JP2013091856A - Method for manufacturing hardened aluminum material using cross coupling reaction - Google Patents

Method for manufacturing hardened aluminum material using cross coupling reaction Download PDF

Info

Publication number
JP2013091856A
JP2013091856A JP2013018099A JP2013018099A JP2013091856A JP 2013091856 A JP2013091856 A JP 2013091856A JP 2013018099 A JP2013018099 A JP 2013018099A JP 2013018099 A JP2013018099 A JP 2013018099A JP 2013091856 A JP2013091856 A JP 2013091856A
Authority
JP
Japan
Prior art keywords
layer
aluminum
hardened
aluminum alloy
alloy material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013018099A
Other languages
Japanese (ja)
Other versions
JP5490927B2 (en
Inventor
Masanari Migitaka
正成 右高
Kenji Migitaka
健司 右高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013018099A priority Critical patent/JP5490927B2/en
Publication of JP2013091856A publication Critical patent/JP2013091856A/en
Priority to DE102014201761.0A priority patent/DE102014201761A1/en
Application granted granted Critical
Publication of JP5490927B2 publication Critical patent/JP5490927B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • C23C18/1696Control of atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1827Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment only one step pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/42Pretreatment of metallic surfaces to be electroplated of light metals
    • C25D5/44Aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a hardened aluminum material having a thick hardened layer whose surface is very hard and which becomes gradually soft from the surface to the inside.SOLUTION: The method for manufacturing a hardened aluminum material is a method to harden the surface of an aluminum alloy material containing the element Mg, and includes a first step and a second step. In the first step, a nickel layer 20 of 15 μm in thickness is formed on the surface of an aluminum alloy material 10. In the second step, the aluminum alloy material 10 formed of the nickel layer 20 is heated up to 550° and held for 60 to 90 minutes. Thus, the element Mg in a base material (aluminum alloy material 10) can become a catalyst and an Mg ion and an Al ion are diffused toward the surface of the nickel layer 20 to form a hardened layer of high hardness intermetallic compound of Al and Ni.

Description

本発明は、Mg元素を含有するアルミニウム合金材の表面に適当な膜厚のニッケル層を形成した後500度〜600度に加熱すると、Mgイオンを触媒としたクロス・カップリング反応によって,表層部に高硬度のAlNi,Al3Ni,Al3Ni2,AlNi3,Al3Ni5等(以下適宜AlmNinと呼ぶ)の金属間化合物の皮膜が出来ることを示す加工方法である。   In the present invention, when a nickel layer having an appropriate thickness is formed on the surface of an aluminum alloy material containing Mg element and heated to 500 to 600 degrees, the surface layer part is formed by a cross-coupling reaction using Mg ions as a catalyst. Is a processing method showing that a film of an intermetallic compound such as high hardness AlNi, Al3Ni, Al3Ni2, AlNi3, Al3Ni5 (hereinafter referred to as AlmNin as appropriate) can be formed.

これまで自動車の構成部品の大部分は比較的比重の大きい鉄鋼製部品で構成されてきたが、燃費を向上させるために、鉄鋼製部品に代わる比重が小さくて軽い基材が求められてきた。そこで鉄の比重の約三分の一のアルミニウム合金材が代替材料として着目されて来た。しかし、アルミニウム合金材は軽比重材ではあるが通常の熱処理加工を施しても鉄鋼材料と比較すれば強度その他に於いて大きく劣る。更にアルミニウム合金材は大気中では,最表面に不活性の酸化皮膜を生成するため、窒化処理等の表面硬化処理は難しい。そこで、アルミニウム合金材の表面硬さを向上させる表面硬化法も提案されている。その一つが次に示す一例である。   Until now, most of the components of automobiles have been composed of steel parts having a relatively large specific gravity. However, in order to improve fuel efficiency, a low-specific gravity and light base material has been demanded instead of steel parts. Therefore, an aluminum alloy material that is about one third of the specific gravity of iron has attracted attention as an alternative material. However, although the aluminum alloy material is a light specific gravity material, the strength and the like are greatly inferior to those of the steel material even when subjected to a normal heat treatment. Furthermore, since an aluminum alloy material forms an inactive oxide film on the outermost surface in the air, surface hardening treatment such as nitriding treatment is difficult. Therefore, a surface hardening method for improving the surface hardness of the aluminum alloy material has also been proposed. One of them is the following example.

下記特許文献1には、イオン(プラズマ)窒化処理をする表面硬化方法が記載されている。この表面硬化方法では、先ずアルミニウム合金材の表面にメッキ法により鉄−クロム合金メッキ層を形成し、その後メッキされたアルミニウム合金材に対してイオン窒化処理を行う。このイオン窒化処理では、グロー放電によって窒素イオンが高いエネルギーをもって処理品の表面に衝突する。そして、窒素イオンが衝突の際に鉄−クロムと反応して処理品の表面から内部へ浸入拡散して、窒化クロムから成る5〜20μmの硬化(窒化)層が形成される。これにより、アルミニウム硬化材の表面のビッカース硬さを700〜1200HVまで大きくすることができる。   The following Patent Document 1 describes a surface hardening method for performing ion (plasma) nitriding treatment. In this surface hardening method, first, an iron-chromium alloy plating layer is formed on the surface of an aluminum alloy material by a plating method, and then ion nitriding treatment is performed on the plated aluminum alloy material. In this ion nitriding treatment, nitrogen ions collide with the surface of the treated product with high energy by glow discharge. Nitrogen ions react with iron-chromium during collision and enter and diffuse from the surface of the treated product to form a hardened (nitrided) layer of 5 to 20 μm made of chromium nitride. Thereby, the Vickers hardness of the surface of an aluminum hardening material can be enlarged to 700-1200HV.

特開平06−235096号公報Japanese Patent Laid-Open No. 06-235096

しかしながら、上記特許文献1のイオン窒化処理には、以下の問題がある。
先ず、上記した非常に硬い硬化層を20μm以上形成することが難しく、硬化層は非常に薄いものになる。その理由は、表面に窒化クロムが形成されることにより、窒素イオンを活性化させるグロー放電が持続し難くなり、窒素イオンが処理品の内部へ浸入拡散し難くなるためである。
そして、窒素イオンが浸入拡散しない部分、即ち硬化層が形成されない部分は、硬化層に比べて急激に軟らかくなっている。このため、上記特許文献1のアルミニウム硬化材は、表面から内部に向けて徐々に軟らかくなるものではなく、表面近傍にのみ非常に硬く且つ薄い硬化層を有するものになる。従って、摺動摩擦が極めて大きい場所で上記特許文献1のアルミニウム硬化材を用いる場合には、薄い硬化層が早く消耗して製品安全上好ましくない。また、上記特許文献1のアルミニウム硬化材にねじれ等が作用する場合には、硬化層の境界部分でひび割れ又は剥離が生じるおそれがあった。
However, the ion nitriding process of Patent Document 1 has the following problems.
First, it is difficult to form the above-mentioned very hard cured layer of 20 μm or more, and the cured layer becomes very thin. The reason is that the formation of chromium nitride on the surface makes it difficult for the glow discharge to activate the nitrogen ions to be sustained, making it difficult for the nitrogen ions to penetrate and diffuse into the treated product.
A portion where nitrogen ions do not enter and diffuse, that is, a portion where the hardened layer is not formed is softer than the hardened layer. For this reason, the aluminum hardening material of the said patent document 1 does not become soft gradually from the surface toward the inside, but has a very hard and thin hardened layer only near the surface. Therefore, when using the aluminum hardening | curing material of the said patent document 1 in the place where sliding friction is very large, a thin hardened layer is consumed quickly and is unpreferable on product safety. Moreover, when twist etc. acted on the aluminum hardening material of the said patent document 1, there existed a possibility that a crack or peeling might arise in the boundary part of a hardening layer.

本発明は、上記した問題点を解決するためになされたものであり、表面が非常に硬く且つ表面から内部に向けて徐々に軟らかくなる厚い硬化層を有するアルミニウム硬化材の製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a method for producing an aluminum hardened material having a thick hardened layer whose surface is very hard and gradually softens from the surface toward the inside. With the goal.

本発明に係るアルミニウム硬化材の製造方法は、マグネシウム元素を含むアルミニウム合金材を表面硬化する方法であって、前記アルミニウム合金材の表面の酸化被膜を除去した上でニッケル層を10μm以上形成する第1工程と、前記ニッケル層が形成されたアルミニウム合金材を500度以上且つ600度以下の温度で加熱し所定時間保持する第2工程とを有することを特徴とする。そして、前記第2工程では、前記ニッケル層の厚さ及び加熱する温度に基づいて、母材の中のマグネシウムイオン及びアルミニウムイオンが前記ニッケル層の表面に向けて拡散し、クロスカップリング反応によって金属間化合物を表層部に形成するまで、所定時間保持することを必要とする。   A method for producing an aluminum hardened material according to the present invention is a method for surface hardening an aluminum alloy material containing magnesium element, wherein a nickel layer is formed to a thickness of 10 μm or more after removing an oxide film on the surface of the aluminum alloy material. And a second step of heating the aluminum alloy material on which the nickel layer is formed at a temperature of 500 ° C. or more and 600 ° C. or less for a predetermined time. In the second step, based on the thickness of the nickel layer and the heating temperature, magnesium ions and aluminum ions in the base material diffuse toward the surface of the nickel layer, and metal is formed by a cross-coupling reaction. It is necessary to hold for a predetermined time until the intermetallic compound is formed on the surface layer.

本発明によれば、熱処理の加熱温度が500度以上且つ600度以下の高温雰囲気であるため、蒸気圧の低いMg(マグネシウム)元素はイオン化して表層部に向かって活発に拡散運動する。その際、イオン化したMg元素は周囲のイオン化したAl(アルミニウム)元素を誘導してアルミニウム合金材の表層部に向かって移動する。そして、表層部へ誘導されたAlイオンは、表層部でイオン化されているNi(ニッケル)元素と結合して、高硬度のAlNi,Al3Ni,Al3Ni2,AlNi3,Al3Ni5等の金属間化合物(AlmNin)を生成させる。即ち、高温雰囲気においてMg元素は触媒の働きをしてイオン化しているAl元素とNi元素を反応させて高硬度の金属間化合物を生成させる。この結果、硬化層の深さが例えばメッキ等で得られる硬化層の厚みの1.5倍以上の値になり、内部に向けて徐々に軟らかくなる厚い硬化層を有するアルミニウム硬化材を製造できる。   According to the present invention, since the heating temperature of the heat treatment is a high temperature atmosphere of 500 ° C. or more and 600 ° C. or less, the Mg (magnesium) element having a low vapor pressure is ionized and actively diffuses toward the surface layer portion. At that time, the ionized Mg element induces the surrounding ionized Al (aluminum) element and moves toward the surface layer portion of the aluminum alloy material. And the Al ion induced to the surface layer part combines with Ni (nickel) element ionized in the surface layer part, and intermetallic compounds (AlmNin) such as AlNi, Al3Ni, Al3Ni2, AlNi3, Al3Ni5 with high hardness Generate. That is, in a high temperature atmosphere, Mg element acts as a catalyst to react ionized Al element and Ni element to produce a high hardness intermetallic compound. As a result, the depth of the hardened layer becomes 1.5 or more times the thickness of the hardened layer obtained by plating or the like, and an aluminum hardened material having a thick hardened layer that gradually softens toward the inside can be manufactured.

また、本発明に係るアルミニウム硬化材の製造方法において、前記第2工程では、100Pa以下の低真空状態の減圧室内で、加熱しても良い。この場合には、低い酸素濃度の状態で加熱処理が行われるため、表面が綺麗なアルミニウム硬化材を製造することができると共に、イオン化したMg元素の触媒としての機能が活発になり、反応処理時間を短くすることができる。また、前記第2工程では、外熱型のイオン真空炉を用いてグロー放電で加熱しても良い。   Moreover, in the manufacturing method of the aluminum hardening | curing material which concerns on this invention, you may heat in the decompression room | chamber interior of the low vacuum state of 100 Pa or less at the said 2nd process. In this case, since the heat treatment is performed in a low oxygen concentration state, a hardened aluminum material with a clean surface can be produced, and the function of the ionized Mg element as a catalyst becomes active, and the reaction treatment time Can be shortened. Further, in the second step, heating may be performed by glow discharge using an external heating type ion vacuum furnace.

本発明によれば、表面が非常に硬く且つ表面から内部に向けて徐々に軟らかくなる厚い硬化層を有するアルミニウム硬化材を製造することができる。そして、製造されたアルミニウム硬化材は、自動車を構成する部品等で摺動摩擦が極めて大きい部位に用いても、硬化層が早く消耗することがなくて製品安全上好ましいものであり、ねじれ等が作用しても、硬化層の境界部分でひび割れ又は剥離が生じ難い。また、腕時計のバンドや腕時計の表示ケースに用いれば、軽くて傷が付き難い理想的な商品が期待できる。   According to the present invention, it is possible to manufacture an aluminum hardened material having a thick hardened layer whose surface is very hard and gradually softens from the surface toward the inside. The manufactured aluminum hardened material is preferable in terms of product safety because the hardened layer does not wear out quickly even if it is used in parts where the sliding friction is extremely large in parts constituting an automobile, etc. Even so, cracking or peeling is unlikely to occur at the boundary portion of the hardened layer. Moreover, if it is used for a wristwatch band or a wristwatch display case, an ideal product that is light and hardly scratched can be expected.

母材であるアルミニウム合金材を示した概略図である。It is the schematic which showed the aluminum alloy material which is a base material. 第1工程により、ニッケル層及びクロム層が形成されたアルミニウム合金材を示した概略図である。It is the schematic which showed the aluminum alloy material in which the nickel layer and the chromium layer were formed by the 1st process. 第2工程により、硬化層が形成されたアルミニウム硬化材を示した概略図である。It is the schematic which showed the aluminum hardening material in which the hardened layer was formed by the 2nd process. アルミニウムとマグネシウムの二元系合金の状態図である。It is a phase diagram of a binary alloy of aluminum and magnesium. 本実施形態のアルミニウム硬化材の硬さ推移曲線である。It is a hardness transition curve of the aluminum hardening material of this embodiment. 本実施形態のアルミニウム硬化材の各スペクトルにおける各金属元素の重量%を示した成分表である。It is a component table | surface which showed weight% of each metal element in each spectrum of the aluminum hardening | curing material of this embodiment. マグネシウム元素を含むアルミニウム合金材を表面硬化処理した場合に、表面部分の電子顕微鏡画像である。It is an electron microscopic image of a surface part, when carrying out the surface hardening process of the aluminum alloy material containing a magnesium element. アルミニウムとニッケルの二元状態図である。It is a binary phase diagram of aluminum and nickel. 比較例のアルミニウム硬化材の硬さ推移曲線である。It is a hardness transition curve of the aluminum hardening material of a comparative example. 比較例のアルミニウム硬化材の各スペクトルにおける各金属元素の重量%を示した成分表である。It is a component table | surface which showed weight% of each metal element in each spectrum of the aluminum hardening | curing material of a comparative example. マグネシウムを含まないアルミニウム合金材を表面硬化処理した場合に、表面部分の電子顕微鏡画像である。It is an electron microscopic image of a surface part, when carrying out surface hardening processing of the aluminum alloy material which does not contain magnesium.

本発明に係るアルミニウム硬化材の製造方法の実施形態について、図面を参照しながら以下に説明する。図1は、アルミニウム硬化材を製造するための母材であるアルミニウム合金材10を示した概略図である。アルミニウム合金材10は、JIS規格で6061番のものであって、重量%でMgが0.8〜1.2%,Siが0.4〜0.8%,Feが0.7%,Cuが0.15〜0.40%,Mnが0.15%,Crが0.04〜0.35%,Tiが0.15%,Alが残り全て含まれるものである。ここで、アルミニウム合金材10は、Mg元素を含むものであれば良く、例えばJIS規格で5000番台、6000番台のものであれば良い。このアルミニウム合金材10は、以下に示す第1工程及び第2工程により、表面硬化処理されるようになっている。   Embodiments of a method for producing a cured aluminum material according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic view showing an aluminum alloy material 10 which is a base material for producing a hardened aluminum material. The aluminum alloy material 10 is No. 6061 in JIS standard, and Mg by weight is 0.8 to 1.2%, Si is 0.4 to 0.8%, Fe is 0.7%, Cu 0.15 to 0.40%, Mn 0.15%, Cr 0.04 to 0.35%, Ti 0.15%, and the remaining Al. Here, the aluminum alloy material 10 only needs to contain Mg element. For example, the aluminum alloy material 10 may be those in the 5000s and 6000s according to JIS standards. The aluminum alloy material 10 is subjected to surface hardening treatment by the following first and second steps.

<第1工程>
図2は、第1工程により、ニッケル層20及びクロム層30が形成されたアルミニウム合金材10を示した概略図である。ここで、図1に示したアルミニウム合金材10は、酸素との親和力が非常に大きいものであるため、表面に100オングストローム程度の薄い酸化皮膜(アルミナ層)を有する。この酸化皮膜により、アルミニウム合金材10の表面に密着性が良いメッキ層を直接形成することはできない。そこで、第1工程では、先ず、アルミニウム合金材10を亜鉛酸溶液に浸して、酸化皮膜を除去する。酸化皮膜が除去されたアルミニウム合金材10はメッキ液の中で次の工程へ移されるため、表面に新たに酸化皮膜が形成されることはない。そして、無電解メッキ法により、アルミニウム合金材10の表面に15μmのニッケル層20を形成する。その後、電気メッキ法により、ニッケル層20の表面に0.2μmのクロム層30を形成する。このようにして、ニッケル層20及びクロム層30が形成されたアルミニウム合金材10(以下、「メッキ層付合金材10A」と呼ぶ)が形成される。なお、本実施形態では、最表面の酸化を防止する目的でクロム層30を形成したが、クロム層30は実際には無くても問題ない。また、ニッケル層20を形成する方法は、無電解メッキ法に限定されるものではなく、適宜変更可能であり、電気メッキ法やニッケル粉末接着法によってニッケル層20を形成しても良い。
<First step>
FIG. 2 is a schematic view showing the aluminum alloy material 10 on which the nickel layer 20 and the chromium layer 30 are formed in the first step. Here, since the aluminum alloy material 10 shown in FIG. 1 has a very high affinity with oxygen, it has a thin oxide film (alumina layer) of about 100 angstroms on the surface. With this oxide film, a plating layer having good adhesion cannot be directly formed on the surface of the aluminum alloy material 10. Therefore, in the first step, first, the aluminum alloy material 10 is immersed in a zinc acid solution to remove the oxide film. Since the aluminum alloy material 10 from which the oxide film has been removed is transferred to the next step in the plating solution, no new oxide film is formed on the surface. Then, a 15 μm nickel layer 20 is formed on the surface of the aluminum alloy material 10 by electroless plating. Thereafter, a 0.2 μm chromium layer 30 is formed on the surface of the nickel layer 20 by electroplating. Thus, the aluminum alloy material 10 (hereinafter referred to as “plating layer-attached alloy material 10A”) on which the nickel layer 20 and the chromium layer 30 are formed is formed. In the present embodiment, the chromium layer 30 is formed for the purpose of preventing oxidation of the outermost surface, but there is no problem even if the chromium layer 30 is not actually provided. The method of forming the nickel layer 20 is not limited to the electroless plating method, and can be changed as appropriate. The nickel layer 20 may be formed by an electroplating method or a nickel powder bonding method.

<第2工程>
図3は、第2工程により、硬化層T1が形成されたアルミニウム硬化材10Bを示した概略図である。第2工程では、先ず減圧室(真空炉)内の酸素分圧を下げるため真空ポンプにより約0.1Torr(約13.3Pa)以下に排気する。その上で不活性ガスの窒素により約500Torr(約66500Pa)まで減圧室内を復圧する。この状態で450度〜500度まで昇温する。これはガスの対流による熱伝導が真空輻射加熱より遙かに速いからである。450度〜500度に雰囲気加熱で昇温した後、減圧室内の圧力を約20Pa(約2.0×10−4atm)の低真空状態まで減圧する。これはクロスカップリング反応をさせる準備である。この減圧雰囲気で減圧室を550度(量産時には600度まで使用可)昇温し、60分〜90分均熱保持する。この間にアルミニウム合金材10AのMg元素はイオン化し、周囲のイオン化したAlイオンと一緒にアルミニウム合金材10Aの表層部のニッケル層20へ移動拡散する。アルミニウム合金材10Aの表層部ではMgイオンに誘導されたAlイオンとNiイオンがクロスカップリング反応によって金属間化合物が連続生成されていく。550度×均熱時間60分〜90分の保持後、この真空雰囲気のまま500度〜450度まで炉冷させる。このように徐々に冷却するのは生成された金属間化合物の剥離を防止するためである。即ち、クロスカップリング反応で出来た硬い金属間化合物の層と熱膨張しているコアーの母材との間は冷却に伴う両者の間にかなりの力の引張り応力が働いている筈である。両者の応力を小さく収縮させるためにはワークの冷却速度を小さくしておく必要がある。炉温が500度〜450度付近になったら、500Torrに復圧し、常温付近までファン冷却させた後大気圧にして、出来上がったアルミニウム硬化材10Bを取り出す。
また、イオン真空炉を使用してグロー放電で加熱処理を行うときには、減圧室内を外側から加熱する外熱型のイオン真空炉を用いることが好ましい。通常のイオン真空炉では質量の小さいワークを設定温度に加熱するのはグロー放電時のワーク表面で放電するイオン・スパッタリング期間中のみで持続的に設定温度に保持するのは困難である。従って、質量の小さい部品の量産を熱処理するには真空容器の外側に発熱体を有するイオン真空炉が必要となる。この場合には、加熱対象であるワーク(メッキ層付合金材10A)が冷えずに熱処理を行うことができて、加熱処理を安定して行うことができる。
なお、加熱処理は、通常の真空炉やイオン真空炉の他に、表面酸化や熱処理時間の長さを問わなければ、大気炉を用いても加熱処理を行うことができる。
<Second step>
FIG. 3 is a schematic view showing the aluminum hardened material 10B on which the hardened layer T1 is formed in the second step. In the second step, first, in order to lower the oxygen partial pressure in the decompression chamber (vacuum furnace), it is evacuated to about 0.1 Torr (about 13.3 Pa) or less by a vacuum pump. Then, the pressure in the vacuum chamber is restored to about 500 Torr (about 66500 Pa) with nitrogen as an inert gas. In this state, the temperature is raised to 450 to 500 degrees. This is because heat conduction by gas convection is much faster than vacuum radiant heating. After raising the temperature by heating to 450 to 500 degrees, the pressure in the decompression chamber is reduced to a low vacuum state of about 20 Pa (about 2.0 × 10 −4 atm). This is a preparation for a cross-coupling reaction. In this reduced-pressure atmosphere, the vacuum chamber is heated to 550 degrees (can be used up to 600 degrees for mass production) and kept soaked for 60 to 90 minutes. During this time, the Mg element of the aluminum alloy material 10A is ionized and moves and diffuses to the nickel layer 20 in the surface layer portion of the aluminum alloy material 10A together with surrounding ionized Al ions. In the surface layer portion of the aluminum alloy material 10A, Al ions and Ni ions induced by Mg ions are continuously generated by a cross coupling reaction. After holding 550 degrees x soaking time 60 minutes to 90 minutes, the furnace is cooled to 500 degrees to 450 degrees in this vacuum atmosphere. The reason for gradually cooling in this way is to prevent peeling of the produced intermetallic compound. That is, between the hard intermetallic compound layer produced by the cross-coupling reaction and the core material of the core that is thermally expanded, a considerable tensile stress should be exerted between the two due to cooling. In order to reduce the stress between the two, it is necessary to reduce the cooling rate of the workpiece. When the furnace temperature reaches around 500 to 450 degrees, the pressure is restored to 500 Torr, the fan is cooled to near room temperature, and the pressure is changed to atmospheric pressure, and the finished aluminum hardened material 10B is taken out.
When heat treatment is performed by glow discharge using an ion vacuum furnace, it is preferable to use an externally heated ion vacuum furnace that heats the inside of the decompression chamber from the outside. In a normal ion vacuum furnace, it is difficult to continuously maintain a set temperature at a set temperature only during a period of ion sputtering in which a workpiece having a small mass is heated to a set temperature during discharge of the workpiece at the time of glow discharge. Therefore, an ion vacuum furnace having a heating element on the outside of the vacuum vessel is necessary for heat treatment of mass production of parts having a small mass. In this case, the workpiece (alloy material with plating layer 10A) to be heated can be heat-treated without being cooled, and the heat treatment can be stably performed.
Note that the heat treatment can be performed using an atmospheric furnace in addition to a normal vacuum furnace or an ion vacuum furnace, regardless of the length of surface oxidation or heat treatment time.

ここで、上述した加熱温度を550度に設定する理由について、図4を用いて説明する。図4は、アルミニウムとマグネシウムとの二元系合金の状態図である。先ず、加熱温度は、図4に示した固相線SLより上側の温度であり且つ図4に示した液相線LLより下側の温度であることが必要である。即ち、450度以上であり且つ660度以下の温度である。これは、MgとAlとの固相を溶融して、母材(アルミニウム合金材10)中でイオン化したMg及びAlを動き易くするためである。
ところで、Alの融点は660度である。このため、メッキ層付合金材10Aを660度近傍まで加熱すると、Alが固体から液体に変化して母材が塑性変形してしまう。一方、発明者は、上述した条件においてメッキ層付合金材10Aを480度まで加熱した場合に、ひび割れが生じやすくなることを実験的に確認した。従って、本実施形態において、メッキ層付合金材10Aを500度以上であり且つ600度以下の温度で加熱することが好ましいことを知得した。
Here, the reason why the heating temperature is set to 550 degrees will be described with reference to FIG. FIG. 4 is a phase diagram of a binary alloy of aluminum and magnesium. First, the heating temperature needs to be a temperature above the solidus line SL shown in FIG. 4 and a temperature below the liquidus line LL shown in FIG. That is, the temperature is 450 degrees or more and 660 degrees or less. This is because the solid phase of Mg and Al is melted to make Mg and Al ionized in the base material (aluminum alloy material 10) easy to move.
By the way, the melting point of Al is 660 degrees. For this reason, when the alloy material 10A with a plating layer is heated to around 660 degrees, Al changes from a solid to a liquid and the base material is plastically deformed. On the other hand, the inventor has experimentally confirmed that cracking tends to occur when the plated layer-attached alloy material 10A is heated to 480 degrees under the above-described conditions. Therefore, it has been found that in this embodiment, it is preferable to heat the plated layer-attached alloy material 10A at a temperature of 500 degrees or more and 600 degrees or less.

また、上述した減圧室内の圧力を約20Paまで減圧したのは、低い酸素濃度の状態で加熱処理が行われるため、表面が綺麗なアルミニウム硬化材10Bを製造できるためである。更に、母材内でイオン化したMgイオンが蒸発するように活発に移動し易くなり、反応処理時間を短くできるためである。但し、加熱処理は必ずしも100Pa以下のような低真空状態で行う必要はなく、大気圧の状態であっても処理時間がかかり、表面の多少の酸化が避けられないが熱処理を行うことができる。   The reason why the pressure in the decompression chamber is reduced to about 20 Pa is that the heat treatment is performed in a low oxygen concentration state, so that the hardened aluminum material 10B having a clean surface can be manufactured. Furthermore, it is because it becomes easy to move actively so that the Mg ion ionized within the base material evaporates, and the reaction processing time can be shortened. However, the heat treatment is not necessarily performed in a low vacuum state such as 100 Pa or less, and even in an atmospheric pressure state, the treatment time is required and some oxidation of the surface cannot be avoided, but the heat treatment can be performed.

次に、製造されたアルミニウム硬化材10Bにおける金属元素の成分について、図6及び図7を用いて説明する。このアルミニウム硬化材10Bは、走査電子顕微鏡及びエネルギー分散型X線分析装置(SEM−EDX)を用いて分析されている。図7は、アルミニウム硬化材10Bの表面部分の電子顕微鏡画像であり、図6は、本実施形態のアルミニウム硬化材10Bの各スペクトルにおける各金属元素の重量%を示した成分表である。なお、SEM−EDXは、Hitachi−Hitec S−4800&Horiba EX350−actが用いられている。また、分析条件として、加速電圧は20kVに設定されている。   Next, the component of the metal element in the manufactured aluminum hardening material 10B is demonstrated using FIG.6 and FIG.7. This aluminum hardened material 10B is analyzed using a scanning electron microscope and an energy dispersive X-ray analyzer (SEM-EDX). FIG. 7 is an electron microscope image of the surface portion of the aluminum hardened material 10B, and FIG. 6 is a component table showing the weight percentage of each metal element in each spectrum of the aluminum hardened material 10B of the present embodiment. As SEM-EDX, Hitachi-Hitec S-4800 & Horiba EX350-act is used. As an analysis condition, the acceleration voltage is set to 20 kV.

図7において、アルミニウム硬化材10Bの表面側の第1層S1、即ちスペクトル1〜3の範囲では、下側の第2層S2より色が濃くなっている。この第1層S1は極めて硬くなっている部分である。第1層S1より下側の第2層S2、即ちスペクトル4〜8の範囲で、色が薄くなっている。この第2層S2はニッケル層20の性質が大きく残っている部分である。また、第2層S2より下側の第3層S3、即ちスペクトル9〜11の範囲で、色が濃くなっている。この第3層S3は母材(アルミニウム合金材10)の性質とニッケル層20の性質とが混在している部分である。   In FIG. 7, in the first layer S1 on the surface side of the hardened aluminum material 10B, that is, in the range of spectra 1 to 3, the color is darker than the lower second layer S2. This first layer S1 is an extremely hard portion. The color is lighter in the second layer S2 below the first layer S1, that is, in the range of spectra 4-8. The second layer S2 is a portion where the properties of the nickel layer 20 remain largely. Further, the color is darker in the third layer S3 below the second layer S2, that is, in the range of the spectrum 9-11. The third layer S3 is a portion where the properties of the base material (aluminum alloy material 10) and the properties of the nickel layer 20 are mixed.

図6において、スペクトル毎に表面からの深さ(μm)と各金属元素の重量%が示されている。ここで、先ず第1層S1において、特にMg,Al,Niの重量%について説明する。第1層S1は、スペクトル1〜3の範囲であり、表面からの深さが0.00〜約3.73μmまでの部分である。この第1層S1は、第2工程を経る前に、表面に0.2μmのクロム層30が形成され、クロム層30の下に15μmのニッケル層20が形成されていた部分である。なお、クロム層30は極めて薄い層であったため、Crの重量%については無視する。第2工程を経る前の第1層S1では、ニッケル層20によってNiが極めて多く(例えば80%以上)含まれている。しかし、第2工程を経た結果では、図6に示したように、第1層S1ではNiが20%以下に減少した反面、Alが70%以上になっており、これらの現象では、Mg元素が母材内部から触媒(Mgイオン)の働きをしながら表層部へ蒸発移動して表層部に5%以上残存したことによると考えられる。即ち、以下のことが考察できる。   In FIG. 6, the depth (μm) from the surface and the weight% of each metal element are shown for each spectrum. Here, first, the weight% of Mg, Al, Ni in the first layer S1 will be described. The first layer S1 has a spectrum in the range of 1 to 3, and is a portion having a depth from the surface of 0.00 to about 3.73 μm. The first layer S1 is a portion in which a 0.2 μm chromium layer 30 is formed on the surface and a 15 μm nickel layer 20 is formed under the chromium layer 30 before the second step. Since the chromium layer 30 is a very thin layer, the weight percentage of Cr is ignored. In the first layer S1 before passing through the second step, the nickel layer 20 contains an extremely large amount of Ni (for example, 80% or more). However, as a result of passing through the second step, as shown in FIG. 6, in the first layer S1, Ni is reduced to 20% or less, while Al is 70% or more. This is considered to be due to evaporation and transfer from the inside of the base material to the surface layer portion while acting as a catalyst (Mg ions) and remaining in the surface layer portion by 5% or more. That is, the following can be considered.

第1層S1において、第2工程を経なければほとんど存在しないMgが、5%以上あるのは、第2工程により母材内部から表層部に向かってイオン化した状態で移動したものと考えられる。また、第2工程を経なければほとんど存在しないAlが、70%以上であるのは、第2工程により母材内部から表面に向かって移動したMg自身が同時に触媒の働きをして材料内部のAlをイオン化させ、表層部へ拡散させたためである。一方、第2工程を経なければ極めて多く存在しているはずのNiが、第2工程を経た後では20%以下になっている。これは、第2工程においてNiがMg及びAlの移動に伴って、母材の内部に向けて拡散し、母材のAlと結合し、AlNi,Al3Ni,Al3Ni2,AlNi3,Al3Ni5等の金属間化合物(AlmNin)を生成したためである。ここで、図8は、アルミニウムとニッケルの二元状態図であり、横軸にAlとNiの各々の重量%の割合が示され、縦軸に温度が示されていて、AlとNiの両者がどんな関係にあるかを示している。図8に示した二元状態図から、上述した5つの金属間化合物(AlNi,Al3Ni,Al3Ni2,AlNi3,Al3Ni5)が生成されたことが分かる。   In the first layer S1, if there is 5% or more of Mg that hardly exists unless the second step is performed, it is considered that the second layer has moved in an ionized state from the inside of the base material to the surface layer portion. In addition, Al that hardly exists without passing through the second step is 70% or more. The Mg itself that has moved from the inside of the base material to the surface in the second step simultaneously acts as a catalyst, and the inside of the material. This is because Al was ionized and diffused into the surface layer. On the other hand, Ni, which should be present in large quantities unless the second step is performed, is 20% or less after the second step. This is because, in the second step, Ni diffuses toward the inside of the base material as Mg and Al move, and bonds with Al of the base material, and intermetallic compounds such as AlNi, Al3Ni, Al3Ni2, AlNi3, Al3Ni5, etc. This is because (AlmNin) was generated. Here, FIG. 8 is a binary phase diagram of aluminum and nickel, where the horizontal axis indicates the percentage by weight of each of Al and Ni, the vertical axis indicates the temperature, both Al and Ni. Shows what relationship is. From the binary phase diagram shown in FIG. 8, it can be seen that the five intermetallic compounds (AlNi, Al3Ni, Al3Ni2, AlNi3, Al3Ni5) described above were generated.

次に第2層S2において、特にMg,Al,Niの重量%について説明する。第2層S2は、スペクトル4〜8の範囲であり、表面からの深さが5.53〜26.9μmまでの部分である。この第2層S2は、第2工程を経る前に、上側部分S2a(スペクトル4,5の範囲)でニッケル層20が形成されていた部分であり、下側部分S2b(スペクトル6〜8の範囲)で母材であった部分である。このため、第2工程を経る前の第2層S2の上側部分S2aでは、ニッケル層20によってNiが極めて多く含まれている。また、第2工程を経る前の第2層S2の下側部分S2bでは、母材によってAlが極めて多く含まれている。しかし、第2工程を経た結果、図6に示したように、第2層S2ではNi元素が30%以上且つ50%以下になっていて、Al元素が70%以下且つ50%以上になっていて、Mg元素が5%以下になっている。この結果により、以下のことが考察できる。   Next, the weight percentage of Mg, Al, Ni in the second layer S2 will be described. The second layer S2 has a spectrum in the range of 4 to 8, and has a depth from the surface of 5.53 to 26.9 μm. This second layer S2 is a portion where the nickel layer 20 was formed in the upper portion S2a (range of spectra 4 and 5) before passing through the second step, and the lower portion S2b (range of spectra 6 to 8). ) Is the base material. For this reason, in the upper part S2a of the second layer S2 before passing through the second step, the nickel layer 20 contains an extremely large amount of Ni. Further, in the lower portion S2b of the second layer S2 before passing through the second step, an extremely large amount of Al is contained by the base material. However, as a result of the second step, as shown in FIG. 6, in the second layer S2, the Ni element is 30% or more and 50% or less, and the Al element is 70% or less and 50% or more. Thus, the Mg element is 5% or less. From this result, the following can be considered.

第2層S2でMgが第1層S1より少ないのは、第2工程によりMgが母材から第1層へ多く移動したためである。また、第2層S2の上側部分S2aにおいて、第2工程を経なければほとんど存在しないAl元素が、70%以下且つ50%以上であるのは、第2工程によりAlが母材及び第2層S2の下側部分S2bから移動してきたためである。また、第2層S2の下側部分S2bにおいて、第2工程を経なければほとんど存在しないNiが、30%以上且つ50%以下であることを示しているのは、第2工程によりNiが第1層S1及び第2層S2の上側部分S2aから移動してきたためである。   The reason why the amount of Mg in the second layer S2 is less than that in the first layer S1 is that a large amount of Mg has moved from the base material to the first layer in the second step. In addition, in the upper portion S2a of the second layer S2, Al element which hardly exists unless the second step is performed is 70% or less and 50% or more because Al is the base material and the second layer in the second step. This is because it has moved from the lower part S2b of S2. In addition, in the lower portion S2b of the second layer S2, Ni that hardly exists unless the second step is performed is not less than 30% and not more than 50%. This is because they have moved from the upper portion S2a of the first layer S1 and the second layer S2.

続いて第3層S3において、特にMg,Al,Niの重量%について説明する。第3層S3は、スペクトル9〜11の範囲であり、表面からの深さが30.44〜38.9μmまでの部分である。この第3層S3は、第2工程を経る前に母材であった部分である。このため、第2工程を経る前の第3層S3では、Alが極めて多く含まれている。しかし、第2工程を経た結果、図6に示したように、第3層S3において、内部側に(スペクトル9からスペクトル11に)向かうに従ってAlの重量%が増加していて、スペクトル11でAlが90%以上であることを示している。また、図7に示したように、第3層S3において、内部側に向かうに従ってNiの重量%が減少していて、スペクトル11でNiが1%以下である。このことから、第3層S3において内部側に向かうに従って、母材の性質に近づいていて、第2工程による表面硬化処理の影響が小さくなっている。   Subsequently, in the third layer S3, the weight% of Mg, Al, Ni in particular will be described. The third layer S3 has a spectrum in the range of 9 to 11, and has a depth from the surface of 30.44 to 38.9 μm. The third layer S3 is a portion that was a base material before the second step. For this reason, the third layer S3 before passing through the second step contains an extremely large amount of Al. However, as a result of passing through the second step, as shown in FIG. 6, in the third layer S3, the weight percentage of Al increases toward the inner side (from spectrum 9 to spectrum 11). Is 90% or more. Further, as shown in FIG. 7, in the third layer S3, the weight percentage of Ni decreases toward the inner side, and in the spectrum 11, Ni is 1% or less. From this, as it goes to the inner side in the third layer S3, it approaches the properties of the base material, and the influence of the surface hardening treatment in the second step is reduced.

次に、アルミニウム硬化材10Bのビッカース硬さ(HV)と表面からの深さ(μm)との関係について、図5を用いて説明する。なお、図5に示したアルミニウム硬化材10Bの硬さ推移曲線は、以下の方法により作成されている。先ず、アルミニウム硬化材10Bを表面に対して垂直に切断し、切断面を研磨仕上げして被検面とする。そして、被検面の測定しようとする位置について、アルミニウム硬化材10Bを送りながらビッカース硬さ試験により順次測定を行う。こうして、硬さ推移曲線が作成される。   Next, the relationship between the Vickers hardness (HV) of the aluminum hardened material 10B and the depth (μm) from the surface will be described with reference to FIG. In addition, the hardness transition curve of the aluminum hardening material 10B shown in FIG. 5 is created by the following method. First, the hardened aluminum material 10B is cut perpendicularly to the surface, and the cut surface is polished to obtain a test surface. And about the position which is going to measure the to-be-tested surface, it measures sequentially by a Vickers hardness test, sending aluminum hardening material 10B. In this way, a hardness transition curve is created.

図5に示したように、このアルミニウム硬化材10Bでは、母材としてのビッカース硬さが84HVであり、深さが75μmでビッカース硬さが95HVとなっている。アルミニウム硬化材10Bの硬化層T1は、金属間化合物(AlNi,Al3Ni,Al3Ni2,AlNi3,Al3Ni5)が生成された層である。そして、表面でビッカース硬さが780HVであり、表面から20μmの深さでビッカース硬さが742HVであるため、表面部分が非常に硬いものである。これは、図6に示した第1層S1(スペクトル1からスペクトル3)の領域のAlとNiの分布状況から推測できる。更に、表面から50μmの深さでビッカース硬さが237HVであるため、硬化層T1が厚くて表面から内部に向けて徐々に軟らかくものである。即ち、最表面から20μmを超えた領域から金属間化合物(AlmNin)を生成させるためのNiイオンの重量%が30%以下になり、硬度が下がって行く。   As shown in FIG. 5, in this aluminum hardened material 10B, the Vickers hardness as a base material is 84 HV, the depth is 75 μm, and the Vickers hardness is 95 HV. The hardened layer T1 of the hardened aluminum material 10B is a layer in which an intermetallic compound (AlNi, Al3Ni, Al3Ni2, AlNi3, Al3Ni5) is generated. And since the Vickers hardness is 780 HV on the surface and the Vickers hardness is 742 HV at a depth of 20 μm from the surface, the surface portion is very hard. This can be inferred from the distribution of Al and Ni in the region of the first layer S1 (Spectrum 1 to Spectrum 3) shown in FIG. Further, since the Vickers hardness is 237 HV at a depth of 50 μm from the surface, the hardened layer T1 is thick and gradually softens from the surface toward the inside. That is, the weight percentage of Ni ions for generating an intermetallic compound (AlmNin) from a region exceeding 20 μm from the outermost surface becomes 30% or less, and the hardness decreases.

ところで、発明者は、上述したような硬化層T1が形成される理由がアルミニウム合金材10に含まれるMg元素が原因ではないかと考えた。そこで、発明者は、Mg元素が含まれているアルミニウム合金材10に換えて、Mg元素が含まれていないアルミニウム合金材40を用いて、上述した第1工程及び第2工程と同様の表面硬化処理を行い、比較例としてアルミニウム硬化材(以下、アルミニウム硬化材40Bと呼ぶ)を製造した。なお、母材として用いたアルミニウム合金材40は、JIS規格で2011番のものであって、重量%でSiが0.40%,Feが0.7%,Cuが5.0〜6.0%,Znが0.3%,Pbが0.2〜0.6%又はBiが0.2〜0.6%,Alが残り全て含まれるものである。製造されたアルミニウム硬化材40Bにおける金属元素の成分について、図10及び図11を用いて説明する。   By the way, the inventor thought that the reason why the hardened layer T1 as described above is formed is caused by the Mg element contained in the aluminum alloy material 10. Therefore, the inventor uses the aluminum alloy material 40 not containing Mg element instead of the aluminum alloy material 10 containing Mg element, and the same surface hardening as in the first step and the second step described above. As a comparative example, an aluminum hardened material (hereinafter referred to as an aluminum hardened material 40B) was manufactured. The aluminum alloy material 40 used as a base material is No. 2011 in JIS standard, and Si is 0.40%, Fe is 0.7%, and Cu is 5.0 to 6.0 by weight%. %, Zn is 0.3%, Pb is 0.2 to 0.6% or Bi is 0.2 to 0.6%, and all the remaining Al is included. The component of the metal element in the manufactured aluminum hardening material 40B is demonstrated using FIG.10 and FIG.11.

図11では、アルミニウム硬化材40Bの表面側の第1層U1、即ちスペクトル1〜3の範囲で、色が薄くなっている。そして、図10でスペクトル1〜3を見ると、Niが極めて多く含まれているのに対して、Alが全く含まれていない。また、図11では、第1層U1より下側の第2層U2、即ちスペクトル4で、色が第1層U1より濃くなっている。そして、図10でスペクトル4を見ると、Niが第1層U1より少ないのに対して、Alが第1層U1より多くなっている。そして、図10でスペクトル5〜6を見ると、Niがほとんど含まれていないのに対して、Alが極めて多く含まれている。このことから、アルミニウム硬化材40Bは、アルミニウム硬化材10BのようにAlが母材から表面に向かって拡散したものではなく、表面側にニッケル層を構成していたNiが多く残っているものである。   In FIG. 11, the color is light in the first layer U1 on the surface side of the hardened aluminum material 40B, that is, in the range of spectra 1 to 3. When looking at the spectra 1 to 3 in FIG. 10, Ni is contained in an extremely large amount, whereas Al is not contained at all. In FIG. 11, the color is darker than the first layer U1 in the second layer U2 below the first layer U1, that is, the spectrum 4. When the spectrum 4 is seen in FIG. 10, Ni is less than the first layer U1, while Al is more than the first layer U1. When looking at the spectra 5 to 6 in FIG. 10, Ni is hardly contained, whereas Al is contained very much. From this, the hardened aluminum material 40B is not a material in which Al diffuses from the base material toward the surface as in the hardened aluminum material 10B, but a large amount of Ni constituting the nickel layer remains on the surface side. is there.

次に、アルミニウム硬化材40Bのビッカース硬さ(HV)と表面からの深さ(μm)との関係について、図9を用いて説明する。アルミニウム硬化材40Bでは、図9に示したように、母材としてのビッカース硬さが73〜79HVであり、深さが20μmでビッカース硬さが64HVとなっている。このため、アルミニウム硬化材40Bは、表面から約15μm程度の深さまで母材より硬い硬化層を有する。しかし、アルミニウム硬化材40Bは、元々15μmのニッケル層が形成されていたものであって、硬化層の硬さはニッケル層の硬さと同様である。従って、硬化層は、第2工程により新たに形成されたものではなく、ニッケル層がそのまま残ったものである。   Next, the relationship between the Vickers hardness (HV) and the depth (μm) from the surface of the aluminum cured material 40B will be described with reference to FIG. In the aluminum hardened material 40B, as shown in FIG. 9, the Vickers hardness as a base material is 73 to 79 HV, the depth is 20 μm, and the Vickers hardness is 64 HV. For this reason, the aluminum hardened material 40B has a hardened layer harder than the base material up to a depth of about 15 μm from the surface. However, the aluminum hardened material 40B is originally formed with a 15 μm nickel layer, and the hardness of the hardened layer is the same as the hardness of the nickel layer. Therefore, the hardened layer is not newly formed in the second step, but the nickel layer remains as it is.

本実施形態の作用効果について説明する。
本実施形態によれば、高温雰囲気で加熱することで、蒸気圧の低いMg元素はイオン化して表層部に向かって活発に拡散運動する。その際、イオン化したMg元素は周囲のイオン化したAl元素を誘導して表層部に向かって移動する。そして、表層部へ誘導されたAlイオンは、表層部でイオン化されているNi元素と結合して、高硬度の金属間化合物(AlmNin)を生成させる。即ち、高温雰囲気においてMg元素は触媒の働きをしてイオン化しているAl元素とNi元素を、クロスカップリング反応させて高硬度の金属間化合物を生成させる。この結果、硬化層T1の深さが例えばメッキ等で得られる硬化層の厚みの1.5倍以上の値になり、内部に向けて徐々に軟らかくなる厚い硬化層T1を有するアルミニウム硬化材10Bを製造できる。
The effect of this embodiment is demonstrated.
According to this embodiment, by heating in a high temperature atmosphere, the Mg element having a low vapor pressure is ionized and actively diffuses toward the surface layer. At that time, the ionized Mg element induces the surrounding ionized Al element and moves toward the surface layer portion. And the Al ion induced | guided | derived to the surface layer part couple | bonds with the Ni element ionized by the surface layer part, and produces | generates a high hardness intermetallic compound (AlmNin). That is, the Mg element acts as a catalyst in a high temperature atmosphere to cause a cross coupling reaction between the ionized Al element and Ni element to form a high hardness intermetallic compound. As a result, the depth of the hardened layer T1 is 1.5 times or more the thickness of the hardened layer obtained by, for example, plating, and the aluminum hardened material 10B having the thick hardened layer T1 that gradually softens toward the inside is obtained. Can be manufactured.

そして、本実施形態によって製造されたアルミニウム硬化材10Bは、自動車を構成する部品、例えば摺動等の摩擦を受ける部分であるシリンダや弁等に用いることができ、表面でビッカース硬さが750HV以上であり且つ表面から少なくとも20μmの深さでビッカース硬さが700HV以上であるため、表面部分が非常に硬い。特に、表面から少なくとも50μmの深さでビッカース硬さが200HV以上であるため、硬化層T1が厚くて表面から内部に向けて徐々に軟らかくなるものである。従って、このアルミニウム硬化材10Bは、摺動摩擦が極めて大きい部位に用いても、硬化層T1が早く消耗することがなくて製品安全上好ましいものであり、ねじれ等が作用しても、硬化層の境界部分でひび割れ又は剥離は生じ難い。
他方、腕時計のバンドには従来から錆び難いステンレス製のものが利用されているが、比較的重くオーステナイト系ステンレス材で構成されているため、部品表面が軟らかく傷も付き易い。一方、製造されたアルミニウム硬化材10Bを腕時計のバンドに用いれば、表面が金属間化合物(AlmNin)によってビッカース硬さが750HV以上であるため、軽くて傷が付き難い理想的な商品が期待できる。
The hardened aluminum material 10B manufactured according to the present embodiment can be used for parts constituting automobiles, for example, cylinders and valves that are subjected to friction such as sliding, and has a Vickers hardness of 750 HV or more on the surface. In addition, since the Vickers hardness is 700 HV or more at a depth of at least 20 μm from the surface, the surface portion is very hard. In particular, since the Vickers hardness is 200 HV or more at a depth of at least 50 μm from the surface, the hardened layer T1 is thick and gradually softens from the surface toward the inside. Therefore, this aluminum hardened material 10B is preferable in terms of product safety because the hardened layer T1 is not consumed quickly even if it is used in a part where the sliding friction is extremely large. Cracks or delamination is unlikely to occur at the boundary.
On the other hand, stainless steel wristbands that have been resistant to rusting have been used in the past, but because they are relatively heavy and made of austenitic stainless steel, the surface of the parts is soft and easily damaged. On the other hand, if the manufactured aluminum cured material 10B is used for a wristwatch band, the surface is made of an intermetallic compound (AlmNin) and has a Vickers hardness of 750 HV or more.

なお、発明者は、15μmのニッケル層20と0.2μmのクロム層30が形成されたアルミニウム合金材10に換えて、15μmのクロム層30のみが形成されたアルミニウム合金材10に対して第2工程の表面硬化処理を行った。この場合には、クロム層30の最表面のビッカース硬さは1048HVであったが、製造されたアルミニウム硬化材の硬化層は、破砕状に剥がれてしまった。従って、発明者は、ニッケル層20が形成されたアルミニウム合金材10に対して第2工程の表面硬化処理を行うことの有効性を確認した。   In addition, the inventor replaces the aluminum alloy material 10 in which the 15 μm nickel layer 20 and the 0.2 μm chromium layer 30 are formed with respect to the aluminum alloy material 10 in which only the 15 μm chromium layer 30 is formed. The surface hardening process of the process was performed. In this case, the Vickers hardness of the outermost surface of the chromium layer 30 was 1048 HV, but the hardened layer of the manufactured aluminum hardened material was peeled off in a crushed state. Therefore, the inventor confirmed the effectiveness of performing the surface hardening treatment in the second step on the aluminum alloy material 10 on which the nickel layer 20 is formed.

なお、ニッケル層20の厚さが大きくなる程、また加熱温度が低くなる程、母材の中のMgイオン及びAlイオンがニッケル層20の表面に向けて拡散するまでの時間が多くなる。このため、メッキ層付合金材10Aを加熱保持する所定時間は、ニッケル層20の厚さ及び加熱温度に基づいて、母材の中のMgイオン及びAlイオンがニッケル層20の表面に向けて拡散するとともに、ニッケル層20の中のNiイオンが母材の内部に向けて拡散するまでの時間を考慮して設定される。   Note that, as the thickness of the nickel layer 20 increases and the heating temperature decreases, the time required for Mg ions and Al ions in the base material to diffuse toward the surface of the nickel layer 20 increases. For this reason, the predetermined time for heating and holding the plating layer-attached alloy material 10A is that Mg ions and Al ions in the base material diffuse toward the surface of the nickel layer 20 based on the thickness and heating temperature of the nickel layer 20. In addition, the time until the Ni ions in the nickel layer 20 diffuse toward the inside of the base material is set.

以上、本発明に係るアルミニウム硬化材の製造方法について説明したが、本発明はこれに限定されることはなく、その趣旨を逸脱しない範囲で様々な変更が可能である。
例えば、アルミニウム合金材10の酸化皮膜を除去する方法は、亜鉛酸液に浸す方法に限定されるものではなく、例えば、スパッタリング法によって酸化皮膜を除去しても良い。
As mentioned above, although the manufacturing method of the aluminum hardening material which concerns on this invention was demonstrated, this invention is not limited to this, A various change is possible in the range which does not deviate from the meaning.
For example, the method of removing the oxide film of the aluminum alloy material 10 is not limited to the method of immersing in the zinc acid solution, and the oxide film may be removed by sputtering, for example.

また、クロム層30の厚さ(0.2μm)、加熱温度(550度)、減圧室内の圧力(約20Pa)、第2工程の処理時間(60分〜90分)は、上記した数値に限定されるものではなく、適宜変更可能である。
また、本実施形態では、厚さが15μmのニッケル層20を形成したが、厚さが10μm以上であれば少なくとも1.5倍以上である15μmの金属間化合物の硬化層を形成することができる。従って、ニッケル層20の厚さは10μm以上であれば適宜変更可能である。
In addition, the thickness of the chromium layer 30 (0.2 μm), the heating temperature (550 degrees), the pressure in the decompression chamber (about 20 Pa), and the processing time of the second step (60 minutes to 90 minutes) are limited to the above values. It can be changed as appropriate.
In this embodiment, the nickel layer 20 having a thickness of 15 μm is formed. However, if the thickness is 10 μm or more, a cured layer of 15 μm intermetallic compound that is at least 1.5 times or more can be formed. . Accordingly, the thickness of the nickel layer 20 can be appropriately changed as long as it is 10 μm or more.

なお、高硬度の金属間化合物の硬化層が生成される時間と厚さは、設定する熱処理時間(500度以上且つ600度以下の温度)と保持時間によって決まる。そして、母材であるアルミニウム合金材の熱膨張・収縮率は大きいが、生成される硬化層の熱膨張・収縮率は極めて小さい。従って、熱処理が終了し、常温まで試料が冷却される段階で硬化した表層部(硬化層)と母材の非硬化部の間には、表層部の抗長力A1と非硬化部の収縮による引張応力B1が働く。引張応力B1が抗長力A1より大きい場合には、硬化層が剥離するおそれがあるため、アルミニウム合金材の厚さの2分の1である部分から引張応力B1を算出し、この引張応力B1を超える抗張力A1を算定して、アルミニウム合金材の表面に形成するニッケル層の厚さを決定すれば良い。   The time and thickness at which the hardened intermetallic compound hardened layer is formed are determined by the heat treatment time to be set (temperature of 500 ° C. or more and 600 ° C. or less) and the holding time. And although the aluminum alloy material which is a base material has a large thermal expansion / shrinkage rate, the generated hardened layer has a very small thermal expansion / shrinkage rate. Therefore, between the surface layer portion (cured layer) cured at the stage where the heat treatment is completed and the sample is cooled to room temperature and the non-cured portion of the base material, the surface layer portion has a drag strength A1 and the non-cured portion shrinks. Tensile stress B1 works. When the tensile stress B1 is larger than the drag strength A1, the hardened layer may be peeled off. Therefore, the tensile stress B1 is calculated from a portion that is a half of the thickness of the aluminum alloy material, and this tensile stress B1. It is only necessary to calculate the tensile strength A1 exceeding the value and determine the thickness of the nickel layer formed on the surface of the aluminum alloy material.

10 アルミニウム合金材
10A メッキ層付合金材
10B アルミニウム硬化材
T1 硬化層
S1 第1層
S2 第2層
S3 第3層
20 ニッケル層
30 クロム層
40 アルミニウム合金材
DESCRIPTION OF SYMBOLS 10 Aluminum alloy material 10A Alloy material 10B with a plating layer Aluminum hardening material T1 Hardening layer S1 1st layer S2 2nd layer S3 3rd layer 20 Nickel layer 30 Chromium layer 40 Aluminum alloy material

Claims (4)

マグネシウム元素を含むアルミニウム合金材を表面硬化するアルミニウム硬化材の製造方法において、
前記アルミニウム合金材の表面の酸化被膜を除去した上でニッケル層を10μm以上形成する第1工程と、
前記ニッケル層が形成されたアルミニウム合金材を500度以上且つ600度以下の温度で加熱し所定時間保持する第2工程と、
を有することを特徴とするアルミニウム硬化材の製造方法。
In the method of manufacturing an aluminum hardened material that hardens the surface of an aluminum alloy material containing magnesium element,
A first step of forming a nickel layer of 10 μm or more after removing the oxide film on the surface of the aluminum alloy material;
A second step of heating the aluminum alloy material on which the nickel layer is formed at a temperature of 500 degrees to 600 degrees and holding for a predetermined time;
The manufacturing method of the aluminum hardening | curing material characterized by having.
請求項1に記載するアルミニウム硬化材の製造方法において、
前記第2工程では、前記ニッケル層の厚さ及び加熱する温度に基づいて、母材の中のマグネシウムイオン及びアルミニウムイオンが前記ニッケル層の表面に向けて拡散するまで、所定時間保持することを特徴とするアルミニウム硬化材の製造方法。
In the manufacturing method of the aluminum hardening material of Claim 1,
In the second step, based on the thickness of the nickel layer and the temperature to be heated, magnesium ions and aluminum ions in the base material are held for a predetermined time until they diffuse toward the surface of the nickel layer. A method for producing a cured aluminum material.
請求項1又は請求項2に記載するアルミニウム硬化材の製造方法において、
前記第2工程では、100Pa以下の低真空状態の減圧室内で、加熱することを特徴とするアルミニウム硬化材の製造方法。
In the manufacturing method of the aluminum hardening | curing material of Claim 1 or Claim 2,
In the second step, the method for producing a hardened aluminum material is characterized in that heating is performed in a reduced-pressure chamber in a low vacuum state of 100 Pa or less.
請求項1乃至請求項3の何れかに記載するアルミニウム硬化材の製造方法において、
前記第2工程では、外熱型のイオン真空炉を用いてグロー放電で加熱することを特徴とするアルミニウム硬化材の製造方法。



In the manufacturing method of the aluminum hardening material in any one of Claims 1 thru | or 3,
In the second step, the method for producing a hardened aluminum material is characterized in that heating is performed by glow discharge using an externally heated ion vacuum furnace.



JP2013018099A 2013-02-01 2013-02-01 Method for producing hardened aluminum material by cross-coupling reaction Expired - Fee Related JP5490927B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013018099A JP5490927B2 (en) 2013-02-01 2013-02-01 Method for producing hardened aluminum material by cross-coupling reaction
DE102014201761.0A DE102014201761A1 (en) 2013-02-01 2014-01-31 A method of producing a hardened aluminum material by a cross-coupling reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013018099A JP5490927B2 (en) 2013-02-01 2013-02-01 Method for producing hardened aluminum material by cross-coupling reaction

Publications (2)

Publication Number Publication Date
JP2013091856A true JP2013091856A (en) 2013-05-16
JP5490927B2 JP5490927B2 (en) 2014-05-14

Family

ID=48615207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013018099A Expired - Fee Related JP5490927B2 (en) 2013-02-01 2013-02-01 Method for producing hardened aluminum material by cross-coupling reaction

Country Status (2)

Country Link
JP (1) JP5490927B2 (en)
DE (1) DE102014201761A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109609899A (en) * 2019-01-09 2019-04-12 西南大学 A kind of surface modifying method of magnesium alloy

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397939A (en) * 1977-02-07 1978-08-26 Taguchi Chobee Ionic diffusion method of metallic material
JPS61257464A (en) * 1985-05-08 1986-11-14 Fukuhisa Matsuda Method for hardening surface of aluminum or aluminum alloy material
JPH0247250A (en) * 1988-08-08 1990-02-16 Fujitsu Ltd Wear-resistant aluminum alloy
JPH04202725A (en) * 1990-11-30 1992-07-23 Daido Steel Co Ltd Sheet or wire of intermetallic compound and their manufacture
JPH05179420A (en) * 1991-12-26 1993-07-20 Toyota Central Res & Dev Lab Inc Aluminum material excellent in wear resistance and its production
JPH05294796A (en) * 1992-04-14 1993-11-09 Daido Steel Co Ltd Metallic member provided with alumina crystalline growing layer and production therefor
JP2004106059A (en) * 2002-08-29 2004-04-08 Sumitomo Special Metals Co Ltd Aluminum-nickel clad member, manufacturing method thereof, and external terminal for battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235096A (en) 1985-08-08 1987-02-16 Matsushita Seiko Co Ltd Blower device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397939A (en) * 1977-02-07 1978-08-26 Taguchi Chobee Ionic diffusion method of metallic material
JPS61257464A (en) * 1985-05-08 1986-11-14 Fukuhisa Matsuda Method for hardening surface of aluminum or aluminum alloy material
JPH0247250A (en) * 1988-08-08 1990-02-16 Fujitsu Ltd Wear-resistant aluminum alloy
JPH04202725A (en) * 1990-11-30 1992-07-23 Daido Steel Co Ltd Sheet or wire of intermetallic compound and their manufacture
JPH05179420A (en) * 1991-12-26 1993-07-20 Toyota Central Res & Dev Lab Inc Aluminum material excellent in wear resistance and its production
JPH05294796A (en) * 1992-04-14 1993-11-09 Daido Steel Co Ltd Metallic member provided with alumina crystalline growing layer and production therefor
JP2004106059A (en) * 2002-08-29 2004-04-08 Sumitomo Special Metals Co Ltd Aluminum-nickel clad member, manufacturing method thereof, and external terminal for battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109609899A (en) * 2019-01-09 2019-04-12 西南大学 A kind of surface modifying method of magnesium alloy
CN109609899B (en) * 2019-01-09 2021-03-02 西南大学 Surface modification method of magnesium alloy

Also Published As

Publication number Publication date
JP5490927B2 (en) 2014-05-14
DE102014201761A1 (en) 2014-08-07

Similar Documents

Publication Publication Date Title
JP6157937B2 (en) Valve device and manufacturing method thereof
JP2011032536A (en) Method of combined heat treatment of quench-hardened steel member, and quench-hardened steel member
FR2991694A1 (en) Strengthening a steel part useful in a car, comprises a step of carburizing or carbonitriding and a step of nitriding that are performed in a same furnace, where nitriding step is carried out next to step of carburizing or carbonitriding
US8297094B2 (en) Article for improved adhesion of fatigue-prone components
Birol Response to thermal cycling of plasma nitrided hot work tool steel at elevated temperatures
Birol Effect of post-oxidation treatment on thermal fatigue behaviour of plasma nitrided hot work tool steel at elevated temperatures
JP4789141B2 (en) Manufacturing method of iron parts
JP3979502B1 (en) Method of nitriding / oxidizing and re-oxidizing metal member
JP5490927B2 (en) Method for producing hardened aluminum material by cross-coupling reaction
JP2010229463A (en) Member coated with hard film and method for manufacturing the same
JP2006028539A (en) Surface treatment method for magnesium base material, and method for manufacturing magnesium shaped article
JP2018115384A (en) Alloy having oxide layer generated on surface and coating-less die cast mold manufactured thereby
JP2004277880A (en) Iron-based component and method for producing the same
JP6191357B2 (en) Steel heat treatment method
JP6846838B2 (en) Manufacturing method of heat-resistant alloy member, manufacturing method of alloy film and manufacturing method of high temperature device
JP2018104801A (en) Fe-Al ALLOY MATERIAL, AND PRODUCTION METHOD THEREOF
US7556699B2 (en) Method of plasma nitriding of metals via nitrogen charging
JP2010222649A (en) Production method of carbon steel material and carbon steel material
Spies et al. Nitriding of Aluminum and its Alloys
JP2005028398A (en) Material with erosion-resistance to aluminum and its producing method
US20190292641A1 (en) Method of treating a workpiece comprising a titanium metal and object
JP5012384B2 (en) Surface treatment method
JP2014105363A (en) Ferritic surface-modified metal member and method of producing ferritic surface-modified metal member
JP5824010B2 (en) Hard coating coated member
WO2021070344A1 (en) Die and method for producing die

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130220

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130613

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140226

R150 Certificate of patent or registration of utility model

Ref document number: 5490927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees