JP5824010B2 - Hard coating coated member - Google Patents

Hard coating coated member Download PDF

Info

Publication number
JP5824010B2
JP5824010B2 JP2013168432A JP2013168432A JP5824010B2 JP 5824010 B2 JP5824010 B2 JP 5824010B2 JP 2013168432 A JP2013168432 A JP 2013168432A JP 2013168432 A JP2013168432 A JP 2013168432A JP 5824010 B2 JP5824010 B2 JP 5824010B2
Authority
JP
Japan
Prior art keywords
film
nitrogen
chromium
hard
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013168432A
Other languages
Japanese (ja)
Other versions
JP2014012896A (en
Inventor
清水 雄一郎
雄一郎 清水
光輝 戸石
光輝 戸石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Thermotech Co Ltd
Original Assignee
Dowa Thermotech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Thermotech Co Ltd filed Critical Dowa Thermotech Co Ltd
Priority to JP2013168432A priority Critical patent/JP5824010B2/en
Publication of JP2014012896A publication Critical patent/JP2014012896A/en
Application granted granted Critical
Publication of JP5824010B2 publication Critical patent/JP5824010B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、耐摩耗性、密着性、さらには高温酸化や金型における離型性に優れた硬質皮膜被覆部材に関し、特に、表面に硬質皮膜として窒素含有クロム皮膜が形成された部材に関する。さらにはアルミダイカスト用や樹脂成形用の金型表面に前記硬質皮膜が形成されたものに関する。   The present invention relates to a hard film-coated member excellent in wear resistance, adhesion, and high-temperature oxidation and mold releasability in a mold, and particularly relates to a member having a nitrogen-containing chromium film formed on its surface as a hard film. Further, the present invention relates to an aluminum die casting or resin molding mold surface on which the hard film is formed.

従来、耐摩耗性や耐焼き付き性が必要とされる自動車などの摺動部品や機械部材の他、高面圧下で使用される金型などの表面に、スパッタリングなどの物理的蒸着によって窒素含有クロム皮膜を形成して、耐摩耗性や耐焼き付き性を向上させる方法が知られている(特許文献1)。   Conventionally, nitrogen-containing chromium is produced by physical vapor deposition such as sputtering on the surfaces of sliding parts and machine parts such as automobiles that require wear resistance and seizure resistance, as well as dies used under high surface pressure. A method of forming a film and improving wear resistance and seizure resistance is known (Patent Document 1).

また、例えば樹脂成形装置用部材である金型として、金属性母材の樹脂と接する表面に炭素およびフッ素を最表面にイオン注入した改質層を有する、優れた離型性と耐磨耗性を有し、その離型性を長期間にわたって維持できる金型が提案されている(特許文献2)。また、金型上にイオンプレーティングにより窒化クロム膜を形成し、その後に酸化クロム膜を形成し、耐磨耗性に優れた被膜を得る方法について提案されている(特許文献3)。   In addition, for example, as a mold as a member for a resin molding apparatus, it has an excellent release property and wear resistance, having a modified layer in which carbon and fluorine are ion-implanted on the outermost surface on the surface of the metallic base material in contact with the resin And a mold that can maintain the releasability over a long period of time has been proposed (Patent Document 2). In addition, a method has been proposed in which a chromium nitride film is formed on a mold by ion plating, and then a chromium oxide film is formed to obtain a coating having excellent wear resistance (Patent Document 3).

特開平11−217666号公報JP-A-11-217666 特開2000−61952号公報JP 2000-61952 A 特開平8−296033号公報JP-A-8-296033

しかし、アルミダイカストや樹脂成形の金型などに求められる特性である耐摩耗性、密着性、耐高温酸化性、離型性など全てを満足する表面処理皮膜を単純な系で解決するのは困難である。また、複合処理や多元素添加などで前記特性を全て満足することを図る手法が提案されてきたが、例えば前記特許文献の方法で要求特性の全てを満たすことは困難であった。
従来技術である窒素含有クロム皮膜はアモルファス構造を有し、明確な粒界が存在しないため、高耐食性、耐アルカリ性を有しているとされるが、金型に適用した場合、さらなる高寿命化に向けて成形される金属の溶湯や樹脂との濡れ性がよすぎて問題となっていた(例えば特許文献1)。
また、特許文献2の被膜は最表面の被膜の強度が比較的小さいために、負荷の高い前記金型用途においては被膜の早期剥離、摩滅のおそれがある。特許文献3の方法はイオンプレーティングによるもので、被膜を形成するためには金型を少なくとも300℃以上に加熱する必要があり、基材が軟化するおそれがある。
さらに、従来技術は装置・工程が複雑となり製造コストの高いものであった。また、再処理・局所的な処理ができないなどの生産性にも問題があるものであった。その他TiAlN皮膜を施した金型も知られているが、アルカリ水溶液に対して化学的に不安定であり、金型のメンテナンスにおいて不具合が生じるおそれがあった。
However, it is difficult to solve a surface-treated film that satisfies all of the characteristics required for aluminum die casting and resin molds, such as wear resistance, adhesion, high-temperature oxidation resistance, and releasability, with a simple system. It is. In addition, methods have been proposed for satisfying all of the above characteristics by composite treatment, multi-element addition, and the like, but it has been difficult to satisfy all of the required characteristics by the method of the above-mentioned patent document, for example.
The conventional nitrogen-containing chromium film has an amorphous structure and no clear grain boundary, so it is said to have high corrosion resistance and alkali resistance. However, the wettability with molten metal and resin molded toward the surface is too good (for example, Patent Document 1).
Moreover, since the strength of the coating on the outermost surface of the coating of Patent Document 2 is relatively small, there is a risk of early peeling and abrasion of the coating in the above-described mold application with a high load. The method of Patent Document 3 is based on ion plating. In order to form a film, it is necessary to heat the mold to at least 300 ° C. or higher, and the base material may be softened.
Furthermore, the prior art has a high manufacturing cost due to complicated equipment and processes. In addition, there was a problem in productivity such as inability to re-process and local processing. In addition, although a mold having a TiAlN film is also known, it is chemically unstable with respect to an alkaline aqueous solution, and there is a risk that problems may occur in mold maintenance.

したがって、本発明は、このような従来の問題点に鑑み、耐摩耗性、密着性といった機械的強度に優れるばかりではなく、耐高温酸化性、耐アルカリ性や離型性などの化学的安定性にも優れる硬質皮膜部材を提供することを目的とする。   Therefore, in view of such conventional problems, the present invention is not only excellent in mechanical strength such as wear resistance and adhesion, but also in chemical stability such as high temperature oxidation resistance, alkali resistance and releasability. Another object of the present invention is to provide an excellent hard coating member.

本発明者らは、上記課題を解決するために鋭意研究した結果、基材上に窒素含有クロム皮膜を形成し、この窒素含有クロム皮膜の上にクロム酸化皮膜を形成することにより、良好な耐摩耗性、密着性といった機械的特性と、耐高温酸化性、耐アルカリ性や離型性などの化学的安定性にも優れた高硬度の硬質皮膜で被覆された硬質皮膜被覆部材を得ることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the present inventors have formed a nitrogen-containing chromium film on a base material, and formed a chromium oxide film on the nitrogen-containing chromium film, thereby achieving good resistance to resistance. We have found that we can obtain a hard coating material coated with a hard coating with high hardness, which has excellent mechanical properties such as wear and adhesion, and chemical stability such as high-temperature oxidation resistance, alkali resistance and releasability. The present invention has been completed.

すなわち、本発明による硬質皮膜被覆部材は、基材と、この基材上に順次に積層されるX線回析によるCrNのピークがブロードである厚さ1〜30μmの窒素含有クロム皮膜と、厚さ0.1〜3μmのクロム酸化皮膜とより成ること特徴とする。 That is, the hard film-coated member according to the present invention includes a base material, a nitrogen-containing chromium film having a thickness of 1 to 30 μm , and a thick peak of CrN by X-ray diffraction sequentially laminated on the base material. And a chromium oxide film having a thickness of 0.1 to 3 μm.

本発明の硬質皮膜被覆部材は、基材と、この基材上に順次に積層される厚さ0.01〜3μmのクロム皮膜と、X線回析によるCrNのピークがブロードである厚さ1〜30μmの窒素含有クロム皮膜と、厚さ0.1〜3μmのクロム酸化皮膜とより成ることを特徴とする。 The hard film covering member of the present invention has a base material, a chromium film having a thickness of 0.01 to 3 μm sequentially laminated on the base material, and a thickness 1 in which the peak of CrN by X-ray diffraction is broad. It is characterized by comprising a nitrogen-containing chromium film having a thickness of ˜30 μm and a chromium oxide film having a thickness of 0.1 to 3 μm.

本発明の硬質皮膜被覆部材は、前記窒素含有クロム皮膜と前記クロム酸化皮膜の間に、酸素とクロムが漸減し、窒素が漸増している前記窒素含有クロム皮膜と前記クロム酸化皮膜の中間的な組成の厚さ0.01〜1μmの傾斜組成層を有することを特徴とする。 The hard film covering member of the present invention is an intermediate between the nitrogen-containing chromium film and the chromium oxide film in which oxygen and chromium gradually decrease and nitrogen gradually increases between the nitrogen-containing chromium film and the chromium oxide film. It has a graded composition layer having a composition thickness of 0.01 to 1 μm.

本発明の硬質皮膜被覆部材は、前記クロム酸化皮膜の表面に凹状のディンプルが形成されていることを特徴とする。 The hard film-coated member of the present invention is characterized in that concave dimples are formed on the surface of the chromium oxide film.

本発明の硬質皮膜被覆部材は、金型又は摺動部品として使用されることを特徴とする。   The hard film covering member of the present invention is used as a mold or a sliding part.

なお、本明細書中において、「窒素含有クロム皮膜」とは、クロム皮膜中に窒素または窒化クロムの少なくとも一方が分散した皮膜をいう。   In the present specification, the “nitrogen-containing chromium film” refers to a film in which at least one of nitrogen and chromium nitride is dispersed in the chromium film.

本発明によれば、耐摩耗性、密着性といった機械的強度に優れ、耐高温酸化性、耐アルカリ性や離型性などの化学的安定性にも優れる硬質皮膜部材、および低コストで硬質皮膜の形成を可能とする前記硬質皮膜被覆部材を提供することができる。この硬質皮膜被覆部材は、金型、機械部品、自動車部品などに使用することができ、特に金型に適用することが好ましい。   According to the present invention, a hard coating member excellent in mechanical strength such as wear resistance and adhesion, and excellent in chemical stability such as high temperature oxidation resistance, alkali resistance and releasability, and a low cost hard coating member. It is possible to provide the hard coating member that can be formed. This hard film covering member can be used for a mold, a machine part, an automobile part, etc., and is particularly preferably applied to a mold.

本発明による硬質皮膜被覆部材の断面図である。It is sectional drawing of the hard film coating | coated member by this invention. 本発明による硬質皮膜被覆部材を製造するための処理装置の概略図である。It is the schematic of the processing apparatus for manufacturing the hard film coating | coated member by this invention.

以下、添付図面を参照して、本発明による硬質皮膜被覆部材について詳細に説明する。   Hereinafter, with reference to an accompanying drawing, a hard coat covering member by the present invention is explained in detail.

図1に示すように、本発明による硬質皮膜被覆部材は、基材1と、この基材1上に形成される下地層2としてのクロム皮膜と、この下地層2上に形成された窒素含有クロム皮膜3と、この窒素含有クロム皮膜3の上に形成された傾斜組成層4と、この傾斜組成層4上に形成されたクロム酸化皮膜5とを備えている。上記傾斜組成層4は窒素含有クロム皮膜3とクロム酸化皮膜5の中間的な組成を持つ組成層であり、クロム皮膜中に、窒素または窒化クロムの少なくとも一方と、酸素または酸化クロムの少なくとも一方が、分散した皮膜をいう。   As shown in FIG. 1, the hard film covering member according to the present invention includes a base material 1, a chromium film as a base layer 2 formed on the base material 1, and a nitrogen-containing material formed on the base layer 2. A chromium film 3, a gradient composition layer 4 formed on the nitrogen-containing chromium film 3, and a chromium oxide film 5 formed on the gradient composition layer 4 are provided. The gradient composition layer 4 is a composition layer having an intermediate composition between the nitrogen-containing chromium film 3 and the chromium oxide film 5, and at least one of nitrogen or chromium nitride and at least one of oxygen or chromium oxide is contained in the chromium film. , Refers to a dispersed film.

このように、機械的強度の高い硬質層である窒素含有クロム皮膜3の上に化学的に安定な硬質層であるクロム酸化皮膜5を形成することにより基材に耐磨耗性、密着性および耐アルカリ性に優れた高硬度の硬質皮膜を被覆して成る硬質皮膜被覆部材を得ることができる。またクロム酸化皮膜は既に酸化しており安定であるから、高温酸化が進む心配は少ない。さらに例えばアルミニウム溶湯や樹脂に対する濡れ性が低いためにこれらを成形する金型として用いた場合、優れた離型性を有する。
すなわち、基材1上に硬質で機械的な強度の高い窒素含有クロム皮膜3を形成し、その上に硬質で化学的に安定なクロム酸化皮膜5を形成することにより、耐磨耗性、密着性、耐高温酸化性、耐アルカリ性および離型性を向上させることができ、さらに下地層2と傾斜組成層4を形成することにより、基材と窒素含有クロム皮膜間、窒素含有クロム皮膜とクロム酸化皮膜間等に生じる応力を緩和してより高い密着力を確保することができる。
Thus, by forming the chromium oxide film 5 which is a chemically stable hard layer on the nitrogen-containing chromium film 3 which is a hard layer having high mechanical strength, wear resistance, adhesion and It is possible to obtain a hard film-coated member formed by coating a high-hardness hard film excellent in alkali resistance. In addition, since the chromium oxide film has already been oxidized and is stable, there is little concern about high temperature oxidation. Furthermore, for example, since these materials have low wettability with respect to molten aluminum or resin, when they are used as a mold for molding them, they have excellent release properties.
That is, by forming a hard and mechanically strong nitrogen-containing chromium film 3 on the substrate 1 and forming a hard and chemically stable chromium oxide film 5 thereon, the wear resistance and adhesion are improved. , High-temperature oxidation resistance, alkali resistance and releasability can be improved, and further, by forming the underlayer 2 and the gradient composition layer 4, between the substrate and the nitrogen-containing chromium film, the nitrogen-containing chromium film and the chromium It is possible to relieve stress generated between oxide films and to secure higher adhesion.

良好な耐磨耗性を得るためには、窒素含有クロム皮膜3の厚さは、1〜30μmであるのが好ましく、1〜20μmであるのがさらに好ましく、2〜15μmであるのが最も好ましい。また、良好な耐高温酸化性、耐アルカリ性、離型性を得るにはクロム酸化皮膜5の厚さは0.1〜3μmが好ましく、0.2〜2μmであるのがさらに好ましい。
また、基材と皮膜の密着力をさらに向上させるために、基材1上に下地層2として厚さ0.01〜3μmのクロム皮膜を形成するのが好ましく、この厚さは0.1〜2μmであるのがさらに好ましい。
さらに、基材と皮膜および窒素含有クロム皮膜とクロム酸化皮膜の密着性をさらに向上させるために、前記傾斜組成層4を前記窒素含有クロム皮膜3と前記クロム酸化皮膜5の間に形成することが好ましく、その厚さは0.01〜1μmが好ましく、さらには0.05〜0.5μmであることが好ましい。
In order to obtain good wear resistance, the thickness of the nitrogen-containing chromium film 3 is preferably 1 to 30 μm, more preferably 1 to 20 μm, and most preferably 2 to 15 μm. . In order to obtain good high-temperature oxidation resistance, alkali resistance, and releasability, the thickness of the chromium oxide film 5 is preferably 0.1 to 3 μm, and more preferably 0.2 to 2 μm.
In order to further improve the adhesion between the base material and the film, it is preferable to form a chromium film having a thickness of 0.01 to 3 μm on the base material 1 as the base layer 2. More preferably, it is 2 μm.
Further, the gradient composition layer 4 may be formed between the nitrogen-containing chromium film 3 and the chromium oxide film 5 in order to further improve the adhesion between the base material and the film and the nitrogen-containing chromium film and the chromium oxide film. Preferably, the thickness is preferably 0.01 to 1 μm, and more preferably 0.05 to 0.5 μm.

下地層2としてのクロム皮膜と窒素含有クロム皮膜3は、クロムターゲットを使用してスパッタリングする装置の処理室内で連続的に形成することができる。すなわち、下地層2としてのクロム皮膜を形成する際には、例えば処理室内をアルゴンガス雰囲気とし、窒素含有クロム皮膜3を形成する際には、処理室内をアルゴンガスと窒素ガスを含む雰囲気にして、下地層2としてのクロム皮膜と窒素含有クロム皮膜3を連続的に形成することができる。   The chromium film and the nitrogen-containing chromium film 3 as the underlayer 2 can be continuously formed in a processing chamber of an apparatus that performs sputtering using a chromium target. That is, when the chromium film as the underlayer 2 is formed, for example, the processing chamber is set to an argon gas atmosphere, and when the nitrogen-containing chromium film 3 is formed, the processing chamber is set to an atmosphere containing argon gas and nitrogen gas. The chromium film as the underlayer 2 and the nitrogen-containing chromium film 3 can be formed continuously.

また、本発明の皮膜は表面にクロム酸化皮膜を有し、アルミニウムの溶湯に対して濡れが悪く、すなわち金型に適用した場合、離型性が良い。また、酸・アルカリに不溶で化学的に安定である。   Moreover, the film of the present invention has a chromium oxide film on the surface and is poorly wetted with respect to the molten aluminum, that is, it has good releasability when applied to a mold. In addition, it is insoluble in acids and alkalis and is chemically stable.

上記スパッタリングは、DCマグネトロンスパッタリング法によって行うことができ、基材として使用する鋼材の焼き戻し温度以下の低温で成膜することができるため(例えば250℃以下)、鋼材の軟化や熱歪を抑制することができ、また、他の物理的蒸着と比べて生産性が高い。また、このスパッタリングでは、イオンプレーティング法によって成膜する場合のように皮膜の材料が溶融した塊(ドロップレット)が発生しないので、平滑な表面の皮膜を形成することができる。さらに、このスパッタリングでは、クロム皮膜と窒素含有クロム皮膜を形成するため、他の材料(元素)の中間層を排除することができるので、従来のスパッタリング装置に単一のターゲットを使用して、処理室内への窒素ガスの導入をON/OFFの切り替えにより行なって皮膜を形成することができる。そのため、高硬度を確保しながら応力を緩和層により応力を緩和して優れた密着性を有する窒素含有クロム皮膜を得ることができる。また、バイアス電圧を一定にしてスパッタリングを行うことができるので、皮膜の割れを防止することができる。   The sputtering can be performed by a DC magnetron sputtering method, and can be formed at a temperature lower than the tempering temperature of a steel material used as a base material (for example, 250 ° C. or less), thereby suppressing the softening and thermal distortion of the steel material. It is also more productive than other physical vapor depositions. In addition, in this sputtering, since a lump (droplet) in which the material of the film is melted does not occur as in the case of film formation by an ion plating method, a film having a smooth surface can be formed. Furthermore, since this sputtering forms a chromium film and a nitrogen-containing chromium film, the intermediate layer of other materials (elements) can be eliminated, so that a single target can be used in a conventional sputtering apparatus. The film can be formed by introducing nitrogen gas into the room by switching between ON and OFF. Therefore, it is possible to obtain a nitrogen-containing chromium film having excellent adhesion by relaxing the stress by the relaxation layer while ensuring high hardness. Moreover, since sputtering can be performed with a constant bias voltage, cracking of the film can be prevented.

本発明による硬質皮膜被覆部材の実施の形態は、例えば、図2に示す処理装置10を使用して製造することができる。この処理装置10は、真空処理室12と、この真空処理室12内を減圧して真空にするための真空ポンプ14と、真空処理室12内の底部の中心部に配設された回転テーブル16と、この回転テーブル16上に治具18を介して載置された被処理部材としての基材20と、この基材20を取り囲むように配置された蒸発源としてのターゲット22と、これらのターゲット22の各々に接続された直流のスパッタ電源24と、回転テーブル16に接続された直流のイオンボンバードおよびバイアス電源26と、真空処理室12内にアルゴンガスおよび窒素ガスを導入するためのガス導入パイプ28とを備えている。以下、この処理装置10を使用して、本発明による硬質皮膜被覆部材を製造する方法について説明する。   The embodiment of the hard film covering member according to the present invention can be manufactured using, for example, the processing apparatus 10 shown in FIG. The processing apparatus 10 includes a vacuum processing chamber 12, a vacuum pump 14 for reducing the pressure in the vacuum processing chamber 12 to form a vacuum, and a rotary table 16 disposed at the center of the bottom of the vacuum processing chamber 12. A base material 20 as a member to be processed placed on the turntable 16 via a jig 18, a target 22 as an evaporation source arranged so as to surround the base material 20, and these targets A DC sputtering power supply 24 connected to each of 22, a DC ion bombard and bias power supply 26 connected to the rotary table 16, and a gas introduction pipe for introducing argon gas and nitrogen gas into the vacuum processing chamber 12. 28. Hereinafter, a method for producing a hard coating member according to the present invention using the processing apparatus 10 will be described.

(イオンボンバード処理工程)
まず、処理装置10のターゲット22としてクロムターゲットを配置し、真空ポンプ14を作動させて真空処理室12内を真空排気した後、ガス導入パイプ28を介して真空処理室12内にアルゴンガスを導入して真空処理室12内をアルゴンガス雰囲気にして、イオンボンバード処理を行って、基材20の表面を活性化する。また、基材は図示しないヒーターなどにより、250℃以下、好ましくは200℃〜130℃に加熱される。基材の加熱は後工程のスパッタリングが終了するまで続けられる。なお、膜形成時(スパッタリング時)の加熱は、粒子イオンの衝突エネルギーにより行われる部分が大きく、ヒーターが不要なことがある。
(Ion bombarding process)
First, a chromium target is disposed as the target 22 of the processing apparatus 10, the vacuum pump 14 is operated to evacuate the vacuum processing chamber 12, and then argon gas is introduced into the vacuum processing chamber 12 through the gas introduction pipe 28. Then, the inside of the vacuum processing chamber 12 is made an argon gas atmosphere, and ion bombarding is performed to activate the surface of the substrate 20. Further, the substrate is heated to 250 ° C. or lower, preferably 200 ° C. to 130 ° C. by a heater (not shown). The heating of the substrate is continued until the subsequent sputtering is completed. Note that heating during film formation (sputtering) is performed largely by the collision energy of particle ions, and a heater may be unnecessary.

(下地層形成工程・・・クロム皮膜形成工程)
次に、アルゴンガスの導入を一旦停止し、真空処理室12内を真空排気した後、ガス導入パイプ28を介して真空処理室12内にアルゴンガスを導入して真空処理室12内をアルゴンガス雰囲気にする。その後、ターゲット22にスパッタ電源24から所定の電圧を印加して、ターゲット22の近傍にグロー放電(低温プラズマ)を生じさせる。これにより、放電領域内のアルゴンガスがイオン化してターゲット22に高速で衝突し、この衝突によってターゲット22からクロム原子が叩き出され、このクロム原子が基材20の表面に叩き付けられて、基材20の表面に下地層としてのクロム皮膜が形成される。
(Underlayer formation process ... chrome film formation process)
Next, the introduction of the argon gas is temporarily stopped, the inside of the vacuum processing chamber 12 is evacuated, and then the argon gas is introduced into the vacuum processing chamber 12 through the gas introduction pipe 28 so that the inside of the vacuum processing chamber 12 is argon gas. Make the atmosphere. Thereafter, a predetermined voltage is applied to the target 22 from the sputtering power source 24 to generate glow discharge (low temperature plasma) in the vicinity of the target 22. As a result, the argon gas in the discharge region is ionized and collides with the target 22 at a high speed. As a result of this collision, chromium atoms are struck out from the target 22, and the chrome atoms are struck against the surface of the substrate 20. A chromium film as an underlayer is formed on the surface of 20.

(窒素含有クロム皮膜形成工程)
次に、ガス導入パイプ28を介して真空処理室12内にアルゴンガスと窒素ガスを導入して真空処理室12内をアルゴンガスと窒素ガスの雰囲気にする。その後、ターゲット22にスパッタ電源24から所定の電圧を印加して、ターゲット22の近傍にグロー放電(低温プラズマ)を生じさせる。これにより、放電領域内のアルゴンガスがイオン化してターゲット22に高速で衝突し、この衝突によってターゲット22からクロム原子が叩き出され、このクロム原子が真空処理室12内の雰囲気中の窒素原子とともに基材20上のクロム皮膜の表面に叩き付けられて、基材20上のクロム皮膜の表面に窒素を含有するクロム皮膜(硬質層)が形成される。この窒素含有クロム皮膜はクロム中にNが固溶あるいは、クロム中にアモルファス構造の窒化クロム、クロム中に微細な結晶の窒化クロムの少なくとも1つ以上を有する皮膜となる。
(Nitrogen-containing chromium film forming process)
Next, argon gas and nitrogen gas are introduced into the vacuum processing chamber 12 through the gas introduction pipe 28 to make the inside of the vacuum processing chamber 12 an atmosphere of argon gas and nitrogen gas. Thereafter, a predetermined voltage is applied to the target 22 from the sputtering power source 24 to generate glow discharge (low temperature plasma) in the vicinity of the target 22. As a result, the argon gas in the discharge region is ionized and collides with the target 22 at a high speed, and this collision expels chromium atoms from the target 22, and these chromium atoms together with nitrogen atoms in the atmosphere in the vacuum processing chamber 12. A chromium film (hard layer) containing nitrogen is formed on the surface of the chromium film on the substrate 20 by being struck against the surface of the chromium film on the substrate 20. The nitrogen-containing chromium film is a film in which N is dissolved in chromium, or has at least one of chromium nitride having an amorphous structure in chromium and chromium nitride having fine crystals in chromium.

なお、上記のスパッタリングでは、皮膜の厚さを均一にするために且つ基材20の温度をその焼戻し温度以下に維持するために、ターゲット22と基材20の間隔を、例えば、70〜80mmに保持するのが好ましい。   In the above sputtering, in order to make the thickness of the coating uniform and to maintain the temperature of the base material 20 below the tempering temperature, the distance between the target 22 and the base material 20 is set to, for example, 70 to 80 mm. It is preferable to hold.

(クロム酸化皮膜形成工程)
次に、前記窒素含有クロム皮膜を形成した基材をスパッタ処理装置から取り出し、レーザー加工装置において、大気中で所定出力のレーザーを窒素含有クロム皮膜に一定時間照射する。この結果窒素含有クロム皮膜内の窒素は熱拡散を生じ、皮膜内のクロムはポテンシャンルの高い酸素と結合する。このときの照射時間と照射エネルギーで所望の厚さのクロム酸化皮膜を得ることができる。
レーザーによるクロム酸化皮膜形成処理は、例えばフェムト秒レーザーにより極短時間に光エネルギーを集中させ、すなわちその照射時間を短くすることで、熱影響が基材にほとんどないようにすることができる。
通常の窒素含有クロム皮膜の酸化温度である700〜900℃での加熱処理をガスの燃焼による加熱や電気ヒーターによる加熱などにより行なうことなく、安定なクロム酸化皮膜を所望の厚さに形成することができ、さらに通常の加熱処理で見られるような変態に伴う歪の発生や、硬度の軟化を防ぐことができる。
さらにレーザーによるクロム酸化皮膜形成の特徴として、一般に行われる、レーザをパルス的に照射し、且つ走査することで、凹状のディンプル構造を表面の全面にわたり付与することができる。このディンプルは、離型材、潤滑剤の保持性に優れ、すなわち金型に適用した場合離型性や耐久性を向上させ、構造的にも優れた皮膜を提供することができる。また、自動車等の摺動部品に適用した場合、ディンプルが潤滑油を保持し、部品の耐久性を向上させる。
このようにして作製された窒素含有クロム皮膜とクロム酸化皮膜は窒素含有クロム皮膜とクロム酸化皮膜の界面に傾斜した窒素と酸素の拡散層を有するため、窒素含有クロム皮膜とクロム酸化皮膜間の密着力が優れており、窒素含有クロム皮膜のアモルファス構造に由来した化学的安定性をも持ち合わせている。
なお、レーザーを用いなくとも、予め所定温度に加熱した炉内に、前記窒素含有クロム皮膜を形成した基材を短時間投入し、その後冷却するという熱処理によっても、基材に与える熱影響を最小限にとどめ、且つクロム酸化皮膜を形成することができる。
(Chromium oxide film formation process)
Next, the base material on which the nitrogen-containing chromium film is formed is taken out from the sputtering apparatus, and a laser having a predetermined output is irradiated to the nitrogen-containing chromium film for a certain period of time in the atmosphere in a laser processing apparatus. As a result, the nitrogen in the nitrogen-containing chromium film causes thermal diffusion, and the chromium in the film is combined with oxygen having a high potential. A chromium oxide film having a desired thickness can be obtained with the irradiation time and irradiation energy at this time.
The chromium oxide film forming treatment by laser can concentrate the light energy in a very short time by, for example, a femtosecond laser, that is, shorten the irradiation time, so that the substrate is hardly affected by heat.
A stable chromium oxide film having a desired thickness is formed without performing heat treatment at 700 to 900 ° C., which is an oxidation temperature of a normal nitrogen-containing chromium film, by heating by gas combustion or heating by an electric heater. Furthermore, it is possible to prevent the occurrence of distortion accompanying the transformation and softening of hardness as seen in ordinary heat treatment.
Further, as a feature of the formation of a chromium oxide film by laser, a concave dimple structure can be provided over the entire surface by irradiating and scanning the laser in a pulse manner. This dimple is excellent in releasability of the release material and lubricant, that is, when applied to a mold, it improves the releasability and durability, and can provide a structurally excellent film. Further, when applied to sliding parts such as automobiles, the dimples retain lubricating oil and improve the durability of the parts.
Since the nitrogen-containing chromium film and the chromium oxide film thus prepared have a nitrogen and oxygen diffusion layer inclined at the interface between the nitrogen-containing chromium film and the chromium oxide film, adhesion between the nitrogen-containing chromium film and the chromium oxide film It has excellent strength and chemical stability derived from the amorphous structure of the nitrogen-containing chromium film.
Even without using a laser, the heat effect on the substrate is minimized even by a heat treatment in which the substrate on which the nitrogen-containing chromium film is formed is put in a furnace preheated to a predetermined temperature for a short time and then cooled. It is possible to form a chromium oxide film with the limit.

ダイス鋼SKD11に浸炭焼入れ焼き戻しを施した後に鏡面研磨した基材を用意した。この基材をクロムターゲットが設置された処理装置(DCマグネトロンスパッタリング装置)の真空処理室に入れて、到達真空度5×10-4Pa以下に真空排気した後、真空処理室内が圧力5×10-1Paのアルゴンガス雰囲気になるように制御してアルゴンガスを真空処理室内に導入し、基材をヒーターで加熱し200℃とし、1000V×2Aでイオンボンバード処理を約180分間施して、基材の表面を活性化した。 The die steel SKD11 was carburized, quenched, and tempered, and then a mirror-polished base material was prepared. This base material is put in a vacuum processing chamber of a processing apparatus (DC magnetron sputtering apparatus) in which a chromium target is installed, and is evacuated to an ultimate vacuum of 5 × 10 −4 Pa or less, and then the pressure in the vacuum processing chamber is 5 × 10. -1 Pa Argon gas atmosphere is controlled, argon gas is introduced into the vacuum processing chamber, the substrate is heated with a heater to 200 ° C., and ion bombardment treatment is performed at 1000 V × 2 A for about 180 minutes. The surface of the material was activated.

次に、アルゴンガスの導入を一旦停止し、真空処理室内を排気して真空にした後、真空処理室内の雰囲気中のアルゴンガスの分圧が0.061Paになるようにアルゴンガスを真空処理室内に導入しながら、投入電力4kW、バイアス電圧を−100Vとして、スパッタリングを約40秒間行って、基材上に下地層としてビッカース硬度HV500程度、厚さ50nm(0.05μm)程度のクロム皮膜を形成した。なお、スパッタリングする前に、前記ヒーターをオフにし、以降の処理はヒーターの加熱を停止したが、スパッタリング処理中基材の温度は200℃に保たれた。   Next, the introduction of the argon gas is temporarily stopped, the vacuum processing chamber is evacuated and evacuated, and then the argon gas is evacuated so that the partial pressure of the argon gas in the atmosphere in the vacuum processing chamber becomes 0.061 Pa. In this process, sputtering is performed for about 40 seconds with an input power of 4 kW and a bias voltage of −100 V, and a chromium film having a Vickers hardness of about HV500 and a thickness of about 50 nm (0.05 μm) is formed on the base material. did. Before the sputtering, the heater was turned off and the heating of the heater was stopped in the subsequent processes, but the temperature of the substrate was kept at 200 ° C. during the sputtering process.

次に、真空処理室内の雰囲気中のアルゴンガスの分圧が0.042Paになるようにアルゴンガスを真空処理室内に導入するとともに、窒素ガスの分圧が0.054Paになるように窒素ガスを真空処理室内に導入しながら、投入電力4kW、バイアス電圧を−100Vとして、スパッタリングを40分間行って、基材上に厚さ約3.2μmの窒素含有クロム皮膜を形成した(窒素含有クロム皮膜形成工程)。   Next, while introducing argon gas into the vacuum processing chamber so that the partial pressure of argon gas in the atmosphere in the vacuum processing chamber becomes 0.042 Pa, nitrogen gas is introduced so that the partial pressure of nitrogen gas becomes 0.054 Pa. While being introduced into the vacuum processing chamber, sputtering was performed for 40 minutes with an input power of 4 kW and a bias voltage of −100 V, and a nitrogen-containing chromium film having a thickness of about 3.2 μm was formed on the substrate (formation of a nitrogen-containing chromium film) Process).

次に、前記窒素含有クロム皮膜形成した基材をスパッタ処理装置から取り出し、レーザー加工装置において、大気中で所定出力のレーザーを窒素含有クロム皮膜に一定時間照射した。レーザー照射はパルス的に行われ、且つ表面の全面を走査することで、表面に凹状のディンプル構造を有するクロム酸化皮膜を形成した(クロム酸化皮膜形成工程)。   Next, the substrate on which the nitrogen-containing chromium film was formed was taken out from the sputtering apparatus, and a laser having a predetermined output was irradiated to the nitrogen-containing chromium film for a certain period of time in the air in a laser processing apparatus. Laser irradiation was performed in a pulse manner, and a chromium oxide film having a concave dimple structure was formed on the surface by scanning the entire surface (chromium oxide film forming step).

このようにして得られた本発明の硬質皮膜被覆部材の表面状態をSEM(走査型電子顕微鏡)で観察し、またEDS(エネルギー分散分光法)により表面の元素マッピングを実施した。さらにGDS(グロー放電発光分光分析)により硬質皮膜被覆部材の深さ方向の元素プロファイルを測定した。
また、硬質皮膜被覆部材の深さ方向のビッカース硬さを測定、および表面のX線回折分析を実施した。
The surface state of the hard film-coated member of the present invention thus obtained was observed with an SEM (scanning electron microscope), and surface elemental mapping was performed by EDS (energy dispersive spectroscopy). Further, the element profile in the depth direction of the hard coating member was measured by GDS (glow discharge emission spectroscopy).
Moreover, the Vickers hardness of the depth direction of the hard film coating | coated member was measured, and the surface X-ray diffraction analysis was implemented.

SEMで硬質皮膜被覆部材の表面を観察したところ、表面に直径1μm程度の大きさ及び深さののディンプルが、約1μm間隔で全面にわたって形成されていた。またEDS分析により、該表面にO(酸素)が表面の全面に検出された。   When the surface of the hard film-coated member was observed with an SEM, dimples having a diameter and a depth of about 1 μm were formed on the entire surface at intervals of about 1 μm. Further, O (oxygen) was detected on the entire surface by EDS analysis.

次にGDSにより硬質皮膜被覆部材を表面から深さ方向の元素プロファイルを測定した。その結果表面から約0.2μmの範囲にクロムと酸素の強度の高いクロム酸化皮膜の存在が確認された。また、わずかに窒素も検出された。
また、酸素と窒素とクロムの元素が共存する層が前記クロム酸化皮膜と前記窒素含有クロム皮膜の間に約0.2μm認められ、酸素とクロムが漸減、窒素が漸増した領域となっており、傾斜組成層を呈している。
この傾斜組成層より深い部分は窒素とクロムが存在する窒素含有クロム皮膜となっていた。
Next, the element profile in the depth direction from the surface of the hard coating member was measured by GDS. As a result, the presence of a chromium oxide film having high chromium and oxygen strength in the range of about 0.2 μm from the surface was confirmed. Slight nitrogen was also detected.
In addition, a layer in which elements of oxygen, nitrogen, and chromium coexist is recognized between the chromium oxide film and the nitrogen-containing chromium film at about 0.2 μm, and oxygen and chromium gradually decrease and nitrogen gradually increases, It exhibits a graded composition layer.
A portion deeper than the gradient composition layer was a nitrogen-containing chromium film in which nitrogen and chromium were present.

塑性変形硬さとしてのビッカース硬さは、フィッシャー硬度計(超微小硬さ試験機)(株式会社フィッシャー・インストルメント製のFISCHERSCOPEH100CXY-P)を使用して、バーコビッチ圧子により測定荷重100mN/10sを加えて室温で測定した塑性変形硬さに基づいて算出した。その結果、ビッカース硬さHVは770であった。 The Vickers hardness as the plastic deformation hardness is measured with a Barcovic indenter using a Fischer hardness tester (ultra-micro hardness tester) (FISCHERSCOPEH100C XY-P manufactured by Fischer Instrument Co., Ltd.) 100 mN / 10s. And was calculated based on the plastic deformation hardness measured at room temperature. As a result, the Vickers hardness HV was 770.

X線回折によりCrのピークとCrN、Cr23 のピークが確認された。またCrNのピークはブロードであり窒素含有クロム皮膜はCr中にアモルファス構造のCrNあるいは微細な結晶のCrNの少なくとも一方を有していると推定される。また表面に酸化皮膜Cr23 が形成されたことを確認した。 The peak of Cr and the peak of CrN and Cr 2 O 3 were confirmed by X-ray diffraction. The peak of CrN is broad, and the nitrogen-containing chromium film is presumed to have at least one of amorphous CrN or fine crystal CrN in Cr. It was also confirmed that an oxide film Cr 2 O 3 was formed on the surface.

(比較例1) (Comparative Example 1)

前記クロム酸化皮膜形成工程を実施しない以外は、実施例1と同様の方法で硬質皮膜被覆部材を作製し、同様の方法で評価した。   Except not performing the said chromium oxide film formation process, the hard film coating | coated member was produced by the method similar to Example 1, and it evaluated by the same method.

SEMで硬質皮膜被覆部材の表面を観察したところ、約0.1〜数μmの粒状の形成が見られた。また、EDSによるとクロムと窒素が確認された。   When the surface of the hard film-coated member was observed with an SEM, a granular form of about 0.1 to several μm was observed. Further, according to EDS, chromium and nitrogen were confirmed.

次にGDSにより硬質皮膜被覆部材を表面から深さ方向の元素プロファイルを測定した。その結果クロムと窒素が検出され、窒素含有クロム皮膜であることが確認できた。   Next, the element profile in the depth direction from the surface of the hard coating member was measured by GDS. As a result, chromium and nitrogen were detected, and it was confirmed that the film was a nitrogen-containing chromium film.

X線回折によりCrのピークとCrNピークが確認され、Cr23 のピークは認められなかった。またCrNのピークはブロードでありCr中にアモルファス構造のCrNあるいは微細な結晶のCrNの少なくとも一方を有していると推定される。 A Cr peak and a CrN peak were confirmed by X-ray diffraction, and a Cr 2 O 3 peak was not observed. The peak of CrN is broad, and it is estimated that Cr has at least one of amorphous CrN and fine crystal CrN.

上記実施例1と比較例1で処理した部材の皮膜の強度を調べるため、また耐摩耗性の評価としてビッカース硬度HVを測定した。この結果、部材表面のビッカース硬度HVは両者ともに760程度であった。   Vickers hardness HV was measured to examine the strength of the films of the members treated in Example 1 and Comparative Example 1 and as an evaluation of wear resistance. As a result, the Vickers hardness HV of the member surface was about 760 in both cases.

上記実施例1と比較例1で処理した部材について、アルミニウム用の金型に適用した場合の離型性、耐久性、さらには耐高温酸化性を調べるために各部材を700℃のアルミニウムの溶湯に1分間浸漬した後取り出した。実施例1の部材にアルミニウムの付着は見られなかったが、比較例1の部材にはアルミニウムの付着が見られた。すなわち、実施例1は離型性、耐久性に優れていることが判明した。   In order to examine the releasability, durability, and high-temperature oxidation resistance of the members treated in Example 1 and Comparative Example 1 when applied to an aluminum mold, each member was melted at 700 ° C. After being immersed in 1 minute, it was taken out. Aluminum was not observed on the member of Example 1, but aluminum was observed on the member of Comparative Example 1. That is, Example 1 was found to be excellent in releasability and durability.

金型に適用したときのメンテナンスを想定して、実施例1の部材を水酸化ナトリウムのアルカリ水溶液中に浸漬したが、皮膜は溶解することなく、化学的に安定であった。   Assuming maintenance when applied to the mold, the member of Example 1 was immersed in an aqueous alkali solution of sodium hydroxide, but the film was chemically stable without dissolving.

1 基材
2 下地層
3 窒素含有クロム皮膜
4 傾斜組成層
5 クロム酸化皮膜
10 処理装置
12 真空処理室
14 真空ポンプ
16 回転テーブル
18 治具
20 基材
22 ターゲット
24 スパッタ電源
26 バイアス電源
28 ガス導入パイプ
DESCRIPTION OF SYMBOLS 1 Base material 2 Underlayer 3 Nitrogen-containing chromium film 4 Gradient composition layer 5 Chromium oxide film 10 Processing apparatus 12 Vacuum processing chamber 14 Vacuum pump 16 Rotary table 18 Jig 20 Base material 22 Target 24 Sputter power supply 26 Bias power supply 28 Gas introduction pipe

Claims (5)

基材と、この基材上に順次に積層されるX線回析によるCrNのピークがブロードである厚さ1〜30μmの窒素含有クロム皮膜と、厚さ0.1〜3μmのクロム酸化皮膜とより成ること特徴とする硬質皮膜被覆部材。 A substrate, a nitrogen-containing chromium film having a thickness of 1 to 30 μm, and a chromium oxide film having a thickness of 0.1 to 3 μm , and a peak of CrN by X-ray diffraction sequentially laminated on the substrate; A hard film covering member comprising: 基材と、この基材上に順次に積層される厚さ0.01〜3μmのクロム皮膜と、X線回析によるCrNのピークがブロードである厚さ1〜30μmの窒素含有クロム皮膜と、厚さ0.1〜3μmのクロム酸化皮膜とより成ることを特徴とする硬質皮膜被覆部材。 A base material, a chromium film having a thickness of 0.01 to 3 μm sequentially laminated on the base material, and a nitrogen-containing chromium film having a thickness of 1 to 30 μm in which the peak of CrN by X-ray diffraction is broad ; A hard film-coated member comprising a chromium oxide film having a thickness of 0.1 to 3 μm. 前記窒素含有クロム皮膜と前記クロム酸化皮膜の間に、酸素とクロムが漸減し、窒素が漸増している前記窒素含有クロム皮膜と前記クロム酸化皮膜の中間的な組成の厚さ0.01〜1μmの傾斜組成層を有することを特徴とする請求項1または2記載の硬質皮膜被覆部材。 Between the nitrogen-containing chromium film and the chromium oxide film, the thickness of the intermediate composition of the nitrogen-containing chromium film and the chromium oxide film in which oxygen and chromium are gradually decreased and nitrogen is gradually increased is 0.01 to 1 μm. The hard-coated member according to claim 1, wherein the hard-coated member has a gradient composition layer. 前記クロム酸化皮膜の表面に凹状のディンプルが形成されていることを特徴とする請求項1、2または3記載の硬質皮膜被覆部材。 4. The hard film covering member according to claim 1, wherein concave dimples are formed on the surface of the chromium oxide film. 金型又は摺動部品として使用されることを特徴とする請求項1、2、3または4記載の硬質皮膜被覆部材。   The hard film-coated member according to claim 1, 2, 3, or 4, which is used as a mold or a sliding part.
JP2013168432A 2013-08-14 2013-08-14 Hard coating coated member Active JP5824010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013168432A JP5824010B2 (en) 2013-08-14 2013-08-14 Hard coating coated member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013168432A JP5824010B2 (en) 2013-08-14 2013-08-14 Hard coating coated member

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009076932A Division JP5345436B2 (en) 2009-03-26 2009-03-26 Method for producing hard coating member

Publications (2)

Publication Number Publication Date
JP2014012896A JP2014012896A (en) 2014-01-23
JP5824010B2 true JP5824010B2 (en) 2015-11-25

Family

ID=50108722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013168432A Active JP5824010B2 (en) 2013-08-14 2013-08-14 Hard coating coated member

Country Status (1)

Country Link
JP (1) JP5824010B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020099605A1 (en) * 2018-11-14 2020-05-22 Oerlikon Surface Solutions Ag, Pfäffikon Coating for enhanced performance and lifetime in plastic processing applications
JP7489570B2 (en) 2020-12-25 2024-05-24 三菱重工業株式会社 Method for manufacturing fuel cladding tube
CN115522170A (en) * 2022-10-10 2022-12-27 佛山桃园先进制造研究院 Wear-resistant anti-sticking coating, preparation method thereof and die using wear-resistant anti-sticking coating

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735565B2 (en) * 1988-11-07 1995-04-19 住友金属鉱山株式会社 Corrosion-resistant and wear-resistant coated steel material and method for producing the same
JP4669992B2 (en) * 2005-09-28 2011-04-13 Dowaホールディングス株式会社 Nitrogen-containing chromium coating, method for producing the same, and mechanical member
JP2007191751A (en) * 2006-01-18 2007-08-02 Nachi Fujikoshi Corp Coating film deposition method, and coating base material

Also Published As

Publication number Publication date
JP2014012896A (en) 2014-01-23

Similar Documents

Publication Publication Date Title
JP5345436B2 (en) Method for producing hard coating member
US9133543B2 (en) Coating material for aluminum die casting mold and method for manufacturing the same
US20140093642A1 (en) Coating material for aluminum die casting mold and method of manufacturing the coating material
US20120291510A1 (en) Hot press forming process of plated steel and hot press formed articles using the same
CN104911552B (en) Method for reinforcing surface of hot-extrusion die through cementation compounding
JP5824010B2 (en) Hard coating coated member
Sharipov et al. Increasing the resistance of the cutting tool during heat treatment and coating
JP5682560B2 (en) Surface-coated sliding component with excellent film adhesion and method for producing the same
CN110373632B (en) Die-casting aluminum die with nanocrystalline composite coating and preparation method
KR101719452B1 (en) Surface treatment method of hot forging mold and the hot forging mold
KR20130074647A (en) Coated steel sheet and method for manufacturing the same
JPWO2009119269A1 (en) Manufacturing method of surface coated parts with excellent film adhesion
JP2010084202A (en) Member coated with hard film and method for manufacturing the same
JP2001192861A (en) Surface treating method and surface treating device
RU2413793C2 (en) Procedure for ion-plasma treatment of surface of metal cutting tool made out of high speed powder steel
JP5530751B2 (en) LAMINATED COATING COATED MEMBER AND METHOD FOR PRODUCING THE SAME
JP2004315876A (en) Die for molding magnesium having sliding resistance improved, and surface treatment method thereof
JP5660696B2 (en) Hard coating member and method for producing the same
CN106967977B (en) Tool and mould surface recombination nitride coatings preparation process
CN112538627A (en) Laser additive repair and PVD coating strengthening method for die steel
JP5676854B2 (en) Hard coating member and method for producing the same
JP2010222649A (en) Production method of carbon steel material and carbon steel material
JP5490927B2 (en) Method for producing hardened aluminum material by cross-coupling reaction
KR101629473B1 (en) Method for Enhancement of Hardness of Metal
KR101466221B1 (en) Method for enhancement of wear resistance of a cutting tool, and the a cutting tool having enhanced wear resistance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150727

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151008

R150 Certificate of patent or registration of utility model

Ref document number: 5824010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250