JP2013093373A - Film calcination apparatus and film calcination method - Google Patents

Film calcination apparatus and film calcination method Download PDF

Info

Publication number
JP2013093373A
JP2013093373A JP2011233103A JP2011233103A JP2013093373A JP 2013093373 A JP2013093373 A JP 2013093373A JP 2011233103 A JP2011233103 A JP 2011233103A JP 2011233103 A JP2011233103 A JP 2011233103A JP 2013093373 A JP2013093373 A JP 2013093373A
Authority
JP
Japan
Prior art keywords
substrate
film
coating film
electrode
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011233103A
Other languages
Japanese (ja)
Inventor
Yukihiro Wakamoto
幸浩 若元
Takashi Iwahashi
崇 岩橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2011233103A priority Critical patent/JP2013093373A/en
Priority to PCT/JP2012/076894 priority patent/WO2013061854A1/en
Priority to TW101139324A priority patent/TW201327898A/en
Publication of JP2013093373A publication Critical patent/JP2013093373A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/14Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To control diffusion of ions into a coating film, in a film calcination apparatus which forms a predetermined functional film by calcining a coating film formed on a processed substrate.SOLUTION: A heating unit 2 comprises a heating means 25 for heating a processed substrate G, a pair of electrodes 22, 24 formed with dimensions larger than those of the processed substrate and holding the substrate from both sides thereof, and a charging means 5 for applying a predetermined voltage between the pair of electrodes at least when the substrate is heated by the heating means, and charging one electrode with positive charges and the other electrode with negative charges.

Description

本発明は、被処理基板に塗布形成された塗布膜を焼成し、所定の機能膜を形成する膜焼成装置及び膜焼成方法に関し、特に前記基板から塗布膜中へのイオンの拡散を制御することのできる膜焼成装置及び膜焼成方法に関する。   The present invention relates to a film baking apparatus and a film baking method for baking a coating film formed on a substrate to be processed to form a predetermined functional film, and in particular, controlling diffusion of ions from the substrate into the coating film. The present invention relates to a film baking apparatus and a film baking method.

太陽電池は、n型シリコンとp型シリコンとが積層された半導体構造を有し、この半導体に所定波長の光が当たると、光電効果により電気が発生する。この太陽電池は、太陽光などの光を効率よく吸収するために、通常、そのパネル(太陽電池パネルと呼ぶ)の受光面を反射防止膜で被覆している。
従来から太陽電池パネルに反射防止膜を形成する方法としては、例えば、特許文献1に開示されるように、プラズマCVD法により水素を含有する窒化シリコン膜を前記パネルに形成する技術などが知られている。
A solar cell has a semiconductor structure in which n-type silicon and p-type silicon are stacked, and when light of a predetermined wavelength hits the semiconductor, electricity is generated by a photoelectric effect. In this solar cell, in order to efficiently absorb light such as sunlight, the light receiving surface of the panel (referred to as a solar cell panel) is usually covered with an antireflection film.
Conventionally, as a method of forming an antireflection film on a solar cell panel, for example, as disclosed in Patent Document 1, a technique of forming a silicon nitride film containing hydrogen on the panel by plasma CVD is known. ing.

特開2005−340358号公報JP 2005-340358 A

しかしながら、プラズマCVD法により反射防止膜を形成する場合、真空排気設備が必要になるなど、設備が大規模になるため、コストが嵩張るという課題がある。
前記課題を解決するものとして、所定の塗布液を太陽電池パネルに塗布し、塗布膜を焼成することにより反射防止膜を形成する方法がある。この方法によれば、真空環境でなくともパネル上に反射防止膜を形成することができ、コストを低減することができる。
However, when the antireflection film is formed by the plasma CVD method, there is a problem that the cost becomes bulky because the facility becomes large-scale, for example, an evacuation facility is required.
As a solution to the above-described problem, there is a method of forming an antireflection film by applying a predetermined coating solution to a solar cell panel and baking the coating film. According to this method, the antireflection film can be formed on the panel even in a vacuum environment, and the cost can be reduced.

しかしながら、図7(a)に示すように、例えばソーダライムガラスからなるガラス基板50上に塗布膜51を形成し、それを加熱して焼成する場合、熱によりガラス基板50からイオン52(例えばプラスイオン)が塗布膜51中に拡散する。そして、図7(b)に示すように、膜中に拡散したイオン52が塗布膜51の水分53と結合し、塗布膜51中に強アルカリ性物質54(例えば、NaOH)が発生する虞があった。
その場合、焼成された反射防止膜中に多量の強アルカリ性物質54が存在することによって、反射防止膜の機能が劣化するという課題があった。
However, as shown in FIG. 7A, when a coating film 51 is formed on a glass substrate 50 made of, for example, soda lime glass and then heated and baked, ions 52 (for example, plus) are generated from the glass substrate 50 by heat. Ions) diffuse into the coating film 51. Then, as shown in FIG. 7B, ions 52 diffused in the film may be combined with moisture 53 of the coating film 51, and a strong alkaline substance 54 (for example, NaOH) may be generated in the coating film 51. It was.
In that case, there is a problem that the function of the antireflection film deteriorates due to the presence of a large amount of the strong alkaline substance 54 in the fired antireflection film.

本発明は、上記のような従来技術の問題点に鑑みてなされたものであり、被処理基板に形成された塗布膜を焼成し、所定の機能膜を形成する膜焼成装置において、塗布膜中へのイオンの拡散を制御することのできる膜焼成装置及び膜焼成方法を提供する。   The present invention has been made in view of the above-described problems of the prior art, and in a film baking apparatus for baking a coating film formed on a substrate to be processed to form a predetermined functional film, Provided are a film baking apparatus and a film baking method capable of controlling ion diffusion into the film.

前記した課題を解決するために、本発明に係る膜焼成装置は、被処理基板に塗布形成された塗布膜を焼成する加熱ユニットを具備し、前記加熱ユニットによる前記塗布膜の焼成により前記基板上に所定の機能膜を形成する膜焼成装置であって、前記加熱ユニットは、前記被処理基板を加熱する加熱手段と、前記被処理基板よりも大きい寸法に形成され、前記基板を、その両面側から挟み込む一対の電極と、少なくとも前記加熱手段により前記基板が加熱される間、前記一対の電極間に所定の電圧を印加し、一方の電極を正の電荷で帯電させ、他方の電極を負の電荷で帯電させる帯電手段とを備えることに特徴を有する。
また、前記加熱ユニットによる前記塗布膜の焼成前に、前記被処理基板に塗布形成された塗布膜から溶媒を蒸発促進させる乾燥手段を有する乾燥ユニットを具備し、前記乾燥ユニットは、前記被処理基板よりも大きい寸法に形成され、前記基板を、その両面側から挟み込む一対の電極と、少なくとも前記乾燥手段により前記基板上の塗布膜が乾燥処理される間、前記一対の電極間に所定の電圧を印加し、一方の電極を正の電荷で帯電させ、他方の電極を負の電荷で帯電させる帯電手段とを備えることが望ましい。
また、前記加熱ユニットによる前記塗布膜の焼成後に、前記被処理基板を所定温度に冷却する冷却手段を有する冷却ユニットを具備し、前記冷却ユニットは、前記被処理基板よりも大きい寸法に形成され、前記基板を、その両面側から挟み込む一対の電極と、少なくとも前記冷却手段により前記基板が冷却処理される間、前記一対の電極間に所定の電圧を印加し、一方の電極を正の電荷で帯電させ、他方の電極を負の電荷で帯電させる帯電手段とを備えることが望ましい。
In order to solve the above-described problems, a film baking apparatus according to the present invention includes a heating unit for baking a coating film formed on a substrate to be processed, and the coating film is baked on the substrate by the heating unit. A film baking apparatus for forming a predetermined functional film, wherein the heating unit is formed with a heating means for heating the substrate to be processed and a size larger than the substrate to be processed, and the substrate is disposed on both sides thereof. A predetermined voltage is applied between the pair of electrodes sandwiched from and at least the pair of electrodes while the substrate is heated by the heating means, and one electrode is charged with a positive charge, and the other electrode is negative And charging means for charging with an electric charge.
The heating unit further includes a drying unit having drying means for promoting evaporation of the solvent from the coating film formed on the substrate to be processed before the coating film is baked by the heating unit, and the drying unit includes the substrate to be processed. A pair of electrodes sandwiching the substrate from both sides thereof, and at least a predetermined voltage is applied between the pair of electrodes while the coating film on the substrate is dried by the drying means. It is desirable to provide charging means for applying and charging one electrode with a positive charge and charging the other electrode with a negative charge.
In addition, after firing the coating film by the heating unit, comprising a cooling unit having a cooling means for cooling the substrate to be processed to a predetermined temperature, the cooling unit is formed in a size larger than the substrate to be processed, A pair of electrodes sandwiching the substrate from both sides thereof and at least a predetermined voltage is applied between the pair of electrodes while the substrate is cooled by the cooling means, and one electrode is charged with a positive charge. And charging means for charging the other electrode with a negative charge.

このように構成することにより、例えば、被処理基板から生じたプラスイオンの塗布膜への拡散を抑制し、塗布膜中の強アルカリ性物質等の発生を防止することができる。その結果、塗布膜の焼成後に形成された機能膜の機能低下を防止することができる。
また、被処理基板を挟む一対の電極の帯電量、或いは帯電極性を調整することにより、塗布膜へのイオンの拡散量を制御することができ、所望の性質を有する機能膜を得ることができる。
With this configuration, for example, diffusion of positive ions generated from the substrate to be processed into the coating film can be suppressed, and generation of strong alkaline substances or the like in the coating film can be prevented. As a result, it is possible to prevent functional degradation of the functional film formed after baking the coating film.
Further, by adjusting the charge amount or the charge polarity of the pair of electrodes sandwiching the substrate to be processed, the amount of ion diffusion into the coating film can be controlled, and a functional film having desired properties can be obtained. .

また、前記した課題を解決するために、本発明に係る膜焼成方法は、被処理基板に塗布形成された塗布膜を加熱処理することにより前記塗布膜を焼成し、前記基板上に所定の機能膜を形成する膜焼成方法であって、少なくとも前記加熱処理の間、前記被処理基板よりも大きい寸法に形成された一対の電極により、前記基板を、その両面側から挟み込むステップと、前記一対の電極間に所定の電圧を印加し、一方の電極を正の電荷で帯電させ、他方の電極を負の電荷で帯電させるステップとを実施することに特徴を有する。
また、前記被処理基板に塗布形成された塗布膜を加熱処理する前に、前記塗布膜から溶媒を蒸発促進させる乾燥処理を行い、少なくとも前記乾燥処理の間、前記被処理基板よりも大きい寸法に形成された一対の電極により、前記基板を、その両面側から挟み込むステップと、前記一対の電極間に所定の電圧を印加し、一方の電極を正の電荷で帯電させ、他方の電極を負の電荷で帯電させるステップとを実施することが望ましい。
また、前記被処理基板に塗布形成された塗布膜を加熱処理した後に、前記被処理基板を所定温度まで冷却する冷却処理を行い、少なくとも前記冷却処理の間、前記被処理基板よりも大きい寸法に形成された一対の電極により、前記基板を、その両面側から挟み込むステップと、前記一対の電極間に所定の電圧を印加し、一方の電極を正の電荷で帯電させ、他方の電極を負の電荷で帯電させるステップとを実施することが望ましい。
In order to solve the above-described problem, the film baking method according to the present invention includes a predetermined function on the substrate by baking the coating film by heat-treating the coating film formed on the substrate to be processed. A film baking method for forming a film, comprising: sandwiching the substrate from both sides thereof by a pair of electrodes formed at a size larger than the substrate to be processed at least during the heat treatment; It is characterized in that a predetermined voltage is applied between the electrodes, one electrode is charged with a positive charge, and the other electrode is charged with a negative charge.
In addition, before heat-treating the coating film formed on the substrate to be processed, a drying process for promoting evaporation of the solvent from the coating film is performed, and at least during the drying process, the size is larger than the substrate to be processed A step of sandwiching the substrate from both sides thereof by a pair of formed electrodes, a predetermined voltage is applied between the pair of electrodes, one electrode is charged with a positive charge, and the other electrode is negative It is desirable to carry out the step of charging with an electric charge.
In addition, after heat-treating the coating film formed on the substrate to be processed, a cooling process for cooling the substrate to be processed to a predetermined temperature is performed, and at least during the cooling process, the dimensions are larger than the substrate to be processed. A step of sandwiching the substrate from both sides thereof by a pair of formed electrodes, a predetermined voltage is applied between the pair of electrodes, one electrode is charged with a positive charge, and the other electrode is negative It is desirable to carry out the step of charging with an electric charge.

このような方法によれば、例えば、被処理基板から生じたプラスイオンの塗布膜への拡散を抑制し、塗布膜中の強アルカリ性物質等の発生を防止することができる。その結果、塗布膜の焼成後に形成された機能膜の機能低下を防止することができる。
また、被処理基板を挟む一対の電極の帯電量、或いは帯電極性を調整することにより、塗布膜へのイオンの拡散量を制御することができ、所望の性質を有する機能膜を得ることができる。
According to such a method, for example, diffusion of positive ions generated from the substrate to be processed to the coating film can be suppressed, and generation of a strong alkaline substance or the like in the coating film can be prevented. As a result, it is possible to prevent functional degradation of the functional film formed after baking the coating film.
Further, by adjusting the charge amount or the charge polarity of the pair of electrodes sandwiching the substrate to be processed, the amount of ion diffusion into the coating film can be controlled, and a functional film having desired properties can be obtained. .

本発明によれば、被処理基板に形成された塗布膜を焼成し、所定の機能膜を形成する膜焼成装置において、塗布膜中へのイオンの拡散を制御することのできる膜焼成装置及び膜焼成方法を得ることができる。   According to the present invention, in a film baking apparatus for baking a coating film formed on a substrate to be processed to form a predetermined functional film, a film baking apparatus and a film capable of controlling the diffusion of ions into the coating film A firing method can be obtained.

図1は、本発明に係る膜焼成装置の一実施形態の概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of an embodiment of a film baking apparatus according to the present invention. 図2は、図1の膜焼成装置が備える乾燥ユニット(DP)の構成を示す断面図である。FIG. 2 is a cross-sectional view showing a configuration of a drying unit (DP) included in the film baking apparatus of FIG. 図3は、図1の膜焼成装置が備える加熱ユニット(BAKE)の構成を示す断面図である。FIG. 3 is a cross-sectional view showing a configuration of a heating unit (BAKE) included in the film baking apparatus of FIG. 図4は、図1の膜焼成装置が備える冷却ユニット(COL)の構成を示す断面図である。4 is a cross-sectional view showing a configuration of a cooling unit (COL) included in the film baking apparatus of FIG. 図5は、図1の膜焼成装置の動作の流れを示すフローである。FIG. 5 is a flow showing the flow of operation of the film baking apparatus of FIG. 図6は、各ユニットの動作の流れを示すフローである。FIG. 6 is a flowchart showing the operation flow of each unit. 図7は、従来の課題を説明するための基板の断面図である。FIG. 7 is a cross-sectional view of a substrate for explaining a conventional problem.

以下、本発明にかかる実施の形態につき、図に基づいて説明する。図1は、本発明に係る膜焼成装置の一実施形態の概略構成を示すブロック図である。
この膜焼成装置100は、クリーンルームに設置され、太陽電池パネル用の例えばガラス基板(基板Gと呼ぶ)を被処理基板とし、基板上に塗布された塗布膜を焼成して反射防止膜を形成するためのものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a schematic configuration of an embodiment of a film baking apparatus according to the present invention.
This film baking apparatus 100 is installed in a clean room and uses, for example, a glass substrate (referred to as a substrate G) for a solar cell panel as a substrate to be processed, and a coating film applied on the substrate is baked to form an antireflection film. Is for.

膜焼成装置100は、前段の塗布処理装置(図示せず)において塗布膜形成されたガラス基板を減圧乾燥処理する乾燥ユニット(DP)1と、乾燥処理されたガラス基板上の塗布膜を加熱して焼成する加熱ユニット(BAKE)2と、焼成されたガラス基板Gを所定温度まで冷却する冷却ユニット(COL)3とを具備する。
図1に示すように前記乾燥ユニット(DP)1と、加熱ユニット(BAKE)2と、冷却ユニット(COL)3には、それぞれ電界印加部4,5,6(帯電手段)が接続され、各ユニット内に所定の電界を形成可能に構成されている。また、各ユニット1,2,3、及び各電界印加部4,5,6は、それぞれコンピュータからなる制御部10によって駆動制御されるようになされている。
The film baking apparatus 100 heats the coating film on the glass substrate that has been subjected to the drying treatment, and a drying unit (DP) 1 that performs a drying process under reduced pressure on the glass substrate on which the coating film has been formed in a coating processing apparatus (not shown) in the preceding stage. And a heating unit (BAKE) 2 for firing and a cooling unit (COL) 3 for cooling the fired glass substrate G to a predetermined temperature.
As shown in FIG. 1, the drying unit (DP) 1, the heating unit (BAKE) 2, and the cooling unit (COL) 3 are connected to electric field application units 4, 5, and 6 (charging means), respectively. A predetermined electric field can be formed in the unit. The units 1, 2, 3 and the electric field applying units 4, 5, 6 are driven and controlled by a control unit 10 comprising a computer.

図2は、乾燥ユニット(DP)1の構成を示す断面図である。この乾燥ユニット(DP)1は、下部チャンバ11aに対し上部チャンバ11bが開閉可能に設けられたチャンバ11と、下部チャンバ11a内に設けられたステージ12とを備える。ステージ12の上面には塗布膜Lが形成された基板Gを支持するために複数の支持ピン13が設けられ、図示するように支持ピン13上に基板Gが載置される。
また、上部チャンバ11a内には、基板Gよりも大きい寸法形状の平板電極14が設けられ、この平板電極14と前記ステージ12とにより一対の平行電極板が構成されている。即ち、前記平板電極14と前記ステージ12には、電界印加部4により所定の電圧が印加され、例えば、平板電極14が正の電荷に帯電され、ステージ12が負の電荷に帯電されるようになされている。
FIG. 2 is a cross-sectional view showing the configuration of the drying unit (DP) 1. The drying unit (DP) 1 includes a chamber 11 in which an upper chamber 11b can be opened and closed with respect to the lower chamber 11a, and a stage 12 provided in the lower chamber 11a. A plurality of support pins 13 are provided on the upper surface of the stage 12 to support the substrate G on which the coating film L is formed, and the substrate G is placed on the support pins 13 as illustrated.
Further, a flat plate electrode 14 having a size and shape larger than that of the substrate G is provided in the upper chamber 11a, and the flat plate electrode 14 and the stage 12 constitute a pair of parallel electrode plates. That is, a predetermined voltage is applied to the plate electrode 14 and the stage 12 by the electric field applying unit 4 so that, for example, the plate electrode 14 is charged with a positive charge and the stage 12 is charged with a negative charge. Has been made.

また、乾燥ユニット(DP)1において、上部チャンバ11bは昇降手段15によって下部チャンバ11aに対し昇降移動され、それにより基板Gの搬入出が可能となっている。また、下部チャンバ11aの底部には、図示するように排気管16が設けられ、この排気管16は排気ポンプ17に接続されている。即ち、下部チャンバ11aに対し上部チャンバ11bが閉じた状態で排気ポンプ17が駆動すると、チャンバ11内が次第に減圧されるようになっている。尚、チャンバ11、排気管16、排気ポンプ17により乾燥手段が構成される。
この乾燥ユニット(DP)1に搬入される基板G上の塗布膜Lは、塗布液中に溶媒を多く含んでおり、乾燥ユニット(DP)1にあっては、チャンバ11内を前記溶媒の蒸気圧まで減圧することにより、前記溶媒の蒸発を促進するようになっている。
In the drying unit (DP) 1, the upper chamber 11 b is moved up and down with respect to the lower chamber 11 a by the lifting and lowering means 15, so that the substrate G can be loaded and unloaded. Further, an exhaust pipe 16 is provided at the bottom of the lower chamber 11 a as shown in the figure, and this exhaust pipe 16 is connected to an exhaust pump 17. That is, when the exhaust pump 17 is driven with the upper chamber 11b closed with respect to the lower chamber 11a, the inside of the chamber 11 is gradually depressurized. The chamber 11, the exhaust pipe 16, and the exhaust pump 17 constitute a drying means.
The coating film L on the substrate G carried into the drying unit (DP) 1 contains a large amount of solvent in the coating solution. In the drying unit (DP) 1, the inside of the chamber 11 is vaporized with the solvent. The evaporation of the solvent is promoted by reducing the pressure to a pressure.

図3は、加熱ユニット(BAKE)2の構成を示す断面図である。この加熱ユニット(BAKE)2は、側部に基板搬入出口20が設けられたチャンバ21と、チャンバ21内に設けられたステージ22とを備える。ステージ22の上面には基板Gを支持するために複数の支持ピン23が設けられ、図示するように支持ピン23上に基板Gが載置される。
また、チャンバ21内において、ステージ22の上方には、基板Gよりも大きい寸法形状の平板電極24が設けられ、この平板電極24と前記ステージ22とにより一対の平行電極板が構成されている。即ち、前記平板電極24と前記ステージ22には、電界印加部5により所定の電圧が印加され、例えば、平板電極24が正の電荷に帯電され、ステージ22が負の電荷に帯電されるようになされている。
FIG. 3 is a cross-sectional view showing the configuration of the heating unit (BAKE) 2. The heating unit (BAKE) 2 includes a chamber 21 provided with a substrate loading / unloading port 20 on a side portion, and a stage 22 provided in the chamber 21. A plurality of support pins 23 are provided on the upper surface of the stage 22 to support the substrate G, and the substrate G is placed on the support pins 23 as shown in the figure.
In the chamber 21, a flat plate electrode 24 having a size and shape larger than that of the substrate G is provided above the stage 22, and the flat plate electrode 24 and the stage 22 constitute a pair of parallel electrode plates. That is, a predetermined voltage is applied to the plate electrode 24 and the stage 22 by the electric field applying unit 5 so that, for example, the plate electrode 24 is charged with a positive charge and the stage 22 is charged with a negative charge. Has been made.

また、チャンバ21内の天井付近には、短冊状の複数のヒータ25(加熱手段)が設けられ、これらヒータ25は、ヒータ制御手段26により所定温度(例えば300℃)で発熱するように駆動制御されるようになっている。これにより、チャンバ21内は、所定温度(例えば250℃)に昇温され、所定時間、ステージ22上の基板Gが加熱されて塗布膜Lが焼成され、反射防止膜が形成されるようになっている。   Also, a plurality of strip-shaped heaters 25 (heating means) are provided near the ceiling in the chamber 21, and these heaters 25 are driven and controlled by the heater control means 26 so as to generate heat at a predetermined temperature (for example, 300 ° C.). It has come to be. As a result, the temperature inside the chamber 21 is raised to a predetermined temperature (for example, 250 ° C.), the substrate G on the stage 22 is heated for a predetermined time, the coating film L is baked, and an antireflection film is formed. ing.

図4は、冷却ユニット(COL)3の構成を示す断面図である。この冷却ユニット(COL)3は、側部に基板搬入出口30が設けられたチャンバ31と、チャンバ31内に設けられたステージ32とを備える。ステージ32の上面には基板Gを支持するために複数の支持ピン33が設けられ、図示するように支持ピン33上に基板Gが載置される。
また、チャンバ31内において、ステージ32の上方には、基板Gよりも大きい寸法形状の平板電極34が設けられ、この平板電極34と前記ステージ32とにより一対の平行電極板が構成されている。即ち、前記平板電極34と前記ステージ32には、電界印加部6により所定の電圧が印加され、例えば、平板電極34が正の電荷に帯電され、ステージ32が負の電荷に帯電されるようになされている。
FIG. 4 is a cross-sectional view showing the configuration of the cooling unit (COL) 3. The cooling unit (COL) 3 includes a chamber 31 provided with a substrate loading / unloading port 30 on a side portion and a stage 32 provided in the chamber 31. A plurality of support pins 33 are provided on the upper surface of the stage 32 to support the substrate G, and the substrate G is placed on the support pins 33 as shown in the figure.
In the chamber 31, a flat plate electrode 34 having a size larger than that of the substrate G is provided above the stage 32, and the flat plate electrode 34 and the stage 32 constitute a pair of parallel electrode plates. That is, a predetermined voltage is applied to the plate electrode 34 and the stage 32 by the electric field applying unit 6 so that, for example, the plate electrode 34 is charged with a positive charge and the stage 32 is charged with a negative charge. Has been made.

また、チャンバ31の天井部には、冷風送風手段35(冷却手段)から所定温度(例えば50℃以下)の冷風をチャンバ31内に供給するための送風管36が設けられている。また、平板電極34の上方には、前記送風管36から送風された冷風をチャンバ内31で均一に下方へ流すための拡散板37が設けられている。
これにより、チャンバ31内のステージ32上に載置された基板G及び塗布膜L(反射防止膜)は、所定温度まで冷却されるようになっている。
In addition, a blower pipe 36 for supplying cold air having a predetermined temperature (for example, 50 ° C. or less) from the cold air blowing means 35 (cooling means) to the ceiling portion of the chamber 31 is provided. A diffusion plate 37 is provided above the plate electrode 34 to allow the cool air blown from the blower pipe 36 to flow uniformly downward in the chamber 31.
Accordingly, the substrate G and the coating film L (antireflection film) placed on the stage 32 in the chamber 31 are cooled to a predetermined temperature.

続いて、この膜焼成装置100による基板G上の塗布膜Lを焼成して反射防止膜を形成する一連の動作について、図5、図6のフローに沿って説明する。
先ず、前段の塗布処理装置(図示せず)において所定の塗布液が塗布されたガラス基板Gは、制御部10の制御により、乾燥ユニット(DP)1において減圧乾燥処理が施される(図5のステップS1)。具体的には、基板Gは、昇降手段15によって上部チャンバ11bが開かれたチャンバ11内に搬入され、ステージ12の支持ピン13上に載置される(図6のステップSp1)。
Subsequently, a series of operations for forming the antireflection film by baking the coating film L on the substrate G by the film baking apparatus 100 will be described along the flow of FIGS. 5 and 6.
First, a glass substrate G coated with a predetermined coating solution in a preceding coating processing apparatus (not shown) is subjected to reduced pressure drying processing in a drying unit (DP) 1 under the control of the control unit 10 (FIG. 5). Step S1). Specifically, the substrate G is carried into the chamber 11 in which the upper chamber 11b is opened by the lifting means 15 and placed on the support pins 13 of the stage 12 (step Sp1 in FIG. 6).

昇降手段15により上部チャンバ11bが閉じられると、基板Gはステージ12と平板電極14とに挟まれた状態となる。そして、電界印加部4により前記ステージ12と平板電極14との間に所定の電圧が印加され、ステージ12は負の電荷に帯電され、平板電極14は正の電荷に帯電される(図6のステップSp2)。
また、電界印加状態となされると、吸引ポンプ17によりチャンバ11内の雰囲気が吸引され、塗布膜L中の溶媒の蒸気圧まで減圧される(図6のステップSp3)。これにより、基板Gの塗布された塗布膜L中の溶媒が蒸発促進され、減圧乾燥処理が進行する。
尚、この減圧乾燥処理にあっては、加熱処理ではないため基板Gは高温にはならず、基板Gから塗布膜Lに拡散するプラスイオンは多くはないが、ステージ12(基板G側)が負の電荷に帯電され、平板電極14(塗布膜L側)が正の電荷に帯電されることによって、基板Gから塗布膜Lへのプラスイオンの拡散が抑制される。
When the upper chamber 11 b is closed by the elevating means 15, the substrate G is sandwiched between the stage 12 and the plate electrode 14. Then, a predetermined voltage is applied between the stage 12 and the plate electrode 14 by the electric field applying unit 4, the stage 12 is charged with a negative charge, and the plate electrode 14 is charged with a positive charge (in FIG. 6). Step Sp2).
When the electric field is applied, the atmosphere in the chamber 11 is sucked by the suction pump 17, and the pressure is reduced to the vapor pressure of the solvent in the coating film L (step Sp3 in FIG. 6). Thereby, evaporation of the solvent in the coating film L coated with the substrate G is promoted, and the reduced-pressure drying process proceeds.
In this vacuum drying treatment, the substrate G does not become high temperature because it is not a heat treatment, and there are not many positive ions diffusing from the substrate G to the coating film L, but the stage 12 (substrate G side) When charged with a negative charge and the plate electrode 14 (coating film L side) is charged with a positive charge, diffusion of positive ions from the substrate G to the coating film L is suppressed.

減圧乾燥処理が所定時間経過すると(図6のステップSp4)、電界印加部4は電圧印加を停止し、電界の形成が解除される(図6のステップSp5)。
そして、減圧乾燥処理が停止され(図6のステップSp6)、昇降手段15により上部チャンバ11bが下部チャンバ11aに対して上昇移動され、基板Gが搬出される(図6のステップSp7)。
When the vacuum drying process elapses for a predetermined time (step Sp4 in FIG. 6), the electric field application unit 4 stops the voltage application and the formation of the electric field is released (step Sp5 in FIG. 6).
Then, the reduced-pressure drying process is stopped (step Sp6 in FIG. 6), the upper chamber 11b is moved up relative to the lower chamber 11a by the elevating means 15, and the substrate G is carried out (step Sp7 in FIG. 6).

減圧乾燥処理が終了すると、基板Gは、制御部10の制御により加熱ユニット(BAKE)2において加熱され、塗布膜Lが焼成されて反射防止膜が形成される(図5のステップS2)。
具体的には、基板Gはチャンバ21内に搬入され、ステージ22の支持ピン23上に載置される(図6のステップSp1)。
チャンバ21内の基板Gはステージ22と平板電極24とに挟まれた状態となる。そして、電界印加部5により前記ステージ22と平板電極24との間に所定の電圧が印加され、ステージ22は負の電荷に帯電され、平板電極24は正の電荷に帯電される(図6のステップSp2)。
When the vacuum drying process is completed, the substrate G is heated in the heating unit (BAKE) 2 under the control of the control unit 10, and the coating film L is baked to form an antireflection film (step S2 in FIG. 5).
Specifically, the substrate G is carried into the chamber 21 and placed on the support pins 23 of the stage 22 (Step Sp1 in FIG. 6).
The substrate G in the chamber 21 is sandwiched between the stage 22 and the plate electrode 24. Then, a predetermined voltage is applied between the stage 22 and the plate electrode 24 by the electric field applying unit 5, the stage 22 is charged with a negative charge, and the plate electrode 24 is charged with a positive charge (in FIG. 6). Step Sp2).

そして、ヒータ制御手段26により駆動されたヒータ25の熱によって、チャンバ21内の雰囲気は所定温度(例えば250℃)まで昇温され、基板G上の塗布膜Lが加熱される(図6のステップSp3)。ここで、基板Gは加熱されることによって高温となり、内部からプラスイオンが塗布膜Lに拡散しようとするが、ステージ22(基板G側)が負の電荷に帯電され、平板電極24(塗布膜L側)が正の電荷に帯電されることによって、基板Gから塗布膜Lへのプラスイオンの拡散が抑制される。   The atmosphere in the chamber 21 is raised to a predetermined temperature (for example, 250 ° C.) by the heat of the heater 25 driven by the heater control means 26, and the coating film L on the substrate G is heated (step in FIG. 6). Sp3). Here, the substrate G is heated to a high temperature, and positive ions try to diffuse into the coating film L from the inside, but the stage 22 (substrate G side) is charged with a negative charge, and the plate electrode 24 (coating film) When the (L side) is charged with a positive charge, diffusion of positive ions from the substrate G to the coating film L is suppressed.

加熱処理が進行し、所定時間が経過すると(図6のステップSp4)、基板G上の塗布膜Lは焼成され、反射防止膜となされる。また、電界印加部5は電圧印加を停止し、電界の形成が解除される(図6のステップSp5)。
また、ヒータ制御手段26によりヒータ25の駆動が停止され(図6のステップSp6)、基板Gはチャンバ21から搬出される(図6のステップSp7)。
When the heat treatment proceeds and a predetermined time elapses (step Sp4 in FIG. 6), the coating film L on the substrate G is baked to form an antireflection film. In addition, the electric field application unit 5 stops the voltage application, and the formation of the electric field is released (Step Sp5 in FIG. 6).
Further, the heater control means 26 stops driving the heater 25 (step Sp6 in FIG. 6), and the substrate G is unloaded from the chamber 21 (step Sp7 in FIG. 6).

基板Gの加熱処理が終了すると、基板Gは、制御部10の制御により冷却ユニット(COL)31において所定温度(例えば50℃以下)まで冷却される(図5のステップS3)。
具体的には、基板Gはチャンバ31内に搬入され、ステージ32の支持ピン33上に載置される(図6のステップSp1)。
チャンバ31内の基板Gはステージ32と平板電極34とに挟まれた状態となる。そして、電界印加部6により前記ステージ32と平板電極34との間に所定の電圧が印加され、ステージ32は負の電荷に帯電され、平板電極34は正の電荷に帯電される(図6のステップSp2)。
When the heating process of the substrate G is completed, the substrate G is cooled to a predetermined temperature (for example, 50 ° C. or less) in the cooling unit (COL) 31 under the control of the control unit 10 (step S3 in FIG. 5).
Specifically, the substrate G is carried into the chamber 31 and placed on the support pins 33 of the stage 32 (step Sp1 in FIG. 6).
The substrate G in the chamber 31 is sandwiched between the stage 32 and the plate electrode 34. Then, a predetermined voltage is applied between the stage 32 and the plate electrode 34 by the electric field applying unit 6, the stage 32 is charged with a negative charge, and the plate electrode 34 is charged with a positive charge (in FIG. 6). Step Sp2).

そして、冷風送風手段35から供給された冷風によってチャンバ31内の温度は所定温度まで下げられ、基板G及びその上に形成された塗布膜L(反射防止膜)が冷却される(図6のステップSp3)。ここで、基板Gが所定温度まで冷却されるまでは基板Gの熱により、内部からプラスイオンが塗布膜Lに拡散しようとするが、ステージ32(基板G側)が負の電荷に帯電され、平板電極34(塗布膜L側)が正の電荷に帯電されることによって、基板Gから塗布膜Lへのプラスイオンの拡散が抑制される。   Then, the temperature in the chamber 31 is lowered to a predetermined temperature by the cold air supplied from the cold air blowing means 35, and the substrate G and the coating film L (antireflection film) formed thereon are cooled (step of FIG. 6). Sp3). Here, until the substrate G is cooled to a predetermined temperature, the positive ions try to diffuse from the inside into the coating film L due to the heat of the substrate G, but the stage 32 (substrate G side) is charged with a negative charge, When the plate electrode 34 (the coating film L side) is charged with a positive charge, diffusion of positive ions from the substrate G to the coating film L is suppressed.

冷却処理が進行し、所定時間が経過すると(図6のステップSp4)、基板G上の塗布膜L(反射防止膜)は所定温度まで冷却される。また、電界印加部6は電圧印加を停止し、電界の形成が解除される(図6のステップSp5)。
また、冷風送風手段35の駆動が停止され(図6のステップSp6)、基板Gはチャンバ31から搬出される(図6のステップSp7)。
When the cooling process proceeds and a predetermined time elapses (step Sp4 in FIG. 6), the coating film L (antireflection film) on the substrate G is cooled to a predetermined temperature. Further, the electric field application unit 6 stops the voltage application, and the formation of the electric field is released (step Sp5 in FIG. 6).
Further, the driving of the cold air blowing means 35 is stopped (Step Sp6 in FIG. 6), and the substrate G is unloaded from the chamber 31 (Step Sp7 in FIG. 6).

以上のように、本発明に係る膜焼成装置の一実施形態によれば、塗布膜の焼成の際、塗布膜が形成された基板Gを平行基板電極で挟み、基板Gの下方の電極が負の電荷に帯電され、塗布膜Lの上方の電極が正の電荷に帯電される。
これにより、基板Gから生じたプラスイオンの塗布膜Lへの拡散が抑制され、塗布膜L中の強アルカリ性物質の発生が防止される。その結果、塗布膜Lの焼成後に形成された反射防止膜の機能低下を防止することができる。
As described above, according to an embodiment of the film baking apparatus of the present invention, when baking the coating film, the substrate G on which the coating film is formed is sandwiched between the parallel substrate electrodes, and the electrode below the substrate G is negative. The electrode above the coating film L is charged to a positive charge.
As a result, diffusion of positive ions generated from the substrate G to the coating film L is suppressed, and generation of strong alkaline substances in the coating film L is prevented. As a result, it is possible to prevent a decrease in the function of the antireflection film formed after the coating film L is baked.

尚、前記実施の形態においては、ガラス基板G上の塗布膜Lを焼成し機能膜として反射防止膜を形成する場合を例に説明したが、本発明にあっては、その形態に限定されるものではない。
例えば、ガラス基板上に、曇り防止膜や、熱吸収膜など、あらゆる機能膜の形成にも適用することができる。
In the above embodiment, the case where the coating film L on the glass substrate G is baked and the antireflection film is formed as a functional film has been described as an example. However, the present invention is limited to this form. It is not a thing.
For example, the present invention can be applied to the formation of any functional film such as an anti-fogging film or a heat absorption film on a glass substrate.

また、前記実施の形態にあっては、ガラス基板Gから塗布膜L中にプラスイオンが拡散しないように、基板下方を負の電荷で帯電させ、基板(塗布膜)上方を正の電荷で帯電させる構成とした。
しかしながら、それに限らず、機能膜の要求性能に応じて、ガラス基板からプラスイオンを塗布膜中に意図的に拡散させる構成としてもよい。即ち、平行基板電極の帯電量を制御する、或いは、帯電極性を前記実施形態とは逆にしてもよい。
そのように、基板Gを挟む一対の平行基板電極の帯電量、或いは帯電極性を調整することにより、塗布膜Lへのイオンの拡散量を制御することができ、所望の性質を有する機能膜を得ることができる。
In the embodiment, the lower portion of the substrate is charged with a negative charge and the upper portion of the substrate (coating film) is charged with a positive charge so that positive ions do not diffuse from the glass substrate G into the coating film L. It was set as the structure made to do.
However, the present invention is not limited to this, and a configuration may be adopted in which positive ions are intentionally diffused from the glass substrate into the coating film according to the required performance of the functional film. That is, the charge amount of the parallel substrate electrode may be controlled, or the charge polarity may be reversed from that in the above embodiment.
As described above, by adjusting the charge amount or the charge polarity of the pair of parallel substrate electrodes sandwiching the substrate G, the diffusion amount of ions to the coating film L can be controlled, and a functional film having desired properties can be obtained. Can be obtained.

1 乾燥ユニット
2 加熱ユニット
3 冷却ユニット
4 電界印加部(帯電手段)
5 電界印加部(帯電手段)
6 電界印加部(帯電手段)
10 制御部
11 チャンバ(乾燥手段)
12 ステージ(電極)
13 支持ピン
14 平板電極(電極)
15 昇降手段
16 排気管(乾燥手段)
17 排気ポンプ(乾燥手段)
21 チャンバ
22 ステージ(電極)
23 支持ピン
24 平板電極(電極)
25 ヒータ(加熱手段)
26 ヒータ制御手段
31 チャンバ
32 ステージ(電極)
33 支持ピン
34 平板電極(電極)
35 冷風送風手段(冷却手段)
100 膜焼成装置
G ガラス基板(被処理基板)
L 塗布膜
DESCRIPTION OF SYMBOLS 1 Drying unit 2 Heating unit 3 Cooling unit 4 Electric field application part (charging means)
5 Electric field application part (charging means)
6 Electric field application part (charging means)
10 controller 11 chamber (drying means)
12 stages (electrodes)
13 Support Pin 14 Flat Plate Electrode
15 Lifting means 16 Exhaust pipe (drying means)
17 Exhaust pump (drying means)
21 chamber 22 stage (electrode)
23 Support Pin 24 Flat Plate Electrode (Electrode)
25 Heater (heating means)
26 Heater control means 31 Chamber 32 Stage (electrode)
33 Support pin 34 Plate electrode (electrode)
35 Cool air blowing means (cooling means)
100 Film baking apparatus G Glass substrate (substrate to be processed)
L coating film

Claims (6)

被処理基板に塗布形成された塗布膜を焼成する加熱ユニットを具備し、前記加熱ユニットによる前記塗布膜の焼成により前記基板上に所定の機能膜を形成する膜焼成装置であって、
前記加熱ユニットは、
前記被処理基板を加熱する加熱手段と、
前記被処理基板よりも大きい寸法に形成され、前記基板を、その両面側から挟み込む一対の電極と、
少なくとも前記加熱手段により前記基板が加熱される間、前記一対の電極間に所定の電圧を印加し、一方の電極を正の電荷で帯電させ、他方の電極を負の電荷で帯電させる帯電手段とを備えることを特徴とする膜焼成装置。
A film baking apparatus comprising a heating unit for baking a coating film applied and formed on a substrate to be processed, and forming a predetermined functional film on the substrate by baking the coating film by the heating unit,
The heating unit is
Heating means for heating the substrate to be processed;
A pair of electrodes formed in a size larger than the substrate to be processed, and sandwiching the substrate from both sides thereof;
Charging means for applying a predetermined voltage between the pair of electrodes at least while the substrate is heated by the heating means, charging one electrode with a positive charge, and charging the other electrode with a negative charge; A film baking apparatus comprising:
前記加熱ユニットによる前記塗布膜の焼成前に、前記被処理基板に塗布形成された塗布膜から溶媒を蒸発促進させる乾燥手段を有する乾燥ユニットを具備し、
前記乾燥ユニットは、
前記被処理基板よりも大きい寸法に形成され、前記基板を、その両面側から挟み込む一対の電極と、
少なくとも前記乾燥手段により前記基板上の塗布膜が乾燥処理される間、前記一対の電極間に所定の電圧を印加し、一方の電極を正の電荷で帯電させ、他方の電極を負の電荷で帯電させる帯電手段とを備えることを特徴とする請求項1に記載された膜焼成装置。
Before the baking of the coating film by the heating unit, comprising a drying unit having a drying means for promoting evaporation of the solvent from the coating film formed on the substrate to be processed,
The drying unit includes:
A pair of electrodes formed in a size larger than the substrate to be processed, and sandwiching the substrate from both sides thereof;
At least while the coating film on the substrate is dried by the drying means, a predetermined voltage is applied between the pair of electrodes, one electrode is charged with a positive charge, and the other electrode is charged with a negative charge. The film baking apparatus according to claim 1, further comprising charging means for charging.
前記加熱ユニットによる前記塗布膜の焼成後に、前記被処理基板を所定温度に冷却する冷却手段を有する冷却ユニットを具備し、
前記冷却ユニットは、
前記被処理基板よりも大きい寸法に形成され、前記基板を、その両面側から挟み込む一対の電極と、
少なくとも前記冷却手段により前記基板が冷却処理される間、前記一対の電極間に所定の電圧を印加し、一方の電極を正の電荷で帯電させ、他方の電極を負の電荷で帯電させる帯電手段とを備えることを特徴とする請求項1または請求項2に記載された膜焼成装置。
A cooling unit having cooling means for cooling the substrate to be processed to a predetermined temperature after baking of the coating film by the heating unit;
The cooling unit is
A pair of electrodes formed in a size larger than the substrate to be processed, and sandwiching the substrate from both sides thereof;
Charging means for applying a predetermined voltage between the pair of electrodes and charging one electrode with a positive charge and charging the other electrode with a negative charge at least while the substrate is cooled by the cooling means. The film baking apparatus according to claim 1, wherein the film baking apparatus is provided.
被処理基板に塗布形成された塗布膜を加熱処理することにより前記塗布膜を焼成し、前記基板上に所定の機能膜を形成する膜焼成方法であって、
少なくとも前記加熱処理の間、
前記被処理基板よりも大きい寸法に形成された一対の電極により、前記基板を、その両面側から挟み込むステップと、
前記一対の電極間に所定の電圧を印加し、一方の電極を正の電荷で帯電させ、他方の電極を負の電荷で帯電させるステップとを実施することを特徴とする膜焼成方法。
A film baking method for baking the coating film by heat-treating the coating film formed on the substrate to be processed, and forming a predetermined functional film on the substrate,
At least during the heat treatment,
Sandwiching the substrate from both sides thereof with a pair of electrodes formed in a size larger than the substrate to be processed;
Applying a predetermined voltage between the pair of electrodes, charging one electrode with a positive charge, and charging the other electrode with a negative charge.
前記被処理基板に塗布形成された塗布膜を加熱処理する前に、前記塗布膜から溶媒を蒸発促進させる乾燥処理を行い、
少なくとも前記乾燥処理の間、
前記被処理基板よりも大きい寸法に形成された一対の電極により、前記基板を、その両面側から挟み込むステップと、
前記一対の電極間に所定の電圧を印加し、一方の電極を正の電荷で帯電させ、他方の電極を負の電荷で帯電させるステップとを実施することを特徴とする請求項4に記載された膜焼成方法。
Before heat-treating the coating film formed on the substrate to be treated, a drying process for promoting evaporation of the solvent from the coating film is performed,
At least during the drying process
Sandwiching the substrate from both sides thereof with a pair of electrodes formed in a size larger than the substrate to be processed;
5. The step of applying a predetermined voltage between the pair of electrodes, charging one electrode with a positive charge, and charging the other electrode with a negative charge is performed. Film firing method.
前記被処理基板に塗布形成された塗布膜を加熱処理した後に、前記被処理基板を所定温度まで冷却する冷却処理を行い、
少なくとも前記冷却処理の間、
前記被処理基板よりも大きい寸法に形成された一対の電極により、前記基板を、その両面側から挟み込むステップと、
前記一対の電極間に所定の電圧を印加し、一方の電極を正の電荷で帯電させ、他方の電極を負の電荷で帯電させるステップとを実施することを特徴とする請求項4または請求項5に記載された膜焼成方法。
After the heat treatment of the coating film formed on the substrate to be processed, a cooling process for cooling the substrate to be processed to a predetermined temperature is performed.
At least during the cooling process
Sandwiching the substrate from both sides thereof with a pair of electrodes formed in a size larger than the substrate to be processed;
5. A step of applying a predetermined voltage between the pair of electrodes, charging one electrode with a positive charge, and charging the other electrode with a negative charge. 5. The film baking method described in 5.
JP2011233103A 2011-10-24 2011-10-24 Film calcination apparatus and film calcination method Pending JP2013093373A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011233103A JP2013093373A (en) 2011-10-24 2011-10-24 Film calcination apparatus and film calcination method
PCT/JP2012/076894 WO2013061854A1 (en) 2011-10-24 2012-10-18 Apparatus for burning film and method for burning film
TW101139324A TW201327898A (en) 2011-10-24 2012-10-24 Apparatus for burning film and method for burning film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011233103A JP2013093373A (en) 2011-10-24 2011-10-24 Film calcination apparatus and film calcination method

Publications (1)

Publication Number Publication Date
JP2013093373A true JP2013093373A (en) 2013-05-16

Family

ID=48167687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011233103A Pending JP2013093373A (en) 2011-10-24 2011-10-24 Film calcination apparatus and film calcination method

Country Status (3)

Country Link
JP (1) JP2013093373A (en)
TW (1) TW201327898A (en)
WO (1) WO2013061854A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062265B2 (en) * 1990-07-26 1994-01-12 東京電力株式会社 Method for drying paint applied to furniture
JP3696156B2 (en) * 2000-12-26 2005-09-14 株式会社東芝 Coating film heating apparatus and resist film processing method
JP2005224741A (en) * 2004-02-16 2005-08-25 Canon Inc Method for heating and drying coating film, and heating and drying apparatus for coating film

Also Published As

Publication number Publication date
TW201327898A (en) 2013-07-01
WO2013061854A1 (en) 2013-05-02

Similar Documents

Publication Publication Date Title
JP4438008B2 (en) Substrate processing equipment
US8246284B2 (en) Stacked load-lock apparatus and method for high throughput solar cell manufacturing
JP2013501908A (en) Apparatus and processing chamber for thermally processing a substrate
WO2022151644A1 (en) Ion beam coating device and coating method therefor
WO2015146162A1 (en) Semiconductor substrate heat-processing method and heat-processing device
US20140165910A1 (en) Apparatus for large-area atomic layer deposition
JP2001044117A (en) Substrate processing apparatus
WO2013061854A1 (en) Apparatus for burning film and method for burning film
TWI351724B (en) Annealing apparatus
TWI700764B (en) Substrate cooling method, substrate transport method and loading lock device in loading lock device
TWI492305B (en) Method and apparatus for manufacturing semiconductor device
TWI633574B (en) Semiconductor processing device and method for processing substrate
JP2001023907A (en) Film-forming device
CN1279589C (en) Method and apparatus for treating substrate
KR101546320B1 (en) apparatus for firing substrates
KR101656140B1 (en) Heat treatment apparatus for organic electronic device
TWI603168B (en) For semiconductor wafer removal photoresist device
CN114628231A (en) Substrate impurity removing method and substrate processing apparatus
KR20150082802A (en) Apparatus for drying and gettering pole plates for a secondary battery
JP6241777B2 (en) Substrate processing apparatus and substrate processing method
KR102339910B1 (en) Apparatus for drying thin-film and thin-film manufacturing system having the same
CN103177924A (en) Substrate processing device and substrate processing system having the same
EP4270513A1 (en) Drying device and drying method for electrode sheet
JP2009278086A5 (en)
TW201737508A (en) Apparatus for processing of a solar cell substrate, system for processing of a solar cell substrate and method for processing of a solar cell substrate