KR20140028077A - Part having a dlc coating and method for applying the dlc coating - Google Patents

Part having a dlc coating and method for applying the dlc coating Download PDF

Info

Publication number
KR20140028077A
KR20140028077A KR1020137033475A KR20137033475A KR20140028077A KR 20140028077 A KR20140028077 A KR 20140028077A KR 1020137033475 A KR1020137033475 A KR 1020137033475A KR 20137033475 A KR20137033475 A KR 20137033475A KR 20140028077 A KR20140028077 A KR 20140028077A
Authority
KR
South Korea
Prior art keywords
layer
dlc
dlc coating
etching
thickness
Prior art date
Application number
KR1020137033475A
Other languages
Korean (ko)
Other versions
KR101779844B1 (en
Inventor
크리스토프 에오
로랑 봉빌롱
필리프 모랭-페리에
Original Assignee
에이치.이.에프.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이치.이.에프. filed Critical 에이치.이.에프.
Publication of KR20140028077A publication Critical patent/KR20140028077A/en
Application granted granted Critical
Publication of KR101779844B1 publication Critical patent/KR101779844B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • C23C14/0611Diamond
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/046Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with at least one amorphous inorganic material layer, e.g. DLC, a-C:H, a-C:Me, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)
  • Forging (AREA)
  • Chemically Coating (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Pens And Brushes (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

본 발명은 WC-C 조성물 구배 층을 가지고, 금속-함유 하층막을 제외하며 이온 주입층(implantation layer)을 제외한 층 및 DLC 표면층을 가진 부품에 관한 것으로, 상기 부품은 스크래치 검사시 응집 성향을 갖는 것을 특징으로 한다.The present invention relates to a component having a WC-C composition gradient layer, excluding a metal-containing underlayer, and having a layer other than an ion implantation layer and a DLC surface layer, wherein the component has a cohesive tendency upon scratch inspection. It features.

Figure P1020137033475
Figure P1020137033475

Description

DLC 코팅된 부품 및 DLC 코팅을 도포하는 방법{PART HAVING A DLC COATING AND METHOD FOR APPLYING THE DLC COATING}PART HAVING A DLC COATING AND METHOD FOR APPLYING THE DLC COATING}

본 발명은 DLC(Diamond-Like carbon) 코팅, 특히 마찰부에 대한 DLC 코팅의 기술적 분야에 관한 것이다.The present invention relates to the technical field of diamond-like carbon (DLC) coatings, in particular DLC coatings for frictional parts.

본 발명은 예를 들어, 피스톤 로드(piston rod), 캠축(camshaft), 밸브 리프터(valve lifter), 실린더(cylinders), 피스톤 링(piston ring) 등의 마찰계수, 보다 일반적으로는 하중이 걸린 마찰의 모든 경우의 마찰 계수를 줄이는데 특히 유용한 적용을 갖는다. 이러한 마찰을 줄이기 위하여, 본 기술분야의 숙련된 자는 해당 부품에 DLC 코팅의 도포 가능성에 대해 완전히 인식한다. The invention relates to, for example, friction coefficients such as piston rods, camshafts, valve lifters, cylinders, piston rings and the like, and more generally under load friction. Has a particularly useful application in reducing the coefficient of friction in all cases. To reduce this friction, one skilled in the art is fully aware of the possibility of applying a DLC coating to the part in question.

또한 본 발명은 마찰을 줄이기 위한 다른 시도 없이도 검은색을 가지도록 코팅에 의해 제공되는 표면을 필요로 하는 경우의 적용을 가질 수 있다.The invention may also have application in cases where a surface provided by the coating is required to have a black color without other attempts to reduce friction.

일반적으로 부품 위의 DLC 막의 낮은 접착력은 특정의 적용에 있어서 실제 문제가 될 수 있다는 것이 본 기술분야의 숙련된 자에게 알려져 있다. 접착력을 증가시키기 위한 하나의 기술적 해결책은 예를 들어 실리콘 또는 크롬에 기반한 금속-함유 접착층을 사용하는 것이다. 다양한 기술적 해결책이 제시되어 있다. It is generally known to those skilled in the art that low adhesion of DLC films on components can be a real problem for certain applications. One technical solution for increasing adhesion is to use a metal-containing adhesive layer based on, for example, silicon or chromium. Various technical solutions are presented.

예를 들어, WO2011/018252는 접착층, 금속-함유 DLC 코팅 및 무금속 DLC 코팅으로 구성되는 코팅을 가지는 마찰부를 기술하고 있다. 접착층은 바람직하게는 1 μm의 최대 두께를 가지는 크롬 코팅인 반면 금속-함유 DLC 코팅은 바람직하게는 WCC 텅스텐 카바이드로 만들어진다. 다양한 층 및 코팅의 두께의 비율은 특정 범위의 값으로 제한된다, 이 범위 밖에서는, 만일 DLC 두께가 너무 얇다면 부품의 수명이 짧아질 것이고, DLC 두께가 너무 두껍다면 부품이 너무 이르게 벗겨지거나 박리될 위험이 있다.For example, WO2011 / 018252 describes a friction part having a coating consisting of an adhesive layer, a metal-containing DLC coating and a metal free DLC coating. The adhesive layer is preferably a chromium coating with a maximum thickness of 1 μm while the metal-containing DLC coating is preferably made of WCC tungsten carbide. The ratio of the thicknesses of the various layers and coatings is limited to a specific range of values. Outside this range, if the DLC thickness is too thin, the life of the part will be short, and if the DLC thickness is too thick, the part will peel off or peel off too early. There is a risk.

WO0179585는 접착층(adhesive layer), 전이층(transition layer) 및 다이아몬드성 탄소층(layer of diamond-like carbon)을 가지는 다층 시스템(multilayer system)을 기술하고 있다. 접착층은 4번째, 5번째 또는 6번째 서브그룹 내의 원소 및 실리콘을 포함하는 반면, 전이층은 탄소와 4번째, 5번째 또는 6번째 서브그룹의 최소한 하나의 원소 및 실리콘을 포함한다. 상부층(upper layer)은 주로 다이아몬드성 탄소로 만들어진다. 이 시스템은 최소한 15 GPa의 경도 및 최소한 HF3의 접착강도를 가진다.WO0179585 describes a multilayer system having an adhesive layer, a transition layer and a layer of diamond-like carbon. The adhesive layer comprises elements and silicon in the fourth, fifth or sixth subgroup, while the transition layer comprises carbon and at least one element and silicon in the fourth, fifth or sixth subgroup. The upper layer is mainly made of diamondic carbon. The system has a hardness of at least 15 GPa and a bond strength of at least HF3.

일반적으로, DLC 막 내 내부 응력과 관련있는 하층막(undercoat)으로부터 DLC 막이 박리(delamination)되는 것이 발견되었으며 박리는 막의 두께를 증가시킨다. 또한 접착 하층막은 개별 단계로 형성되고 이는 본 방법에 드는 가격을 증가시키며 이러한 방법을 더욱 복잡하게 만든다는 것이 명백하다. In general, it has been found that a DLC film is delaminated from an undercoat associated with internal stresses in the DLC film and the delamination increases the thickness of the film. It is also apparent that the adhesive underlayer film is formed in individual steps, which increases the cost of the method and makes the method more complicated.

본 발명은 간단하고 신뢰할 수 있으며 효과적이고 효율적인 방식으로 이러한 문제점을 극복하는 것을 목적으로 한다.The present invention aims to overcome this problem in a simple, reliable, effective and efficient manner.

본 발명이 해결하고자 하는 문제점은 선행 기술의 가르침에 기초한 금속-함유 접착 하층막(예를 들어, 실리콘 또는 크롬)을 이용하지 않고 향상된 접착력을 가지는 DLC 막을 생산하는 것이다.The problem to be solved by the present invention is to produce a DLC film having improved adhesion without using a metal-containing adhesive underlayer film (eg, silicon or chromium) based on the teachings of the prior art.

이러한 문제점을 해결하기 위하여, WC-C 조성물 구배층을 가지며, 금속-함유 하층막이 없고 스크래치 검사시 응집 성향으로 특징되고 DLC 표면층을 가지는 금속 부품이 설계 및 완성되었다.In order to solve this problem, metal parts having a WC-C composition gradient layer, no metal-containing underlayer film, characterized by cohesive propensity upon scratch inspection and having a DLC surface layer have been designed and completed.

본 발명은 하기에서 수반되는 도면을 참조로 하여 더 상세히 설명한다.
도 1은 스크래치 검사 방법을 이용한 코팅의 파괴 프로파일을 나타낸 도이다.
도 2는 접착 박리(adhesive flaking)의 경우에 도 1에서 A-A선을 따라 횡단면을 나타낸 도이다.
도 3은 응집 박리(cohesive flaking)의 경우에 도 1에서 A-A선을 따라 횡단면을 나타낸 도이다.
도 4는 응집/접착 박리(cohesive/adhesive flaking)의 경우에 도 1에서 A-A선을 따라 횡단면을 나타낸 도이다.
The invention is explained in more detail with reference to the accompanying drawings in which: FIG.
1 is a diagram showing a fracture profile of a coating using the scratch test method.
FIG. 2 is a cross-sectional view along the line AA in FIG. 1 in the case of adhesive flaking.
3 is a cross-sectional view along the line AA in FIG. 1 in the case of cohesive flaking.
4 is a cross-sectional view along the line AA in FIG. 1 in the case of cohesive / adhesive flaking.

언급된 문제점은 하기의 방법에 의해서 유리하게 해결된다:The problems mentioned are advantageously solved by the following method:

- 부품을 마이크로파로 에칭하는 단계;Microwave etching the part;

- 부품을 WC-C 조성물 구배층을 가지도록 하는 단계;Having the part have a WC-C composition gradient layer;

- WC-C 층에 DLC 코팅을 도포하기 위해 마이크로파 플라즈마(Microwave plasma)를 사용하는 단계;Using a microwave plasma to apply a DLC coating to the WC-C layer;

마이크로파 에칭은 이온의 흐름을 조정하는 다이오드(diode) 에칭을 사용하여 가능한 것보다 더욱 효과적인 에칭(처리되는 부품의 기하학적 구조와 관계없이)을 얻을 수 있게 한다. 또한 부품의 품질을 떨어뜨리지 않고 낮은 템퍼링 온도(tempering temperature)에서 부품을 에칭하는 것도 가능하다. 또한, 마이크로파 DLC 코팅을 이용하여 종래의 DLC 코팅에 비해 약 50%까지 도포하는 공정 시간을 감소시킬 수 있다는 것이 관찰되었다.Microwave etching makes it possible to obtain more effective etching (regardless of the geometry of the part being processed) using diode etching, which regulates the flow of ions. It is also possible to etch parts at low tempering temperatures without degrading the quality of the parts. It has also been observed that microwave DLC coatings can reduce the process time of application by up to about 50% compared to conventional DLC coatings.

바람직하게는, 0.05에서 0.5 Pa의 압력 범위에서 에칭하기 위하여 아르곤 플라즈마(argon plasma)를 만든다.Preferably, an argon plasma is made for etching in the pressure range of 0.05 to 0.5 Pa.

다른 양태에 따르면, 마그네트론(magnetron) PVD 기술을 이용하여 WC-C 조성물 구배층을 생성한다. 처음에 순수 WC 층으로 시작하여 C2H2 와 같은 탄화수소 가스의 램프(ramp)를 생성하며, 최종적으로는 WC-C 층을 생성한다. WC-C 조성물 구배층의 두께는 피스톤 링과 같이 더 큰 두께를 필요로 하는 것을 제외하고 대부분의 도포시 0.3에서 10 μm이며, 바람직하게는 0.8 μm이다.In another embodiment, a magnetron PVD technique is used to create a gradient layer of the WC-C composition. Start with a pure WC layer and produce a ramp of hydrocarbon gas, such as C 2 H 2, and finally produce a WC-C layer. The thickness of the WC-C composition gradient layer is from 0.3 to 10 μm, preferably 0.8 μm for most applications, except that a larger thickness, such as a piston ring, is required.

다른 양태에 따르면, DLC 코팅은 1에서 20 μm의 두께를 가진다. According to another embodiment, the DLC coating has a thickness of 1 to 20 μm.

또한 본 발명은 마이크로파-에칭된 부분이 갖는 WC-C 조성물 구배층에 도포된 DLC 코팅을 가지는 마찰부에 관한 것이다.The invention also relates to a friction portion having a DLC coating applied to a WC-C composition gradient layer possessed by a microwave-etched portion.

상기 나타낸 바와 같이, 선행 기술은 모든 경우에서 예를 들면, 순수 Cr으로 만들어진 접착 하층막에 이어서, 텅스텐 도핑된 DLC 층이 금속으로 도핑되지 않은 증착(deposited) DLC의 접착력을 확실하게 할 목적으로 얻어질 때까지 탄소 함유량이 점차 증가하는 텅스텐 카바이드-기반의 층을 포함하는 DLC 코팅을 기술하고 있다. As indicated above, the prior art is obtained in all cases for the purpose of assuring the adhesion of a deposited DLC in which a tungsten-doped DLC layer is subsequently doped with metal, for example, followed by an adhesive underlayer film made of pure Cr. A DLC coating is described that includes a tungsten carbide-based layer that gradually increases in carbon content until loss.

본 발명과 관련하여, 하나 또는 그 이상의 접착 하층막을 가진 DLC 코팅 및 본 발명의 양태에 따라 접착층을 사용하지 않는 DLC 코팅을 생산하여 얻어진 결과를 비교하기 위해 실험을 수행하였다. In connection with the present invention, experiments were conducted to compare the results obtained by producing DLC coatings with one or more adhesive underlayers and DLC coatings without the use of adhesive layers in accordance with aspects of the present invention.

코팅의 접착력이 향상되도록 임의의 표면 산화물을 제거하기 위해 미리 이온 에칭된 금속-함유 기판 위에 재료(materials)를 증착하였다. 다양한 이온 에칭 기술 즉, 주로, 다이오드 에칭, 트리오드 플라즈마(triode plasma) 에칭 및 ECR 마이크로파 에칭은 본 기술분야의 숙련된 자에게 잘 알려져 있다.Materials were deposited on a pre-ion etched metal-containing substrate to remove any surface oxides to improve the adhesion of the coating. Various ion etching techniques, mainly diode etching, triode plasma etching and ECR microwave etching, are well known to those skilled in the art.

다이오드 에칭은 1에서 10 Pa의 압력의 아르곤 대기 하에서 기판에 수백 볼트(<-500V)의 음전압을 가하는 것을 포함한다. 이러한 조건 하에서, 그 부품 주위에 발광 방전(luminous discharge)이 존재하며 플라즈마 내의 아르곤 양이온은 기판의 표면을 포격(bombard)하여 표면 스퍼터링(sputtering) 및 산화물의 제거를 이루게 한다.Diode etching involves applying a negative voltage of several hundred volts (<-500 V) to the substrate under an argon atmosphere at a pressure of 1 to 10 Pa. Under these conditions, there is a luminous discharge around the part and argon cations in the plasma bombard the surface of the substrate to achieve surface sputtering and removal of oxides.

트리오드 플라즈마 기술을 이용하여, 낮은 압력(0.1에서 1 Pa)에서 밀집한 아르곤 플라즈마가 플라즈마 증폭기(amplifier)에 의해 생성된다. 아르곤 양이온은 기판을 음으로 편향(negatively biasing)하여 가속화시키고 이들은 표면을 에칭한다. 이러한 유형의 방법의 경우, 음전압은 최대의 에칭 효율을 달성하기 위해 -250 V에서 -500 V 사이의 값이어야 한다.Using triode plasma technology, dense argon plasma at low pressure (0.1 to 1 Pa) is generated by a plasma amplifier. Argon cations accelerate by negatively biasing the substrate and they etch the surface. For this type of method, the negative voltage should be a value between -250 V and -500 V to achieve maximum etching efficiency.

ECR 마이크로파 에칭은 0.05에서 0.5 Pa의 압력 범위에서 아르곤 플라즈마 생성을 가능하게 한다. 그 부품은 -50 V에서 -250 V가 최적인 음전압으로 편향된다.ECR microwave etching enables argon plasma generation in the pressure range of 0.05 to 0.5 Pa. The part is deflected from -50 V to -250 V for optimum negative voltage.

이들 에칭 기술 각각을 본 실험에 사용하였다. 에칭 다음에 대략 0.1에서 0.2 μm의 크롬 두께를 얻기 위해 순수 크롬 접착 하층막을 마그네트론 음극 스퍼터링(cathode sputtering)으로 시편(test pieces)의 일부에 생성시켰다. 그 다음 텅스텐 카바이드는 최종 DLC 코팅의 접착을 가능하게 하기 위해서 50%가 넘는 원자 농도가 되도록 증착된 탄소를 풍부하게 하는 탄화수소 유량을 점차 증가시키는 마그네트론 음극 스퍼터링에 의해 모든 시편에 증착되었다. 텅스텐-함유층의 두께가 1.5 μm까지 증가하는 실시예 9 및 10을 제외하고는, 텅스텐-함유층은 대략 0.5 μm의 두께를 가졌으며 DLC는 대략 2 μm 두께를 가졌다. Each of these etching techniques was used in this experiment. After etching, a pure chromium adhesive underlayer was produced on a portion of the test pieces by magnetron cathode sputtering to obtain a chromium thickness of approximately 0.1 to 0.2 μm. Tungsten carbide was then deposited on all specimens by magnetron cathodic sputtering, which gradually increased the hydrocarbon flow rate to enrich the deposited carbon to an atomic concentration of over 50% to enable adhesion of the final DLC coating. With the exception of Examples 9 and 10 where the thickness of the tungsten-containing layer increased to 1.5 μm, the tungsten-containing layer had a thickness of approximately 0.5 μm and the DLC had a thickness of approximately 2 μm.

하기 표에 실험 조건을 요약하였다.The experimental conditions are summarized in the table below.

에칭 기술Etching technology Cr 접착층의 존재Presence of Cr Adhesive Layer 다이오드diode Yes 다이오드diode 아니오 no 트리오드Triode Yes 트리오드Triode 아니오no ECRECR Yes ECRECR 아니오no

모든 코팅은 접착력 측면에서 특정되었다. 스크래치 검사 방법이 사용되었다. 이 방법은 HRC 압입(indentation) 실험에 사용되는 것과 같이 다이아몬드로 증착된 재료 표면을 스크래칭 하는 것을 포함한다는 것을 알 것이다. 시편이 다이아몬드 아래에서 일정한 속도로 병진 이동(translationally moved)하는 동안 점진적으로 증가하는 부하가 가해진다. 이것은 증가하는-부하 스크래치(도 1)를 얻을 수 있게 하고, 이를 기초로 박리 방식뿐만 아니라 박리력(임계 하중)을 결정할 수 있게 한다. 박리 방식은 코팅의 파괴 위치를 나타낸다. 두개의 주요 박리 유형이 있다:All coatings were specified in terms of adhesion. The scratch test method was used. It will be appreciated that this method involves scratching the material surface deposited with diamond as used for HRC indentation experiments. Gradually increasing loads are applied while the specimen is translated and moved at a constant speed under the diamond. This makes it possible to obtain increasing-load scratches (FIG. 1) and to determine the peeling force (critical load) as well as the peeling scheme on the basis. The peeling mode indicates the breaking point of the coating. There are two main types of peelings:

- 접착 박리(도 2)Adhesive peeling (FIG. 2)

- 응집 박리(도 3)Cohesive peeling (FIG. 3)

응집/접착으로 일컫는 응집 파괴와 접착 파괴를 조합한 혼합 방식이 있다(도 4).There is a mixing method that combines cohesive failure and adhesive failure, referred to as cohesion / adhesion (FIG. 4).

접착 박리는 하나의 계면(interface)을 따라 균열의 전파와 일치함으로써, 그 부품의 표면과 평행한 반면 응집 박리는 계면에 대하여 비스듬한 각도로 코팅을 통하여 전파한다. 접착 박리는 코팅의 접착력 부족이 특징이다. 응집 박리는 응력이 코팅을 구성하는 재료의 파열 한계(기계적 강도)를 초과하는 경우 발생한다.Adhesive peeling coincides with the propagation of cracks along one interface, so that it is parallel to the surface of the part while cohesive peeling propagates through the coating at an oblique angle to the interface. Adhesive peeling is characterized by a lack of adhesion of the coating. Cohesive peeling occurs when the stress exceeds the rupture limit (mechanical strength) of the materials that make up the coating.

접착면의 경우, 임계 하중이 접착력의 특성을 부여한다.In the case of the adhesive side, the critical load imparts the properties of the adhesion.

응집 파괴의 경우, 이의 접착력이 아닌 특성화된 코팅의 파괴 강도이다. 임계 하중은 증착된 재료의 특징일 뿐만 아니라, 또한 기판의 두께 및 경도의 특징이기도 하다.In the case of cohesive failure, it is not its adhesion but the breaking strength of the characterized coating. Critical loads are not only characteristic of the deposited material, but also the thickness and hardness of the substrate.

두번째 방법은 접착력을 평가하기 위해 사용되었다. 이 방법은 2 kg의 하중 하에서 비커스 다이아몬드(Vickers diamond)를 이용하여 증착된 재료를 압입 가공(indenting)하는 것을 포함한다.The second method was used to assess adhesion. The method involves indenting the deposited material using Vickers diamond under a load of 2 kg.

하기 표는 크롬 하층막 없이 2.5 μm이고, 크롬 하층막이 있는 경우 2.7 μm인 총 증착 두께 및 실시예 9 및 10의 경우 총 두께 3.5 μm인 공구강(tool steel)(경도 64 HRC)으로 만들어진 기판 위에서 얻어진 스크래치 검사 결과를 포함하는 일련의 실험을 요약한다. 실시예 11 및 12는 본 발명의 견고성(robustness)을 증명할 수 있는 두꺼운 스택(stacks)을 가진다. 실시예 11은 증착된 8 μm 두께의 DLC 위에 증착된 4 μm 두께의 텅스텐-기반층을 포함한다. 실시예 12의 경우, 텅스텐층의 두께는 9.7 μm까지 증가하였으며 DLC 표면층의 두께는 19.2 μm까지 증가하였다.The table below is obtained on a substrate made of tool steel (hardness 64 HRC) with a total deposition thickness of 2.5 μm without chromium underlayer and 2.7 μm with chromium underlayer and a total thickness of 3.5 μm for Examples 9 and 10 Summarize a series of experiments that include scratch test results. Examples 11 and 12 have thick stacks that can demonstrate the robustness of the present invention. Example 11 includes a 4 μm thick tungsten-based layer deposited over a deposited 8 μm thick DLC. For Example 12, the thickness of the tungsten layer increased to 9.7 μm and the thickness of the DLC surface layer increased to 19.2 μm.

실시예Example 에칭 기술Etching technology Cr 접착층의 존재 Presence of Cr adhesive layer 에칭 압력
(Pa)
Etching pressure
(Pa)
임계 하중 (N)Critical load (N) 상(Facies)Facies 2kg(20 N)의
비커스 압입
2 kg (20 N)
Vickers Indent
1. One. 다이오드diode Yes 22 3232 CC NTRNTR 2. 2. 다이오드diode 아니오no 22 66 AA NTRNTR 3. 3. 트리오드Triode Yes 0.60.6 3333 CC NTRNTR 4. 4. 트리오드Triode 아니오no 0,60.6 88 AA NTRNTR 5. 5. 트리오드Triode 아니오no 0.40.4 1818 CACA NTRNTR 6. 6. ECRECR Yes 0.50.5 3232 CC NTRNTR 7. 7. ECRECR 아니오no 0.50.5 1818 CACA NTRNTR 8. 8. ECRECR 아니오 no 0.30.3 3131 CC NTRNTR 9. 9. ECRECR 아니오no 0.30.3 3636 CC NTRNTR 10. 10. ECRECR 아니오no 0.30.3 3535 CC NTRNTR 11. 11. ECRECR 아니오no 0.30.3 4444 CC NTRNTR 12. 12. ECRECR 아니오no 0.30.3 5555 CC NTRNTR

C = 응집(Cohesive)C = Cohesive

A = 접착(Adhesive)A = Adhesive

CA = 응집/접착(Cohesive/adhesive)CA = Cohesive / adhesive

NTR = 증착된 재료의 박리 없음(No detachment of deposited material)
NTR = No detachment of deposited material

상기 표는 다이오드 에칭 및 선행 기술의 지시에 따르는 경우, 크롬 하층막이 WC와 강철의 계면에서 강한 접착력을 얻을 수 있으며(실시예 1), 이의 부재시, 강한 접착력을 얻을 수 없음(실시예 2)을 나타낸다. The above table shows that when the etching of the diode and the prior art instructions, the chromium underlayer film can obtain a strong adhesion at the interface between the WC and the steel (Example 1), in the absence thereof, a strong adhesion can not be obtained (Example 2) Indicates.

트리오드 에칭 기술의 이용은 크롬 하층막 없이 스크래치될 때 증착된 재료의 작용의 변화하는 결과를 가져온다(실시예 4 및 5). 임계 하중은 다이오드 에칭과 비교하여 증가하였으며(실시예 2) 및 박리 유형은 변화하였다(실시예 4 및 5).The use of triode etching techniques results in a change in the action of the deposited material when scratched without the chromium underlayer (Examples 4 and 5). Critical loads increased compared to diode etching (Example 2) and delamination type changed (Examples 4 and 5).

관찰된 박편(flake)은 중간 박리 방식을 나타낸다. The flakes observed represent an intermediate peeling mode.

본 발명에 따른, ECR 마이크로파 에칭 기술의 이용은 크롬 하층막 없는 선행 기술과 상당히 유사한 기계적 작용을 얻을 수 있음을 입증한다(실시예 8). 트리오드 에칭 기술과 마찬가지로, 압력을 줄이는 것은 향상된 스크래치 검사 수행 결과를 가져온다는 것을 알 수 있다(실시예 7 및 8).The use of the ECR microwave etching technique, according to the present invention, demonstrates that a mechanical action can be obtained which is quite similar to the prior art without chromium underlayer (Example 8). As with the triode etching technique, it can be seen that reducing the pressure results in improved scratch inspection performance (Examples 7 and 8).

실시예 9 및 10은 임계 하중 수치에 의해 입증되는 바와 같이, 응집 박리에 대한 저항이 텅스텐-함유 하층막의 두께만큼 증가한다는 것을 나타낸다. 두개의 실시예에서, 텅스텐 카바이드 및 구배층의 두께는 1.5 μm이다. 특히, 실시예 9에서, 텅스텐-카바이드 두께는 1 μm까지 증가하였으며, 탄소 농도 구배와 일치하는 두께는 0.5 μm이다. 실시예 10에서, 텅스텐-카바이드 두께는 0.2 μm인 반면, 탄소 농도 구배층은 1.3 μm까지 증가된다.Examples 9 and 10 show that the resistance to cohesive peeling increases by the thickness of the tungsten-containing underlayer film, as evidenced by the critical load values. In both embodiments, the tungsten carbide and gradient layers are 1.5 μm thick. In particular, in Example 9, the tungsten-carbide thickness increased to 1 μm and the thickness consistent with the carbon concentration gradient was 0.5 μm. In Example 10, the tungsten-carbide thickness is 0.2 μm while the carbon concentration gradient layer is increased to 1.3 μm.

실시예 11 및 12는 용액의 견고성을 보여준다. 진공 상태에서 증착된 얇은 경화층의 두께의 증가는 내부 압축 응력을 증가시킨다는 것이 알려져 있다. 그럼에도 불구하고, 스크래치 검사 중 작용은 응집성으로 남아있고 임계 하중의 증가는 텅스텐-기반 층의 두께의 증가의 결과이다.Examples 11 and 12 show the firmness of the solution. It is known that increasing the thickness of the thin cured layer deposited in vacuum increases the internal compressive stress. Nevertheless, the action during the scratch test remains coherent and the increase in critical load is the result of an increase in the thickness of the tungsten-based layer.

에칭 기술에 덧붙여, 에칭 압력이 감소된 경우 결과는 크롬 하층막 없이 생산된 층의 접착력이 향상되는 경향이 있다. 에칭 중 압력의 감소는 실제 기술 그 자체에 의존한다. 다이오드 기술은 일반적으로 0.5 Pa만큼 낮은 플라즈마 압력을 생성하지 못한다.In addition to the etching technique, when the etching pressure is reduced, the result tends to improve the adhesion of the layer produced without the chromium underlayer. The decrease in pressure during etching depends on the actual technology itself. Diode technology generally does not produce plasma pressures as low as 0.5 Pa.

따라서, 본 발명에 따른, 적절한 에칭 기술의 사용은 아르곤 압력을 감소시키고 크롬 하층막이 없는 DLC 유형의 접착 스택(adhering stack)을 생산하는 것-기술분야의 숙련된 자에게 널리 받아들여지고 이전의 기술적 해결에 대항하는 업적을 가능하게 한다.Thus, the use of a suitable etching technique, according to the present invention, is to reduce the argon pressure and produce an adhering stack of the DLC type without a chromium underlayer—a widely accepted one of ordinary skill in the art and prior technical solution. Enable achievements against

본 발명에 따른 방법은 많은 장점을 가진다:The method according to the invention has many advantages:

또한 필요한 장치를 단순화하고 그 비용을 줄이고, 접착 하층막을 제거하는 것 외에 하나의 계면을 제거하며, 따라서 코팅의 신뢰성과 견고성을 향상시킨다.It also simplifies the required apparatus and reduces its cost, removes one interface besides removing the adhesive underlayer, thus improving the reliability and robustness of the coating.

또한 수행된 실험에서 나타난 바와 같이, 크롬 하층막은 더욱 효과적인 에칭이 필요한 것으로 보이는 텅스텐 카바이드와는 달리, 크롬 하층막으로 증착된 재료로서, 접착력 측면뿐만 아니라 수행하기 위하여 특정 유형의 에칭에 있어 결함을 감추는 경향이 있다는 것이 명백하다.In addition, as shown in the experiments conducted, chromium underlayers are materials deposited with chromium underlayers, unlike tungsten carbide, which appears to require more effective etching, which masks defects in certain types of etching to perform as well as in terms of adhesion. It is obvious that there is a tendency.

또한, 2 kg 하중으로 비커스 압입(Vickers identation)을 사용하는 것은 다양한 유형의 증착 재료의 접착력의 어떠한 차이도 없다. 비록 적용된 하중이 2 kg (20 N)였으나, 비커스 다이아몬드에 의해 유발된 변형은 실시예 2와 같이 스크래치 검사 방법에 의해 접착력의 결함이 입증된 경우에서도 증착된 재료의 분리를 야기하기에 불충분하였다.
In addition, the use of Vickers identation with a 2 kg load has no difference in the adhesion of various types of deposition materials. Although the applied load was 2 kg (20 N), the deformation caused by Vickers diamonds was insufficient to cause separation of the deposited material even when defects of adhesion were demonstrated by the scratch inspection method as in Example 2.

Claims (9)

WC-C 조성물 구배를 갖는 층 및 스크래치 검사시 응집 성향으로 특징되는 DLC 표면층을 가지며, 금속-함유 하층막 및 이온 주입층이 없는 것을 특징으로 하는 금속 부품.A metal part, characterized in that it has a layer having a WC-C composition gradient and a DLC surface layer characterized by agglomeration propensity upon scratch inspection, and lacking a metal-containing underlayer and an ion implantation layer. 제1항에 있어서, 마이크로파 에칭된 부분을 갖는 WC-C 조성물 구배층에 도포된 DLC 코팅으로 덮인 것을 특징으로 하는 부품.The component of claim 1, wherein the component is covered with a DLC coating applied to a WC-C composition gradient layer having a microwave etched portion. 하기 단계를 포함하는 것을 특징으로 하는, 금속 부품에 DLC 코팅을 도포하는 방법:
- 부품을 마이크로파로 에칭하는 단계,
- 부품이 WC-C 조성물 구배층을 가지도록 하는 단계,
- WC-C 층에 DLC 코팅을 도포하기 위해 마이크로파 플라즈마(Microwave plasma)를 사용하는 단계.
A method of applying a DLC coating to a metal part, comprising the following steps:
Microwave etching the part,
The part has a WC-C composition gradient layer,
Using microwave plasma to apply a DLC coating to the WC-C layer.
제3항에 있어서, 0.05에서 0.5 Pa 범위의 압력에서 에칭하기 위해 아르곤 플라즈마(argon plasma)를 생성하는 것을 특징으로 하는 방법.4. The method of claim 3, wherein an argon plasma is produced for etching at a pressure in the range of 0.05 to 0.5 Pa. 제3항에 있어서, WC-C 조성물 구배층이 마그네트론(magnetron) PVD에 의해 생성되는 것을 특징으로 하는 방법. 4. The method of claim 3, wherein the WC-C composition gradient layer is produced by magnetron PVD. 제5항에 있어서, 처음에 순수 WC 층으로 시작하여 탄화수소 유량 램프(ramp)를 생성하며, 최종적으로 WC-C 층을 생성하는 것을 특징으로 하는 방법. 6. The method of claim 5, starting with a pure WC layer first to produce a hydrocarbon flow ramp, and finally producing a WC-C layer. 제5항 또는 6항에 있어서, WC-C 조성물 구배층의 두께는 0.3에서 10 μm, 바람직하게는 0.8 μm인 것을 특징으로 하는 방법.Method according to claim 5 or 6, characterized in that the thickness of the WC-C composition gradient layer is from 0.3 to 10 μm, preferably 0.8 μm. 제3항에 있어서, DLC 코팅이 1에서 20 μm의 두께를 가지는 것을 특징으로 하는 방법.The method of claim 3, wherein the DLC coating has a thickness of 1 to 20 μm. 금속-함유 하층막의 부재, 이온 주입층의 부재 및 WC-C 조성물 구배를 가지는 것을 특징으로 하는, 제3항 내지 제8항 중 어느 한 항의 방법을 이용하여 얻어지는 DLC 코팅으로 덮인 부품.

A component covered with a DLC coating obtained using the method of any one of claims 3 to 8, characterized by having a metal-containing underlayer film, an ion implantation layer and a WC-C composition gradient.

KR1020137033475A 2011-05-19 2012-05-16 Part having a dlc coating and method for applying the dlc coating KR101779844B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1154388A FR2975404B1 (en) 2011-05-19 2011-05-19 PIECE WITH DLC COATING AND METHOD OF APPLYING DLC COATING
FR1154388 2011-05-19
PCT/FR2012/051109 WO2012156647A1 (en) 2011-05-19 2012-05-16 Part having a dlc coating and method for applying the dlc coating

Publications (2)

Publication Number Publication Date
KR20140028077A true KR20140028077A (en) 2014-03-07
KR101779844B1 KR101779844B1 (en) 2017-09-19

Family

ID=44512238

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137033475A KR101779844B1 (en) 2011-05-19 2012-05-16 Part having a dlc coating and method for applying the dlc coating

Country Status (24)

Country Link
US (1) US9103016B2 (en)
EP (1) EP2710168B1 (en)
JP (1) JP5989766B2 (en)
KR (1) KR101779844B1 (en)
CN (1) CN103547707B (en)
AU (1) AU2012257680B2 (en)
BR (1) BR112013029492B1 (en)
CA (1) CA2835803C (en)
ES (1) ES2654290T3 (en)
FR (1) FR2975404B1 (en)
HU (1) HUE035981T2 (en)
MA (1) MA35157B1 (en)
MX (1) MX361485B (en)
MY (1) MY166740A (en)
PL (1) PL2710168T3 (en)
RS (1) RS56836B1 (en)
RU (1) RU2593561C2 (en)
SG (1) SG194818A1 (en)
SI (1) SI2710168T1 (en)
TN (1) TN2013000475A1 (en)
TW (1) TWI537402B (en)
UA (1) UA114790C2 (en)
WO (1) WO2012156647A1 (en)
ZA (1) ZA201308376B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5780689B2 (en) * 2013-03-22 2015-09-16 日鍛バルブ株式会社 DLC coating film
JP6560219B2 (en) * 2013-08-30 2019-08-14 アッシュ・ウー・エフ Method of applying anti-seize coating to piston pins and pins
FR3011305B1 (en) * 2013-09-27 2016-02-05 Hydromecanique & Frottement AXIS OF PISTON
FR3059757B1 (en) 2016-12-07 2018-11-16 H.E.F. FRICTION PIECE, MECHANICAL SYSTEM COMPRISING SUCH FRICTION PIECE, AND METHOD OF IMPLEMENTING THE SAME
FR3061756B1 (en) 2017-01-11 2019-05-10 H.E.F. PISTON FOR THERMAL MACHINE, THERMAL MACHINE COMPRISING SUCH A PISTON, AND METHODS
RU2020108294A (en) * 2017-08-04 2021-09-07 Эрликон Серфис Сольюшнс Аг, Пфеффикон PIPE FITTING COMPONENT WITH CORROSION-RESISTANT SLIDING SURFACE COATING
FR3082526B1 (en) 2018-06-18 2020-09-18 Hydromecanique & Frottement PART COATED WITH A COATING OF HYDROGEN AMORPHIC CARBON ON AN UNDERLAYMENT CONTAINING CHROME, CARBON AND SILICON

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676666B2 (en) * 1987-02-10 1994-09-28 株式会社半導体エネルギ−研究所 Carbon film production method
JPH0762541A (en) * 1993-08-26 1995-03-07 Kyocera Corp Wear resistant member
RU2184644C2 (en) * 1997-07-16 2002-07-10 Дзе Исизука Рисерч Инститьют, Лтд. Diamond-containing laminate composition material and method for making such material
JP2000256850A (en) * 1999-03-04 2000-09-19 Riken Corp Diamondlike carbon thin film and its production
RU2238922C2 (en) * 2000-03-15 2004-10-27 Хардид Лимитед Adhesive composite coating for diamonds and diamond-containing materials, and method for applying it
DE10018143C5 (en) 2000-04-12 2012-09-06 Oerlikon Trading Ag, Trübbach DLC layer system and method and apparatus for producing such a layer system
JP4022048B2 (en) * 2001-03-06 2007-12-12 株式会社神戸製鋼所 Diamond-like carbon hard multilayer film molded body and method for producing the same
JP4139102B2 (en) * 2001-12-06 2008-08-27 株式会社デンソー Diamond-like carbon hard multilayer film molded body and method for producing the same
JP4473592B2 (en) * 2003-02-07 2010-06-02 カヤバ工業株式会社 DLC coating film
JP2005243093A (en) * 2004-02-24 2005-09-08 Fuji Electric Device Technology Co Ltd Vertical magnetic recording medium and its manufacturing method
JP2007070667A (en) * 2005-09-05 2007-03-22 Kobe Steel Ltd Formed article with hard multilayer film of diamond-like carbon, and production method therefor
JP5240497B2 (en) * 2005-10-07 2013-07-17 株式会社ジェイテクト Spline shaft
JP4704950B2 (en) * 2006-04-27 2011-06-22 株式会社神戸製鋼所 Amorphous carbon-based hard multilayer film and hard surface member having this film on the surface
DE102007058356A1 (en) * 2007-06-20 2008-12-24 Systec System- Und Anlagentechnik Gmbh & Co.Kg PVD method and PVD device for producing low-friction, wear-resistant functional layers and coatings produced therewith
DE102008042747A1 (en) * 2008-10-10 2010-04-15 Federal-Mogul Burscheid Gmbh Sliding element in an internal combustion engine, in particular piston ring
JP5393108B2 (en) * 2008-10-29 2014-01-22 Ntn株式会社 Manufacturing method of hard multilayer film molded body
CN102216487B (en) * 2008-10-29 2014-07-02 Ntn株式会社 Hard multilayer film formed body and method for manufacturing same
JP5222764B2 (en) * 2009-03-24 2013-06-26 株式会社神戸製鋼所 Multilayer coating and multilayer coating covering member
DE102009028504C5 (en) 2009-08-13 2014-10-30 Federal-Mogul Burscheid Gmbh Piston ring with a coating

Also Published As

Publication number Publication date
TN2013000475A1 (en) 2015-03-30
TW201309819A (en) 2013-03-01
AU2012257680B2 (en) 2016-10-20
HUE035981T2 (en) 2018-06-28
JP2014517150A (en) 2014-07-17
MA35157B1 (en) 2014-06-02
SI2710168T1 (en) 2018-04-30
WO2012156647A1 (en) 2012-11-22
PL2710168T3 (en) 2018-02-28
EP2710168A1 (en) 2014-03-26
RS56836B1 (en) 2018-04-30
UA114790C2 (en) 2017-08-10
US9103016B2 (en) 2015-08-11
MY166740A (en) 2018-07-19
AU2012257680A1 (en) 2013-12-12
SG194818A1 (en) 2013-12-30
EP2710168B1 (en) 2017-12-20
CN103547707A (en) 2014-01-29
US20140087190A1 (en) 2014-03-27
BR112013029492A2 (en) 2017-01-24
FR2975404B1 (en) 2014-01-24
KR101779844B1 (en) 2017-09-19
MX2013013411A (en) 2013-12-10
BR112013029492B1 (en) 2021-03-02
FR2975404A1 (en) 2012-11-23
CN103547707B (en) 2016-03-02
RU2013152884A (en) 2015-06-10
CA2835803C (en) 2019-02-19
JP5989766B2 (en) 2016-09-07
ZA201308376B (en) 2016-04-28
CA2835803A1 (en) 2012-11-22
RU2593561C2 (en) 2016-08-10
MX361485B (en) 2018-12-05
ES2654290T3 (en) 2018-02-13
TWI537402B (en) 2016-06-11

Similar Documents

Publication Publication Date Title
KR101779844B1 (en) Part having a dlc coating and method for applying the dlc coating
WO2008059791A1 (en) Chromium nitride coating film by ion plating, process for producing the same, and piston ring for internal combustion engine
CN106544631A (en) A kind of chromium carbide multi-gradient composite coating of matrix surface and preparation method thereof
JP2008001951A (en) Diamond-like carbon film and method for forming the same
JP2004169137A (en) Sliding member
WO2011007770A1 (en) Coated-surface sliding part having excellent coating adhesion and method for producing the same
US6274257B1 (en) Forming members for shaping a reactive metal and methods for their fabrication
JP2018517059A (en) Reduced wear and / or friction by using molybdenum nitride coatings
JP2009035584A (en) Sliding member
JP4669992B2 (en) Nitrogen-containing chromium coating, method for producing the same, and mechanical member
JP2018076873A (en) Internal combustion engine jacket
US20090029068A1 (en) Carbon thin film manufacturing method and carbon thin film coated body
KR20190016147A (en) Method for manufacturing a coated tool
JP2011133018A (en) Piston ring
JP2010084202A (en) Member coated with hard film and method for manufacturing the same
CN105648410A (en) Titanium nitride/titanium carbide coating, preparation method thereof and coated part with titanium nitride/titanium carbide coating
JP5924908B2 (en) Method for producing hard coating member
JP5676854B2 (en) Hard coating member and method for producing the same
KR20150118665A (en) Coating material having improved mechanical properties and low friction for sliding part of vehicle and coating method thereof
JP2006169614A (en) Metal-diamond-like-carbon (dlc) composite film, forming method therefor and sliding member
JP2005187927A (en) Method for forming chromium nitride film, and coated material
KR100984140B1 (en) Thin film layer structure improving adhesive strength for lens mold core and method of manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant