JP2005187927A - Method for forming chromium nitride film, and coated material - Google Patents

Method for forming chromium nitride film, and coated material Download PDF

Info

Publication number
JP2005187927A
JP2005187927A JP2003434607A JP2003434607A JP2005187927A JP 2005187927 A JP2005187927 A JP 2005187927A JP 2003434607 A JP2003434607 A JP 2003434607A JP 2003434607 A JP2003434607 A JP 2003434607A JP 2005187927 A JP2005187927 A JP 2005187927A
Authority
JP
Japan
Prior art keywords
chromium nitride
nitride film
residual stress
film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003434607A
Other languages
Japanese (ja)
Inventor
Kazutaka Kanda
一隆 神田
Takanobu Hashimoto
孝信 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP2003434607A priority Critical patent/JP2005187927A/en
Publication of JP2005187927A publication Critical patent/JP2005187927A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming a chromium nitride film having high peel resistance and abrasion resistance, at a low temperature. <P>SOLUTION: In the method for forming the chromium nitride film on a substrate with a physical vapor deposition method, this method comprises forming a peel-resistant lower layer 2 of chromium nitride on the substrate 1, which has tensile residual stress or compressive residual stress of a predetermined value or lower; and subsequently forming an abrasion-resistant upper layer 3 of chromium nitride on the lower layer 2, which has a higher compressive residual stress than the lower layer has. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、物理蒸着法(PVD)によって形成する窒化クロム膜に係り、詳細には、耐摩耗部材、摺動部材等に用いる耐剥離性に優れた窒化クロム膜の形成方法と、同膜を含む被膜材に関する。   The present invention relates to a chromium nitride film formed by physical vapor deposition (PVD), and more specifically, a method for forming a chromium nitride film excellent in peel resistance used for wear-resistant members, sliding members, and the like, and It is related with the coating material containing.

窒化クロムは、窒化チタン、炭化チタン、炭窒化チタン、窒化アルミチタンなどの硬質被膜に比べ、硬度が低いものの、摺動時の相手材攻撃性が小さいという特徴を持っている。その外にも、ダイヤモンド状カーボン(DLC)は窒化クロム以上に相手攻撃性が低く、乾式摩擦係数が0.1以下という特徴を持つが、付着強度と耐熱性に問題がある。
このようなことから、窒化クロム膜がピストンリングやロータリーコンプレッサーのベーン材などの耐摩耗摺動被膜として用いられている。
Although chromium nitride has a lower hardness than hard coatings such as titanium nitride, titanium carbide, titanium carbonitride, and aluminum aluminum nitride, chromium nitride has a feature that it is less attackable by the mating material. In addition, diamond-like carbon (DLC) has a feature that it is less attackable than chromium nitride and has a dry friction coefficient of 0.1 or less, but there are problems in adhesion strength and heat resistance.
For this reason, chromium nitride films are used as wear-resistant sliding coatings for piston rings and rotary compressor vanes.

摺動部品にPVDコーティング薄膜を適用する場合の懸念はその耐久性にあり、特に膜の剥離は機器の寿命を著しく短くするので、その安定化が望まれている。
その対策として、基材表層を窒化し、その上にCr2N型とCrN型窒化クロムが混在する膜を形成する方法(例えば、特許文献1参照)、イオンプレーティング被膜の混合組成比率を耐剥離性に設置する方法(例えば、特許文献2参照)、CrNの配向を{111}面とし、被膜中にB、OまたはCの一方を含有させる方法(例えば、特許文献3参照)などが知られている。
特開平7‐286589号公報 特開平8‐178068号公報 特開2000‐136875号公報
The concern in applying the PVD coating thin film to the sliding part is its durability. In particular, the peeling of the film significantly shortens the life of the device, so that its stabilization is desired.
As countermeasures, the surface layer of the base material is nitrided, and a film in which Cr 2 N-type and CrN-type chromium nitride are mixed is formed thereon (for example, see Patent Document 1). There are known methods (for example, see Patent Document 2) for setting the peelability, and methods in which the orientation of CrN is the {111} plane and one of B, O or C is contained in the coating (for example, see Patent Document 3). It has been.
JP-A-7-286589 JP-A-8-178068 JP 2000-136875 A

また、窒化クロムの成膜温度、すなわち成膜時の基材温度は、耐剥離強度を確保するため、しばしば400℃を越える。その時の熱変形に耐えるために、高速度工具鋼や熱間金型用鋼が用いられているが、熱変形が問題にならないようなCr系ステンレス鋼を用いることも提案されている(例えば、特許文献4参照)。
特開平11‐294584号公報
Further, the film formation temperature of chromium nitride, that is, the substrate temperature during film formation, often exceeds 400 ° C. in order to ensure the peel strength. In order to withstand thermal deformation at that time, high-speed tool steel and hot mold steel are used, but it has also been proposed to use Cr-based stainless steel that does not cause thermal deformation (for example, (See Patent Document 4).
Japanese Patent Laid-Open No. 11-294584

しかしながら、上記いずれの方法でも、窒化クロム膜の耐剥離強度ないし付着強度は未だ不十分で、特にコーティング時の基材温度を下げると付着強度が減少する傾向にある。また、膜の硬度を高くして、耐摩耗性を高めようとすると、膜が剥離し易くなる。
一方、上記の高速度工具鋼、熱間金型用鋼や、Cr系ステンレス鋼は、一般に高コストであり、安価な材料にも被覆できる低温処理技術の開発が望ましい。上述したようにコーティング時の基材温度を例えば400℃以上の高温にすると付着強度が確保されるが、一般の構造用鋼はこの温度では著しく軟化する。
However, in any of the above methods, the peel strength or adhesion strength of the chromium nitride film is still insufficient, and the adhesion strength tends to decrease especially when the substrate temperature during coating is lowered. Further, if the hardness of the film is increased to increase the wear resistance, the film is easily peeled off.
On the other hand, the above-mentioned high-speed tool steel, hot mold steel, and Cr-based stainless steel are generally high-cost, and it is desirable to develop a low-temperature processing technique that can cover even inexpensive materials. As described above, when the substrate temperature at the time of coating is set to a high temperature of, for example, 400 ° C. or higher, adhesion strength is ensured, but general structural steel is significantly softened at this temperature.

本発明は、低温度処理が可能で、構造用鋼などに適用しても基材の実用的な硬度を確保しつつ、高耐剥離性と耐摩耗性が得られる窒化クロム膜形成方法と被覆材の提供を課題とする。   The present invention provides a chromium nitride film forming method and coating that can be processed at a low temperature, and can provide a high degree of peel resistance and wear resistance while ensuring a practical hardness of the base material even when applied to structural steel and the like. The issue is to provide materials.

本発明の窒化クロム膜形成方法は、物理蒸着法により基材上に窒化クロム膜を形成する方法であって、引張残留応力または所定値以下の圧縮残留応力をもつ耐剥離性の下層窒化クロムを基材上に形成し、次いでこの下層の上に、下層より高い圧縮残留応力をもつ耐摩耗性の上層窒化クロム膜を形成することを特徴とする。
この構成は、後段で詳述するが、基材との界面における窒化クロム膜の残留応力の制御を通して耐剥離性を改善し得るとの本発明者達の知見に基づいていて、形成する窒化クロム膜の圧縮残留応力を下げ、界面にかかる残留応力を軽減することにより、耐剥離性を高めるとともに、上層に耐摩耗性の窒化クロム膜を配することによって、耐摩耗性を付与している。
これも後述するが、そのような残留応力の制御は、比較的に低い温度で行うことができ、構造用鋼などの基材の実用硬度を確保することができる。
The chromium nitride film forming method of the present invention is a method of forming a chromium nitride film on a substrate by physical vapor deposition, and is provided with a peeling resistant lower layer chromium nitride having a tensile residual stress or a compressive residual stress of a predetermined value or less. A wear-resistant upper chromium nitride film having a compressive residual stress higher than that of the lower layer is formed on the lower layer, and then formed on the lower layer.
Although this configuration will be described in detail later, it is based on the knowledge of the present inventors that the peel resistance can be improved through the control of the residual stress of the chromium nitride film at the interface with the base material. By reducing the compressive residual stress of the film and reducing the residual stress applied to the interface, the peel resistance is enhanced, and the wear resistance is imparted by arranging an abrasion-resistant chromium nitride film on the upper layer.
Although this will also be described later, such control of residual stress can be performed at a relatively low temperature, and practical hardness of a base material such as structural steel can be ensured.

下層の窒化クロム膜は基材との界面から形成する全窒化クロム膜厚の5〜50%の厚みと、0.5GPa以下の圧縮残留応力とをもち、上層の窒化クロム膜は0.5GPa以上の平均圧縮残留応力をもつことが好適である。
下層および上層窒化クロム膜をこのような残留応力と厚みに形成することによって、耐剥離性と耐摩耗性を最適にすることができる。
The lower chromium nitride film has a thickness of 5 to 50% of the total chromium nitride film thickness formed from the interface with the base material and a compressive residual stress of 0.5 GPa or less, and the upper chromium nitride film has a thickness of 0.5 GPa or more. It is preferable to have an average compressive residual stress of
By forming the lower layer and upper layer chromium nitride films with such residual stress and thickness, it is possible to optimize the peel resistance and wear resistance.

窒化クロム膜の形成は250℃以下の温度で行うことが好ましい。また、下層と上層窒化クロム膜を、両者を合わせた平均圧縮残留応力が2.0GPa以下となるように形成することが好ましい。
本発明者達の解析によって、250℃以上の温度では、引張り残留応力が無くなって、残留応力の低減効果が少なくなり、下層と上層の平均圧縮残留応力2.0GPa以上では、耐剥離強度が低下することが判明している。
これまで述べた条件を満たせば、下層および上層窒化クロム膜のうちの少なくとも一方を、多層または傾斜組成層構造に形成してもよい。
The chromium nitride film is preferably formed at a temperature of 250 ° C. or lower. Further, it is preferable to form the lower layer and the upper layer chromium nitride film so that the average compressive residual stress of the both is 2.0 GPa or less.
According to the analysis of the present inventors, there is no residual tensile stress at a temperature of 250 ° C. or higher, and the effect of reducing the residual stress is reduced, and when the average compressive residual stress of the lower layer and the upper layer is 2.0 GPa or higher, the peel strength is reduced. It has been found to be.
If the conditions described so far are satisfied, at least one of the lower layer and the upper layer chromium nitride film may be formed in a multilayer or graded composition layer structure.

本発明の別の態様は、前述の方法で形成した窒化クロム膜による被覆材と、この窒化クロム膜で覆った基材より成る被覆部品である。
このような構成によると、耐剥離性ならびに耐摩耗性を併せもち、比較的低温で形成可能な被覆材を提供することができ、また、この被覆材を構造用鋼などの基材に適用して実用的な硬度を確保した被覆部品を得ることができる。
形成した窒化クロム膜は、Cuターゲットを用いる通常のX線回折によって、Cr金属の回折線の強度が最も強く現れ、Cr2NおよびCrNの回折線強度がCr金属の回折線強度以下である組成であることが好ましい。
Another aspect of the present invention is a coated component comprising a coating material made of a chromium nitride film formed by the above-described method and a base material covered with the chromium nitride film.
According to such a configuration, it is possible to provide a coating material that has both peeling resistance and wear resistance and can be formed at a relatively low temperature. Further, the coating material can be applied to a base material such as structural steel. Thus, a coated part having practical hardness can be obtained.
The formed chromium nitride film has a composition in which the intensity of the diffraction line of Cr metal appears the strongest by ordinary X-ray diffraction using a Cu target, and the diffraction line intensity of Cr 2 N and CrN is less than the diffraction line intensity of Cr metal. It is preferable that

以上述べたように、本発明は、密着性がよく高硬度の窒化クロム膜を低処理温度で形成することができる。そのため、良好な耐剥離性・耐摩耗性のある窒化クロム膜被覆を、高速度工具鋼などの高価な基材を要することなく適用して、耐摩耗性を要する摺動部材などの部品を低コストで提供可能にする効果がある。   As described above, the present invention can form a chromium nitride film having good adhesion and high hardness at a low processing temperature. Therefore, a chromium nitride film coating with good peeling resistance and wear resistance can be applied without requiring an expensive base material such as high-speed tool steel to reduce the parts such as sliding members that require wear resistance. There is an effect that can be provided at a cost.

次に、本発明の背景と実施の態様とを説明する。
本発明者達は、窒化クロム膜の剥離メカニズムを次のように解析した。
一般に、物理蒸着法により形成された硬質膜は高い圧縮残留応力を持ち、その値が膜と基材界面の付着強度を超えると自然剥離する。また、圧縮残留応力が界面の付着強度を超えていない場合でも、これが付着強度に近くなるほど基材に外力が作用したときのマージンが少なくなって、剥離しやすくなるのである。
Next, the background and embodiments of the present invention will be described.
The present inventors analyzed the peeling mechanism of the chromium nitride film as follows.
Generally, a hard film formed by physical vapor deposition has a high compressive residual stress, and when the value exceeds the adhesion strength at the interface between the film and the substrate, it peels naturally. Even when the compressive residual stress does not exceed the adhesion strength at the interface, the closer this becomes to the adhesion strength, the smaller the margin when an external force is applied to the substrate, and the easier it is to peel off.

残留応力の実態を確かめるために、PVDコーティングによる窒化クロム膜の基材温度が160〜250℃の範囲で残留応力を調査した。この調査によると、残留応力の値は基材に印加する電圧によって大きく変化し、図1に示すような結果が得られた。窒化クロム膜の残留応力は、処理時の基材の温度、基板電流、ガス分圧などの影響も受けるが、効果としては基材電圧が最も大きいことが判明した。
また、膜の元素組成が変わることになるが、窒化クロム膜の窒素比を下げることも残留応力低減に効果があった。さらに、基板温度が250℃より高い場合、引張り残留応力が現れなくなり、全体の残留応力を低減する効果が小さくなることも判明した。
In order to confirm the actual state of the residual stress, the residual stress was investigated in the range where the substrate temperature of the chromium nitride film by PVD coating was 160 to 250 ° C. According to this investigation, the value of the residual stress greatly changed depending on the voltage applied to the substrate, and the result as shown in FIG. 1 was obtained. The residual stress of the chromium nitride film is influenced by the temperature of the base material during processing, the substrate current, the gas partial pressure, etc., but it has been found that the base material voltage is the largest as an effect.
In addition, although the elemental composition of the film changes, reducing the nitrogen ratio of the chromium nitride film is also effective in reducing residual stress. Further, it has been found that when the substrate temperature is higher than 250 ° C., the tensile residual stress does not appear and the effect of reducing the overall residual stress is reduced.

このような解析結果に基づいて、本発明では、図2に示すように、形成する窒化クロム膜を2つの層2,3に分け、基材1との界面に近い下層2の残留応力を低く抑えるとともに、上層3には耐摩耗性を付与して、耐剥離性と耐摩耗性の両立を計っている。
本発明を実施するに当たっては、下層の窒化クロム膜の圧縮残留応力を0.5GPa以下とすることが好ましい。これは次の理由による。
Based on such analysis results, in the present invention, as shown in FIG. 2, the formed chromium nitride film is divided into two layers 2 and 3, and the residual stress in the lower layer 2 close to the interface with the substrate 1 is reduced. At the same time, the upper layer 3 is provided with wear resistance so that both peeling resistance and wear resistance are achieved.
In carrying out the present invention, the compressive residual stress of the lower chromium nitride film is preferably 0.5 GPa or less. This is due to the following reason.

下層の窒化クロム膜は、基材と上層をつなぐ役割と、膜に外力を含む応力が加わった際に緩衝層の役割を果たしている。緩衝層の残留応力が高いと、外力が加わったときに基材と下層の間の付着強度を超えて、剥離や膜の割れに至る。従って、下層の窒化クロム膜の内部応力を小さくしておくことが肝要で、その限界は使用する環境で加わる最大の外力によって決まる。
現実には、材料強度が数GPaであり、それを越えるような使用環境はまれである。これを勘案すると、下層の平均圧縮応力の上限は0.5MPa以下とすることで、実用的な多くのケースに対応できる。
引張残留応力については、物理蒸着法で成膜する場合、−0.5MPaを越えるような大きな値になることはないので、特に下限を設ける必要はない。
The lower chromium nitride film plays a role of connecting the base material and the upper layer and a buffer layer when a stress including an external force is applied to the film. When the residual stress of the buffer layer is high, the adhesion strength between the base material and the lower layer is exceeded when an external force is applied, leading to peeling or film cracking. Therefore, it is important to reduce the internal stress of the underlying chromium nitride film, and the limit is determined by the maximum external force applied in the environment in which it is used.
In reality, the material strength is several GPa, and the usage environment exceeding this is rare. Considering this, the upper limit of the average compressive stress of the lower layer is 0.5 MPa or less, so that it can cope with many practical cases.
With respect to the tensile residual stress, when the film is formed by physical vapor deposition, it does not have a large value exceeding -0.5 MPa.

一方、上層の窒化クロム膜は、0.5GPa以上の圧縮残留応力とする。一般に圧縮残留応力が高くなると膜の硬度が高くなる関係にあり、上層に高硬度の窒化クロム膜を置いて、耐摩耗性を確保する。   On the other hand, the upper chromium nitride film has a compressive residual stress of 0.5 GPa or more. In general, when the compressive residual stress increases, the hardness of the film increases, and a high-hardness chromium nitride film is placed on the upper layer to ensure wear resistance.

また、下層の厚みは、形成する全窒化クロム膜圧の5〜50%とする。
前述のとおり、下層は、基材と上層窒化クロム膜の間の中間層として、接着と力の緩衝の役割を担っている。加えて、軟質の基材から硬質の上層の間に急激な応力変化が生じないように、応力の変化を滑らかにする役割も担っている。この下層の厚みは、基材や上層窒化クロム膜の残留応力、あるいは外力の大きさによって調節すべきもので、一義的に決定することは困難である。
しかし、その目安として、基材と上層膜の硬度が近い場合、下層窒化クロム膜の厚さは全膜厚の5%程度と薄くてもよい。一方、基材が柔らかい場合には、上層の硬質膜と同程度の厚さが適している。また、残留応力の小さい下層窒化クロム膜は残留応力の大きい上層窒化クロム膜より一般に強度が低いので、全膜厚の50%を越えるような中間層の場合、中間層部分から損傷を受けやすくなるのである。
Further, the thickness of the lower layer is 5 to 50% of the total chromium nitride film pressure to be formed.
As described above, the lower layer plays a role of adhesion and force buffering as an intermediate layer between the base material and the upper chromium nitride film. In addition, it also plays a role of smoothing the change in stress so that a sudden change in stress does not occur between the soft base material and the hard upper layer. The thickness of the lower layer should be adjusted by the residual stress of the base material or the upper chromium nitride film or the magnitude of the external force, and it is difficult to determine uniquely.
However, as a guideline, when the hardness of the base material and the upper layer film is close, the thickness of the lower layer chromium nitride film may be as thin as about 5% of the total film thickness. On the other hand, when the substrate is soft, a thickness comparable to that of the upper hard film is suitable. In addition, since the lower chromium nitride film having a small residual stress is generally lower in strength than the upper chromium nitride film having a large residual stress, an intermediate layer exceeding 50% of the total film thickness is likely to be damaged from the intermediate layer portion. It is.

下層の窒化クロム膜は、平均の残留応力が0.5GPa以下であれば単層に限らず、残留応力を変化させた層を交互に置いた多層膜、あるいは界面から上層に向かって残留応力を徐々に変化させた多層膜または傾斜膜に形成することができる。
また、上層の窒化クロム膜についても同様に、単層、多層、または傾斜層で残留応力を制御し、平均として0.5GPa以上の特性をもたせてもよい。
ただし、基材と膜の界面が耐えることのできる残留応力にも限界があり、下層と上層を加えた平均値が2GPaを越えると耐剥離強度が低下する。よって、上層と下層の窒化クロム膜を合わせた平均圧縮残留応力は2.0GPa以下とする。
The lower chromium nitride film is not limited to a single layer as long as the average residual stress is 0.5 GPa or less, or a multilayer film in which layers with changed residual stress are alternately placed, or the residual stress from the interface toward the upper layer. It can be formed into a multilayer film or a gradient film that is gradually changed.
Similarly, the upper layer of chromium nitride film may have a characteristic of 0.5 GPa or more on average by controlling the residual stress by a single layer, a multilayer, or an inclined layer.
However, there is a limit to the residual stress that can be withstood by the interface between the substrate and the film. If the average value including the lower layer and the upper layer exceeds 2 GPa, the peel resistance decreases. Therefore, the average compressive residual stress combining the upper layer and the lower layer chromium nitride film is 2.0 GPa or less.

かくして、基材と窒化クロム膜の界面にかかる応力を制御することで、窒化クロム膜による被覆材の耐剥離性を高めることができる。そのような窒化クロム膜は、上述の通りに残留応力があまり処理温度に左右されないため、構造用鋼のような基材の強度に影響しない比較的に低い、例えば前述したの引張り残留応力の上限である250℃以下の低いコーティング温度でも、安定して厚い膜を形成することができる。   Thus, by controlling the stress applied to the interface between the base material and the chromium nitride film, the peel resistance of the coating material by the chromium nitride film can be enhanced. Such a chromium nitride film has a relatively low residual stress that does not affect the strength of the base material such as structural steel because the residual stress is not greatly affected by the processing temperature as described above. For example, the upper limit of the tensile residual stress described above. Even at a low coating temperature of 250 ° C. or lower, a thick film can be stably formed.

本発明による窒化クロム膜を、250℃以下の温度で圧縮残留応力が1.5GPa以下に形成し、これをX線回折で調べたところ、従来の、窒化クロム膜の主たる構成要素として知られているCrNおよびCr2Nを主成分とするものではなく、金属Crを主成分とする膜であることが判明した。明確な構造は未だ解析中であるが、本発明の窒化クロム膜は恐らく金属Crの中に微細なCrNとCr2Nが分散しているナノ構造的な膜であると推定される。これが、従来のような結晶質の膜に比べ靭性が高く、高い耐剥離強度をもたらす一つの要因になっているものと思われる。 The chromium nitride film according to the present invention was formed at a temperature of 250 ° C. or less to a compressive residual stress of 1.5 GPa or less, and when this was examined by X-ray diffraction, it was known as the main component of the conventional chromium nitride film. It was found that the film was not composed mainly of CrN and Cr 2 N, but was composed mainly of metal Cr. Although a clear structure is still under analysis, the chromium nitride film of the present invention is presumably a nanostructured film in which fine CrN and Cr 2 N are dispersed in metal Cr. This is considered to be one factor that has higher toughness and higher peel resistance than conventional crystalline films.

本発明の実施例1を以下に示す。
4枚のターゲットホルダを有するマグネトロンスパッタ装置を用い、各ターゲットホルダに純度99.9%の金属クロムターゲットを取り付けて、高速度工具鋼製基材に窒化クロム膜を被覆した。基材は、装置のチャンバ内に設置した自公転するワークステージに載置した。
Example 1 of the present invention is shown below.
Using a magnetron sputtering apparatus having four target holders, a metal chromium target with a purity of 99.9% was attached to each target holder, and a high-speed tool steel substrate was coated with a chromium nitride film. The substrate was placed on a self-revolving work stage installed in the chamber of the apparatus.

マグネトロンスパッタ装置のチャンバを真空排気後、ヒーター温度を200℃に設定して、真空度が10-3Paのオーダーに入るまで1〜2時間の加熱を行い、基材表面およびチャンバ内の構造物のガス出しを行った。しかる後に、Arガスを毎分25ccの流量でチャンバ内に導入した。一方、各スパッタターゲットには100Wの電力を投入し、ターゲットからのCrの蒸発量を抑制しつつ、このときに発生するプラズマを利用して、基材に650Vの電圧を印加して20分間のスパッタエッチングを行った。スパッタエッチング終了後はヒーターを切り、窒化クロム膜の成膜に移った。 After evacuating the chamber of the magnetron sputtering apparatus, the heater temperature is set to 200 ° C., and heating is performed for 1 to 2 hours until the degree of vacuum enters the order of 10 −3 Pa. The gas was discharged. Thereafter, Ar gas was introduced into the chamber at a flow rate of 25 cc / min. On the other hand, a power of 100 W was applied to each sputter target, and while suppressing the evaporation amount of Cr from the target, a voltage of 650 V was applied to the substrate for 20 minutes using the plasma generated at this time. Sputter etching was performed. After the sputter etching was completed, the heater was turned off and the film was transferred to a chromium nitride film.

窒化クロム膜の成膜は、4枚のCrターゲットのうちの2枚にそれぞれ1kWの電力を投入し、基材に30Vのワーク電圧を印加して、約100nmのCr主成分の粘着膜を成膜した。続けて、窒素ガスを所定の毎分20ccまで増加し、ワーク電圧を50Vとして20分の成膜を行ない、膜厚約0.4μmの窒化クロム膜の下層を形成した。下層の窒化クロム膜の残留応力は、図1の特性からほぼ0GPaと推定された。   The chromium nitride film was formed by applying 1 kW of power to two of the four Cr targets and applying a work voltage of 30 V to the base material to form an approximately 100 nm Cr-based adhesive film. Filmed. Subsequently, the nitrogen gas was increased to 20 cc per minute, the work voltage was set to 50 V, and film formation was performed for 20 minutes to form a lower layer of a chromium nitride film having a film thickness of about 0.4 μm. The residual stress of the lower chromium nitride film was estimated to be approximately 0 GPa from the characteristics of FIG.

その後、基材に150Vのワーク電圧を印加し、残留応力が1.5GPaに相当する上層窒化クロム膜を60分間成膜した。これにより、基材には1.6μmの窒化クロム膜が成膜され、同時に成膜された短冊状のステンレス箔の曲がり測定から、その平均圧縮残留応力が1.34GPaであることが判った。また、同時にチャンバに入れた軸受鋼の硬度測定から換算した基材温度は、190℃と見積もられた。   Thereafter, a work voltage of 150 V was applied to the substrate, and an upper chromium nitride film corresponding to a residual stress of 1.5 GPa was formed for 60 minutes. As a result, a 1.6 μm chromium nitride film was formed on the base material, and the average compression residual stress was found to be 1.34 GPa from the bending measurement of the strip-shaped stainless steel foil formed at the same time. At the same time, the substrate temperature converted from the hardness measurement of the bearing steel put in the chamber was estimated to be 190 ° C.

こうして得た試料を、先端半径が200μmのダイヤモンドからなる圧子を用いたロックウェル硬度計で圧痕をつけ、その周囲の膜の剥離の程度から4段階に分けた付着強度の評価を行った。その結果、最も良いレベルの付着強度であると判断された。
本試料を、Cuターゲットを取り付けたX線回折装置にて分析を行ったところ、図3に示すように、回折角2θが45°である付近にCrの回折線が最も強く現れ、Cr2Nの回折線がそれより弱く現れた。このことから、この膜はCr金属相を多く含む膜であると判断された。
The sample thus obtained was indented with a Rockwell hardness meter using a diamond indenter having a tip radius of 200 μm, and the adhesion strength was evaluated in four stages based on the degree of peeling of the surrounding film. As a result, it was judged that the adhesion strength was the best level.
When this sample was analyzed by an X-ray diffractometer equipped with a Cu target, as shown in FIG. 3, the Cr diffraction line appeared most strongly in the vicinity where the diffraction angle 2θ was 45 °, and Cr 2 N The diffraction line appeared weaker than that. From this, this film was judged to be a film containing a large amount of Cr metal phase.

比較例として、最下層のCr層を成膜した後、直ちに150Vの電圧を印加して上層の窒化クロム膜を成膜した。この場合には、ロックウェル硬度計を用いてつけた圧痕周囲の膜が一部剥離した。また、ステンレス箔の曲がり測定から求めた平均圧縮残留応力は、1.7GPaであった。
これより、残留応力の低い窒化クロム膜を下層に成膜し、上層に残留応力の高い窒化クロム膜を成膜する方が密着性に優れることが判った。
As a comparative example, after forming the lowermost Cr layer, a voltage of 150 V was immediately applied to form an upper chromium nitride film. In this case, a part of the film around the indentation made using a Rockwell hardness tester was peeled off. Moreover, the average compressive residual stress calculated | required from the bending measurement of stainless steel foil was 1.7 GPa.
From this, it has been found that it is excellent in adhesion when a chromium nitride film having a low residual stress is formed in the lower layer and a chromium nitride film having a high residual stress is formed in the upper layer.

続いて、本発明の実施例2を説明する。
実施例1に示したものと同じ装置を用いて、スパッタクリーニング工程までを 同様の手順で進めた。その後、4枚のCrターゲット全てにそれぞれ1kWの電力を投入し、基材に30Vのワーク電圧を印加して最下層に約200nmのCr主成分の粘着膜を成膜した。次いで、窒素ガスを所定の毎分30ccまで段階的に増加し、ワーク電圧を30Vとして合計10分の成膜を行ない、約0.4μmの窒化クロム膜下層を形成した。ここまでの窒化クロム膜の残留応力は図1の特性から−0.2GPa程度と推定された。
Next, Example 2 of the present invention will be described.
Using the same apparatus as shown in Example 1, the same procedure was followed up to the sputter cleaning step. Thereafter, 1 kW of electric power was applied to each of the four Cr targets, a work voltage of 30 V was applied to the substrate, and an adhesive film of about 200 nm of Cr as a main component was formed on the bottom layer. Next, nitrogen gas was increased stepwise up to a predetermined 30 cc / min, and the work voltage was set to 30 V to form a total of 10 minutes to form a lower layer of about 0.4 μm chromium nitride film. The residual stress of the chromium nitride film so far was estimated to be about -0.2 GPa from the characteristics of FIG.

その後、基材に250Vすなわち2GPaの圧縮応力に対応する電圧と、100Vすなわち0.75GPaの圧縮応力に対応する電圧をそれぞれ2分と1分ずつ交互に印加し、60分間の成膜を行った。
これにより基材には3.2μmの窒化クロム膜が成膜された。同時に成膜された短冊状のステンレス箔の曲がり測定から、1.50GPaの平均圧縮残留応力が得られた。また、同時にチャンバに入れた軸受鋼の硬度測定から換算した基材温度は、210℃と見積もられた。
Thereafter, a voltage corresponding to a compressive stress of 250 V, that is, 2 GPa, and a voltage corresponding to a compressive stress of 100 V, that is, 0.75 GPa, were alternately applied to the substrate for 2 minutes and 1 minute, respectively, and film formation was performed for 60 minutes. .
As a result, a 3.2 μm chromium nitride film was formed on the substrate. An average compressive residual stress of 1.50 GPa was obtained from the bending measurement of the strip-shaped stainless steel foils formed at the same time. At the same time, the substrate temperature converted from the hardness measurement of the bearing steel put in the chamber was estimated to be 210 ° C.

こうして得た試料を、先端半径が200μmのダイヤモンド圧子を用いたロックウェル硬度計で圧痕をつけた。その周囲の膜の剥離の程度から、4段階に分けた付着強度評価で最も良いレベルの付着強度であると判断された。
また、本試料のX線回折を行ったところ、図1と同様なCr金属が主となる回折パターンが得られた。
比較例として、本実施例と同様な手順にて下層を成膜した後、基材に250Vの電圧を印加して上層の窒化クロム膜を成膜した。この被覆基材を同様にロックウェル硬度計を用いた圧痕剥離試験を行ったところ、圧痕周囲の膜が大幅に剥離した。この方法で成膜した短冊状のステンレス箔の曲がり測定から求めた平均圧縮残留応力は、2.2GPaであった。
The sample thus obtained was indented with a Rockwell hardness meter using a diamond indenter with a tip radius of 200 μm. From the degree of peeling of the surrounding film, it was judged that the adhesion strength was the best level in the adhesion strength evaluation divided into four stages.
Further, when X-ray diffraction of this sample was performed, a diffraction pattern mainly composed of Cr metal as in FIG. 1 was obtained.
As a comparative example, after forming a lower layer in the same procedure as in this example, a voltage of 250 V was applied to the base material to form an upper chromium nitride film. When this coated base material was similarly subjected to an indentation peeling test using a Rockwell hardness meter, the film around the indentation was largely peeled off. The average compressive residual stress obtained from the bending measurement of the strip-shaped stainless steel foil formed by this method was 2.2 GPa.

これより、本発明の方法、すなわち残留応力の低い窒化クロム膜を下層に成膜し、上層に2GPa以下の残留応力の高い窒化クロム膜を成膜する方が、高硬度膜すなわち高基板電圧で成膜した膜を密着性良く成膜できることが判った。   Thus, the method of the present invention, that is, the case where the chromium nitride film having a low residual stress is formed in the lower layer and the chromium nitride film having a high residual stress of 2 GPa or less is formed in the upper layer is a high hardness film, that is, a high substrate voltage. It was found that the formed film can be formed with good adhesion.

以上、本発明を実施例に基づいて説明したが、本発明はこれら特定の形態のみに限定されず、添付した特許請求の範囲の定義内で、説明した形態を様々に変更可能であり、或いは本発明を別の形態で実施することができる。   Although the present invention has been described based on the embodiments, the present invention is not limited to these specific forms, and the described forms can be variously changed within the definition of the appended claims, or The present invention can be implemented in other forms.

本発明の原理を説明するための、窒化クロム成膜時に基材に印加する電圧と残留応力の関係を示す線図である。It is a diagram which shows the relationship between the voltage applied to a base material at the time of chromium nitride film-forming, and a residual stress for demonstrating the principle of this invention. 本発明による窒化クロム膜の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the chromium nitride film | membrane by this invention. 本発明の実施例による窒化クロム膜のX線回折パターンを示す線図である。It is a diagram which shows the X-ray-diffraction pattern of the chromium nitride film | membrane by the Example of this invention.

符号の説明Explanation of symbols

1 基材
2 下層窒化クロム膜
3 上層窒化クロム膜
DESCRIPTION OF SYMBOLS 1 Base material 2 Lower layer chromium nitride film 3 Upper layer chromium nitride film

Claims (8)

物理蒸着法により基材上に窒化クロム膜を形成する方法において、引張残留応力または所定値以下の圧縮残留応力をもつ耐剥離性の下層窒化クロムを基材上に形成し、次いでこの下層の上に、下層より高い圧縮残留応力をもつ耐摩耗性の上層窒化クロム膜を形成することを特徴とする、窒化クロム膜形成方法。   In a method of forming a chromium nitride film on a substrate by physical vapor deposition, a peeling-resistant lower chromium nitride having a tensile residual stress or a compressive residual stress equal to or lower than a predetermined value is formed on the substrate, and then the upper layer is formed on the lower layer. And forming a wear-resistant upper chromium nitride film having a compressive residual stress higher than that of the lower layer. 請求項1に記載の方法において、前記下層窒化クロム膜は基材との界面から形成する全窒化クロム膜厚の5〜50%の厚みと、0.5GPa以下の圧縮残留応力とをもち、前記窒化クロム上層は0.5GPa以上の平均圧縮残留応力をもつ、窒化クロム膜形成方法。   2. The method according to claim 1, wherein the lower chromium nitride film has a thickness of 5 to 50% of a total chromium nitride film thickness formed from an interface with a base material and a compressive residual stress of 0.5 GPa or less, The method for forming a chromium nitride film, wherein the upper layer of chromium nitride has an average compressive residual stress of 0.5 GPa or more. 請求項1または2に記載の方法において、窒化クロム膜の形成を250℃以下の温度で行う、窒化クロム膜形成方法。   The method according to claim 1 or 2, wherein the chromium nitride film is formed at a temperature of 250 ° C or lower. 請求項1から3までのいずれかに記載の方法において、前記下層窒化クロム膜と上層窒化クロム膜のうちの少なくとも一方を、多層または傾斜組成層構造に形成する、窒化クロム膜形成方法。   4. The method according to claim 1, wherein at least one of the lower chromium nitride film and the upper chromium nitride film is formed in a multilayer or gradient composition layer structure. 請求項1から4までのいずれかに記載の方法において、前記下層および上層窒化クロム膜を、両者を合わせた平均圧縮残留応力が2.0GPa以下であるように形成する、窒化クロム膜形成方法。   5. The method of forming a chromium nitride film according to claim 1, wherein the lower layer and the upper layer chromium nitride films are formed so that an average compressive residual stress of both is 2.0 GPa or less. 請求項1から5までのいずれかに記載の方法によって形成した窒化クロム膜による被覆材であって、窒化クロム膜が、Cuターゲットを用いる通常のX線回折によって、Cr金属の回折線の強度が最も強く現れ、Cr2NおよびCrNの回折線強度がCr金属の回折線強度以下である組成である、被覆材。 A coating material made of a chromium nitride film formed by the method according to any one of claims 1 to 5, wherein the chromium nitride film has an intensity of a Cr metal diffraction line by ordinary X-ray diffraction using a Cu target. A coating material that appears most strongly and has a composition in which the diffraction line intensity of Cr 2 N and CrN is less than or equal to the diffraction line intensity of Cr metal. 基材と、請求項1から5までのいずれかに記載の方法によって該基材上に形成した窒化クロム膜とを含む、被覆部品。   A coated part comprising a base material and a chromium nitride film formed on the base material by the method according to any one of claims 1 to 5. 請求項7に記載の被覆部品において、窒化クロム膜が、Cuターゲットを用いる通常のX線回折によって、Cr金属の回折線の強度が最も強く現れ、Cr2NおよびCrNの回折線強度がCr金属の回折線強度以下である組成である、被覆部品。
8. The coated component according to claim 7, wherein the chromium nitride film has the highest intensity of Cr metal diffraction lines and the Cr 2 N and CrN diffraction line strengths of Cr metal by ordinary X-ray diffraction using a Cu target. A coated component having a composition that is less than or equal to the diffraction line intensity.
JP2003434607A 2003-12-26 2003-12-26 Method for forming chromium nitride film, and coated material Pending JP2005187927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003434607A JP2005187927A (en) 2003-12-26 2003-12-26 Method for forming chromium nitride film, and coated material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003434607A JP2005187927A (en) 2003-12-26 2003-12-26 Method for forming chromium nitride film, and coated material

Publications (1)

Publication Number Publication Date
JP2005187927A true JP2005187927A (en) 2005-07-14

Family

ID=34791620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003434607A Pending JP2005187927A (en) 2003-12-26 2003-12-26 Method for forming chromium nitride film, and coated material

Country Status (1)

Country Link
JP (1) JP2005187927A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133814A1 (en) * 2008-04-30 2009-11-05 住友電気工業株式会社 Surface coated cutting tool
JP2013155420A (en) * 2012-01-31 2013-08-15 Nippon Piston Ring Co Ltd Sliding member
JP2014523476A (en) * 2011-05-27 2014-09-11 マーレ メタル レーベ ソシエダーデ アノニマ Element with at least one sliding surface for an internal combustion engine or compressor
JP2016216821A (en) * 2016-05-02 2016-12-22 日本ピストンリング株式会社 piston ring

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133814A1 (en) * 2008-04-30 2009-11-05 住友電気工業株式会社 Surface coated cutting tool
JPWO2009133814A1 (en) * 2008-04-30 2011-09-01 住友電気工業株式会社 Surface coated cutting tool
US8389108B2 (en) 2008-04-30 2013-03-05 Sumitomo Electric Industries, Ltd. Surface coated cutting tool
JP5297388B2 (en) * 2008-04-30 2013-09-25 住友電気工業株式会社 Surface coated cutting tool
JP2014523476A (en) * 2011-05-27 2014-09-11 マーレ メタル レーベ ソシエダーデ アノニマ Element with at least one sliding surface for an internal combustion engine or compressor
US9777239B2 (en) 2011-05-27 2017-10-03 Mahle Metal Leve S.A. Element comprising at least one sliding surface having a coating for use in an internal combustion engine or a compressor
JP2013155420A (en) * 2012-01-31 2013-08-15 Nippon Piston Ring Co Ltd Sliding member
JP2016216821A (en) * 2016-05-02 2016-12-22 日本ピストンリング株式会社 piston ring

Similar Documents

Publication Publication Date Title
JP2999346B2 (en) Substrate surface coating method and coating member
WO2010021285A1 (en) Nitrogen-containing amorphous carbon film, amorphous carbon layered film, and sliding member
EP2083095A2 (en) Diamond-like carbon film for sliding parts and method for production thereof
JP2006028600A (en) Stacked film having excellent wear resistance and heat resistance
JP4839120B2 (en) Piston ring with laminated coating
JP2007169698A (en) Amorphous hard carbon coating film
US11499643B2 (en) Coated valve components with corrosion resistant sliding surfaces
JP2008001951A (en) Diamond-like carbon film and method for forming the same
JP2551745B2 (en) Chromium layer with high hardness that can withstand wear, deformation, surface fatigue and corrosion
JP7340016B2 (en) ta-C based coating with improved hardness
CN110894605A (en) Corrosion resistant carbon based coatings
JP2006214313A (en) Valve lifter
CN106544631A (en) A kind of chromium carbide multi-gradient composite coating of matrix surface and preparation method thereof
JP2006138404A (en) Sliding member with excellent abrasion resistance in wet environment
JP2004169137A (en) Sliding member
CN109402564A (en) A kind of AlCrSiN and AlCrSiON double-layer nanometer composite coating and preparation method thereof
TWI537402B (en) Part with dlc coating and method for applying the dlc coating
Kolubaev et al. Structure and properties of CrN/TiN multilayer coatings produced by cathodic arc plasma deposition on copper and beryllium-copper alloy
CN106929799B (en) High temperature resistant protective coating and the preparation method and application thereof
JP5145051B2 (en) Hard film covering member and method for manufacturing the same
JPH0365431B2 (en)
JP2009035584A (en) Sliding member
CN113235051B (en) Nano biphase high-entropy alloy film and preparation method thereof
JP4848545B2 (en) Hard coating member and method for producing the same
JP2023544788A (en) Hard carbon coating with improved adhesive strength by HiPIMS and its method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090210