JP2010084202A - Member coated with hard film and method for manufacturing the same - Google Patents

Member coated with hard film and method for manufacturing the same Download PDF

Info

Publication number
JP2010084202A
JP2010084202A JP2008255045A JP2008255045A JP2010084202A JP 2010084202 A JP2010084202 A JP 2010084202A JP 2008255045 A JP2008255045 A JP 2008255045A JP 2008255045 A JP2008255045 A JP 2008255045A JP 2010084202 A JP2010084202 A JP 2010084202A
Authority
JP
Japan
Prior art keywords
chromium
film
nitrogen
films
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008255045A
Other languages
Japanese (ja)
Other versions
JP5660697B2 (en
Inventor
Yuichiro Shimizu
雄一郎 清水
Masahiro Kitamura
征寛 北村
Mitsuteru Toishi
光輝 戸石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Thermotech Co Ltd
Original Assignee
Dowa Thermotech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Thermotech Co Ltd filed Critical Dowa Thermotech Co Ltd
Priority to JP2008255045A priority Critical patent/JP5660697B2/en
Publication of JP2010084202A publication Critical patent/JP2010084202A/en
Application granted granted Critical
Publication of JP5660697B2 publication Critical patent/JP5660697B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a member coated with a hard film which has adequate wear resistance and seizure resistance, is also superior in adhesiveness to a substrate and durability, and has high hardness, and to provide a method for manufacturing the same. <P>SOLUTION: The member has a chromium film functioning as an underlayer 2 formed on the substrate 1, has a plurality of chromium films and a plurality of nitrogen-containing chromium films formed on the underlayer 2 so that the chromium films functioning as stress relaxation layers 3 having an approximately same thickness of 40 nm or more and the nitrogen-containing chromium films functioning as hard layers 4 having an approximately same thickness of 250 nm or less are alternately arranged. The underlayer 2, the stress relaxation layer 3 and the hard layer 4 are continuously formed in a treatment chamber of an apparatus which sputters a chromium target therein. When the underlayer 2 and the stress relaxation layer 3 are formed, the treatment chamber is set at argon gas atmosphere, and when the hard layer 4 is formed, the treatment chamber is set at an atmosphere containing argon gas and nitrogen gas. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、硬質皮膜被覆部材およびその製造方法に関し、特に、表面に硬質皮膜として窒素含有クロム皮膜が形成された部材およびその製造方法に関する。   The present invention relates to a hard film-coated member and a method for producing the same, and more particularly to a member having a nitrogen-containing chromium film formed on the surface as a hard film and a method for producing the same.

従来、耐摩耗性や耐焼き付き性が必要とされる自動車などの摺動部品や機械部材の他、高面圧下で使用される金型などの表面に、スパッタリングなどの物理的蒸着によって窒素含有クロム皮膜を形成して、耐摩耗性や耐焼き付き性を向上させる方法が知られている。しかし、スパッタリングなどの物理的蒸着によって窒素含有クロム皮膜のような硬質皮膜を金属基材上に形成すると、皮膜自体の圧縮応力により皮膜を厚くするのが困難であり、皮膜の内部応力が大きくなって基材への密着性が悪くなるという問題がある。   Conventionally, nitrogen-containing chromium is produced by physical vapor deposition such as sputtering on the surfaces of sliding parts and machine parts such as automobiles that require wear resistance and seizure resistance, as well as dies used under high surface pressure. A method is known in which a film is formed to improve wear resistance and seizure resistance. However, when a hard film such as a nitrogen-containing chromium film is formed on a metal substrate by physical vapor deposition such as sputtering, it is difficult to thicken the film due to the compressive stress of the film itself, and the internal stress of the film increases. There is a problem that the adhesion to the base material is deteriorated.

このような問題を解消する方法として、スパッタリング法により、基材の表面に形成される窒素含有クロム皮膜中の窒素濃度を基材側と表面側の間で変化させて、良好な耐摩耗性および耐焼き付き性などを有するとともに、基材への密着性および靭性にも優れた窒素含有クロム皮膜を製造する方法が提案されている(例えば、特許文献1参照)。また、イオンプレーティング法により、柱状晶ができる高バイアス電圧で複合窒化物を一定時間形成する工程と、柱状晶ができない低バイアス電圧で複合窒化物を一定時間形成する工程とを交互に繰り返して、柱状晶の複合窒化物の硬質皮膜中に一定間隔毎に一定の厚さの柱状晶ではない構造の複合窒化物の応力緩和層を挟み込むことによって、内部応力が低減されて高い密着力を有する硬質厚膜皮膜を製造する方法が提案されている(例えば、特許文献2参照)。   As a method for solving such a problem, by changing the nitrogen concentration in the nitrogen-containing chromium film formed on the surface of the substrate by the sputtering method between the substrate side and the surface side, good wear resistance and There has been proposed a method for producing a nitrogen-containing chromium film that has seizure resistance and the like, and also has excellent adhesion to a base material and toughness (see, for example, Patent Document 1). In addition, the step of forming the composite nitride for a certain period of time with a high bias voltage capable of forming columnar crystals by the ion plating method and the step of forming the composite nitride for a certain period of time with a low bias voltage capable of preventing columnar crystals are alternately repeated. In addition, by interposing a stress relaxation layer of a composite nitride having a structure that is not a columnar crystal with a certain thickness at regular intervals in the hard film of the columnar composite nitride, the internal stress is reduced and the adhesive strength is high A method for producing a hard thick film has been proposed (see, for example, Patent Document 2).

特開2007−92112号公報(段落番号0008−0013)JP 2007-92112 A (paragraph number 0008-0013) 特開2005−187859号公報(段落番号0011−0013)Japanese Patent Laying-Open No. 2005-187859 (paragraph numbers 0011-0013)

しかし、特許文献1の方法では、最表面の硬度は高いが、最表面から基材に向かって硬度が低下するため、表面に窒素含有クロム皮膜が形成された基材の摺動時の磨耗量が指数関数的に上昇し、高面圧下における使用では耐久性が良好ではない場合がある。また、特許文献2の方法では、生産性が悪く、表面が粗くなり、複合窒化物の単層膜を形成した場合と比べて硬さが低下するという問題がある。   However, in the method of Patent Document 1, although the hardness of the outermost surface is high, the hardness decreases from the outermost surface toward the base material. Therefore, the amount of wear during sliding of the base material on which the nitrogen-containing chromium film is formed on the surface Increases exponentially, and durability may not be good when used under high surface pressure. Further, the method of Patent Document 2 has problems that productivity is poor, the surface becomes rough, and the hardness is reduced as compared with the case where a single layer film of composite nitride is formed.

したがって、本発明は、このような従来の問題点に鑑み、良好な耐摩耗性および耐焼き付き性を有するとともに、基材への密着性および耐久性に優れた高硬度の硬質皮膜で被覆された硬質皮膜被覆部材およびその製造方法を提供することを目的とする。   Therefore, in view of such conventional problems, the present invention is coated with a hard film having a high hardness having excellent wear resistance and seizure resistance, and excellent adhesion and durability to a substrate. An object of the present invention is to provide a hard coating member and a method for producing the same.

本発明者らは、上記課題を解決するために鋭意研究した結果、基材上に厚さ40nm以上のクロム皮膜と厚さ250nm以下の窒素含有クロム皮膜が交互に配置されるように複数のクロム皮膜と複数の窒素含有クロム皮膜を形成することにより、良好な耐摩耗性および耐焼き付き性を有するとともに、基材への密着性および耐久性に優れた高硬度の硬質皮膜で被覆された硬質皮膜被覆部材を製造することができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the present inventors have found that a plurality of chromium films are arranged so that a chromium film having a thickness of 40 nm or more and a nitrogen-containing chromium film having a thickness of 250 nm or less are alternately arranged on a substrate. Hard film coated with a hard film with excellent wear resistance and seizure resistance as well as excellent adhesion and durability to the substrate by forming a film and multiple nitrogen-containing chromium films The present inventors have found that a covering member can be produced and have completed the present invention.

すなわち、本発明による硬質皮膜被覆部材は、基材上に厚さ40nm以上のクロム皮膜と厚さ250nm以下の窒素含有クロム皮膜が交互に配置されるように複数のクロム皮膜と複数の窒素含有クロム皮膜が形成されていることを特徴とする。この硬質皮膜被覆部材において、基材上に下地層としてクロム皮膜が形成され、この下地層上に複数のクロム皮膜と複数の窒素含有クロム皮膜が形成されているのが好ましい。また、複数のクロム皮膜の各々の厚さが略同一であり、複数の窒素含有クロム皮膜の各々の厚さが略同一であるのが好ましい。   That is, the hard coating member according to the present invention includes a plurality of chromium coatings and a plurality of nitrogen-containing chromium such that a chromium coating having a thickness of 40 nm or more and a nitrogen-containing chromium coating having a thickness of 250 nm or less are alternately arranged on a substrate. A film is formed. In this hard film covering member, it is preferable that a chromium film is formed as a base layer on the substrate, and a plurality of chromium films and a plurality of nitrogen-containing chromium films are formed on the base layer. Moreover, it is preferable that the thickness of each of the plurality of chromium films is substantially the same, and the thickness of each of the plurality of nitrogen-containing chromium films is approximately the same.

また、本発明による硬質皮膜被覆部材の製造方法は、基材上に厚さ40nm以上のクロム皮膜と厚さ250nm以下の窒素含有クロム皮膜が交互に配置されるように複数のクロム皮膜と複数の窒素含有クロム皮膜を形成することを特徴とする。この硬質皮膜被覆部材の製造方法において、複数のクロム皮膜と複数の窒素含有クロム皮膜が、クロムターゲットを使用してスパッタリングする装置の処理室内で連続的に形成され、複数のクロム皮膜を形成する際には、処理室内をアルゴンガス雰囲気にし、複数の窒素含有クロム皮膜を形成する際には、処理室内をアルゴンガスと窒素ガスを含む雰囲気にするのが好ましい。また、複数のクロム皮膜と複数の窒素含有クロム皮膜を形成する前に、基材上に下地層としてクロム皮膜を形成し、この下地層上に複数のクロム皮膜と複数の窒素含有クロム皮膜を形成するのが好ましい。この場合、下地層と複数のクロム皮膜と複数の窒素含有クロム皮膜が、クロムターゲットを使用してスパッタリングする装置の処理室内で連続的に形成され、下地層および複数のクロム皮膜を形成する際には、処理室内をアルゴンガス雰囲気にし、複数の窒素含有クロム皮膜を形成する際には、処理室内をアルゴンガスと窒素ガスを含む雰囲気にするのが好ましい。また、複数のクロム皮膜の各々の厚さが略同一であり、複数の窒素含有クロム皮膜の各々の厚さが略同一であるのが好ましい。   In addition, the method for manufacturing a hard coating member according to the present invention includes a plurality of chromium coatings and a plurality of chromium coatings such that a chromium coating having a thickness of 40 nm or more and a nitrogen-containing chromium coating having a thickness of 250 nm or less are alternately arranged on a substrate. A nitrogen-containing chromium film is formed. In this method of manufacturing a hard coating member, when a plurality of chromium coatings and a plurality of nitrogen-containing chromium coatings are continuously formed in a processing chamber of an apparatus for sputtering using a chromium target to form a plurality of chromium coatings. In this case, it is preferable that the processing chamber is set to an argon gas atmosphere, and when the plurality of nitrogen-containing chromium films are formed, the processing chamber is set to an atmosphere containing argon gas and nitrogen gas. In addition, before forming multiple chromium films and multiple nitrogen-containing chromium films, a chromium film is formed on the substrate as an underlayer, and multiple chromium films and multiple nitrogen-containing chromium films are formed on the underlayer. It is preferable to do this. In this case, the base layer, the plurality of chromium films, and the plurality of nitrogen-containing chromium films are continuously formed in the processing chamber of the apparatus that performs sputtering using the chromium target, and the base layer and the plurality of chromium films are formed. Is preferably an argon gas atmosphere in the processing chamber, and when forming a plurality of nitrogen-containing chromium films, the processing chamber is preferably an atmosphere containing argon gas and nitrogen gas. Moreover, it is preferable that the thickness of each of the plurality of chromium films is substantially the same, and the thickness of each of the plurality of nitrogen-containing chromium films is approximately the same.

なお、本明細書中において、「窒素含有クロム皮膜」とは、クロム皮膜中に窒素および窒化クロムの少なくとも一方が分散した皮膜をいう。   In the present specification, the “nitrogen-containing chromium film” refers to a film in which at least one of nitrogen and chromium nitride is dispersed in the chromium film.

本発明によれば、良好な耐摩耗性および耐焼き付き性を有するとともに、基材への密着性および耐久性に優れた高硬度の硬質皮膜で被覆された硬質皮膜被覆部材を製造することができる。この硬質被膜被覆部材は、金型、機械部品、自動車部品などに使用することができる。   According to the present invention, it is possible to produce a hard film-coated member that is coated with a high-hardness hard film that has good wear resistance and seizure resistance, and has excellent adhesion to the base material and durability. . This hard film covering member can be used for molds, machine parts, automobile parts and the like.

以下、添付図面を参照して、本発明による硬質皮膜被覆部材およびその製造方法の実施の形態について詳細に説明する。   Embodiments of a hard film covering member and a method for manufacturing the same according to the present invention will be described below in detail with reference to the accompanying drawings.

図1に示すように、本発明による硬質皮膜被覆部材の実施の形態は、基材1と、この基材1上に形成された下地層2としてのクロム皮膜と、この下地層2上に40nm以上の略同一の厚さの応力緩和層としてのクロム皮膜と250nm以下の略同一の厚さの硬質層としての窒素含有クロム皮膜が交互に配置されるように形成された複数の窒素含有クロム皮膜4および複数のクロム皮膜3とを備えている。   As shown in FIG. 1, an embodiment of a hard film covering member according to the present invention includes a base material 1, a chromium film as a base layer 2 formed on the base material 1, and 40 nm on the base layer 2. A plurality of nitrogen-containing chromium films formed such that the chromium film as the stress relaxation layer having substantially the same thickness and the nitrogen-containing chromium film as the hard layer having substantially the same thickness of 250 nm or less are alternately arranged. 4 and a plurality of chromium coatings 3.

このように、250nm以下の略同一の厚さの窒素含有クロム皮膜(硬質層)と40nm以上の略同一の厚さのクロム皮膜(硬質層より硬度が低い応力緩和層)が交互に(周期的に)積層された多層膜を基材上に形成することにより、基材への密着力および耐久性に優れた高硬度の硬質皮膜で被覆された硬質皮膜被覆部材を製造することができる。すなわち、基材上に形成される皮膜を多層構造にするとともに、各々の硬質層の厚さを250nm以下にし且つ各々の応力緩和層の厚さを40nm以上にすることにより、硬質層と応力緩和層の界面でクラックが伝播するのを阻止して、高硬度を確保しながら応力緩和層により応力緩和して充分な密着力を確保することができる。   In this way, a nitrogen-containing chromium film (hard layer) having substantially the same thickness of 250 nm or less and a chromium film (stress relaxation layer having a hardness lower than that of the hard layer) of 40 nm or more are alternately (periodic). (Ii) By forming the laminated multilayer film on the base material, a hard film-coated member coated with a hard film having a high hardness and excellent adhesion and durability to the base material can be produced. That is, the film formed on the base material has a multilayer structure, the thickness of each hard layer is set to 250 nm or less, and the thickness of each stress relaxation layer is set to 40 nm or more. It is possible to prevent cracks from propagating at the interface of the layers and to relieve stress by the stress relieving layer while ensuring high hardness, thereby ensuring sufficient adhesion.

多層膜の各々の窒素含有クロム皮膜の厚さは、250nm以下であり、20〜240nmであるのが好ましく、40〜240nmであるのがさらに好ましい。また、多層膜の各々のクロム皮膜の厚さは、40nm以上であり、40〜100nmであるのが好ましく、40〜80nmであるのがさらに好ましい。また、多層膜のクロム皮膜および窒素含有クロム皮膜の数は、それぞれ20層以上であるのが好ましく、30層以上であるのがさらに好ましい。また、基材と多層膜との密着力をさらに向上させるために、基材上に下地層として100nm以下のクロム皮膜を形成するのが好ましい。さらに、下地層を除く多層膜全体の厚さは、5〜30μmであるのが好ましく、5〜20μmであるのがさらに好ましく、5〜15μmであるのが最も好ましい。   The thickness of each nitrogen-containing chromium film of the multilayer film is 250 nm or less, preferably 20 to 240 nm, and more preferably 40 to 240 nm. The thickness of each chromium film of the multilayer film is 40 nm or more, preferably 40 to 100 nm, and more preferably 40 to 80 nm. The number of chromium films and nitrogen-containing chromium films in the multilayer film is preferably 20 layers or more, and more preferably 30 layers or more. In order to further improve the adhesion between the base material and the multilayer film, it is preferable to form a chromium film of 100 nm or less on the base material as a base layer. Furthermore, the thickness of the entire multilayer film excluding the base layer is preferably 5 to 30 μm, more preferably 5 to 20 μm, and most preferably 5 to 15 μm.

下地層と複数のクロム皮膜と複数の窒素含有クロム皮膜は、クロムターゲットを使用してスパッタリングする装置の処理室内で連続的に形成することができる。すなわち、下地層および複数のクロム皮膜を形成する際には、処理室内をアルゴンガス雰囲気し、複数の窒素含有クロム皮膜を形成する際には、処理室内をアルゴンガスと窒素ガスを含む雰囲気にして、下地層と複数のクロム皮膜と複数の窒素含有クロム皮膜を連続的に形成することができる。   The underlayer, the plurality of chromium films, and the plurality of nitrogen-containing chromium films can be continuously formed in a processing chamber of an apparatus that performs sputtering using a chromium target. That is, when forming the base layer and the plurality of chromium films, an argon gas atmosphere is formed in the processing chamber, and when forming a plurality of nitrogen-containing chromium films, the processing chamber is set to an atmosphere containing argon gas and nitrogen gas. The underlayer, the plurality of chromium films, and the plurality of nitrogen-containing chromium films can be formed continuously.

このスパッタリングは、DCマグネトロンスパッタリング法によって行うことができるので、基材として使用する鋼材の焼き戻し温度以下の低温で成膜することができため、鋼材の軟化や熱歪を抑制することができ、また、他の物理的蒸着と比べて生産性が高い。また、このスパッタリングでは、イオンプレーティング法によって成膜する場合のように皮膜の材料が溶融した塊(ドロップレット)が発生しないので、平滑な表面の皮膜を形成することができる。また、このスパッタリングでは、クロム皮膜と窒素含有クロム皮膜を形成するため、他の材料の中間層を排除することができるので、従来のスパッタリング装置に単一のターゲットを使用して、処理室内への窒素ガスを導入のON/OFFの切り替えにより、多層構造の皮膜(内部に複数の界面が形成された皮膜)を形成することができる。そのため、硬質層としての窒素含有クロム皮膜と応力緩和層としてのクロム皮膜の界面でクラックが伝播するのを阻止して、高硬度を確保しながら応力緩和層により応力緩和して優れた密着性を有する窒素含有クロム皮膜を得ることができる。また、バイアス電圧を一定にしてスパッタリングを行うことができるので、皮膜の割れを防止することができ、応力緩和層を挟み込んでも硬度が低下するのを防止することができる。   Since this sputtering can be performed by a DC magnetron sputtering method, it is possible to form a film at a temperature lower than the tempering temperature of the steel material used as the base material, so that softening and thermal strain of the steel material can be suppressed, Moreover, productivity is high compared with other physical vapor deposition. In addition, in this sputtering, since a lump (droplet) in which the material of the film is melted does not occur as in the case of film formation by an ion plating method, a film having a smooth surface can be formed. In addition, since this sputtering forms a chromium film and a nitrogen-containing chromium film, an intermediate layer of other materials can be eliminated. By switching ON / OFF of introducing nitrogen gas, a multi-layered film (a film having a plurality of interfaces formed therein) can be formed. Therefore, crack propagation is prevented at the interface between the nitrogen-containing chromium film as the hard layer and the chromium film as the stress relaxation layer, and stress is relaxed by the stress relaxation layer while ensuring high hardness, and excellent adhesion is achieved. The nitrogen-containing chromium film | membrane which has can be obtained. Further, since sputtering can be performed with a constant bias voltage, it is possible to prevent the film from cracking and to prevent the hardness from being lowered even if the stress relaxation layer is sandwiched.

本発明による硬質皮膜被覆部材の実施の形態は、例えば、図2に示す処理装置10を使用して製造することができる。この処理装置10は、真空処理室12と、この真空処理室12内を減圧して真空にするための真空ポンプ14と、真空処理室12内の底部の中心部に配設された回転テーブル16と、この回転テーブル16上に治具18を介して載置された被処理部材として基材20と、この基材20を取り囲むように配置された蒸発源としてのターゲット22と、これらのターゲット22の各々に接続された直流のスパッタ電源24と、回転テーブル16に接続された直流のイオンボンバードおよびバイアス電源26と、真空処理室12内にアルゴンガスおよび窒素ガスを導入するためのガス導入パイプ28とを備えている。以下、この処理装置10を使用して、本発明による硬質皮膜被覆部材の実施の形態を製造する方法について説明する。   The embodiment of the hard film covering member according to the present invention can be manufactured using, for example, the processing apparatus 10 shown in FIG. The processing apparatus 10 includes a vacuum processing chamber 12, a vacuum pump 14 for reducing the pressure in the vacuum processing chamber 12 to form a vacuum, and a rotary table 16 disposed at the center of the bottom of the vacuum processing chamber 12. A substrate 20 as a member to be processed placed on the turntable 16 via a jig 18; a target 22 as an evaporation source disposed so as to surround the substrate 20; and these targets 22 A DC sputtering power source 24 connected to each of these, a DC ion bombard and bias power source 26 connected to the rotary table 16, and a gas introduction pipe 28 for introducing argon gas and nitrogen gas into the vacuum processing chamber 12. And. Hereinafter, a method for producing an embodiment of the hard film covering member according to the present invention using the processing apparatus 10 will be described.

(イオンボンバード処理工程)
まず、処理装置10のターゲット22としてクロムターゲットを使用し、真空ポンプ14を作動させて真空処理室12内を真空排気した後、ガス導入パイプ28を介して真空処理室12内にアルゴンガスを導入して真空処理室12内をアルゴンガス雰囲気にして、イオンボンバード処理を行って、基材20の表面を活性化する。
(Ion bombarding process)
First, a chromium target is used as the target 22 of the processing apparatus 10, the vacuum pump 14 is operated to evacuate the vacuum processing chamber 12, and then argon gas is introduced into the vacuum processing chamber 12 through the gas introduction pipe 28. Then, the inside of the vacuum processing chamber 12 is made an argon gas atmosphere, and ion bombarding is performed to activate the surface of the substrate 20.

(下地層形成工程)
次に、アルゴンガスの導入を一旦停止し、真空処理室12内を真空排気した後、ガス導入パイプ28を介して真空処理室12内にアルゴンガスを導入して真空処理室12内をアルゴンガス雰囲気にする。その後、ターゲット22にスパッタ電源24の所定の電圧を印加して、ターゲット22の近傍にグロー放電(低温プラズマ)を生じさせる。これにより、放電領域内のアルゴンガスがイオン化してターゲット22に高速で衝突し、この衝突によってターゲット22からクロム原子が叩き出され、このクロム原子が基材20の表面に叩き付けられて、基材20の表面に下地層としてのクロム皮膜が形成される。
(Underlayer forming process)
Next, the introduction of the argon gas is temporarily stopped, the inside of the vacuum processing chamber 12 is evacuated, and then the argon gas is introduced into the vacuum processing chamber 12 through the gas introduction pipe 28 so that the inside of the vacuum processing chamber 12 is argon gas. Make the atmosphere. Thereafter, a predetermined voltage of the sputtering power supply 24 is applied to the target 22 to cause glow discharge (low temperature plasma) in the vicinity of the target 22. As a result, the argon gas in the discharge region is ionized and collides with the target 22 at a high speed. As a result of this collision, chromium atoms are knocked out of the target 22, and the chromium atoms are struck against the surface of the substrate 20. A chromium film as an underlayer is formed on the surface of 20.

(クロム皮膜形成工程)
次に、ガス導入パイプ28を介して真空処理室12内にアルゴンガスを導入して真空処理室12内をアルゴンガス雰囲気にする。その後、ターゲット22にスパッタ電源24の所定の電圧を印加して、ターゲット22の近傍にグロー放電(低温プラズマ)を生じさせる。これにより、放電領域内のアルゴンガスがイオン化してターゲット22に高速で衝突し、この衝突によってターゲット22からクロム原子が叩き出され、このクロム原子が基材20上の下地層の表面に叩き付けられて、基材20上の下地層の表面に応力緩和層としてのクロム皮膜が形成される。
(Chromium film formation process)
Next, argon gas is introduced into the vacuum processing chamber 12 through the gas introduction pipe 28 to make the inside of the vacuum processing chamber 12 an argon gas atmosphere. Thereafter, a predetermined voltage of the sputtering power supply 24 is applied to the target 22 to cause glow discharge (low temperature plasma) in the vicinity of the target 22. As a result, the argon gas in the discharge region is ionized and collides with the target 22 at a high speed. As a result of this collision, chromium atoms are struck out from the target 22, and the chrome atoms are struck against the surface of the base layer on the substrate 20. Thus, a chromium film as a stress relaxation layer is formed on the surface of the base layer on the substrate 20.

(窒素含有クロム皮膜形成工程)
次に、ガス導入パイプ28を介して真空処理室12内にアルゴンガスと窒素ガスを導入して真空処理室12内をアルゴンガスと窒素ガスの雰囲気にする。その後、ターゲット22にスパッタ電源24の所定の電圧を印加して、ターゲット22の近傍にグロー放電(低温プラズマ)を生じさせる。これにより、放電領域内のアルゴンガスがイオン化してターゲット22に高速で衝突し、この衝突によってターゲット22からクロム原子が叩き出され、このクロム原子が真空処理室12内の雰囲気中の窒素原子とともに基材20上のクロム皮膜の表面に叩き付けられて、基材20上のクロム皮膜の表面に窒素を含有するクロム皮膜(硬質層)が形成される。
(Nitrogen-containing chromium film forming process)
Next, argon gas and nitrogen gas are introduced into the vacuum processing chamber 12 through the gas introduction pipe 28 to make the inside of the vacuum processing chamber 12 an atmosphere of argon gas and nitrogen gas. Thereafter, a predetermined voltage of the sputtering power supply 24 is applied to the target 22 to cause glow discharge (low temperature plasma) in the vicinity of the target 22. As a result, the argon gas in the discharge region is ionized and collides with the target 22 at a high speed. As a result of this collision, chromium atoms are knocked out of the target 22, and these chromium atoms together with nitrogen atoms in the atmosphere in the vacuum processing chamber 12. A chromium film (hard layer) containing nitrogen is formed on the surface of the chromium film on the substrate 20 by being struck against the surface of the chromium film on the substrate 20.

さらに、上記のクロム皮膜形成工程と窒素含有クロム皮膜形成工程を繰り返して、略同一の厚さのクロム皮膜と窒素含有クロム皮膜が交互に配置されるように複数のクロム皮膜と複数の窒素含有クロム皮膜を形成する。   Further, the chromium film forming step and the nitrogen-containing chromium film forming step are repeated, so that the chromium film and the nitrogen-containing chromium film having substantially the same thickness are alternately arranged so that the plurality of chromium films and the plurality of nitrogen-containing chromium are provided. Form a film.

なお、上記のスパッタリングでは、皮膜の厚さを均一にするために且つ基材20の温度をその焼戻し温度以下に維持するために、ターゲット22と基材20の間隔を、例えば、70〜80mmに保持するのが好ましい。   In the above sputtering, in order to make the thickness of the coating uniform and to maintain the temperature of the base material 20 below the tempering temperature, the distance between the target 22 and the base material 20 is set to, for example, 70 to 80 mm. It is preferable to hold.

以下、本発明による硬質皮膜被覆部材およびその製造方法の実施例について詳細に説明する。   Examples of the hard film-coated member and the manufacturing method thereof according to the present invention will be described in detail below.

[実施例1]
ダイス鋼SKD11に浸炭焼入れ焼き戻しを施した後に鏡面研磨した基材を用意した。この基材をクロムターゲットを使用する処理装置(DCマグネトロンスパッタリング装置)の真空処理室に入れて、到達真空度5×10−4Pa以下に真空排気した後、真空処理室内が圧力5×10−1Paのアルゴンガス雰囲気になるように制御してアルゴンガスを真空処理室内に導入し、1000V×2Aでイオンボンバード処理を約180分間施して、基材の表面を活性化した。
[Example 1]
The die steel SKD11 was carburized, quenched, and tempered, and then a mirror-polished base material was prepared. This base material is put into a vacuum processing chamber of a processing apparatus (DC magnetron sputtering apparatus) using a chrome target and evacuated to an ultimate vacuum of 5 × 10 −4 Pa or less, and then the pressure in the vacuum processing chamber is 5 × 10 Argon gas was introduced into a vacuum processing chamber under control of an argon gas atmosphere of 1 Pa, and ion bombarding was performed at 1000 V × 2 A for about 180 minutes to activate the surface of the substrate.

次に、真空処理室内を排気して真空にした後、真空処理室内の雰囲気中のアルゴンガスの分圧が0.061Paになるようにアルゴンガスを真空処理室内に導入しながら、投入電力4kW、バイアス電圧を−100Vとして、スパッタリングを約40秒間行って、基材上に下地層としてビッカース硬度HV500程度、厚さ50nm程度のクロム皮膜を形成した。   Next, after evacuating and vacuuming the vacuum processing chamber, while introducing argon gas into the vacuum processing chamber so that the partial pressure of argon gas in the atmosphere in the vacuum processing chamber becomes 0.061 Pa, the input power is 4 kW, Sputtering was performed for about 40 seconds at a bias voltage of −100 V, and a chromium film having a Vickers hardness of about HV500 and a thickness of about 50 nm was formed on the substrate as an underlayer.

次に、真空処理室内の雰囲気中のアルゴンガスの分圧が0.061Paになるようにアルゴンガスを真空処理室内に導入しながら、バイアス電圧を−100Vとして、スパッタリングを60秒間行って、下地層上に厚さ約80nmのクロム皮膜を形成した(クロム皮膜形成工程)。   Next, while introducing argon gas into the vacuum processing chamber so that the partial pressure of argon gas in the atmosphere in the vacuum processing chamber is 0.061 Pa, the bias voltage is set to −100 V, and sputtering is performed for 60 seconds to form an underlayer. A chromium film having a thickness of about 80 nm was formed thereon (chromium film forming step).

次に、真空処理室内の雰囲気中のアルゴンガスの分圧が0.038Paになるようにアルゴンガスを真空処理室内に導入するとともに、窒素ガスの分圧が0.073Paになるように窒素ガスを真空処理室内に導入しながら、投入電力4kW、バイアス電圧を−100Vとして、スパッタリングを180秒間行って、クロム皮膜上に厚さ約240nmの窒素含有クロム皮膜を形成した(窒素含有クロム皮膜形成工程)。   Next, while introducing argon gas into the vacuum processing chamber so that the partial pressure of argon gas in the atmosphere in the vacuum processing chamber is 0.038 Pa, nitrogen gas is introduced so that the partial pressure of nitrogen gas is 0.073 Pa. While introduced into the vacuum processing chamber, sputtering was performed for 180 seconds with an input power of 4 kW and a bias voltage of −100 V to form a nitrogen-containing chromium film having a thickness of about 240 nm on the chromium film (nitrogen-containing chromium film forming step). .

さらに、上記のクロム皮膜形成工程と窒素含有クロム皮膜形成工程を繰り返し、それぞれ厚さ約80nmのクロム皮膜と厚さ約240nmの窒素含有クロム皮膜を30層ずつ(合計60層、全膜厚9.6μm)交互に形成して硬質皮膜被覆部材を得た。   Further, the above-described chromium film forming step and nitrogen-containing chromium film forming step are repeated, and 30 layers each of a chromium film having a thickness of about 80 nm and a nitrogen-containing chromium film having a thickness of about 240 nm (total 60 layers, total film thickness 9. 6 μm) Alternatingly formed, a hard coating member was obtained.

このようにして得られた硬質皮膜被覆部材のマイヤー硬さ、ビッカース硬さ、ヤング率、HRC圧痕および臨界加重の評価を行った。   The hard film-coated member thus obtained was evaluated for Mayer hardness, Vickers hardness, Young's modulus, HRC indentation, and critical load.

塑性変形硬さとしてのマイヤー硬さ、ビッカース硬さおよびヤング率は、フィッシャー硬度計(超微小硬さ試験機)(株式会社フィッシャー・インストルメント製のFISCHERSCOPEH100Cxy−p)を使用して、バーコビッチ圧子により測定荷重10mN/10sおよび100mN/10sを加えて室温で測定した塑性変形硬さに基づいて算出した。その結果、マイヤー硬さは19.7GPa、ビッカース硬さは1328HV、ヤング率は245.5GPaであった。 The Meyer hardness, Vickers hardness and Young's modulus as plastic deformation hardness are determined by using a Fischer hardness tester (ultra-micro hardness tester) (FISCHERSCOPEH100C xy-p manufactured by Fischer Instrument Co., Ltd.) Calculation was performed based on the plastic deformation hardness measured at room temperature by applying measurement loads of 10 mN / 10 s and 100 mN / 10 s with an indenter. As a result, Meyer hardness was 19.7 GPa, Vickers hardness was 1328 HV, and Young's modulus was 245.5 GPa.

HRC圧痕は、ロックウェル試験機を使用して、Cスケールで圧痕を打って観察することにより、HRC圧痕判定試験(DIN50103/1)に準拠して評価した。その結果、HRC圧痕は(圧痕の周囲にわずかにひびが認められる)HF2であった。   The HRC impression was evaluated based on the HRC impression determination test (DIN 50103/1) by observing the impression on a C scale using a Rockwell testing machine. As a result, the HRC indentation was HF2 (slight cracks were found around the indentation).

臨界荷重Lcについては、スクラッチ試験機(CSM社製のREVETEST、AEセンサー付スクラッチ試験機)を使用し、最小荷重0.9N、最大荷重90N、荷重速度100N/分、スクラッチ速度10mm/分、スクラッチ距離8.91mmとして、0.2mmRのダイヤモンド圧子(型式Rockwell、シリアルNo.N2−3122)によってスクラッチ試験を行い、スクラッチの周辺の皮膜が破壊されたときの荷重(臨界荷重Lc)を測定した。その結果、臨界荷重Lcは90Nであった。   For the critical load Lc, a scratch tester (REVEST made by CSM, scratch tester with AE sensor) is used, minimum load 0.9N, maximum load 90N, load speed 100N / min, scratch speed 10mm / min, scratch A scratch test was performed with a diamond indenter (model Rockwell, serial No. N2-3122) of 0.2 mmR at a distance of 8.91 mm, and the load (critical load Lc) when the coating around the scratch was broken was measured. As a result, the critical load Lc was 90N.

[実施例2]
クロム皮膜と窒素含有クロム皮膜を成膜するためのスパッタリング時間をそれぞれ30秒間にして、それぞれ厚さ約40nmのクロム皮膜と窒素含有クロム皮膜を120層ずつ(合計240層、全膜厚9.6μm)形成した以外は、実施例1と同様の方法によりクロム皮膜と窒素含有クロム皮膜を交互に形成して硬質皮膜被覆部材を得た。
[Example 2]
Sputtering time for forming the chromium film and the nitrogen-containing chromium film was set to 30 seconds each, and 120 layers of chromium film and nitrogen-containing chromium film each having a thickness of about 40 nm (total 240 layers, total film thickness 9.6 μm) ) Except for the formation, a chromium film and a nitrogen-containing chromium film were alternately formed by the same method as in Example 1 to obtain a hard film-coated member.

このようにして得られた硬質皮膜被覆部材のマイヤー硬さ、ビッカース硬さ、ヤング率、HRC圧痕および臨界加重について、実施例1と同様の方法により評価した。その結果、マイヤー硬さは20.8GPa、ビッカース硬さは1438HV、ヤング率は266.5GPa、HRC圧痕はHF2、臨界加重Lcは80Nであった。   The Mayer hardness, Vickers hardness, Young's modulus, HRC indentation, and critical load of the thus obtained hard film-coated member were evaluated by the same method as in Example 1. As a result, the Meyer hardness was 20.8 GPa, the Vickers hardness was 1438 HV, the Young's modulus was 266.5 GPa, the HRC indentation was HF2, and the critical load Lc was 80 N.

[実施例3]
窒素含有クロム皮膜を形成する際の真空処理室内の雰囲気中のアルゴンガスの分圧を0.040Pa、窒素ガスの分圧を0.061Paとし、クロム皮膜と窒素含有クロム皮膜を成膜するためのスパッタリング時間をそれぞれ60秒間にして、それぞれ厚さ約80nmのクロム皮膜と窒素含有クロム皮膜を60層ずつ(合計120層、全膜厚9.6μm)形成した以外は、実施例1と同様の方法によりクロム皮膜と窒素含有クロム皮膜を交互に形成して硬質皮膜被覆部材を得た。
[Example 3]
For forming a chromium film and a nitrogen-containing chromium film, the partial pressure of argon gas in the atmosphere in the vacuum processing chamber when forming the nitrogen-containing chromium film is 0.040 Pa and the partial pressure of nitrogen gas is 0.061 Pa. The same method as in Example 1 except that the sputtering time was 60 seconds each, and 60 layers of chromium films and nitrogen-containing chromium films each having a thickness of about 80 nm were formed (total of 120 layers, total film thickness of 9.6 μm). Thus, a hard coating member was obtained by alternately forming a chromium coating and a nitrogen-containing chromium coating.

このようにして得られた硬質皮膜被覆部材のマイヤー硬さ、ビッカース硬さ、ヤング率、HRC圧痕および臨界加重について、実施例1と同様の方法により評価した。その結果、マイヤー硬さは16.5GPa、ビッカース硬さは1118HV、ヤング率は253.0GPa、HRC圧痕はHF2、臨界加重Lcは83Nであった。   The Mayer hardness, Vickers hardness, Young's modulus, HRC indentation, and critical load of the thus obtained hard film-coated member were evaluated by the same method as in Example 1. As a result, the Meyer hardness was 16.5 GPa, the Vickers hardness was 1118 HV, the Young's modulus was 253.0 GPa, the HRC indentation was HF2, and the critical load Lc was 83 N.

[実施例4]
窒素含有クロム皮膜を形成する際の真空処理室内の雰囲気中のアルゴンガスの分圧を0.040Pa、窒素ガスの分圧を0.061Paとした以外は、実施例1と同様の方法によりクロム皮膜と窒素含有クロム皮膜を交互に形成して硬質皮膜被覆部材を得た。
[Example 4]
The chromium film was formed in the same manner as in Example 1 except that the partial pressure of argon gas in the atmosphere in the vacuum processing chamber when forming the nitrogen-containing chromium film was 0.040 Pa and the partial pressure of nitrogen gas was 0.061 Pa. And a nitrogen-containing chromium film were alternately formed to obtain a hard film-coated member.

このようにして得られた硬質皮膜被覆部材のマイヤー硬さ、ビッカース硬さ、ヤング率、HRC圧痕および臨界加重について、実施例1と同様の方法により評価した。その結果、マイヤー硬さは17.0GPa、ビッカース硬さは1214HV、ヤング率は241.6GPa、HRC圧痕はHF2、臨界加重Lcは90Nであった。   The Mayer hardness, Vickers hardness, Young's modulus, HRC indentation, and critical load of the thus obtained hard film-coated member were evaluated by the same method as in Example 1. As a result, the Meyer hardness was 17.0 GPa, the Vickers hardness was 1214 HV, the Young's modulus was 241.6 GPa, the HRC indentation was HF2, and the critical load Lc was 90 N.

[比較例1]
窒素含有クロム皮膜を形成する際の真空処理室内の雰囲気中のアルゴンガスの分圧を0.042Pa、窒素ガスの分圧を0.054Paとし、クロム皮膜と窒素含有クロム皮膜を交互に形成(多層膜を形成)する代わりに、窒素含有クロム皮膜を成膜するためのスパッタリング時間を7200秒間にして、10μmの窒素含有クロム皮膜を形成(単層膜を形成)した以外は、実施例1と同様の方法により硬質皮膜被覆部材を得た。
[Comparative Example 1]
When forming the nitrogen-containing chromium film, the partial pressure of argon gas in the atmosphere in the vacuum processing chamber is 0.042 Pa, the partial pressure of nitrogen gas is 0.054 Pa, and the chromium film and the nitrogen-containing chromium film are alternately formed (multi-layer) Instead of forming a film), the sputtering time for forming a nitrogen-containing chromium film was set to 7200 seconds, and a 10 μm nitrogen-containing chromium film was formed (single-layer film was formed). A hard coating member was obtained by this method.

このようにして得られた硬質皮膜被覆部材のマイヤー硬さ、ビッカース硬さ、ヤング率、HRC圧痕および臨界加重について、実施例1と同様の方法により評価した。その結果、マイヤー硬さは19.8GPa、ビッカース硬さは1376HV、ヤング率は261GPa、HRC圧痕はHF2、臨界加重Lcは50Nであった。   The Mayer hardness, Vickers hardness, Young's modulus, HRC indentation, and critical load of the thus obtained hard film-coated member were evaluated by the same method as in Example 1. As a result, the Meyer hardness was 19.8 GPa, the Vickers hardness was 1376 HV, the Young's modulus was 261 GPa, the HRC indentation was HF2, and the critical load Lc was 50 N.

[比較例2]
クロム皮膜と窒素含有クロム皮膜を交互に形成(多層膜を形成)する代わりに、窒素含有クロム皮膜を成膜するためのスパッタリング時間を7200秒間にして、10μmの窒素含有クロム皮膜を形成(単層膜を形成)した以外は、実施例1と同様の方法により硬質皮膜被覆部材を得た。
[Comparative Example 2]
Instead of alternately forming a chromium film and a nitrogen-containing chromium film (forming a multilayer film), a sputtering time for forming the nitrogen-containing chromium film is set to 7200 seconds to form a 10 μm nitrogen-containing chromium film (single layer) A hard film-coated member was obtained by the same method as in Example 1 except that a film was formed.

このようにして得られた硬質皮膜被覆部材のマイヤー硬さ、ビッカース硬さ、ヤング率、HRC圧痕および臨界加重について、実施例1と同様の方法により評価した。その結果、マイヤー硬さは27.6GPa、ビッカース硬さは1770HV、ヤング率は279.0GPa、HRC圧痕は(圧痕の周囲の多くのひびと皮膜の破壊または剥離が認められる)HF3、臨界加重Lcは30Nであった。   The Mayer hardness, Vickers hardness, Young's modulus, HRC indentation, and critical load of the thus obtained hard film-coated member were evaluated by the same method as in Example 1. As a result, the Meyer hardness is 27.6 GPa, the Vickers hardness is 1770 HV, the Young's modulus is 279.0 GPa, the HRC indentation is HF3, in which many cracks around the indentation and destruction or peeling of the film are observed, and the critical load Lc Was 30N.

[比較例3]
クロム皮膜と窒素含有クロム皮膜を成膜するためのスパッタリング時間をそれぞれ210秒間と30秒間にして、厚さ280nmの窒素含有クロム皮膜と厚さ40nmのクロム皮膜を30層ずつ(合計60層、全膜厚9.6μm)形成した以外は、実施例1と同様の方法によりクロム皮膜と窒素含有クロム皮膜を交互に形成して硬質皮膜被覆部材を得た。
[Comparative Example 3]
Sputtering times for forming the chromium film and the nitrogen-containing chromium film were 210 seconds and 30 seconds, respectively, and a 280 nm-thick nitrogen-containing chromium film and a 40-nm-thick chromium film each were 30 layers (total of 60 layers, all A chrome film and a nitrogen-containing chrome film were alternately formed by the same method as in Example 1 except that the film thickness was 9.6 μm) to obtain a hard film-coated member.

このようにして得られた硬質皮膜被覆部材のマイヤー硬さ、ビッカース硬さ、ヤング率、HRC圧痕および臨界加重について、実施例1と同様の方法により評価した。その結果、マイヤー硬さは24.9GPa、ビッカース硬さは1658HV、ヤング率は279.0GPa、HRC圧痕はHF3、臨界加重Lcは50Nであった。   The Mayer hardness, Vickers hardness, Young's modulus, HRC indentation, and critical load of the thus obtained hard film-coated member were evaluated by the same method as in Example 1. As a result, the Meyer hardness was 24.9 GPa, the Vickers hardness was 1658 HV, the Young's modulus was 279.0 GPa, the HRC indentation was HF3, and the critical load Lc was 50 N.

これらの実施例および比較例の硬質皮膜被覆部材の製造条件、構造および特性を表1〜表3に示す。   Tables 1 to 3 show the production conditions, structures, and characteristics of the hard film-coated members of these examples and comparative examples.

Figure 2010084202
Figure 2010084202

Figure 2010084202
Figure 2010084202

Figure 2010084202
Figure 2010084202

本発明による硬質皮膜被覆部材の実施の形態の構造を示す断面図である。It is sectional drawing which shows the structure of embodiment of the hard film coating | coated member by this invention. 本発明による硬質皮膜被覆部材の実施の形態を製造するための処理装置の概略図である。It is the schematic of the processing apparatus for manufacturing embodiment of the hard film coating | coated member by this invention.

符号の説明Explanation of symbols

1 基材
2 下地層(クロム皮膜)
3 応力緩和層(クロム皮膜)
4 硬質層(窒素含有クロム皮膜)
10 処理装置
12 真空処理室
14 真空ポンプ
16 回転テーブル
18 治具
20 基材
22 ターゲット
24 スパッタ電源
26 イオンボンバードおよびバイアス電源
28 ガス導入パイプ
1 Substrate 2 Underlayer (chrome film)
3 Stress relaxation layer (chrome coating)
4 Hard layer (nitrogen-containing chromium film)
DESCRIPTION OF SYMBOLS 10 Processing apparatus 12 Vacuum processing chamber 14 Vacuum pump 16 Rotary table 18 Jig 20 Base material 22 Target 24 Sputtering power supply 26 Ion bombardment and bias power supply 28 Gas introduction pipe

Claims (8)

基材上に厚さ40nm以上のクロム皮膜と厚さ250nm以下の窒素含有クロム皮膜が交互に配置されるように複数のクロム皮膜と複数の窒素含有クロム皮膜が形成されていることを特徴とする、硬質皮膜被覆部材。 A plurality of chromium films and a plurality of nitrogen-containing chromium films are formed on a substrate so that a chromium film having a thickness of 40 nm or more and a nitrogen-containing chromium film having a thickness of 250 nm or less are alternately arranged. , Hard film coated member. 前記基材上に下地層としてクロム皮膜が形成され、この下地層上に前記複数のクロム皮膜と前記複数の窒素含有クロム皮膜が形成されていることを特徴とする、請求項1に記載の硬質皮膜被覆部材。 The hard film according to claim 1, wherein a chromium film is formed as an underlayer on the base material, and the plurality of chromium films and the plurality of nitrogen-containing chromium films are formed on the underlayer. Film covering member. 前記複数のクロム皮膜の各々の厚さが略同一であり、前記複数の窒素含有クロム皮膜の各々の厚さが略同一であることを特徴とする、請求項1または2に記載の硬質皮膜被覆部材。 3. The hard coating according to claim 1, wherein each of the plurality of chromium coatings has substantially the same thickness, and each of the plurality of nitrogen-containing chromium coatings has substantially the same thickness. Element. 基材上に厚さ40nm以上のクロム皮膜と厚さ250nm以下の窒素含有クロム皮膜が交互に配置されるように複数のクロム皮膜と複数の窒素含有クロム皮膜を形成することを特徴とする、硬質皮膜被覆部材の製造方法。 Forming a plurality of chromium films and a plurality of nitrogen-containing chromium films so that a chromium film having a thickness of 40 nm or more and a nitrogen-containing chromium film having a thickness of 250 nm or less are alternately arranged on a substrate; A method for producing a film-coated member. 前記複数のクロム皮膜と前記複数の窒素含有クロム皮膜を形成する前に、前記基材上に下地層としてクロム皮膜を形成し、この下地層上に前記複数のクロム皮膜と前記複数の窒素含有クロム皮膜を形成することを特徴とする、請求項4に記載の硬質皮膜被覆部材の製造方法。 Before forming the plurality of chromium films and the plurality of nitrogen-containing chromium films, a chromium film is formed as an underlayer on the substrate, and the plurality of chromium films and the plurality of nitrogen-containing chromium are formed on the underlayer. The method for producing a hard film-coated member according to claim 4, wherein a film is formed. 前記複数のクロム皮膜と前記複数の窒素含有クロム皮膜が、クロムターゲットを使用してスパッタリングする装置の処理室内で連続的に形成され、前記複数のクロム皮膜を形成する際には、処理室内をアルゴンガス雰囲気にし、前記複数の窒素含有クロム皮膜を形成する際には、処理室内をアルゴンガスと窒素ガスを含む雰囲気にすることを特徴とする、請求項4に記載の硬質皮膜被覆部材の製造方法。 The plurality of chromium coatings and the plurality of nitrogen-containing chromium coatings are continuously formed in a processing chamber of a sputtering apparatus using a chromium target. When forming the plurality of chromium coatings, the processing chamber is filled with argon. 5. The method of manufacturing a hard film-coated member according to claim 4, wherein when forming the plurality of nitrogen-containing chromium films in a gas atmosphere, the process chamber is filled with an atmosphere containing argon gas and nitrogen gas. . 前記下地層と前記複数のクロム皮膜と前記複数の窒素含有クロム皮膜が、クロムターゲットを使用してスパッタリングする装置の処理室内で連続的に形成され、前記下地層および前記複数のクロム皮膜を形成する際には、処理室内をアルゴンガス雰囲気にし、前記複数の窒素含有クロム皮膜を形成する際には、処理室内をアルゴンガスと窒素ガスを含む雰囲気にすることを特徴とする、請求項5に記載の硬質皮膜被覆部材の製造方法。 The underlayer, the plurality of chromium films, and the plurality of nitrogen-containing chromium films are continuously formed in a processing chamber of a sputtering apparatus using a chromium target to form the underlayer and the plurality of chromium films. In this case, the processing chamber is set to an argon gas atmosphere, and when the plurality of nitrogen-containing chromium films are formed, the processing chamber is set to an atmosphere containing argon gas and nitrogen gas. Manufacturing method of hard film covering member. 前記複数のクロム皮膜の各々の厚さが略同一であり、前記複数の窒素含有クロム皮膜の各々の厚さが略同一であることを特徴とする、請求項4乃至7のいずれかに記載の硬質皮膜被覆部材の製造方法。 8. The thickness of each of the plurality of chromium films is substantially the same, and the thickness of each of the plurality of nitrogen-containing chromium films is substantially the same. Manufacturing method of hard film covering member.
JP2008255045A 2008-09-30 2008-09-30 Hard coating member and method for producing the same Active JP5660697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008255045A JP5660697B2 (en) 2008-09-30 2008-09-30 Hard coating member and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008255045A JP5660697B2 (en) 2008-09-30 2008-09-30 Hard coating member and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010084202A true JP2010084202A (en) 2010-04-15
JP5660697B2 JP5660697B2 (en) 2015-01-28

Family

ID=42248449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008255045A Active JP5660697B2 (en) 2008-09-30 2008-09-30 Hard coating member and method for producing the same

Country Status (1)

Country Link
JP (1) JP5660697B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179341A (en) * 2009-02-06 2010-08-19 Hyomen Kaishitsu Kenkyusho:Kk Cold-working tool coated with multilayer coating film
WO2013039132A1 (en) * 2011-09-14 2013-03-21 株式会社ニコン Composite plastic member, and method for producing same
JP2020506818A (en) * 2017-02-02 2020-03-05 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲーSchaeffler Technologies AG & Co. KG Tier systems and components
JP2021080530A (en) * 2019-11-20 2021-05-27 浅井産業株式会社 Multi-layered film, production method thereof, and mechanical component coated with multi-layered film
JP2022171587A (en) * 2021-04-30 2022-11-11 エスケーシー ソルミックス カンパニー,リミテッド Photomask blank, photomask, and manufacturing method of semiconductor element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61177365A (en) * 1985-01-30 1986-08-09 ライボルト‐ヘレーウス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method for coating machine member and tool with hard substance and produced machine member and tool
JP2005082822A (en) * 2003-09-05 2005-03-31 Ion Engineering Research Institute Corp Hard thick film, and method for forming the same
JP2007077494A (en) * 2005-08-08 2007-03-29 Nanofilm Technologies Internatl Pte Ltd Metal coating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61177365A (en) * 1985-01-30 1986-08-09 ライボルト‐ヘレーウス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method for coating machine member and tool with hard substance and produced machine member and tool
JP2005082822A (en) * 2003-09-05 2005-03-31 Ion Engineering Research Institute Corp Hard thick film, and method for forming the same
JP2007077494A (en) * 2005-08-08 2007-03-29 Nanofilm Technologies Internatl Pte Ltd Metal coating

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179341A (en) * 2009-02-06 2010-08-19 Hyomen Kaishitsu Kenkyusho:Kk Cold-working tool coated with multilayer coating film
WO2013039132A1 (en) * 2011-09-14 2013-03-21 株式会社ニコン Composite plastic member, and method for producing same
CN103797151A (en) * 2011-09-14 2014-05-14 株式会社尼康 Composite plastic member, and method for producing same
JPWO2013039132A1 (en) * 2011-09-14 2015-03-26 株式会社ニコン Composite plastic member and manufacturing method thereof
CN103797151B (en) * 2011-09-14 2016-01-20 株式会社尼康 Composite plastic parts and manufacture method thereof
US9341923B2 (en) 2011-09-14 2016-05-17 Nikon Corporation Composite plastic member and method for producing the same
JP2020506818A (en) * 2017-02-02 2020-03-05 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲーSchaeffler Technologies AG & Co. KG Tier systems and components
JP7003130B2 (en) 2017-02-02 2022-02-10 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲー Layered systems and components
US11313032B2 (en) 2017-02-02 2022-04-26 Schaeffler Technologies AG & Co. KG Layer system and component
JP2021080530A (en) * 2019-11-20 2021-05-27 浅井産業株式会社 Multi-layered film, production method thereof, and mechanical component coated with multi-layered film
JP2022171587A (en) * 2021-04-30 2022-11-11 エスケーシー ソルミックス カンパニー,リミテッド Photomask blank, photomask, and manufacturing method of semiconductor element
JP7344628B2 (en) 2021-04-30 2023-09-14 エスケー エンパルス カンパニー リミテッド Method for manufacturing photomask blanks, photomasks and semiconductor devices

Also Published As

Publication number Publication date
JP5660697B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
KR100845372B1 (en) Diamondlike carbon hard multilayer film formed body and method for producing the same
JP5660697B2 (en) Hard coating member and method for producing the same
US8017226B2 (en) Hard film-coated member and jig for molding
JP2009167512A (en) Diamond-like carbon film for sliding component and method for manufacturing the same
EP3067438B1 (en) Forming method of intermediate layer formed between base material and dlc film, dlc film forming method, and intermediate layer formed between base material and dlc film
JP2003171758A (en) Diamondlike carbon hard multilayer film formed body, and production method therefor
JP2008001951A (en) Diamond-like carbon film and method for forming the same
JP5660696B2 (en) Hard coating member and method for producing the same
JP6741690B2 (en) Reduced wear and/or friction by using molybdenum nitride based coating
JP5145051B2 (en) Hard film covering member and method for manufacturing the same
KR20140028077A (en) Part having a dlc coating and method for applying the dlc coating
US8087918B2 (en) Pressing mold and method for producing the same
KR20170128675A (en) A method of forming a multi-element alloy thin film composite
JP4669992B2 (en) Nitrogen-containing chromium coating, method for producing the same, and mechanical member
JP5345436B2 (en) Method for producing hard coating member
JP5676854B2 (en) Hard coating member and method for producing the same
JP5634669B2 (en) Hard coating member and method for producing the same
JP5226826B2 (en) Method for producing diamond-like carbon hard multilayer film molded body
WO2009119269A1 (en) Process for producing surface covered component having excellent film adhesion
JP4852746B2 (en) Nitrogen-containing chromium coating, method for producing the same, and mechanical member
JP5924908B2 (en) Method for producing hard coating member
JP5824010B2 (en) Hard coating coated member
JP5530751B2 (en) LAMINATED COATING COATED MEMBER AND METHOD FOR PRODUCING THE SAME
JP2001329360A (en) Work with hard coating, and method of working the same
JP2007031797A (en) Diamond-like carbon coated member, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131121

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131129

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141201

R150 Certificate of patent or registration of utility model

Ref document number: 5660697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250