KR101719452B1 - Surface treatment method of hot forging mold and the hot forging mold - Google Patents

Surface treatment method of hot forging mold and the hot forging mold Download PDF

Info

Publication number
KR101719452B1
KR101719452B1 KR1020160051619A KR20160051619A KR101719452B1 KR 101719452 B1 KR101719452 B1 KR 101719452B1 KR 1020160051619 A KR1020160051619 A KR 1020160051619A KR 20160051619 A KR20160051619 A KR 20160051619A KR 101719452 B1 KR101719452 B1 KR 101719452B1
Authority
KR
South Korea
Prior art keywords
layer
hot forging
heat treatment
ion
forging mold
Prior art date
Application number
KR1020160051619A
Other languages
Korean (ko)
Inventor
박래규
신성춘
Original Assignee
박래규
신성춘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박래규, 신성춘 filed Critical 박래규
Priority to KR1020160051619A priority Critical patent/KR101719452B1/en
Application granted granted Critical
Publication of KR101719452B1 publication Critical patent/KR101719452B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J13/00Details of machines for forging, pressing, or hammering
    • B21J13/02Dies or mountings therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/08Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for polishing surfaces, e.g. smoothing a surface by making use of liquid-borne abrasives
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

The present invention relates to a surface treatment method for a hot forging mold and a hot forging mold for the same and, specifically, to a method for forming a heat treatment layer, an ion nitriding layer, and a coating layer in order on the surface of a hot forging mold and a hot forging mold for the same. According to the embodiment of the present invention, the surface treatment method for a hot forging mold includes: a step of forming the heat treatment layer on the surface of the hot forging mold by placing the hot forging mold having a 2D shape part or a 3D shape part for forming a forging into a vacuum furnace and heat treating the forging in vacuum; a step of placing the hot forging mold having the heat treatment layer in the vacuum furnace and forming the ion nitriding layer on the surface of the heat treatment layer by supplying a nitrogen compound and performing ion nitriding heat treatment; and a step of forming a coating layer by performing PVD vacuum coating on the surface of the ion nitriding layer with a TiAlCrN specimen.

Description

열간단조금형의 표면처리방법 및 그 열간단조금형 {Surface treatment method of hot forging mold and the hot forging mold}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot forging mold,

본 발명은 열간단조금형의 표면처리방법 및 그 열간단조금형에 관한 것으로서, 더욱 상세하게는 열간단조금형의 표면에 열처리층과 이온질화층 및 코팅층을 차례로 형성하는 방법 및 그 열간단조금형에 관한 것이다More particularly, the present invention relates to a method for forming a heat treatment layer, an ion nitriding layer, and a coating layer on a surface of a hot forging die in order and a hot forging die for the hot forging die

일반적으로, 단조(鍛造, forging) 란 금속을 적당한 온도로 가열하여 연화(軟化)되었을 때, 해머 등으로 두들겨 원하는 모양이나 치수로 가압성형(加壓成形)하는 동시에 기계적인 성질을 개량하는 작업을 말한다.Generally, forging (forging) is a process in which when a metal is softened by heating to a suitable temperature, it is hit with a hammer to pressurize and shape the desired shape and dimension, and at the same time, improve the mechanical properties It says.

이와 같은 단조는 그 재료에서 재결정이 진행되는 온도를 경계로 하여 그 이상의 온도에서 단조하는 것을 열간단조라 하고, 그보다 낮은 온도에서 단조하는 것을 냉간단조라 한다.Such forging is referred to as cold forging at a temperature higher than the temperature at which the recrystallization proceeds in the material, and forging at a lower temperature is referred to as cold forging.

전자에 해당하는 열간단조는 고온으로 강을 가열해 변형 저항을 적게 하여 작은 힘으로 큰 변형을 주어 조형을 쉽게 할 수 있도록 하는 것과, 단련효과를 더해재질의 개선강화를 꾀할 수 있는 것, 그리고 생산속도가 빠르므로 생산성이 좋고 복잡한 형상의 성형을 쉽게 할 수 있다는 것 등의 장점으로 많이 사용되는 단조방법의 하나이다.The hot forging corresponding to the former is to heat the steel at a high temperature to reduce the deformation resistance and to make a large deformation with a small force so as to facilitate the molding, and to improve the material by adding the effect of tempering, It is one of the most widely used forging methods because of its advantages such as high productivity and good molding ability for complicated shapes.

열간단조는 작업 온도적인 측면에서 그 조건이 냉간단조에 비해서 1,000℃ ~1,250℃의 고온인 관계로, 사용되는 금형과 그 부품인 소재의 열처리 정도에 따라 금형의 수명이 좌우되고 가공된 제품의 품질이 결정된다. Since hot forging is a high temperature of 1,000 ° C ~ 1,250 ° C compared to cold forging in terms of working temperature, the life of the mold depends on the degree of heat treatment of the mold used and its parts, Is determined.

한편, 이러한 열간단조에 사용되는 금형의 강도와 내마모성 등을 증가시켜서 금형의 치수안정성을 높이고 수명을 증대시키기 위해 열간단조금형의 표면을 열처리하거나 각종 코팅방법으로 코팅하기도 하는데, 종래의 방법으로는 비용이 많이 소요될 뿐이며 큰 효과를 거두고 있지 못한 실정이었다. Meanwhile, in order to increase the dimensional stability and life of the mold by increasing the strength and abrasion resistance of the mold used for such hot forging, the surface of the hot forging mold may be heat treated or coated with various coating methods. However, And it was not very effective.

예를 들어 종래 진공 열처리 방식은 진공이 유지될 수 있는 용기 내에 열처리할 금형을 셋팅하고 적당한 진공도를 유지하도록 진공펌프를 가동한 후, 전원을 탄소히터로 투입하면 저항에 의한 발열로 금형이 목표온도까지 가열된다.For example, in the conventional vacuum heat treatment method, a mold to be heat-treated is set in a container in which a vacuum can be maintained, a vacuum pump is operated to maintain a proper degree of vacuum, and when a power source is put into a carbon heater, .

이와 같은 상태로 적당한 시간을 유지시키고 난 후, 로내로 가압된(2 4bar)질소가스를 투입하여 냉각시킴으로써 담금질작업을 완료하고, 다시 약 500℃~600℃로 가열하여서 템퍼링(tempering) 작업을 2회 이상 실시하여 열처리를 완료한다.After maintaining the proper time in this state, the quenching operation is completed by cooling the quenched (2 4 bar) nitrogen gas into the furnace, and the quenching operation is again performed at about 500 ° C. to 600 ° C., And the heat treatment is completed.

그런데 이와 같은 진공 열처리 방식으로는 기본적으로 고온사용 금형의 내마모성을 해결할 수 없는 것이 지금까지 실정이다.However, such a vacuum heat treatment method basically can not solve the wear resistance of high temperature use molds.

한편, 상기한 문제점을 해결하기 위하여 열간단조금형에 표면 열처리의 일종인 질화처리를 적용하기도 하나, 이 또한 근본적인 해결책이 되지 못하고, 오히려, 작업 중에 금형의 경도가 저하되어 금형의 마모 및 소착현상이 발생함으로 인해, 결국에는 금형 사용업체의 작업성 저하와 제품의 품질문제 등의 발생으로 인해 원가상승의 요인이 되며 나아가서는 경쟁력 저하의 큰 원인이 된다.In order to solve the above problems, a nitriding process, which is a kind of surface heat treatment, is applied to a hot forging mold, but this is not a fundamental solution. Rather, the hardness of the mold decreases during the operation, It is a cause of cost increase and eventually a deterioration in competitiveness due to the lowering of the workability of the mold maker and quality problems of the product.

이러한 문제점을 보완하기 위하여 진공 열처리 후에 질화 열처리 공정을 추가하기도 하나, 이 또한 기계적 특성을 100% 만족시키지 못하고 있는 실정이며, 특히 내마모성 및 고체 윤활성이 부족하여 제품의 안정성이 취약하다는 문제점을 가진다. 즉, 표면의 경도가 HV 1,060에 불과해 충격에 의한 마모에 취약하고 1,000℃In order to compensate for these problems, a nitriding heat treatment process may be added after the vacuum heat treatment. However, this process also fails to satisfy the mechanical characteristics of 100%. In particular, there is a problem that the stability of the product is poor due to lack of abrasion resistance and solid lubricity. That is, since the hardness of the surface is only HV 1,060, it is susceptible to abrasion due to impact,

~ 1,250℃의 열간 단조제품을 찍어내는 고온에 견디지 못하였다.~ 1,250 ° C hot forging products.

한편, 내마모성을 높이기 위한 표면처리 기술로 PVD(Physical Vapor Deposition) 코팅 기술이 개시되어 있다. PVD 코팅은 전력소모가 많고 공정이 까다로우며 많은 시설 투자로 인해 코팅비용이 과다하게 소요되기 때문에 규모가 큰 금형에는 적용되지 못하고, 주로 사이즈가 작은 공구 등 만에 적용되고 있다. On the other hand, PVD (Physical Vapor Deposition) coating technology is disclosed as a surface treatment technique for improving abrasion resistance. PVD coatings are not applicable to large-sized molds, and are mainly applied to small-sized tools, because they require high power consumption, heavy processing, and excessive coating costs.

등록번호 제10-0327741호(등록일자 2002년02월25일)Registration No. 10-0327741 (registered on February 25, 2002) 공개번호 10-2010-0107874호(공개일자 2010년10월06일)Publication No. 10-2010-0107874 (Published on October 06, 2010)

본 발명은 상기의 문제점을 해결하기 위한 것으로서, 열간단조금형의 표면에 열처리층과 이온질화층 및 코팅층을 차례로 형성함으로써 마찰저항이 감소되어 열간단조 제품의 표면상의 융착, 소착 및 융착물의 형성이 방지되고, 표면의 경도가 증가하여 내마모성이 향상되며 극한 상황에서도 경도의 변화가 없는 열간단조금형의 표면처리방법 및 그 열간단조금형을 제공하는데 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made in order to solve the above problems, and it is an object of the present invention to provide a method and apparatus for forming a hot forged metal mold in which a heat treatment layer, an ion- The present invention also provides a method for surface treatment of a hot forging die, which has improved hardness of the surface to improve abrasion resistance and does not change hardness even under extreme conditions, and its hot forging die.

또한, 본 발명의 다른 목적은 코팅 표면층의 내산화 온도가 1,300℃로 증가되어 1,000℃~1,250℃의 고온에서도 견딜 수 있고, 열간단조 제품을 찍어내는데 약 3배의 생산성을 높일 수 있으며 윤활작용과 내산화성이 우수하여 열간단조금형의 수명 및 성능을 향상시킬 수 있는 열간단조금형의 표면처리방법 및 그 열간단조금형을 제공하는데 있다. Another object of the present invention is to increase the oxidation resistance temperature of the coating surface layer to 1,300 DEG C, to withstand a high temperature of 1,000 DEG C to 1,250 DEG C, to increase the productivity by about 3 times to produce a hot forging product, The present invention provides a method for surface treatment of a hot forging mold and a hot forging mold that can improve the life and performance of a hot forging mold.

본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로서, 열간단조금형의 표면에 열처리층과 이온질화층 및 코팅층을 차례로 형성함으로써 마찰저항이 감소되어 열간단조 제품의 표면상의 융착, 소착 및 융착물의 형성이 방지되고, 표면의 경도가 증가하여 내마모성이 향상되며 극한 상황에서도 경도의 변화가 없는 열간단조금형의 표면처리방법 및 그 열간단조금형을 제공하는데 목적이 있다.SUMMARY OF THE INVENTION The present invention has been conceived in order to solve the above-mentioned problems, and it is an object of the present invention to provide a method and apparatus for forming a hot forged metal mold by sequentially forming a heat treatment layer, A surface treatment method of a hot forging die in which the hardness of the surface is increased and the abrasion resistance is improved and hardness is not changed even under extreme circumstances, and the hot forging die.

또한, 본 발명의 다른 목적은 코팅 표면층의 내산화 온도가 1,300℃로 증가되어 1,000℃~1,250℃의 고온에서도 견딜 수 있고, 열간단조 제품을 찍어내는데 약 3배의 생산성을 높일 수 있으며 윤활작용과 내산화성이 우수하여 열간단조금형의 수명 및 성능을 향상시킬 수 있는 열간단조금형의 표면처리방법 및 그 열간단조금형을 제공하는데 있다. Another object of the present invention is to increase the oxidation resistance temperature of the coating surface layer to 1,300 DEG C, to withstand a high temperature of 1,000 DEG C to 1,250 DEG C, to increase the productivity by about 3 times to produce a hot forging product, The present invention provides a method for surface treatment of a hot forging mold and a hot forging mold that can improve the life and performance of a hot forging mold.

이상과 같은 구성을 가지는 본 발명은 열간단조금형의 표면에 열처리층과 이온질화층 및 코팅층을 차례로 형성함으로써 마찰저항이 감소되어 열간단조 제품의 표면상의 융착, 소착 및 융착물의 형성이 방지되고, 표면의 경도가 증가하여 내마모성이 향상되며 극한 상황에서도 경도의 변화가 없다.According to the present invention having the above-described constitution, by forming the heat treatment layer, the ion nitriding layer and the coating layer on the surface of the hot forging mold in order, the frictional resistance is reduced to prevent fusing on the surface of the hot forging product, The wear resistance is improved and there is no change in the hardness under extreme conditions.

또한, 코팅 표면층의 내산화 온도가 1,300℃로 증가되어 1,000℃ ~ 1,250℃의 고온에서도 견딜 수 있고 열간단조 제품을 찍어내는데 약 3배의 생산성을 높일 수 있으며 윤활작용과 내산화성이 우수하여 열간단조금형의 수명 및 성능을 향상시킬 수 있다.Also, since the oxidation resistance temperature of the coating surface layer is increased to 1,300 ° C, it can withstand a high temperature of 1,000 ° C to 1,250 ° C, can increase the productivity about three times to produce a hot forging product, has excellent lubricating action and oxidation resistance, The life and performance of the mold can be improved.

도 1은 본 발명의 일 실시예에 따른 열간단조금형의 표면처리방법을 나타내
는 순서도
도 2는 도 1에 의해 표면처리된 열간단조금형의 구조도
도 3은 본 발명의 다른 실시예에 따른 열간단조금형의 표면처리방법을 나타
내는 순서도
도 4는 도 3에 의해 표면처리된 열간단조금형의 구조도
FIG. 1 shows a surface treating method of a hot forging mold according to an embodiment of the present invention
Flowchart
Fig. 2 is a structural view of a hot forging die surface-
3 illustrates a method of surface treatment of a hot forging die according to another embodiment of the present invention
Flow chart
Fig. 4 is a structural view of the hot forging die surface-treated by Fig.

이하에서 도면을 참조하여 본 발명의 바람직한 실시예를 설명한다.Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

도 1은 본 발명의 일 실시예에 따른 열간단조금형의 표면처리방법을 나타내는 순서도이고, 도 2는 도 1에 의해 표면처리된 열간단조금형의 구조도이다.FIG. 1 is a flowchart showing a surface treatment method of a hot forging die according to an embodiment of the present invention, and FIG. 2 is a structural view of a hot forging die surface-treated by FIG.

본 발명은 다음과 같은 방법으로 이루어진다.The present invention is accomplished in the following manner.

소재 SKD-61 등을 이용하여 열간단조금형(10)을 성형한다. 이때 열간단조금형(10)의 표면은 열간단조 제품(단조품)을 만들기 위한 요철이 형성되어 2D나 3D 형상부위(10a)를 갖게 된다.The hot forging die 10 is formed by using the material SKD-61 or the like. At this time, the surface of the hot forging die 10 is formed with irregularities for forming hot forging products (forgings) to have a 2D or 3D shape portion 10a.

성형된 열간단조금형(10)을 진공로에 투입하여 진공 열처리한다(S10). 즉, 열간단조금형을 진공로 내에 셋팅하고 적당한 진공도를 유지하도록 진공펌프를 가동한 후, 진공로의 탄소히터에 전원을 공급하면 탄소히터가 발열되어 열간단조금형이 목표온도까지 가열된다.The formed hot forging die 10 is put into a vacuum furnace and subjected to a vacuum heat treatment (S10). That is, after the hot forging mold is set in the vacuum furnace and the vacuum pump is operated so as to maintain a proper degree of vacuum, when the carbon heater of the vacuum furnace is supplied with electric power, the carbon heater is heated and the hot forging mold is heated to the target temperature.

이와 같은 상태로 적당한 시간을 유지시키고 난 후, 진공로 내로 가압된(2~4bar) 질소가스를 투입하여 열간단조금형을 냉각시킴으로써 담금질작업을 완료하고, 다시 약 500℃∼600℃로 가열하여서 템퍼링(tempering) 작업을 2회 이상 실시하여 열처리를 완료한다. 이러한 과정을 통해 열간단조금형(10)의 표면에 열처리층(12)이 형성된다.After maintaining the appropriate time in such a state, the quenching operation is completed by cooling the hot forging mold with nitrogen gas which is pressurized (2 to 4 bar) into the vacuum furnace, and then heated to about 500 ° C. to 600 ° C., the heat treatment is completed by performing the tempering operation twice or more. Through this process, the heat treatment layer 12 is formed on the surface of the hot forging die 10.

이어서 마이크로블라스팅(micro-blasting) 장비를 이용해 열처리층(12)이 형성된 열간단조금형(10)의 표면을 마이크로블라스팅 처리하여 열간단조금형(10)의 표면조도를 향상시킨다(S12). 마이크로블라스팅은 아주 미세한 분말을 열간단조금형의 표면에 압축고압가스나 고압공기로 분사하여 표면을 처리하는 건식 정밀 표면처리 기술이다.Subsequently, the surface of the hot forging die 10 on which the heat treatment layer 12 is formed is micro-blasted by micro-blasting equipment to improve the surface roughness of the hot forging die 10 (S12). Micro blasting is a dry precision surface treatment technology that processes fine fine powder by spraying with compressed high-pressure gas or high-pressure air on the surface of hot forging mold.

본 과정에서는 상기 열간단조금형(10)의 2D나 3D 형상부위의 열처리층(12) 표면을 마이크로블라스팅 처리하여 연마하되, 그 표면 거칠기가 2~ 3㎛의 범위가 되도록 한다. 여기서, 표면 거칠기를 2㎛ 미만으로 하면 효과대비 처리비용이 증가하고, 표면 거칠기가 3㎛을 초과하면 표면조도 향상 효과가 미미하므로 바람직하지 않다. In this process, the surface of the heat treatment layer 12 in the 2D or 3D shape portion of the hot forging die 10 is micro-blasted and polished so that the surface roughness is in the range of 2 to 3 탆. Here, if the surface roughness is less than 2 탆, the treatment cost for the effect increases, and if the surface roughness exceeds 3 탆, the surface roughness improving effect is insignificant.

이와 같이 마이크로블라스팅 처리를 한 후에는 열간단조금형(10)을 알코올로 세척하고, 100℃ 정도의 온도로 건조한다.After micro-blasting, the hot forging mold 10 is washed with alcohol and dried at a temperature of about 100 ° C.

마이크로블라스팅 처리된 열간단조금형(10)을 500℃ 정도의 진공로 내에 셋팅하고 질소화합물을 투입하여 이온질화 열처리를 수행한다(S14).The micro-blasted hot forging die 10 is set in a vacuum furnace at about 500 DEG C, and a nitrogen compound is introduced to perform an ion nitriding heat treatment (S14).

즉, 상기 열간단조금형(10)을 진공로 내부에서 전압을 인가시키면 글로우방전현상이 발생되어 열간단조금형(10)에 플라즈마 환관층이 형성되는데, 이 상태에서 진공로 내부에 질소화합물을 공급하면 질소화합물이 이온화되면서 고속으로 열간단조금형에 충돌하여 표면의 산화피막을 제거하고, 열을 발생하면서 이온화된 원자를 흡착시켜 열간단조금형(10) 내측으로 침투 확산하여 열간단조금형조(10) 표면 경도를 상승시킨다.That is, when a voltage is applied to the hot forging die 10 in a vacuum furnace, a glow discharge phenomenon occurs, and a plasma torch layer is formed in the hot forging mold 10. In this state, when a nitrogen compound is supplied into the vacuum furnace The nitrogen compound is ionized and collides with the hot forging die at a high speed to remove the oxide film on the surface and adsorb the ionized atoms while generating heat to penetrate and diffuse into the hot forging die 10, The hardness is increased.

이를 통해 열처리층(12)의 표면에 이온질화층(14)이 형성된다. 이때 이온질화층(14)의 두께는 180㎛ 이상이고 경도는 HV 1,064 이상이다. 상기 2D나 또는 3D 형상부위(10a)의 이온질화층(14)은 마이크로블라스팅 처리에 의해 강한 충격을 흡수하는 기능을 수행한다.Through this, the ion-nitrided layer 14 is formed on the surface of the heat-treated layer 12. At this time, the thickness of the ion nitrifying layer 14 is 180 占 퐉 or more and the hardness is HV 1,064 or more. The ion nitriding layer 14 of the 2D or 3D shape portion 10a performs a function of absorbing a strong impact by microblasming treatment.

마이크로블라스팅(micro-blasting) 장비를 이용해 이온질화층(14)이 형성된 열간단조금형(10)의 표면을 마이크로블라스팅 처리하여 표면의 조도를 향상시킨다(S16).The surface of the hot forging die 10 on which the ion nitrifying layer 14 is formed is micro-blasted by micro-blasting equipment to improve the surface roughness (S16).

이때 요철이 형성된 2D나 3D 형상부위의 이온질화층(14) 표면을 마이크로블라스팅 처리하여 연마하되, 그 표면 거칠기가 2~3㎛ 범위가 되도록 한다. 여기서, 표면 거칠기를 2㎛ 미만으로 하는 경우에는 효과대비 처리비용이 증가하고, 표면 거칠기가 3㎛를 초과하는 경우에는 그 효과를 얻을 수 없다.At this time, the surface of the ion-nitrided layer 14 in the 2D or 3D shape where the unevenness is formed is micro-blasted and polished so that the surface roughness is in the range of 2 to 3 μm. Here, when the surface roughness is less than 2 탆, the treatment cost for the effect increases, and when the surface roughness exceeds 3 탆, the effect can not be obtained.

상기 마이크로블라스팅 처리 후에는 알코올로 세척한 상태에서 약 100℃의 온도로 건조한다. After the micro-blasting, it is dried at a temperature of about 100 ° C in a state of being washed with alcohol.

그리고 상기 이온질화층(14) 표면을 TiAlCrN 시편으로 PVD 진공 코팅한다(S18). 이를 통해 이온질화층(14)의 표면에 코팅층(16)이 형성된다. 이때 코팅층(16)의 두께는 12㎛ 이상이고 경도는 HV 3,300 이상이다. Then, the surface of the ion nitriding layer 14 is vacuum-coated with a TiAlCrN specimen by PVD (S18). Whereby the coating layer 16 is formed on the surface of the ion nitrifying layer 14. The thickness of the coating layer 16 is 12 占 퐉 or more and the hardness is 3,300 or more.

도 3은 본 발명의 다른 실시예에 따른 열간단조금형의 표면처리방법을 나타내는 순서도이고, 도 4는 도 3에 의해 표면처리된 열간단조금형의 구조도이다.FIG. 3 is a flowchart showing a surface treatment method of a hot forging die according to another embodiment of the present invention, and FIG. 4 is a structural view of a hot forging die surface-treated by FIG.

본 실시예에서는 소재 SKD-61 등을 이용하여 열간단조금형(10)을 제작한다. 이때 열간단조금형(10)의 표면은 열간단조 제품을 만들기 위한 요철이 형성되어 2D나 3D 형상부위(10a)를 갖게 된다.In this embodiment, the hot forging die 10 is manufactured using the material SKD-61 or the like. At this time, the surface of the hot forging die 10 is formed with irregularities for forming a hot forging product to have a 2D or 3D shape portion 10a.

제조된 열간단조금형(10)을 먼저, 진공로에 투입하여 진공 열처리한다(S30). 즉, 열간단조금형(10)을 진공로 내에 셋팅하고 적당한 진공도를 유지하도록 진공펌프를 가동한 후, 탄소히터에 전원을 공급하면 저항에 의한 발열로 열간단조금형(10)이 목표온도까지 가열된다.The manufactured hot forging die 10 is first put in a vacuum furnace and subjected to a vacuum heat treatment (S30). That is, when the hot forging die 10 is set in a vacuum furnace and a vacuum pump is operated to maintain a proper degree of vacuum, when the power is supplied to the carbon heater, the hot forging die 10 is heated to the target temperature by the heat generated by the resistance .

이와 같은 상태로 적당한 시간을 유지시키고 난 후, 진공로 내로 가압된(24bar) 질소가스를 투입하여 냉각시킴으로서 담금질작업을 완료하고, 다시 약 500℃∼600℃로 가열하여서 템퍼링(tempering) 작업을 2회 이상 실시하여 열처리를 완료한다. 이를 통해 열간단조금형(10)의 표면에 열처리층(12)이 형성된다.After maintaining the appropriate time in this state, the quenching operation is completed by cooling the nitrogen gas which is pressurized (24 bar) into the vacuum furnace, and the quenching operation is again performed, and the tempering operation is again performed at about 500 ° C. to 600 ° C. And the heat treatment is completed. Whereby the heat treatment layer 12 is formed on the surface of the hot forging die 10.

다음, 마이크로블라스팅(micro-blasting) 장비를 이용해 열처리층(12)이 형성된 열간단조금형(10)의 표면을 마이크로블라스팅 처리하여 표면의 조도를 향상시킨다(S32).Next, the surface of the hot forging mold 10 having the heat treatment layer 12 formed thereon is micro-blasted by micro-blasting equipment to improve the surface roughness (S32).

상기 마이크로블라스팅은 아주 미세한 분말을 열간단조금형의 표면에 압축고압가스나 고압공기로 분사하여 표면을 처리하는 건식 정밀 표면처리 기술이다. 이때 요철이 형성된 2D나 3D 형상부위의 열처리층(12) 표면을 마이크로블라스팅 처리하여 연마하되, 그 표면 거칠기가 2 ~ 3㎛ 범위가 되도록 한다. 여기서, 표면 거칠기를 2㎛ 미만으로 하는 경우에는 효과대비 처리비용이 증가하고, 표면 거칠기가 3㎛를 초과하는 경우에는 그 효과를 얻을 수 없다.The microblasting is a dry precision surface treatment technique in which very fine powder is sprayed on the surface of a hot forging mold with compressed high-pressure gas or high-pressure air to treat the surface. At this time, the surface of the heat treatment layer 12 in the 2D or 3D shape area where the unevenness is formed is micro-blasted and polished so that the surface roughness is in the range of 2 to 3 mu m. Here, when the surface roughness is less than 2 탆, the treatment cost for the effect increases, and when the surface roughness exceeds 3 탆, the effect can not be obtained.

상기 마이크로블라스팅 처리 후에는 알코올로 세척한 상태에서 약 100℃의 온도로 건조한다.After the micro-blasting, it is dried at a temperature of about 100 ° C in a state of being washed with alcohol.

다음, 연마된 열간단조금형(10)을 약 500℃의 진공로 내에 셋팅하고 질소화합물을 투입하여 이온질화 열처리를 수행한다(S34). 즉, 상기 열간단조금형(10)을 진공로 내부에서 전압을 인가시키면 글로우방전현상이 발생되어 열간단조금형(10)에 플라즈마 환관층이 형성된 상태에서 진공로 내부에 질소화합물을 공급하면 이온화되면서 고속으로 열간단조금형에 충돌하여 표면의 산화피막을 제거하고, 열을 발생하면서 이온화된 원자를 흡착시켜 열간단조금형(10) 내측으로 침투 확산하여 열간단조금형조(10) 표면 경도를 상승시킨다.Next, the polished hot forging die 10 is set in a vacuum furnace at about 500 DEG C, and a nitrogen compound is introduced to perform an ion nitriding heat treatment (S34). That is, when a voltage is applied to the hot forging metal mold 10 in a vacuum furnace, a glow discharge phenomenon occurs and a nitrogen compound is supplied to the inside of the vacuum furnace in a state where a plasma torch layer is formed on the hot forging metal mold 10, To collide with the hot forging die to remove the oxide film on the surface and adsorb the ionized atoms while generating heat to penetrate and diffuse into the hot forging die 10 to increase the surface hardness of the die 10.

이를 통해 열처리층(12)의 표면에 이온질화층(14)이 형성된다. 이때 이온질화층(14)의 두께는 180㎛ 이상이고 경도는 HV 1,064 이상이다. 상기 2D나 또는 3D 형상부위(10a)의 이온질화층(14)은 마이크로블라스팅 처리에 의해 강한 충격을 흡수하는 기능을 수행한다.Through this, the ion-nitrided layer 14 is formed on the surface of the heat-treated layer 12. At this time, the thickness of the ion nitrifying layer 14 is 180 占 퐉 or more and the hardness is HV 1,064 or more. The ion nitriding layer 14 of the 2D or 3D shape portion 10a performs a function of absorbing a strong impact by microblasming treatment.

다음, 마이크로블라스팅(micro-blasting) 장비를 이용해 이온질화층(14)이 형성된 열간단조금형(10)의 표면을 마이크로블라스팅 처리하여 표면의 조도를 향상시킨다(S36).Next, the surface of the hot forging die 10 on which the ion nitrifying layer 14 is formed is micro-blasted by micro-blasting equipment to improve the surface roughness (S36).

이때 요철이 형성된 2D나 3D 형상부위의 이온질화층(14) 표면을 마이크로블라스팅 처리하여 연마하되, 그 표면 거칠기가 2 ~ 3㎛의 범위가 되도록 한다. 여기서, 표면 거칠기를 2㎛ 미만으로 하는 경우에는 효과대비 처리비용이 증가하고, 표면 거칠기가 3㎛를 초과하는 경우에는 그 효과를 얻을 수 없다. At this time, the surface of the ion-nitrided layer 14 in the 2D or 3D shape where the unevenness is formed is micro-blasted and polished so that the surface roughness is in the range of 2 to 3 μm. Here, when the surface roughness is less than 2 탆, the treatment cost for the effect increases, and when the surface roughness exceeds 3 탆, the effect can not be obtained.

상기 마이크로블라스팅 처리 후에는 알코올로 세척한 상태에서 약 100℃의 온도로 건조한다.After the micro-blasting, it is dried at a temperature of about 100 ° C in a state of being washed with alcohol.

다음, 상기 열간단조금형(10)의 2D나 3D 형상부위(10a)를 갖는 상부와 전극부위를 갖는 하부를 제외하고 이온질화층(14)의 측면에 실리콘과 같은 절연액을 스프레이하거나 붓으로 도포한 후 열을 가해 이온질화층(14)의 측면에 3~5㎛ 두께의 절연층(15)을 형성한다(S38).Next, an insulating liquid such as silicon is sprayed on the side of the ion-nitrided layer 14 except for the upper portion having the 2D or 3D shape portion 10a of the hot forging mold 10 and the lower portion having the electrode portion, After that, heat is applied to form an insulating layer 15 having a thickness of 3 to 5 mu m on the side surface of the ion nitrifying layer 14 (S38).

이때 절연액은 800℃의 고온에 견디며 전류를 차단한다. 그리고 2D나 3D 형상부위(10a)의 이온질화층(14) 표면에만 TiAlCrN 시편으로 PVD 진공 코팅한다(S40). 상기 S38단계에 의해 이온질화층(14)의 측면에 절연층(15)이 형성되어 있음으로써 PVD 진공 코팅시 생기는 전력을, 절연층(15)을 형성하지 않을 때보다 줄일수 있다. At this time, the insulating liquid can withstand a high temperature of 800 ° C and cut off the current. Then, PVD vacuum coating is performed on the surface of the ion nitriding layer 14 of the 2D or 3D shaped portion 10a with a TiAlCrN sample (S40). Since the insulating layer 15 is formed on the side surface of the ion nitrifying layer 14 by the step S38, the electric power generated by the PVD vacuum coating can be reduced as compared with the case where the insulating layer 15 is not formed.

이를 통해 2D나 3D 형상부위의 이온질화층(14) 표면에 코팅층(16)이 형성된다. 이때 코팅층(16)의 두께는 12㎛ 이상이고 경도는 HV 3,300 이상이다.Thus, the coating layer 16 is formed on the surface of the ion-nitrided layer 14 in the 2D or 3D shape region. The thickness of the coating layer 16 is 12 占 퐉 or more and the hardness is 3,300 or more.

이상에서 본 발명에 대한 기술 사상을 첨부 도면과 함께 서술하였지만, 이는Although the technical idea of the present invention has been described above with reference to the accompanying drawings,

본 발명의 바람직한 실시예를 예시적으로 설명한 것이지 본 발명을 한정하는 것은 아니다. 또한, 이 기술 분야의 통상의 지식을 가진 자라면 누구나 본 발명의 기술 사상의 범주를 이탈하지 않는 범위 내에서 다양한 변형 및 모방이 가능함은 명백한 사실이다The preferred embodiments of the present invention have been described by way of illustration and not by way of limitation. Further, it is obvious that various modifications and variations can be made without departing from the scope of the technical idea of the present invention by anyone having ordinary skill in the art

10: 열간단조금형 10a: 형상부위
12: 열처리층 14: 이온질화층
15: 절연층 16: 코팅층
10: hot forging die 10a:
12: heat treatment layer 14: ion nitriding layer
15: insulation layer 16: coating layer

Claims (5)

(a) 단조품을 만들기 위한 2D나 3D 형상부위를 갖는 열간단조금형을 진공로에 투입, 진공 열처리하여 열간단조금형의 표면에 열처리층을 형성하는 단계;
(b) 진공로 내에 열처리층이 형성된 열간단조금형을 투입하고 질소화합물을
공급, 이온질화 열처리를 수행하여 열처리층의 표면에 이온질화층을 형성하는 단계;
(c) 상기 이온질화층이 형성된 열간단조금형의 상부와 하부를 제외하고 이온
질화층의 측면에 절연액을 도포하여 절연층을 형성하는 단계; 및
(d) 상기 2D나 3D 형상부위의 이온질화층 표면을 TiAlCrN 시편으로 PVD진공 코팅하여 코팅층을 형성하는 단계; 를 포함하는 열간단조금형의 표면처리방법.
(a) forming a heat treatment layer on a surface of a hot forging die by injecting a hot forging die having a 2D or 3D shape portion for forming a forging product into a vacuum furnace and performing vacuum heat treatment;
(b) A hot forging mold having a heat treatment layer formed in a vacuum furnace is introduced and a nitrogen compound
Supplying and ion-nitriding heat treatment to form an ion-nitrided layer on the surface of the heat-treated layer;
(c) except for the upper and lower portions of the hot forging die in which the ion nitriding layer is formed,
Forming an insulating layer by applying an insulating liquid to a side surface of the nitride layer; And
(d) forming a coating layer by PVD vacuum coating the surface of the ion-nitrided layer in the 2D or 3D shape with a TiAlCrN sample; And the surface of the hot forging die is heated.
제1항에 있어서,
상기 절연층의 두께는 3 ~ 5㎛인 것을 특징으로 하는 열간단조금형의 표면처리방법.
The method according to claim 1,
Wherein the thickness of the insulating layer is 3 to 5 占 퐉.
제1항에 있어서,
상기 (a)단계나 (b)단계 이후에 2D나 3D 형상부위의 열처리층이나 이온질화
층 표면을 마이크로블라스팅 처리하여 표면 거칠기가 2~3㎛ 되도록 연마하는 단계를 더 수행하는 열간단조금형의 표면처리방법.
The method according to claim 1,
After the step (a) or the step (b), a heat treatment layer in a 2D or 3D shape region,
Wherein the surface of the layer is micro-blasted to polish the surface layer to a surface roughness of 2 to 3 占 퐉.
제1항에 있어서,
상기 이온질화층의 두께는 180㎛ 이상이고 경도는 HV 1,064 이상이며, 상기 코팅층의 두께는 12㎛ 이상이고 경도는 HV 3,300 이상인 것을 특징으로 하는 열간단조금형의 표면처리방법.
The method according to claim 1,
Wherein the ion nitriding layer has a thickness of 180 占 퐉 or more and a hardness of HV 1,064 or more and a thickness of the coating layer is 12 占 퐉 or more and a hardness of HV is 3,300 or more.
진공 열처리에 의해 단조품을 만들기 위한 2D나 3D 형상부위를 갖는 열간단조금형의 표면에 형성된 열처리층;
이온질화 열처리 수행에 의해 상기 열처리층의 표면에 형성된 이온질화층;
절연액 도포에 의해 상기 이온질화층의 측면에 형성된 절연층; 및
TiAlCrN 시편의 PVD 진공 코팅에 의해 2D나 3D 형상부위의 이온질화층 표면에 형성된 코팅층;을 포함하는 것을 특징으로 하는 열간단조금형.
A heat treatment layer formed on a surface of a hot forging die having a 2D or 3D shape part for making a forgings product by vacuum heat treatment;
An ion nitriding layer formed on the surface of the heat treatment layer by performing an ion nitriding heat treatment;
An insulating layer formed on a side surface of the ion nitriding layer by applying an insulating liquid; And
And a coating layer formed on the surface of the ion nitriding layer in a 2D or 3D shape region by PVD vacuum coating of the TiAlCrN specimen.
KR1020160051619A 2016-04-27 2016-04-27 Surface treatment method of hot forging mold and the hot forging mold KR101719452B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160051619A KR101719452B1 (en) 2016-04-27 2016-04-27 Surface treatment method of hot forging mold and the hot forging mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160051619A KR101719452B1 (en) 2016-04-27 2016-04-27 Surface treatment method of hot forging mold and the hot forging mold

Publications (1)

Publication Number Publication Date
KR101719452B1 true KR101719452B1 (en) 2017-03-23

Family

ID=58496245

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160051619A KR101719452B1 (en) 2016-04-27 2016-04-27 Surface treatment method of hot forging mold and the hot forging mold

Country Status (1)

Country Link
KR (1) KR101719452B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102157268B1 (en) * 2019-03-11 2020-09-17 (주)국민진공 After treatment method of metal mold
CN113878219A (en) * 2021-09-08 2022-01-04 北京机电研究所有限公司 Preparation method of large-scale die blank for isothermal forging
KR102602591B1 (en) * 2023-04-06 2023-11-16 (주)동아진공열처리 Surface treatment method for regenerating dqmage mold

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000343151A (en) * 1999-06-03 2000-12-12 Komatsu Ltd Punch press die and manufacture thereof
KR100327741B1 (en) 1999-09-14 2002-03-15 박도봉 Method for surface treatment of forging die
JP2009061464A (en) * 2007-09-05 2009-03-26 Daido Steel Co Ltd Die for warm and hot forging, and its manufacturing method
KR20100107874A (en) 2009-03-27 2010-10-06 (주)성창공업 A method for the surface treatmet of mold

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000343151A (en) * 1999-06-03 2000-12-12 Komatsu Ltd Punch press die and manufacture thereof
KR100327741B1 (en) 1999-09-14 2002-03-15 박도봉 Method for surface treatment of forging die
JP2009061464A (en) * 2007-09-05 2009-03-26 Daido Steel Co Ltd Die for warm and hot forging, and its manufacturing method
KR20100107874A (en) 2009-03-27 2010-10-06 (주)성창공업 A method for the surface treatmet of mold

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102157268B1 (en) * 2019-03-11 2020-09-17 (주)국민진공 After treatment method of metal mold
CN113878219A (en) * 2021-09-08 2022-01-04 北京机电研究所有限公司 Preparation method of large-scale die blank for isothermal forging
CN113878219B (en) * 2021-09-08 2022-07-19 北京机电研究所有限公司 Preparation method of large-scale die blank for isothermal forging
KR102602591B1 (en) * 2023-04-06 2023-11-16 (주)동아진공열처리 Surface treatment method for regenerating dqmage mold

Similar Documents

Publication Publication Date Title
US11014195B2 (en) Steel welding component with aluminum or aluminum alloy coating, and preparation method therefor
US20120291510A1 (en) Hot press forming process of plated steel and hot press formed articles using the same
KR101719452B1 (en) Surface treatment method of hot forging mold and the hot forging mold
JP6084996B2 (en) Strengthening adhesion of low temperature ceramic coating
KR20170067839A (en) Cold-rolled and recrystallisation annealed flat steel product, and method for the production thereof
Plotnikova et al. Formation of high-carbon abrasion-resistant surface layers when high-energy heating by high-frequency currents
CN103205551A (en) Thermal treatment processing method of thrust wheel
CN107058939A (en) Nitrogen spring plunger rod(Piston rod)Technology for Heating Processing
CN108202292B (en) Method for manufacturing aluminum target
JP6590213B2 (en) Manufacturing method of cold working mold
CN111118436A (en) Co-based-WC/TiN/TiCN composite coating and cold punching die repairing method
RU2419676C1 (en) Procedure for ion-vacuum nitriding long-length steel part in glow discharge
JP2000343151A (en) Punch press die and manufacture thereof
JP2014040657A (en) Hardening method of steel member
JP2003253422A (en) Method for prolonging service life of tool such as mandrel and forming die, and tool of prolonged service life such as mandrel and forming die
RU2664106C2 (en) Method of low-temperature ionic nitration of steel parts
Chang et al. Deposition of DLC/oxynitriding Films onto JIS SKD11 Steel by Bipolar-pulsed PECVD
EP3054026A1 (en) Method of combined surface treatment of tool steels
CN105296940A (en) Carbonitriding and vacuum ion plating vanadium technology for engine timing chain pin shaft
RU2631572C1 (en) Method of applying multilayer ion-plasma coating on stamp engraving surface from heat-resistant steel
Kumar et al. Impact of forging conditions on plasma nitrided hot-forging dies and punches
RU2766388C1 (en) Method for surface treatment on steel parts
RU2763467C1 (en) Method for forming a protective coating on the surface of a steel threaded shaft of a threaded connection of a device for balancing automobile wheels
CN107900266A (en) A kind of forging technology of machinery forging
RU2455386C1 (en) Method to process long steel part

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20200122

Year of fee payment: 4