrating one shape example of the end plate in the embodiment. 図5は、実施の形態にかかる回転子を軸方向に見た図である。FIG. 5 is a diagram in which the rotor according to the embodiment is viewed in the axial direction. 図6は、実施の形態にかかる圧縮機の縦断面図である。FIG. 6 is a longitudinal sectional view of the compressor according to the embodiment. 図7は、実施の形態にかかる冷凍サイクル装置の一構成例を示す図である。FIG. 7 is a diagram illustrating a configuration example of the refrigeration cycle apparatus according to the embodiment.

以下に添付図面を参照し、本発明の実施の形態にかかる回転子、その回転子を備えた電動機、その電動機を備えた圧縮機、その圧縮機を備えた冷凍サイクル装置、およびその冷凍サイクル装置を備えた空気調和機について説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。   Referring to the accompanying drawings below, a rotor according to an embodiment of the present invention, an electric motor including the rotor, a compressor including the electric motor, a refrigeration cycle apparatus including the compressor, and a refrigeration cycle apparatus thereof An air conditioner equipped with the above will be described. In addition, this invention is not limited by embodiment shown below.

実施の形態.
図1は、実施の形態にかかる回転子の側面図である。また、図2は、実施の形態にかかる回転子の横断面図である。本実施の形態では、回転子鉄心の内部に永久磁石を埋め込んだ構造の埋込磁石型電動機(IPMモータ:Interior Permanent Magnet Motor)に適用可能な実施例について説明する。
Embodiment.
FIG. 1 is a side view of a rotor according to an embodiment. FIG. 2 is a cross-sectional view of the rotor according to the embodiment. In the present embodiment, a description will be given of an example applicable to an interior permanent magnet motor (IPM motor) having a structure in which a permanent magnet is embedded in a rotor core.

図1および図2に示すように、実施の形態にかかる回転子1は、薄板(例えば、0.1〜1.0mm程度)の電磁鋼板を所定の形状に金型で打ち抜き、所定数(複数枚)積層して形成された回転子鉄心3の中心部にシャフト挿入孔2aが設けられ、そのシャフト挿入孔2aには、シャフト2が挿通固定されている。また、回転子鉄心3の外周側の軸方向には、周方向外周部に沿って等角度間隔で複数の磁石挿入孔6が設けられ、それらの各磁石挿入孔6には、隣り合う永久磁石5が極性を交互にして挿入されている。さらに、回転子鉄心3には、磁石挿入孔6よりも内側の軸方向には、主たる冷媒流路となる複数の貫通孔7が設けられている。また、回転子1は、固定子鉄心3を軸方向に挟み、永久磁石5を軸方向に固定するエンドプレート4を備えている。なお、貫通孔7の数、位置、および形状は、図2に示す態様以外であってもよい。   As shown in FIG. 1 and FIG. 2, the rotor 1 according to the embodiment is formed by punching a thin plate (for example, about 0.1 to 1.0 mm) of electromagnetic steel sheet into a predetermined shape with a mold, and a predetermined number (multiple pieces). The shaft insertion hole 2a is provided at the center of the rotor core 3 formed by stacking, and the shaft 2 is inserted and fixed in the shaft insertion hole 2a. Further, in the axial direction on the outer peripheral side of the rotor core 3, a plurality of magnet insertion holes 6 are provided at equiangular intervals along the circumferential outer periphery, and adjacent permanent magnets are provided in the respective magnet insertion holes 6. 5 are inserted with alternating polarities. Further, the rotor core 3 is provided with a plurality of through holes 7 serving as main refrigerant flow paths in the axial direction inside the magnet insertion hole 6. The rotor 1 includes an end plate 4 that sandwiches the stator core 3 in the axial direction and fixes the permanent magnet 5 in the axial direction. The number, position, and shape of the through holes 7 may be other than those shown in FIG.

図3は、実施の形態にかかる回転子の磁極部の拡大図である。図3に示すように、磁石挿入孔6は、永久磁石5を挿入した際に、磁石挿入孔6の周方向両端部6aに貫通孔7と同様に冷媒流路となる空隙8が生じるように形成されている。本実施の形態では、この空隙8を冷媒が通流するための冷媒流路として用いる。これにより、永久磁石5の周方向両端部5aが空隙8に露出し、冷媒に直接接触する。この空隙8を低温の冷媒が通流することにより、永久磁石5が冷却される。   FIG. 3 is an enlarged view of a magnetic pole portion of the rotor according to the embodiment. As shown in FIG. 3, the magnet insertion hole 6 is configured such that when the permanent magnet 5 is inserted, a gap 8 is formed in the circumferential direction both ends 6 a of the magnet insertion hole 6 as a refrigerant flow path in the same manner as the through hole 7. Is formed. In the present embodiment, this gap 8 is used as a refrigerant flow path for the refrigerant to flow therethrough. Thereby, the circumferential direction both ends 5a of the permanent magnet 5 are exposed to the space | gap 8, and it contacts a refrigerant | coolant directly. The permanent magnet 5 is cooled by allowing the low-temperature refrigerant to flow through the gap 8.

また、空隙8に露出する永久磁石5の周方向両端部5aは、横断面が波状の凹凸形状となるように、軸方向に平行な溝部が形成されている。これにより、冷媒に接触する永久磁石5の周方向両端部5aの表面積が増し、冷媒の通流を阻害することなく、より効率良く永久磁石5を冷却することができ、永久磁石5の高温減磁の抑制効果を高めることができる。   Further, the circumferentially opposite end portions 5a of the permanent magnet 5 exposed in the gap 8 are formed with groove portions parallel to the axial direction so that the cross section has a wavy uneven shape. As a result, the surface areas of the circumferential end portions 5a of the permanent magnet 5 in contact with the refrigerant are increased, and the permanent magnet 5 can be cooled more efficiently without hindering the flow of the refrigerant. The effect of suppressing magnetism can be enhanced.

図4は、実施の形態におけるエンドプレートの一形状例を示す図である。また、図5は、実施の形態にかかる回転子を軸方向に見た図である。図4および図5に示すように、エンドプレート4は、回転子鉄心3に設けられた複数の各貫通孔7および各空隙8を塞がない形状に加工されている。図4および図5では、回転子鉄心3に設けられた複数の各貫通孔7に対応して穴10を設け、隣り合う永久磁石5の周方向端部5aを含む各磁極間部周辺位置に対応して切り欠き9を設けた例を示している。なお、図4および図5に示すように切り欠き9を設けるのではなく、各空隙8の位置に対応して、空隙8と同数の略同一形状の穴を設けるようにしてもよい。このようにすれば、永久磁石5が欠けた場合でも、その破片が飛散するのを防止することができる。   FIG. 4 is a diagram illustrating one shape example of the end plate in the embodiment. FIG. 5 is a diagram in which the rotor according to the embodiment is viewed in the axial direction. As shown in FIGS. 4 and 5, the end plate 4 is processed into a shape that does not block the plurality of through holes 7 and the gaps 8 provided in the rotor core 3. 4 and 5, holes 10 are provided corresponding to the plurality of through holes 7 provided in the rotor core 3, and are located at positions around each magnetic pole portion including the circumferential end 5 a of the adjacent permanent magnet 5. The example which provided the notch 9 correspondingly is shown. 4 and 5, not only the notches 9 are provided, but the same number of holes having the same number as the gaps 8 may be provided corresponding to the positions of the gaps 8. In this way, even if the permanent magnet 5 is missing, it is possible to prevent the fragments from scattering.

つぎに、本実施の形態にかかる圧縮機の構成について説明する。図6は、実施の形態にかかる密閉型圧縮機の縦断面図である。図6に示すように、実施の形態にかかる圧縮機11は、有底円筒状で上部開口部が蓋体によって閉塞された密閉容器19の内部に、電動機21と、この電動機21により駆動される圧縮機構20とが設置されており、密閉容器19内の底部には、主として圧縮機構20の摺動部(図示せず)を潤滑する冷凍機油(図示せず)が貯留されている。   Next, the configuration of the compressor according to the present embodiment will be described. FIG. 6 is a longitudinal sectional view of the hermetic compressor according to the embodiment. As shown in FIG. 6, the compressor 11 according to the embodiment is driven by an electric motor 21 and an electric motor 21 inside a sealed container 19 having a bottomed cylindrical shape and an upper opening closed by a lid. A compression mechanism 20 is installed, and a refrigerating machine oil (not shown) for lubricating a sliding portion (not shown) of the compression mechanism 20 is mainly stored in the bottom of the sealed container 19.

電動機21は、密閉容器2の上部に固定された固定子22と、中心部にシャフト2が挿通固定され、固定子22の内周面に回転自在に配置された実施の形態にかかる回転子1とを備えている。   The electric motor 21 includes a stator 22 fixed to the upper part of the hermetic container 2 and a rotor 1 according to the embodiment in which the shaft 2 is inserted and fixed in the center, and is rotatably disposed on the inner peripheral surface of the stator 22. And.

つぎに、本実施の形態にかかる冷凍サイクル装置の構成および動作について説明する。図7は、実施の形態にかかる冷凍サイクル装置の一構成例を示す図である。なお、図7に示す本実施の形態にかかる冷凍サイクル装置は、例えば、空気調和機に用いて好適である。   Next, the configuration and operation of the refrigeration cycle apparatus according to the present embodiment will be described. FIG. 7 is a diagram illustrating a configuration example of the refrigeration cycle apparatus according to the embodiment. Note that the refrigeration cycle apparatus according to the present embodiment shown in FIG. 7 is suitable for use in an air conditioner, for example.

図7に示すように、実施の形態にかかる冷凍サイクル装置は、実施の形態にかかる圧縮機11、凝縮器12、減圧装置13、蒸発器14、温度センサ15、バイパス回路(液インジェクション回路)16、および制御回路25を備えている。バイパス回路16は、凝縮器12の液冷媒吐出口と密閉型圧縮機11のガス吸入口との間に減圧装置17と開閉弁18とが直列に接続され構成されている。温度センサ15は、圧縮機11のガス吐出口付近に設けられ、ガス吐出口に流れる冷媒の温度を検出する。また、制御回路25は、温度センサ15の検出結果に基づいて、開閉弁18を制御する。   As shown in FIG. 7, the refrigeration cycle apparatus according to the embodiment includes a compressor 11, a condenser 12, a decompressor 13, an evaporator 14, a temperature sensor 15, and a bypass circuit (liquid injection circuit) 16 according to the embodiment. And a control circuit 25. The bypass circuit 16 is configured by connecting a pressure reducing device 17 and an on-off valve 18 in series between a liquid refrigerant discharge port of the condenser 12 and a gas suction port of the hermetic compressor 11. The temperature sensor 15 is provided in the vicinity of the gas discharge port of the compressor 11 and detects the temperature of the refrigerant flowing through the gas discharge port. The control circuit 25 controls the on-off valve 18 based on the detection result of the temperature sensor 15.

まず、実施の形態にかかる冷凍サイクル装置の通常の運転時における動作について、図2、図3、図6および図7を参照して説明する。冷凍サイクル装置の通常の運転時では、図6に示すように、圧縮機11、凝縮器12、減圧装置13、蒸発器14の順に冷媒が循環し、再び圧縮機11に戻る冷凍サイクルを行う。   First, the operation | movement at the time of the normal driving | operation of the refrigerating-cycle apparatus concerning embodiment is demonstrated with reference to FIG.2, FIG.3, FIG.6 and FIG. During normal operation of the refrigeration cycle apparatus, as shown in FIG. 6, a refrigeration cycle in which the refrigerant circulates in the order of the compressor 11, the condenser 12, the decompression device 13, and the evaporator 14 and returns to the compressor 11 again is performed.

圧縮機11において圧縮された高温高圧の冷媒ガスは、凝縮器12において空気と熱交換して凝縮して液冷媒となる。液冷媒は、減圧装置13において膨張して低温低圧の冷媒ガスとなり、蒸発器14において空気と熱交換して蒸発して再び圧縮機11において圧縮され、高温高圧の冷媒ガスとなる。   The high-temperature and high-pressure refrigerant gas compressed in the compressor 11 is condensed by exchanging heat with air in the condenser 12 to become a liquid refrigerant. The liquid refrigerant expands in the decompression device 13 to become a low-temperature and low-pressure refrigerant gas, evaporates by exchanging heat with air in the evaporator 14 and is compressed again in the compressor 11 to become a high-temperature and high-pressure refrigerant gas.

圧縮機11内部において、冷媒ガスは、図6中の点線矢印で示す経路で流れる。冷媒吸入管23を介して圧縮機11のガス吸入口から吸入された低温低圧の冷媒ガスは、電動機21により駆動される圧縮機構20により圧縮される。こうして高温高圧となった冷媒ガスは、図2および図3において説明した回転子鉄心3の複数の各貫通孔7および各空隙8を通過して、ガス吐出口から冷媒吐出管24を介して吐出される。   Inside the compressor 11, the refrigerant gas flows along a path indicated by a dotted arrow in FIG. 6. The low-temperature and low-pressure refrigerant gas sucked from the gas suction port of the compressor 11 through the refrigerant suction pipe 23 is compressed by the compression mechanism 20 driven by the electric motor 21. The refrigerant gas that has become high temperature and pressure in this manner passes through the plurality of through holes 7 and the gaps 8 of the rotor core 3 described in FIGS. 2 and 3 and is discharged from the gas discharge port through the refrigerant discharge pipe 24. Is done.

つぎに、何らかの要因により圧縮機11のガス吐出口から吐出される冷媒ガスの温度が異常上昇した場合の動作について、図2、図3、図6および図7を参照して説明する。この場合には、バイパス回路16により凝縮器12の液冷媒吐出口と圧縮機11のガス吸入口との間をバイパスさせ、図6中の実線矢印で示す経路で冷媒を循環させることにより、低温の液冷媒を圧縮機11に直接注入させる。これにより、圧縮機11内部の冷媒温度が急激に低下し、その温度が低下した冷媒が回転子鉄心3の複数の貫通孔7および空隙8を通過する。本実施の形態では、温度が低下した冷媒が空隙8を通過する際に、空隙8に露出した永久磁石5に直接接触するため、効率良く永久磁石5を冷却することができる。   Next, an operation when the temperature of the refrigerant gas discharged from the gas discharge port of the compressor 11 abnormally rises due to some factor will be described with reference to FIGS. 2, 3, 6 and 7. In this case, the bypass circuit 16 bypasses the liquid refrigerant discharge port of the condenser 12 and the gas suction port of the compressor 11 and circulates the refrigerant along the path indicated by the solid line arrow in FIG. The liquid refrigerant is directly injected into the compressor 11. Thereby, the refrigerant temperature inside the compressor 11 rapidly decreases, and the refrigerant whose temperature has decreased passes through the plurality of through holes 7 and the gaps 8 of the rotor core 3. In the present embodiment, when the refrigerant whose temperature has decreased passes through the gap 8, it directly contacts the permanent magnet 5 exposed in the gap 8, so that the permanent magnet 5 can be efficiently cooled.

より具体的には、回転子1に埋設された永久磁石5の温度と、圧縮機11のガス吐出口付近に設けられた温度センサ15で検出される冷媒ガスの温度との間には相関関係があるので、温度センサ15による検出温度に対して、あらかじめ永久磁石5が高温減磁しない上限温度よりも低い所定温度を閾値として設定しておき、温度センサ15による検出温度がその所定の閾値を超えないように、制御回路25が開閉弁18を制御するようにすればよい。あるいは、温度センサ15で検出される冷媒ガスの温度が上述した所定温度を超えた場合に、開閉弁18を開制御するようにしてもよい。   More specifically, there is a correlation between the temperature of the permanent magnet 5 embedded in the rotor 1 and the temperature of the refrigerant gas detected by the temperature sensor 15 provided near the gas discharge port of the compressor 11. Therefore, a predetermined temperature lower than the upper limit temperature at which the permanent magnet 5 is not demagnetized at high temperature is set as a threshold in advance with respect to the temperature detected by the temperature sensor 15, and the temperature detected by the temperature sensor 15 is set to the predetermined threshold. What is necessary is just to make it the control circuit 25 control the on-off valve 18 so that it may not exceed. Alternatively, the opening / closing valve 18 may be controlled to open when the temperature of the refrigerant gas detected by the temperature sensor 15 exceeds the predetermined temperature described above.

以上説明したように、実施の形態の回転子、その回転子を備えた電動機、その電動機を備えた圧縮機、その圧縮機を備えた冷凍サイクル装置、およびその冷凍サイクル装置を備えた空気調和機によれば、磁石挿入孔に永久磁石を挿入した際に、磁石挿入孔の周方向両端部に空隙が生じるように磁石挿入孔を形成し、その空隙を冷媒が通流するための冷媒流路として用いるようにしたので、冷凍サイクル装置に凝縮器の液冷媒吐出口と圧縮機のガス吸入口との間をバイパスするバイパス回路を設け、永久磁石の温度が異常上昇した場合に、バイパス回路により低温の液冷媒を圧縮機に直接注入することにより、磁石挿入孔の周方向両端部に生じた空隙を通り、その空隙に露出した永久磁石の表面に直接接触するため、効率良く永久磁石を冷却することができ、永久磁石の高温減磁の抑制効果を高めることができる。また、回転子鉄心の内部に永久磁石を埋め込んだ構造の埋込磁石型電動機(IPMモータ:Interior Permanent Magnet Motor)に適用することができる。   As described above, the rotor according to the embodiment, the electric motor including the rotor, the compressor including the electric motor, the refrigeration cycle apparatus including the compressor, and the air conditioner including the refrigeration cycle apparatus According to the present invention, when the permanent magnet is inserted into the magnet insertion hole, the magnet insertion hole is formed so that a gap is formed at both circumferential ends of the magnet insertion hole, and the refrigerant flow path for allowing the refrigerant to flow through the gap Since the refrigeration cycle apparatus is provided with a bypass circuit that bypasses between the liquid refrigerant discharge port of the condenser and the gas suction port of the compressor, when the temperature of the permanent magnet rises abnormally, By injecting low-temperature liquid refrigerant directly into the compressor, it passes through the gaps at both ends in the circumferential direction of the magnet insertion holes and directly contacts the surface of the permanent magnet exposed in the gaps. You It can, it is possible to enhance the effect of suppressing the high temperature demagnetization of the permanent magnet. Further, the present invention can be applied to an embedded magnet type electric motor (IPM motor: Interior Permanent Magnet Motor) having a structure in which a permanent magnet is embedded in a rotor core.

また、空隙に露出する永久磁石の周方向両端部の横断面が波状の凹凸形状となるように、軸方向に平行な溝部を形成したので、冷媒に接触する永久磁石の表面積が増し、冷媒の通流を阻害することなく、より効率良く永久磁石を冷却することができる。   In addition, since the grooves parallel to the axial direction are formed so that the cross-sections at both ends in the circumferential direction of the permanent magnet exposed in the air gap are wavy uneven, the surface area of the permanent magnet in contact with the refrigerant increases, The permanent magnet can be cooled more efficiently without hindering the flow.

また、回転子鉄心に設けられた複数の各貫通孔および各空隙を塞がないように、隣り合う永久磁石の周方向端部を含む各磁極間部周辺位置に対応して切り欠かれた形状に加工され、回転子鉄心を軸方向に挟むエンドプレートを備えることにより、貫通孔および空隙に流れる冷媒の流れを妨げることなく、回転子鉄心に埋設された永久磁石が軸方向に動くのを防止することができる。   Also, a shape that is cut out corresponding to the position around each magnetic pole part including the circumferential end of the adjacent permanent magnet so as not to block the plurality of through holes and the gaps provided in the rotor core This prevents the permanent magnets embedded in the rotor core from moving in the axial direction without interfering with the flow of the refrigerant flowing through the through holes and gaps. can do.

あるいは、回転子鉄心に設けられた複数の各貫通孔および各空隙の位置に対応して、貫通孔および空隙の形状と略同一形状の穴をエンドプレートに設けることにより、永久磁石が欠けた場合でも、その破片が飛散するのを防止することができる。   Alternatively, if permanent magnets are missing by providing holes in the end plate that have substantially the same shape as the through-holes and gaps corresponding to the positions of the multiple through-holes and gaps provided in the rotor core However, it is possible to prevent the fragments from scattering.

また、永久磁石の高温減磁の抑制効果を高めることにより、固定子の巻線電流をより増加させることが可能となるので、電動機の高出力化を図ることができる。   Further, by increasing the effect of suppressing the high temperature demagnetization of the permanent magnet, it becomes possible to further increase the winding current of the stator, so that the output of the motor can be increased.

また、従来の電動機と同等な出力を得る場合には、保磁力のより小さい永久磁石を採用する、あるいは、永久磁石をより薄く設計することにより、コストの低減を図ることが可能となる。   In addition, in order to obtain an output equivalent to that of a conventional electric motor, it is possible to reduce the cost by adopting a permanent magnet having a smaller coercive force or designing a thinner permanent magnet.

なお、上述した実施の形態では、永久磁石の周方向両端部に形成する溝部の具体的位置、横断面形状、および寸法等の詳細仕様は、電動機の性能に与える影響や、生産性、コスト、強度等を総合的に判断して決めればよい。図3において説明した例では、空隙に露出する永久磁石の周方向両端部に溝部を形成するものとして説明したが、空隙に露出する永久磁石の周方向両端部の一部あるいは全部に溝部を形成してもよい。例えば、永久磁石の磁界に対して垂直な面、つまり、軸側の面あるいは外周側の面は空隙に露出させず、隣接する永久磁石に対向する面のみ空隙に露出するように磁石挿入孔を形成して、その隣接する永久磁石に対向する面のみに溝部を形成するようにしてもよい。このようにすれば、永久磁石により電動機に発生するトルク力への影響を小さくすることができる。   In the above-described embodiment, the detailed specifications such as the specific position, the cross-sectional shape, and the dimensions of the groove portions formed at both ends in the circumferential direction of the permanent magnet affect the performance of the motor, productivity, cost, It may be determined by comprehensively judging the strength and the like. In the example described with reference to FIG. 3, it has been described that grooves are formed at both ends in the circumferential direction of the permanent magnet exposed in the gap. However, grooves are formed in part or all of the circumferential ends of the permanent magnet exposed in the gap. May be. For example, the surface perpendicular to the magnetic field of the permanent magnet, that is, the surface on the shaft side or the outer peripheral side is not exposed to the air gap, and only the surface facing the adjacent permanent magnet is exposed to the air gap. Alternatively, the groove may be formed only on the surface facing the adjacent permanent magnet. In this way, the influence on the torque force generated in the electric motor by the permanent magnet can be reduced.

なお、以上の実施の形態に示した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは言うまでもない。   Note that the configuration shown in the above embodiment is an example of the configuration of the present invention, and can be combined with another known technique, and a part thereof is omitted without departing from the gist of the present invention. Needless to say, it is possible to change the configuration.

1 回転子
2 シャフト
2a シャフト挿入孔
3 回転子鉄心
4 エンドプレート
5 永久磁石
5a 永久磁石の周方向両端部
6 磁石挿入孔
6a 磁石挿入孔の周方向両端部
7 貫通孔
8 空隙
9 切り欠き
10 穴
11 圧縮機
12 凝縮器
13 減圧装置
14 蒸発器
15 温度センサ
16 バイパス回路(液インジェクション回路)
17 減圧装置
18 開閉弁
19 密閉容器
20 圧縮機構
21 電動機
22 固定子
23 冷媒吸入管
24 冷媒吐出管
25 制御回路
DESCRIPTION OF SYMBOLS 1 Rotor 2 Shaft 2a Shaft insertion hole 3 Rotor core 4 End plate 5 Permanent magnet 5a Both ends of the permanent magnet in the circumferential direction 6 Magnet insertion hole 6a Both ends in the circumferential direction of the magnet insertion hole 7 Through hole 8 Gap 9 Notch 10 Hole DESCRIPTION OF SYMBOLS 11 Compressor 12 Condenser 13 Depressurizer 14 Evaporator 15 Temperature sensor 16 Bypass circuit (liquid injection circuit)
DESCRIPTION OF SYMBOLS 17 Pressure reducing device 18 On-off valve 19 Sealed container 20 Compression mechanism 21 Electric motor 22 Stator 23 Refrigerant suction pipe 24 Refrigerant discharge pipe 25 Control circuit

Claims (11)

複数の磁石挿入孔が周方向外周部に沿って等角度間隔で設けられた電磁鋼板を複数枚積層してなる回転子鉄心と、
隣り合う前記磁石挿入孔に極性を交互にして挿入され磁極を形成する複数の永久磁石と、
を備え、
複数の前記磁石挿入孔は、前記永久磁石を挿入した際に、該磁石挿入孔の周方向両端部に空隙が生じるように形成され、
前記永久磁石は、前記空隙に露出する周方向両端部の横断面が波状の凹凸形状となるように、軸方向に平行な溝部が形成され、
前記空隙を冷媒が通流するための冷媒流路として用いることを特徴とする回転子。
A rotor core formed by laminating a plurality of electromagnetic steel plates each having a plurality of magnet insertion holes provided at equiangular intervals along the circumferential outer periphery;
A plurality of permanent magnets that are inserted alternately into the magnet insertion holes adjacent to each other to form magnetic poles;
With
The plurality of magnet insertion holes are formed such that gaps are generated at both ends in the circumferential direction of the magnet insertion holes when the permanent magnet is inserted,
The permanent magnet is formed with a groove portion parallel to the axial direction so that the cross sections of both end portions in the circumferential direction exposed in the air gap have a wavy uneven shape,
A rotor characterized by being used as a refrigerant flow path for allowing refrigerant to flow through the gap.
前記各空隙を塞がないように加工され、前記回転子鉄心を軸方向に挟むエンドプレートを備えることを特徴とする請求項1に記載の回転子。   The rotor according to claim 1, further comprising an end plate that is processed so as not to block each of the gaps and sandwiches the rotor core in an axial direction. 前記エンドプレートは、隣り合う前記永久磁石の周方向端部を含む各磁極間部周辺位置に対応して切り欠かれたことを特徴とする請求項2に記載の回転子。   3. The rotor according to claim 2, wherein the end plate is cut out corresponding to a position around each magnetic pole portion including a circumferential end portion of the adjacent permanent magnets. 前記エンドプレートは、前記各空隙の位置に対応して、該各空隙と略同一形状の穴が設けられたことを特徴とする請求項2に記載の回転子。   The rotor according to claim 2, wherein the end plate is provided with a hole having substantially the same shape as each gap corresponding to the position of each gap. 請求項1〜4のいずれか一項に記載の回転子を備えたことを特徴とする電動機。   An electric motor comprising the rotor according to any one of claims 1 to 4. 請求項5に記載の電動機と、
該電動機により駆動される圧縮機構と、
を備えることを特徴とする圧縮機。
An electric motor according to claim 5;
A compression mechanism driven by the electric motor;
A compressor comprising:
圧縮機、凝縮器、減圧装置、および蒸発器により冷凍サイクルを行う冷凍サイクル装置であって、
請求項6に記載の圧縮機を備え、
前記永久磁石の温度が異常上昇した場合に、前記凝縮器の液冷媒吐出口と前記密閉型圧縮機のガス吸入口との間をバイパスして低温の液冷媒を前記圧縮機に直接注入することを特徴とする冷凍サイクル装置。
A refrigeration cycle apparatus that performs a refrigeration cycle by a compressor, a condenser, a decompression device, and an evaporator,
A compressor according to claim 6,
When the temperature of the permanent magnet rises abnormally, a low-temperature liquid refrigerant is directly injected into the compressor, bypassing between the liquid refrigerant discharge port of the condenser and the gas suction port of the hermetic compressor. A refrigeration cycle apparatus characterized by.
前記圧縮機のガス吐出口の温度を検出する温度センサと、
前記凝縮器の液冷媒吐出口と前記密閉型圧縮機のガス吸入口との間に減圧装置と開閉弁とが直列に接続され構成されたバイパス回路と、
前記温度センサの検出温度に基づいて、前記開閉弁を制御する制御回路と、
を備えることを特徴とする請求項7に記載の冷凍サイクル装置。
A temperature sensor for detecting the temperature of the gas outlet of the compressor;
A bypass circuit configured by connecting a pressure reducing device and an on-off valve in series between a liquid refrigerant discharge port of the condenser and a gas suction port of the hermetic compressor;
A control circuit for controlling the on-off valve based on a temperature detected by the temperature sensor;
The refrigeration cycle apparatus according to claim 7, comprising:
前記制御回路は、前記温度センサの検出温度があらかじめ設定した所定温度を超えないように、前記開閉弁を制御することを特徴とする請求項8に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 8, wherein the control circuit controls the on-off valve so that a temperature detected by the temperature sensor does not exceed a predetermined temperature set in advance. 前記制御回路は、前記温度センサの検出温度があらかじめ設定した所定温度を超えた場合に、前記開閉弁を開状態に制御することを特徴とする請求項8に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 8, wherein the control circuit controls the on-off valve to be in an open state when a temperature detected by the temperature sensor exceeds a predetermined temperature set in advance. 請求項7〜10のいずれか一項に記載の冷凍サイクル装置を備えることを特徴とする空気調和機。   An air conditioner comprising the refrigeration cycle apparatus according to any one of claims 7 to 10.
JP2011229736A 2011-10-19 2011-10-19 Rotor, electric motor equipped with the rotor, compressor equipped with the electric motor, refrigeration cycle apparatus equipped with the compressor, and air conditioner equipped with the refrigeration cycle apparatus Active JP5518026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011229736A JP5518026B2 (en) 2011-10-19 2011-10-19 Rotor, electric motor equipped with the rotor, compressor equipped with the electric motor, refrigeration cycle apparatus equipped with the compressor, and air conditioner equipped with the refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011229736A JP5518026B2 (en) 2011-10-19 2011-10-19 Rotor, electric motor equipped with the rotor, compressor equipped with the electric motor, refrigeration cycle apparatus equipped with the compressor, and air conditioner equipped with the refrigeration cycle apparatus

Publications (2)

Publication Number Publication Date
JP2013090479A JP2013090479A (en) 2013-05-13
JP5518026B2 true JP5518026B2 (en) 2014-06-11

Family

ID=48533878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011229736A Active JP5518026B2 (en) 2011-10-19 2011-10-19 Rotor, electric motor equipped with the rotor, compressor equipped with the electric motor, refrigeration cycle apparatus equipped with the compressor, and air conditioner equipped with the refrigeration cycle apparatus

Country Status (1)

Country Link
JP (1) JP5518026B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10879760B2 (en) 2015-06-17 2020-12-29 Mitsubishi Electric Corporation Permanent-magnet-embedded electric motor for compressor, compressor, and refrigeration cycle device
JP6428586B2 (en) * 2015-12-04 2018-11-28 三菱電機株式会社 Rotating electric machine
WO2018061768A1 (en) * 2016-09-29 2018-04-05 三菱電機株式会社 Rotor, rotary motor, and compressor
JP7090605B2 (en) * 2017-05-25 2022-06-24 三菱電機株式会社 Motors, compressors and air conditioners
CN110875659A (en) * 2018-08-30 2020-03-10 广东美芝制冷设备有限公司 Rotary motor rotor, motor and compressor
JP7210326B2 (en) * 2019-02-27 2023-01-23 株式会社東芝 Rotating electric machine
JP7294124B2 (en) 2019-12-26 2023-06-20 株式会社豊田自動織機 electric compressor
CN112467908B (en) * 2020-11-30 2021-10-22 安徽美芝精密制造有限公司 Rotor punching sheet, rotor, motor, compressor and refrigeration equipment

Also Published As

Publication number Publication date
JP2013090479A (en) 2013-05-13

Similar Documents

Publication Publication Date Title
JP5518026B2 (en) Rotor, electric motor equipped with the rotor, compressor equipped with the electric motor, refrigeration cycle apparatus equipped with the compressor, and air conditioner equipped with the refrigeration cycle apparatus
JP5579149B2 (en) Hermetic compressor, refrigeration cycle apparatus including the hermetic compressor, and air conditioner including the refrigeration cycle apparatus
US10103588B2 (en) Permanent magnet-embedded electric motor, compressor, and refrigerating and air-conditioning device
US10284030B2 (en) Permanent magnet embedded electric motor, compressor, and a refrigerating and air conditioning device
CN108352737B (en) Motor, rotor, compressor, and refrigeration and air-conditioning apparatus
JP6452841B2 (en) Electric motor, rotor, compressor and refrigeration air conditioner
KR20180040662A (en) Permanent magnet embedded type electric motor, compressor and refrigeration air-conditioning device
JP6351732B2 (en) Compressor motor, refrigeration cycle equipment
US20160190880A1 (en) Motor with permanent magnet embedded therein, and compressor
US10116176B2 (en) Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
JP6689449B2 (en) Rotors, electric motors, compressors, blowers, and air conditioners
US9793769B2 (en) Interior permanent magnet motor, and compressor
CN108781008B (en) Rotor, motor, compressor, and refrigeration air conditioner
CN107534334B (en) Rotor, motor, compressor and refrigerating and air-conditioning
CN114503397A (en) Rotor, motor, compressor, and air conditioner
JP7345633B2 (en) Rotors, electric motors, compressors, refrigeration cycle equipment, and air conditioning equipment
JP2017209014A (en) Compressor, refrigeration cycle device and air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5518026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250