JP2013091590A - Ferrite composition for noncontact type temperature measurement - Google Patents

Ferrite composition for noncontact type temperature measurement Download PDF

Info

Publication number
JP2013091590A
JP2013091590A JP2011236289A JP2011236289A JP2013091590A JP 2013091590 A JP2013091590 A JP 2013091590A JP 2011236289 A JP2011236289 A JP 2011236289A JP 2011236289 A JP2011236289 A JP 2011236289A JP 2013091590 A JP2013091590 A JP 2013091590A
Authority
JP
Japan
Prior art keywords
temperature
magnetic flux
flux density
ferrite composition
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011236289A
Other languages
Japanese (ja)
Other versions
JP5741377B2 (en
Inventor
栄光 ▲高▼木
Eiko Takagi
Ko Ito
綱 伊藤
Mamoru Ito
守 伊藤
Tatsuya Kawaguchi
達哉 川口
Hirokatsu Sasaki
弘勝 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2011236289A priority Critical patent/JP5741377B2/en
Publication of JP2013091590A publication Critical patent/JP2013091590A/en
Application granted granted Critical
Publication of JP5741377B2 publication Critical patent/JP5741377B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ferrite composition for noncontact type temperature measurement which is usable suitably as a part of a temperature sensor for measuring a temperature from the outside.SOLUTION: This ferrite composition for noncontact type temperature measurement has a main component constituted of 48.0-49.7 mol% iron oxide in terms of FeO, 29.0-30.35 mol% zinc oxide in terms of ZnO, 5.5-6.8 mol% copper oxide in terms of CuO, and magnesium oxide as the residue, and further includes 30-350 ppm silicon oxide in terms of SiOwith respect to the 100 wt% main component as a sub-component.

Description

本発明は、検査対象に接触することなく外部から温度計測するための温度センサの一部として好適に用いることができる非接触式温度計測用フェライト組成物に関する。   The present invention relates to a non-contact temperature measurement ferrite composition that can be suitably used as part of a temperature sensor for measuring temperature from the outside without contacting an inspection object.

たとえば、密封された状態で販売される缶飲料や瓶詰飲料等は、温度管理に際して、商品を開封して内部の液温を測定することができない。そのため、通常、このような飲料等の温度管理は、冷却加温機能のある保温機や自動販売機等の庫内の温度を飲料等の液温と擬制して、庫内の温度を商品の販売に適した液温(例えば、55〜60℃)に制御するのが一般的である(特許文献1)。   For example, for canned beverages and bottled beverages sold in a sealed state, the temperature of the liquid cannot be measured by opening the product during temperature control. For this reason, in general, such temperature management of beverages and the like is carried out by imitating the temperature in the cabinet of a heat retaining machine or vending machine with a cooling and heating function as the liquid temperature of the beverage or the like, and the temperature in the cabinet is controlled by the product temperature. It is common to control the liquid temperature suitable for sale (for example, 55 to 60 ° C.) (Patent Document 1).

しかし、庫内の温度を飲料等の液温と擬制する方法では、実際の液温を正確に把握することが困難であった。   However, it has been difficult to accurately grasp the actual liquid temperature by the method of imitating the temperature in the cabinet with the liquid temperature of a beverage or the like.

特にホット飲料等の場合、過剰な加熱は、品質劣化や容器の破損等を招くおそれがあり、また、加熱不足は、適温(例えば55〜60℃)に達しないまま販売される等の問題があるため、的確な温度制御が求められ、実際の飲料の液温の正確な把握が求められていた。   In particular, in the case of hot beverages and the like, excessive heating may cause deterioration of quality, breakage of containers, etc., and insufficient heating may cause problems such as being sold without reaching an appropriate temperature (for example, 55 to 60 ° C.). Therefore, accurate temperature control is required, and accurate grasp of the actual beverage liquid temperature is required.

特開平5−166051号公報Japanese Patent Laid-Open No. 5-166051

本発明は、このような実状に鑑みてなされ、その目的は、外部から検査対象に接触することなく、検査対象の液温が所定の温度(55〜60℃)に達したことを外部から正確に把握することができる温度センサの一部として好適に用いることができる非接触式温度計測用フェライト組成物を提供することである。   The present invention has been made in view of such a situation, and an object thereof is to accurately confirm from the outside that the liquid temperature of the inspection object has reached a predetermined temperature (55 to 60 ° C.) without contacting the inspection object from the outside. It is to provide a non-contact type temperature measurement ferrite composition that can be suitably used as part of a temperature sensor that can be grasped.

上記目的を達成するために、本発明に係る非接触式温度計測用フェライト組成物は、
酸化鉄をFe換算で48.0〜49.7モル%、酸化亜鉛をZnO換算で29.0〜30.35モル%、酸化銅をCuO換算で5.5〜6.8モル%、残部が酸化マグネシウムで構成される主成分を有し、主成分100重量%に対して、副成分として、酸化ケイ素をSiO換算で30〜350ppm含むことを特徴とする。
In order to achieve the above object, the ferrite composition for non-contact temperature measurement according to the present invention,
Iron oxide is 48.0 to 49.7 mol% in terms of Fe 2 O 3 , zinc oxide is 29.0 to 30.35 mol% in terms of ZnO, and copper oxide is 5.5 to 6.8 mol% in terms of CuO. The balance has a main component composed of magnesium oxide, and 30 to 350 ppm of silicon oxide in terms of SiO 2 is contained as an accessory component with respect to 100% by weight of the main component.

本発明に係る非接触式温度計測用フェライト組成物によれば、室温付近では高い磁束密度を有するものの、55〜60℃の温度において、磁束密度が急激に変化する。すなわち、この温度範囲において磁束密度の変化率が最大となる。その磁束の変化を計測することで、測定対象の温度(たとえばホット飲料等の販売に適正な温度の上限)を計測することが可能となる。したがって、本発明に係る非接触式温度計測用フェライト組成物を、たとえば粒子状にしてダミーとなる検査対象に注入し、外部から磁束の変化を計測することで、非接触式な温度計測が可能となる。   According to the ferrite composition for non-contact temperature measurement according to the present invention, the magnetic flux density changes rapidly at a temperature of 55 to 60 ° C. although it has a high magnetic flux density near room temperature. That is, the change rate of the magnetic flux density becomes maximum in this temperature range. By measuring the change in the magnetic flux, it is possible to measure the temperature to be measured (for example, the upper limit of the temperature appropriate for selling hot beverages, etc.). Therefore, non-contact type temperature measurement is possible by injecting the ferrite composition for non-contact type temperature measurement according to the present invention into a dummy inspection object, for example, in the form of particles, and measuring the change in magnetic flux from the outside. It becomes.

図1(a)および図1(b)は本発明の一実施形態に係る非接触式温度計測用フェライト組成物で構成された感温磁性体を有する非接触式温度計測システムの概念図である。FIG. 1A and FIG. 1B are conceptual diagrams of a non-contact temperature measurement system having a temperature-sensitive magnetic body composed of a ferrite composition for non-contact temperature measurement according to an embodiment of the present invention. . 図2は本発明に係る非接触式温度計測用フェライト組成物における温度と磁束密度の関係を示すグラフである。FIG. 2 is a graph showing the relationship between temperature and magnetic flux density in the non-contact temperature measurement ferrite composition according to the present invention. 図3は本発明の実施例および比較例に係る非接触式温度計測用フェライト組成物における温度と磁束密度の関係を示すグラフである。FIG. 3 is a graph showing the relationship between the temperature and the magnetic flux density in the non-contact temperature measurement ferrite compositions according to Examples and Comparative Examples of the present invention.

以下、本発明を、図面に示す実施形態に基づき説明する。
本実施形態に係るフェライト組成物はMg−Zn系のフェライト組成物であり、主成分として酸化鉄、酸化亜鉛、酸化銅、酸化マグネシウムを含有し、副成分として、酸化ケイ素を含む。
Hereinafter, the present invention will be described based on embodiments shown in the drawings.
The ferrite composition according to this embodiment is an Mg—Zn-based ferrite composition, containing iron oxide, zinc oxide, copper oxide, and magnesium oxide as main components, and silicon oxide as a subcomponent.

具体的には、本実施形態に係るフェライト組成物は、
酸化鉄をFe換算で48.0〜49.7モル%、好ましくは48.0〜49.1モル%、
酸化亜鉛をZnO換算で29.0〜30.35モル%、好ましくは29.0〜30.0モル%、
酸化銅をCuO換算で5.5〜6.8モル%、好ましくは5.5〜6.5モル%、
残部が酸化マグネシウムで構成される主成分を有し、
主成分100重量%に対して、副成分として、酸化ケイ素をSiO換算で30〜350ppm、好ましくは30〜200ppm含む。
Specifically, the ferrite composition according to the present embodiment is
48.0 to 49.7 mol% of iron oxide calculated as Fe 2 O 3, preferably 48.0 to 49.1 mol%,
Zinc oxide in terms of ZnO is 29.0-30.35 mol%, preferably 29.0-30.0 mol%,
Copper oxide is 5.5 to 6.8 mol%, preferably 5.5 to 6.5 mol% in terms of CuO,
The remainder has a main component composed of magnesium oxide,
Silicon oxide is contained in an amount of 30 to 350 ppm, preferably 30 to 200 ppm in terms of SiO 2 as an accessory component with respect to 100% by weight of the main component.

本実施形態に係るフェライト組成物は、所定の温度以下では高い磁束密度を有するものの、所定の温度(55〜60℃)において、磁束密度が急激に変化する。上記組成範囲とすることにより、55〜60℃において、該フェライト組成物の磁束密度の急激な変化を観測することができる。   Although the ferrite composition according to the present embodiment has a high magnetic flux density below a predetermined temperature, the magnetic flux density changes abruptly at a predetermined temperature (55 to 60 ° C.). By setting it as the said composition range, the rapid change of the magnetic flux density of this ferrite composition can be observed in 55-60 degreeC.

本実施形態において、フェライト組成物の磁束密度が急激に変化する温度を変曲点とし、変曲点における磁束密度の変化率αは、1.2以上、より好ましくは1.4以上である。なお、磁束密度の変化率αが大きいことは、磁束密度の急激な変化を意味しており、変化率αが小さい場合に比べて、変曲点の判別が容易になるため好ましい。   In this embodiment, the temperature at which the magnetic flux density of the ferrite composition changes abruptly is taken as the inflection point, and the change rate α of the magnetic flux density at the inflection point is 1.2 or more, more preferably 1.4 or more. A large change rate α of the magnetic flux density means an abrupt change of the magnetic flux density, which is preferable because the inflection point can be easily determined as compared with the case where the change rate α is small.

酸化鉄の含有量が少ないと変曲点が所定の温度(55〜60℃)を下回る傾向にあり、酸化鉄の含有量が多いと磁束密度の変曲点が所定の温度(55〜60℃)を超える傾向にある。   When the content of iron oxide is small, the inflection point tends to be lower than a predetermined temperature (55 to 60 ° C.). When the content of iron oxide is large, the inflection point of magnetic flux density is a predetermined temperature (55 to 60 ° C.). ).

酸化亜鉛の含有量が少ないと磁束密度の変曲点が所定の温度(55〜60℃)を上回る傾向にあり、酸化亜鉛の含有量が多いと磁束密度の変曲点が所定の温度(55〜60℃)を下回る傾向にある。   When the content of zinc oxide is small, the inflection point of the magnetic flux density tends to exceed a predetermined temperature (55 to 60 ° C.), and when the content of zinc oxide is large, the inflection point of the magnetic flux density becomes the predetermined temperature (55 ˜60 ° C.).

酸化銅の含有量が少ないと磁束密度の変曲点が所定の温度(55〜60℃)を上回る傾向にあり、酸化銅の含有量が多いと磁束密度の変曲点が所定の温度(55〜60℃)を下回る傾向にある。   When the content of copper oxide is small, the inflection point of the magnetic flux density tends to exceed a predetermined temperature (55 to 60 ° C.), and when the content of copper oxide is large, the inflection point of the magnetic flux density is at a predetermined temperature (55 ˜60 ° C.).

酸化ケイ素の含有量は、主成分100重量%に対して、SiO換算で、30〜350ppm、好ましくは30〜200ppmである。酸化ケイ素の含有量が少ないと磁束密度の変曲点が所定の温度(55〜60℃)を下回る傾向にあり、酸化ケイ素の含有量が多いと磁束密度の変曲点が所定の温度(55〜60℃)を超える傾向にある。 The content of silicon oxide is 30 to 350 ppm, preferably 30 to 200 ppm in terms of SiO 2 with respect to 100% by weight of the main component. When the content of silicon oxide is small, the inflection point of the magnetic flux density tends to be lower than a predetermined temperature (55 to 60 ° C.). When the content of silicon oxide is large, the inflection point of the magnetic flux density is at a predetermined temperature (55 ˜60 ° C.).

また、本実施形態に係るフェライト組成物には、原料中の不可避的不純物元素の酸化物が数ppm〜数百ppm程度含まれ得る。   In addition, the ferrite composition according to the present embodiment may include about several ppm to several hundred ppm of inevitable impurity element oxides in the raw material.

具体的には、B、C、P、S、Cl、As、Se、Br、Te、Iや、Li、Na、Al、K、Ga、Ge、Sr、Cd、In、Sn、Sb、Ba、Pb、Bi等の典型金属元素や、Sc、Ti、V、Cr、Co、Ni、Y、Zr、Nb、Mo、Pd、Ag、Hf、Ta等の遷移金属元素が挙げられる。   Specifically, B, C, P, S, Cl, As, Se, Br, Te, I, Li, Na, Al, K, Ga, Ge, Sr, Cd, In, Sn, Sb, Ba, Examples include typical metal elements such as Pb and Bi, and transition metal elements such as Sc, Ti, V, Cr, Co, Ni, Y, Zr, Nb, Mo, Pd, Ag, Hf, and Ta.

次に、本実施形態に係るフェライト組成物の製造方法の一例を説明する。
まず、出発原料(主成分の原料および副成分の原料)を、所定の組成比となるように秤量して混合し、原料混合物を得る。混合する方法としては、たとえば、ボールミルを用いて行う湿式混合や、乾式ミキサーを用いて行う乾式混合が挙げられる。なお、平均粒径が0.1〜3μmの出発原料を用いることが好ましい。
Next, an example of a method for producing a ferrite composition according to this embodiment will be described.
First, starting materials (raw materials of main components and raw materials of subcomponents) are weighed and mixed so as to have a predetermined composition ratio to obtain a raw material mixture. Examples of the mixing method include wet mixing using a ball mill and dry mixing using a dry mixer. It is preferable to use a starting material having an average particle size of 0.1 to 3 μm.

主成分の原料としては、酸化鉄(α−Fe)、酸化亜鉛(ZnO)、酸化銅(CuO)、あるいは水酸化マグネシウム(Mg(OH))などを用いることができる。さらに、その他、焼成により上記した酸化物や複合酸化物となる各種化合物等を用いることができる。焼成により上記した酸化物になるものとしては、たとえば、金属単体、炭酸塩、シュウ酸塩、硝酸塩、水酸化物、ハロゲン化物、有機金属化合物等が挙げられる。なお、主成分中の酸化マグネシウムの含有量はMgO換算で計算されるが、主成分の原料としては、Mg(OH)が好ましく用いられる。 As a raw material of the main component, iron oxide (α-Fe 2 O 3 ), zinc oxide (ZnO), copper oxide (CuO), magnesium hydroxide (Mg (OH) 2 ), or the like can be used. In addition, various compounds that become oxides or composite oxides by firing can be used. Examples of the oxide that becomes the above-mentioned oxide upon firing include simple metals, carbonates, oxalates, nitrates, hydroxides, halides, organometallic compounds, and the like. The content of magnesium oxide in the main component is calculated in terms of MgO, but Mg (OH) 2 is preferably used as the main component material.

次に、原料混合物の仮焼きを行い、仮焼き材料を得る。仮焼きは、原料の熱分解、成分の均質化、フェライトの生成、焼結による超微粉の消失と適度の粒子サイズへの粒成長を起こさせ、原料混合物を後工程に適した形態に変換するために行われる。こうした仮焼きは、好ましくは800〜1100℃の温度で、通常1〜3時間程度行う。仮焼きは、大気(空気)中で行ってもよく、大気中よりも酸素分圧が高い雰囲気や純酸素雰囲気で行っても良い。なお、主成分の原料と副成分の原料との混合は、仮焼きの前に行なってもよく、仮焼き後に行なってもよい。   Next, the raw material mixture is calcined to obtain a calcined material. Calcining causes thermal decomposition of raw materials, homogenization of ingredients, formation of ferrite, disappearance of ultrafine powder due to sintering and grain growth to an appropriate particle size, and converts the raw material mixture into a form suitable for the subsequent process. Done for. Such calcination is preferably performed at a temperature of 800 to 1100 ° C. for about 1 to 3 hours. The calcination may be performed in the air (air), or may be performed in an atmosphere having a higher oxygen partial pressure or in a pure oxygen atmosphere than in the air. The mixing of the main component raw material and the subcomponent raw material may be performed before calcining or after calcining.

次に、仮焼き材料の粉砕を行い、粉砕材料を得る。粉砕は、仮焼き材料の凝集をくずして適度の焼結性を有する粉体とするために行われる。仮焼き材料が大きい塊を形成しているときには、粗粉砕を行ってからボールミルやアトライターなどを用いて湿式粉砕を行う。湿式粉砕は、仮焼き材料の平均粒径が、好ましくは1〜2μm程度となるまで行う。   Next, the calcined material is pulverized to obtain a pulverized material. The pulverization is performed in order to break down the coagulation of the calcined material to obtain a powder having appropriate sinterability. When the calcined material forms a large lump, wet pulverization is performed using a ball mill or an attritor after coarse pulverization. The wet pulverization is performed until the average particle diameter of the calcined material is preferably about 1 to 2 μm.

次に、粉砕材料の造粒(顆粒)を行い、造粒物を得る。造粒は、粉砕材料を適度な大きさの凝集粒子とし、成形に適した形態に変換するために行われる。こうした造粒法としては、たとえば、加圧造粒法やスプレードライ法などが挙げられる。スプレードライ法は、粉砕材料に、ポリビニルアルコールなどの通常用いられる結合剤を加えた後、スプレードライヤー中で霧化し、低温乾燥する方法である。   Next, the pulverized material is granulated (granular) to obtain a granulated product. The granulation is performed in order to convert the pulverized material into aggregated particles having an appropriate size and convert it into a form suitable for molding. Examples of such a granulation method include a pressure granulation method and a spray drying method. The spray drying method is a method in which a commonly used binder such as polyvinyl alcohol is added to the pulverized material, and then atomized in a spray dryer and dried at a low temperature.

次に、造粒物を所定形状に成形し、成形体を得る。造粒物の成形としては、たとえば、乾式成形、湿式成形、押出成形などが挙げられる。乾式成形法は、造粒物を、金型に充填して圧縮加圧(プレス)することにより行う成形法である。成形体の形状は、特に限定されず、用途に応じて適宜決定すればよい。   Next, the granulated product is molded into a predetermined shape to obtain a molded body. Examples of the molding of the granulated product include dry molding, wet molding, and extrusion molding. The dry molding method is a molding method in which a granulated product is filled in a mold and compressed and pressed (pressed). The shape of the molded body is not particularly limited, and may be appropriately determined according to the application.

次に、成形体の焼成を行う。焼成は、多くの空隙を含んでいる成形体の粉体粒子間に、融点以下の温度で粉体が凝着する焼結を起こさせ、緻密な焼結体を得るために行われる。こうした焼成は、好ましくは1000〜1200℃の温度で、通常1〜5時間程度行う。なお、昇温速度は好ましくは150〜250℃/時間、降温速度は好ましくは150〜250℃/時間である。焼成は、大気(空気)中で行ってもよく、大気中よりも酸素分圧が高い雰囲気で行っても良い。   Next, the molded body is fired. Firing is performed in order to obtain a dense sintered body by causing sintering in which the powder adheres at a temperature lower than the melting point between the powder particles of the compact including many voids. Such firing is preferably performed at a temperature of 1000 to 1200 ° C., usually for about 1 to 5 hours. The temperature rising rate is preferably 150 to 250 ° C./hour, and the temperature decreasing rate is preferably 150 to 250 ° C./hour. Firing may be performed in the air (air) or in an atmosphere having a higher oxygen partial pressure than in the air.

次に得られた焼結体を粉砕し、本実施形態のフェライト粉末を得る。粉砕にはバイブミルもしくはジョークラッシャー等を用い行う。フェライト粉末の粒径は、好ましくは、40〜150μm、さらに好ましくは、80〜120μmである。このような粒径のフェライト粉末を、以下に示すように感温磁性体として用いることで、検査対象となる液体の内部により注入しやすくなる。   Next, the obtained sintered body is pulverized to obtain the ferrite powder of the present embodiment. For grinding, a vibrator mill or jaw crusher is used. The particle size of the ferrite powder is preferably 40 to 150 μm, more preferably 80 to 120 μm. By using the ferrite powder having such a particle size as a temperature-sensitive magnetic material as described below, it becomes easier to inject the ferrite powder into the liquid to be inspected.

次に、本実施形態に係るフェライト組成物から成る感温磁性体を用いて、温度計測を行う方法について説明する。   Next, a method for measuring temperature using a temperature-sensitive magnetic body made of the ferrite composition according to the present embodiment will be described.

図1(a)に示すように、本実施形態に係るフェライト組成物から成る感温磁性体2に対して、温度計測用駆動コイル4から感温磁性体2に向けて磁束M1を発生させる。そのとき感温磁性体2の温度Tが、感温磁性体2のキュリー温度Tc未満では、感温磁性体2の近くにおいて、磁束M1の集中が生じる。磁束M1の集中が生じると、その磁束M1の垂直方向の磁束M2を検出コイル6により検出することができる。   As shown in FIG. 1A, a magnetic flux M1 is generated from the temperature measurement drive coil 4 toward the temperature-sensitive magnetic body 2 with respect to the temperature-sensitive magnetic body 2 made of the ferrite composition according to the present embodiment. At this time, when the temperature T of the temperature-sensitive magnetic body 2 is lower than the Curie temperature Tc of the temperature-sensitive magnetic body 2, the magnetic flux M <b> 1 is concentrated near the temperature-sensitive magnetic body 2. When the concentration of the magnetic flux M1 occurs, the magnetic flux M2 in the vertical direction of the magnetic flux M1 can be detected by the detection coil 6.

磁束M1の集中度合い(磁束密度に対応する)は、感温磁性体2の温度Tにより変化する。すなわち、磁束M1の集中度合いは、感温磁性体2の温度Tがキュリー温度Tcに近づくほど少なくなり、図1(b)に示すように、感温磁性体2の温度Tが磁性体2のキュリー温度Tc以上になると、磁束M1の集中度合いが略0になり、その磁束M1の垂直方向の磁束M2も略0になる。   The degree of concentration of the magnetic flux M1 (corresponding to the magnetic flux density) varies depending on the temperature T of the temperature-sensitive magnetic body 2. That is, the concentration degree of the magnetic flux M1 decreases as the temperature T of the temperature-sensitive magnetic body 2 approaches the Curie temperature Tc, and the temperature T of the temperature-sensitive magnetic body 2 becomes lower than that of the magnetic body 2 as shown in FIG. When the temperature is equal to or higher than the Curie temperature Tc, the degree of concentration of the magnetic flux M1 becomes substantially zero, and the magnetic flux M2 in the vertical direction of the magnetic flux M1 becomes substantially zero.

このため検出コイル6により検出される磁束M2の変化、特に磁束変化の変曲点を検出することで、感温磁性体2の温度を検出することが可能になる。本実施形態では、ホット飲料の適正な温度、詳しくは55〜60℃での使用を考慮し、感温磁性体2を構成するフェライトの組成物範囲を決定している。   Therefore, it is possible to detect the temperature of the temperature-sensitive magnetic body 2 by detecting the change of the magnetic flux M2 detected by the detection coil 6, particularly the inflection point of the magnetic flux change. In the present embodiment, the composition range of the ferrite constituting the temperature-sensitive magnetic body 2 is determined in consideration of use at an appropriate temperature of the hot beverage, specifically 55 to 60 ° C.

次に、本実施形態に係るフェライト組成物を用いたホット飲料等の温度測定の一例を説明する。   Next, an example of temperature measurement of a hot beverage or the like using the ferrite composition according to the present embodiment will be described.

本実施形態に係るフェライト組成物から成る感温磁性体を、液体(検査対象)と共に注入したダミー缶を準備し、商品であるホット飲料と共に、加温機能のある保温機等の庫内で保温する。   A dummy can prepared by injecting a temperature-sensitive magnetic material composed of the ferrite composition according to the present embodiment together with a liquid (inspection object) is prepared, and is kept in a warehouse such as a warmer having a heating function together with a hot beverage as a product. To do.

ダミー缶の少なくとも一部は非磁性材料で構成され、その外部に温度測定用駆動コイル4および検出コイル6が配置され、外部からダミー缶中の感温磁性体の磁束密度の変化を観察し、磁束密度の変曲点を検出することで、缶内部の液体の温度(55〜60℃)を正確に測定することが可能となる。   At least a part of the dummy can is made of a non-magnetic material, the temperature measuring drive coil 4 and the detection coil 6 are arranged outside the dummy can, and the change in the magnetic flux density of the temperature-sensitive magnetic body in the dummy can is observed from the outside. By detecting the inflection point of the magnetic flux density, it becomes possible to accurately measure the temperature (55 to 60 ° C.) of the liquid inside the can.

これにより、ダミー缶と同じ庫内に同様に保温されているホット飲料の温度(提供に最適な温度の上限)について、商品を開封することなく、正確に把握することが可能となる。   Thereby, it becomes possible to grasp | ascertain correctly, without opening goods, about the temperature (the upper limit of temperature optimal for provision) of the hot drink similarly heat-retained in the same store | warehouse | chamber as a dummy can.

なお、温度測定用駆動コイル4と検出コイル6との間に、本実施形態に係るフェライト組成物からなる感温磁性体以外の磁性物質が介在すると、磁性物質の磁束密度が干渉するため、当該感温磁性体の磁束密度の変化を正確に把握することができなくなる。   If a magnetic material other than the temperature-sensitive magnetic body made of the ferrite composition according to the present embodiment is interposed between the temperature measuring drive coil 4 and the detection coil 6, the magnetic flux density of the magnetic material interferes. It becomes impossible to accurately grasp the change in the magnetic flux density of the temperature-sensitive magnetic material.

そのため、ダミー缶の少なくとも一部は非磁性材料で構成されていることが好ましく、当該非磁性材料の外部に温度測定用駆動コイル4および検出コイル6が配置される。非磁性材料としては、紙、プラスチック、ガラス等の材料を用いることができる。   Therefore, at least a part of the dummy can is preferably made of a nonmagnetic material, and the temperature measuring drive coil 4 and the detection coil 6 are arranged outside the nonmagnetic material. As the nonmagnetic material, materials such as paper, plastic, and glass can be used.

また、ダミー缶に感温磁性体と共に注入される液体は、ホット飲料等と同じ液体であってもよいし、熱伝導が同程度の液体であってもよい。   Further, the liquid injected into the dummy can together with the temperature-sensitive magnetic body may be the same liquid as that of a hot beverage or the like, or may be a liquid having the same thermal conductivity.

なお、本発明は、上述した実施形態に限定されるものではなく、本発明の範囲内で種々に改変することができる。   The present invention is not limited to the above-described embodiment, and can be variously modified within the scope of the present invention.

たとえば、本発明に係る非接触式温度計測用フェライト組成物には、その他の成分、たとえばB、C、S,Cl、As、Se、Br、Te、I等の典型非金属元素や、Li、Na、Al、K、Ca、Ga、Ge、Sr、Cd、In、Sn、Sb、Ba、Pb、Bi等の典型金属や、Sc、Ti、V、Cr、Co、Y、Nb、Mo、Pd、Ag、Hf、Ta等の遷移金属元素などを含ませても良い。   For example, the non-contact temperature measurement ferrite composition according to the present invention includes other components such as typical non-metallic elements such as B, C, S, Cl, As, Se, Br, Te, and I, Li, Typical metals such as Na, Al, K, Ca, Ga, Ge, Sr, Cd, In, Sn, Sb, Ba, Pb, Bi, Sc, Ti, V, Cr, Co, Y, Nb, Mo, Pd , Transition metal elements such as Ag, Hf, and Ta may be included.

また、本発明に係る非接触式温度計測用フェライト組成物で構成される感温磁性体は、粉形態で使用されることが望ましいが、必ずしも粉形態である必要はなく、その他の形態で用いられても良い。   In addition, the temperature-sensitive magnetic body composed of the ferrite composition for non-contact temperature measurement according to the present invention is desirably used in powder form, but is not necessarily in powder form, and is used in other forms. May be.

また、本発明のフェライト組成物で構成される感温磁性体により温度測定を行う用途は、缶飲料の温度測定に限らず、直接検温できない液体等の温度を非接触式に外部から測定したいあらゆる分野に応用することができる。   The temperature measurement using the temperature-sensitive magnetic material composed of the ferrite composition of the present invention is not limited to the temperature measurement of canned beverages, but can be used to measure the temperature of a liquid or the like that cannot be directly measured from the outside in a non-contact manner. Can be applied in the field.

たとえば、管や容器の内部を流動する(あるいは静止している)液体の温度を外部から測定することも可能である。なお、管や容器少なくとも一部は非磁性材料で構成され、その外部に温度測定用駆動コイル4および検出コイル6が配置される。   For example, it is possible to measure the temperature of a liquid flowing (or stationary) inside a tube or a container from the outside. Note that at least a part of the tube and the container is made of a nonmagnetic material, and the temperature measuring drive coil 4 and the detection coil 6 are arranged outside thereof.

さらに、検査対象は液体以外でもよく、スラリーやゼリー状物質等についても同様の方法で温度測定が可能である。また、本発明に係るフェライト組成物を注入できるものであれば、測定対象は固体であってもよい。   Further, the inspection target may be other than liquid, and the temperature can be measured with a similar method for slurry, jelly-like substances, and the like. In addition, the measurement object may be a solid as long as the ferrite composition according to the present invention can be injected.

また、本発明のフェライト組成物で構成される感温磁性体により温度測定する際には、検査対象の液体中に感温磁性体が分散(浮遊)するように、液体の攪拌、液体の比重の調整等を行ってもよい。   In addition, when measuring the temperature with the temperature-sensitive magnetic material composed of the ferrite composition of the present invention, the liquid is stirred and the specific gravity of the liquid so that the temperature-sensitive magnetic material is dispersed (floating) in the liquid to be inspected. You may make adjustments.

以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。
実施例1〜11
Hereinafter, although this invention is demonstrated based on a more detailed Example, this invention is not limited to these Examples.
Examples 1-11

以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。   Hereinafter, although this invention is demonstrated based on a more detailed Example, this invention is not limited to these Examples.

まず、主成分の原料として、Fe、ZnO、CuOおよびMg(OH)を準備した。副成分の原料としてはSiOを準備した。 First, Fe 2 O 3 , ZnO, CuO, and Mg (OH) 2 were prepared as main component materials. SiO 2 was prepared as a raw material for the accessory component.

次に、準備した主成分の原料の粉末を秤量し、さらに、副成分の原料の粉末を表1に示す量となるように秤量した後、ボールミルで5時間湿式混合して原料混合物を得た。   Next, the raw material powder of the main component prepared was weighed, and further, the powder of the subcomponent raw material was weighed to the amount shown in Table 1, and then wet mixed with a ball mill for 5 hours to obtain a raw material mixture. .

次に、得られた原料混合物を、空気中において950℃で2時間仮焼して仮焼き材料とした後、ボールミルで20時間湿式粉砕して、平均粒径が1.5μmである粉砕材料を得た。   Next, the obtained raw material mixture was calcined in air at 950 ° C. for 2 hours to obtain a calcined material, and then wet pulverized with a ball mill for 20 hours to obtain a pulverized material having an average particle diameter of 1.5 μm. Obtained.

次に、この粉砕材料を乾燥した後、該粉砕材料100重量%に、バインダーとしてのポリビニルアルコールを1.0重量%添加して造粒し、20メッシュの篩で整粒して顆粒とした。この顆粒を196MPa(2ton/cm)の圧力で加圧成形して、トロイダル形状(寸法=外径22mm×内径12mm×高さ6mm)の成形体を得た。 Next, this pulverized material was dried, and then granulated by adding 1.0% by weight of polyvinyl alcohol as a binder to 100% by weight of the pulverized material, and granulated with a 20 mesh sieve to obtain granules. This granule was pressure-molded at a pressure of 196 MPa ( 2 ton / cm 2 ) to obtain a molded body having a toroidal shape (size = outer diameter 22 mm × inner diameter 12 mm × height 6 mm).

次に、これら各成形体を、空気中において1000〜1200℃で2.5時間焼成して、焼結体としてのトロイダルコアサンプルを得た。得られたサンプルについて、蛍光X線分析を行い、フェライトコアの組成を測定した。結果を表1に示す。さらにサンプルに対し、以下の特性評価を行った。   Next, each of these molded bodies was fired in air at 1000 to 1200 ° C. for 2.5 hours to obtain a toroidal core sample as a sintered body. The obtained sample was subjected to fluorescent X-ray analysis to measure the composition of the ferrite core. The results are shown in Table 1. Furthermore, the following characteristics evaluation was performed with respect to the sample.

<磁束密度(B)>
得られたトロイダルコアサンプルに、1次巻線および2次巻線を5回ずつ巻回し、100A/m、100kHz、40〜70℃で磁束密度(B)を測定した。測定はB−Hアナライザー(岩崎通信機株式会社製SY−8232)を用いて行った。
<Magnetic flux density (B)>
A primary winding and a secondary winding were wound around the obtained toroidal core sample five times, and the magnetic flux density (B) was measured at 100 A / m, 100 kHz, and 40 to 70 ° C. The measurement was performed using a BH analyzer (SY-8232 manufactured by Iwasaki Tsushinki Co., Ltd.).

各測定温度における磁束密度(B)から、以下の式(1)により各サンプルの磁束密度の変曲点における変化率αを求めた。
α=(Bat i℃−Bat i+2℃)/(Bat i−2℃−Bat i℃) ・・・(1)
ここで、式(1)のi℃は変曲点、i+2℃は変曲点+2℃、i−2℃は変曲点−2℃をそれぞれ意味する。なお、温度と磁束密度の関係を図2に示す。
From the magnetic flux density (B) at each measurement temperature, the rate of change α at the inflection point of the magnetic flux density of each sample was obtained by the following equation (1).
α = (B at i ° C.− B at i + 2 ° C. ) / (B at i−2 ° C.− B at i ° C. ) (1)
Here, in the equation (1), i ° C represents an inflection point, i + 2 ° C represents an inflection point + 2 ° C, and i-2 ° C represents an inflection point-2 ° C. The relationship between temperature and magnetic flux density is shown in FIG.

図2に示すように、フェライトコアは変曲点において、急激に磁束密度が変化する。本実施例では、各サンプルの磁束密度の変化率αが1.2以上となる温度を磁束密度の変曲点とした。各サンプルの磁束密度の変曲点を調べた結果を表1、表2および図3に示す。   As shown in FIG. 2, the magnetic flux density of the ferrite core changes abruptly at the inflection point. In this example, the temperature at which the change rate α of the magnetic flux density of each sample is 1.2 or more is taken as the inflection point of the magnetic flux density. The results of examining the inflection point of the magnetic flux density of each sample are shown in Table 1, Table 2, and FIG.

Figure 2013091590
Figure 2013091590

Figure 2013091590
Figure 2013091590

表1より、Feの含有量が本発明の範囲外である場合(比較例1および2)、磁束密度の変曲点が所定の温度(55〜60℃)の範囲内にないことが確認された。これに対し、Feの含有量が本発明の範囲内である場合(実施例1〜3)、磁束密度の変曲点が所定の温度(55〜60℃)の範囲内にあることが確認された。 From Table 1, when the content of Fe 2 O 3 is outside the range of the present invention (Comparative Examples 1 and 2), the inflection point of the magnetic flux density is not within the range of the predetermined temperature (55 to 60 ° C.). Was confirmed. On the other hand, when the content of Fe 2 O 3 is within the range of the present invention (Examples 1 to 3), the inflection point of the magnetic flux density is within a predetermined temperature range (55 to 60 ° C.). Was confirmed.

表1および図3より、ZnOの含有量が本発明の範囲外である場合(比較例3および4)、磁束密度の変曲点が所定の温度(55〜60℃)の範囲内にないことが確認された。これに対し、ZnO の含有量が本発明の範囲内である場合(実施例2および4〜7)、磁束密度の変曲点が所定の温度(55〜60℃)の範囲内にあることが確認された。 From Table 1 and FIG. 3, when the ZnO content is outside the range of the present invention (Comparative Examples 3 and 4), the inflection point of the magnetic flux density is not within the predetermined temperature range (55 to 60 ° C.). Was confirmed. In contrast, ZnO When the content of C is within the range of the present invention (Examples 2 and 4 to 7), it was confirmed that the inflection point of the magnetic flux density was within the range of a predetermined temperature (55 to 60 ° C.).

表1より、CuOの含有量が本発明の範囲外である場合(比較例5および6)、磁束密度の変曲点が所定の温度(55〜60℃)の範囲内にないことが確認された。これに対し、CuOの含有量が本発明の範囲内である場合(実施例2、8および9)、磁束密度の変曲点が所定の温度(55〜60℃)の範囲内にあることが確認された。   From Table 1, when the content of CuO is outside the range of the present invention (Comparative Examples 5 and 6), it is confirmed that the inflection point of the magnetic flux density is not within the range of the predetermined temperature (55 to 60 ° C.). It was. On the other hand, when the content of CuO is within the range of the present invention (Examples 2, 8 and 9), the inflection point of the magnetic flux density may be within a predetermined temperature range (55 to 60 ° C.). confirmed.

表2より、SiOの含有量が本発明の範囲外である場合(比較例7および8)、磁束密度の変曲点が所定の温度(55〜60℃)の範囲内にないことが確認された。これに対し、SiOの含有量が本発明の範囲内である場合(実施例2、10および11)、磁束密度の変曲点が所定の温度(55〜60℃)の範囲内にあることが確認された。 From Table 2, when the content of SiO 2 is outside the range of the present invention (Comparative Examples 7 and 8), it is confirmed that the inflection point of the magnetic flux density is not within the range of the predetermined temperature (55 to 60 ° C.). It was done. On the other hand, when the content of SiO 2 is within the range of the present invention (Examples 2, 10 and 11), the inflection point of the magnetic flux density is within a predetermined temperature (55 to 60 ° C.) range. Was confirmed.

このようなフェライト組成物で構成される感温磁性体を、粉状に粉砕して、40〜150μmの粒径とし、例えばプラスチックで構成されたダミー缶に、水(測定対象)と共に注入し、ダミー缶から、たとえば図1に示す検出コイル6により磁束M2の変化を測定することで、感温磁性体が変曲点の温度に到達したこと、すなわち缶内部の水が所定の温度(55〜60℃)に達したことを正確に確認することができる。   The temperature-sensitive magnetic body composed of such a ferrite composition is pulverized into a powder to have a particle size of 40 to 150 μm, and poured into a dummy can made of, for example, plastic together with water (measuring object), By measuring the change in the magnetic flux M2 from the dummy can with the detection coil 6 shown in FIG. 1, for example, the temperature-sensitive magnetic body has reached the temperature of the inflection point, that is, the water inside the can has a predetermined temperature (55 to 55). 60 ° C.) can be accurately confirmed.

2… 感温磁性体
4… 駆動用コイル
6… 検出用コイル
2 ... Temperature-sensitive magnetic body 4 ... Driving coil 6 ... Detection coil

Claims (1)

酸化鉄をFe換算で48.0〜49.7モル%、酸化亜鉛をZnO換算で29.0〜30.35モル%、酸化銅をCuO換算で5.5〜6.8モル%、残部が酸化マグネシウムで構成される主成分を有し、主成分100重量%に対して、副成分として、酸化ケイ素をSiO換算で30〜350ppm含むことを特徴とする非接触式温度計測用フェライト組成物。 Iron oxide is 48.0 to 49.7 mol% in terms of Fe 2 O 3 , zinc oxide is 29.0 to 30.35 mol% in terms of ZnO, and copper oxide is 5.5 to 6.8 mol% in terms of CuO. In addition, for the non-contact type temperature measurement, the balance has a main component composed of magnesium oxide, and silicon oxide is contained in an amount of 30 to 350 ppm in terms of SiO 2 as an accessory component with respect to 100% by weight of the main component. Ferrite composition.
JP2011236289A 2011-10-27 2011-10-27 Ferrite composition for non-contact temperature measurement Active JP5741377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011236289A JP5741377B2 (en) 2011-10-27 2011-10-27 Ferrite composition for non-contact temperature measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011236289A JP5741377B2 (en) 2011-10-27 2011-10-27 Ferrite composition for non-contact temperature measurement

Publications (2)

Publication Number Publication Date
JP2013091590A true JP2013091590A (en) 2013-05-16
JP5741377B2 JP5741377B2 (en) 2015-07-01

Family

ID=48615027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011236289A Active JP5741377B2 (en) 2011-10-27 2011-10-27 Ferrite composition for non-contact temperature measurement

Country Status (1)

Country Link
JP (1) JP5741377B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020186149A (en) * 2019-05-15 2020-11-19 日立金属株式会社 METHOD FOR PRODUCING MnZn-BASED FERRITE POWDER

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07267727A (en) * 1994-03-31 1995-10-17 Sony Corp Low loss ferrite
JP2006206416A (en) * 2005-01-31 2006-08-10 Tdk Corp Magnetic heating body and ferrite used for the same
WO2009088062A1 (en) * 2008-01-10 2009-07-16 Akita University Temperature measuring method and temperature control method using temperature sensitive magnetic body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07267727A (en) * 1994-03-31 1995-10-17 Sony Corp Low loss ferrite
JP2006206416A (en) * 2005-01-31 2006-08-10 Tdk Corp Magnetic heating body and ferrite used for the same
WO2009088062A1 (en) * 2008-01-10 2009-07-16 Akita University Temperature measuring method and temperature control method using temperature sensitive magnetic body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020186149A (en) * 2019-05-15 2020-11-19 日立金属株式会社 METHOD FOR PRODUCING MnZn-BASED FERRITE POWDER
JP7484086B2 (en) 2019-05-15 2024-05-16 株式会社プロテリアル Manufacturing method of MnZn ferrite core

Also Published As

Publication number Publication date
JP5741377B2 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
KR102155356B1 (en) Ferrite composition and electronic device
TWI403593B (en) Mn-zn-co based ferrite core and method for manufacturing the same
JP2001093718A (en) Magnetic ferrite composition and method for manufacturing thereof
KR101696343B1 (en) Ferrite composition and motor having the same
JP2014080344A (en) Ferrite sintered body
CN101712547A (en) NiMnZn-based ferrite
JP2010076962A (en) MnZnLi-BASED FERRITE
JP2011096977A (en) Ferrite composition, ferrite core, and electronic component
TWI228729B (en) Mn-Zn ferrite, transformer magnetic core and transformer
JP5699542B2 (en) Ferrite composition, ferrite core and electronic component
JP5741377B2 (en) Ferrite composition for non-contact temperature measurement
JP2006206415A (en) Ferrite, electronic component and method of manufacturing the same
JP6322987B2 (en) Ferrite composition, ferrite core and electronic component
CN104876559B (en) Ferrite cemented body and the electronic unit and supply unit for having used ferrite cemented body
JP5737117B2 (en) Ferrite composition, ferrite core and electronic component
KR101370665B1 (en) Ferrite core and transformer
JP2021150620A (en) Ferrite sintered magnet
KR101990781B1 (en) Ferrite and transformer
JP2006143530A (en) Ni-Zn BASED FERRITE COMPOSITION AND MAGNETIC ELEMENT
JP6413750B2 (en) Ferrite sintered body, electronic component using the same, and power supply device
JP6005920B2 (en) Ferrite composition, ferrite sintered body, and noise filter
JP5870537B2 (en) Ferrite composition for noninvasive temperature measurement
JP6064525B2 (en) Ferrite composition, ferrite core and electronic component
JP2006206384A (en) Ceramic material for non-reciprocal circuit element and its production method
JP2006160584A (en) Ni-Zn-BASED FERRITE COMPOSITION AND ANTENNA COIL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150220

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150413

R150 Certificate of patent or registration of utility model

Ref document number: 5741377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150