JP7484086B2 - Manufacturing method of MnZn ferrite core - Google Patents

Manufacturing method of MnZn ferrite core Download PDF

Info

Publication number
JP7484086B2
JP7484086B2 JP2019091799A JP2019091799A JP7484086B2 JP 7484086 B2 JP7484086 B2 JP 7484086B2 JP 2019091799 A JP2019091799 A JP 2019091799A JP 2019091799 A JP2019091799 A JP 2019091799A JP 7484086 B2 JP7484086 B2 JP 7484086B2
Authority
JP
Japan
Prior art keywords
temperature
mnzn
based ferrite
mass
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019091799A
Other languages
Japanese (ja)
Other versions
JP2020186149A (en
Inventor
誠 門脇
徳和 小湯原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Proterial Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Proterial Ltd filed Critical Proterial Ltd
Priority to JP2019091799A priority Critical patent/JP7484086B2/en
Publication of JP2020186149A publication Critical patent/JP2020186149A/en
Priority to JP2023072825A priority patent/JP2023095907A/en
Application granted granted Critical
Publication of JP7484086B2 publication Critical patent/JP7484086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)

Description

本発明は、例えば、スイッチング電源等のトランス、チョークコイル等の電子部品を構成するMnZn系フェライト磁心の製造方法に関する。
The present invention relates to a method for producing an MnZn-based ferrite core that constitutes electronic components such as transformers for switching power supplies and choke coils.

スイッチング電源は、EV(電気自動車)、HEV(ハイブリッド電気自動車)、移動体通信機器(携帯電話、スマートフォン等)、パーソナルコンピュータ、サーバー等の電源供給が必要な様々な電子機器の電源回路で用いられる。 Switching power supplies are used in the power circuits of various electronic devices that require a power supply, such as EVs (electric vehicles), HEVs (hybrid electric vehicles), mobile communication devices (cell phones, smartphones, etc.), personal computers, and servers.

最近の電子機器は、小型・軽量化とともに、エネルギー効率の観点から低消費電力であることがいっそう求められるようになってきた。そのため、電子機器に使用されるDSP(Digital Signal Processor)、MPU(Micro-processing Unit)等のLSI(Large-Scale Integration)及び機能素子もまた小形・高性能化とともに低消費電力化が求められている。一方で、近年LSIは微細配線化によるトランジスタの高集積化に伴って、トランジスタの耐圧が低下するとともに消費電流が増加し、動作電圧の低電圧化及び大電流化が進んでいる。 In recent years, electronic devices have been increasingly required to be small and lightweight, as well as to consume less power from the perspective of energy efficiency. For this reason, LSIs (Large-Scale Integration) and functional elements such as DSPs (Digital Signal Processors) and MPUs (Micro-processing Units) used in electronic devices are also required to be small and highly functional, as well as consume less power. On the other hand, in recent years, as LSIs have become more highly integrated with transistors due to finer wiring, the withstand voltage of transistors has decreased and current consumption has increased, leading to lower operating voltages and larger currents.

LSIに電源を供給するDC-DCコンバータ等の電源回路もまた、LSIの動作電圧の低電圧化及び大電流化への対応が必要となる。例えば、LSIの動作電圧の低電圧化によって正常に動作する電圧範囲が狭くなるので、電源回路からの供給電圧の変動(リップル)によってLSIの電源電圧範囲を上回ったり下回ったりしてしまうと、LSIの不安定動作を招くため、電源回路のスイッチング周波数を高め、例えば500kHz以上のスイッチング周波数とする対策が採られるようになった。 Power supply circuits such as DC-DC converters that supply power to LSIs also need to be able to handle the lower operating voltages and higher currents of LSIs. For example, as the operating voltage of an LSI is lowered, the voltage range in which it can operate normally becomes narrower. If the voltage supplied from the power supply circuit fluctuates (ripples) and goes above or below the power supply voltage range of the LSI, this can lead to unstable operation of the LSI. To prevent this, measures have been taken to increase the switching frequency of the power supply circuit, for example to 500 kHz or higher.

このような電源回路の高周波化や大電流化への対応は、回路に使用するトランス、チョークコイル等の電子部品を構成する磁心を小型化するメリットもある。例えばトランスを正弦波で駆動する場合、1次側コイルへの印加電圧Ep(V)は、1次側コイルの巻線数Np、磁心の断面積A(cm)、周波数f(Hz)及び励磁磁束密度Bm(mT)を用いて式:
Ep=4.44×Np×A×f×Bm×10-7
で現される。
Such support for higher frequencies and larger currents in power supply circuits also has the advantage of allowing the magnetic cores constituting the electronic components such as transformers, choke coils, etc., used in the circuits to be made smaller. For example, when driving a transformer with a sine wave, the voltage Ep (V) applied to the primary coil is expressed by the following formula, using the number of turns Np of the primary coil, the cross-sectional area A ( cm2 ) of the magnetic core, the frequency f (Hz), and the excitation magnetic flux density Bm (mT):
Ep = 4.44 × Np × A × f × Bm × 10-7
This is expressed as:

この式から、所定の1次側コイルへの印加電圧Epに対して、周波数(スイッチング周波数)fを高くすれば、磁心の断面積Aを小さくできて小型となることがわかる。また、大電流化に伴って最大励磁磁束密度(以下、励磁磁束密度という)Bmが高くなるのでいっそう磁心は小型化する。 From this formula, we can see that for a given applied voltage Ep to the primary coil, if the frequency (switching frequency) f is increased, the cross-sectional area A of the magnetic core can be reduced, resulting in a smaller size. In addition, as the current increases, the maximum excitation magnetic flux density (hereafter referred to as excitation magnetic flux density) Bm increases, making the magnetic core even smaller.

高周波数領域において高励磁磁束密度で動作し、かつ小型化に好適な磁心には、MnZn系フェライトが磁性材料として主に用いられる。MnZn系フェライトはNi系フェライト等と比較して初透磁率や飽和磁束密度が大きく、Fe系、Co系アモルファスや純鉄、Fe-Si、Fe-Ni、Fe-Si-Cr、Fe-Si-Al等の金属系の磁性材料を使用する磁心等と比較しても磁心損失が小さいといった特徴を有している。磁心損失が小さいことは電源回路の消費電力を抑える点で有利である。
この高周波数領域用のMnZn系フェライト磁心に関する記載が特許文献1にある。
MnZn-based ferrite is mainly used as the magnetic material for magnetic cores that operate at high excitation magnetic flux density in the high frequency range and are suitable for miniaturization. MnZn-based ferrite has a higher initial permeability and saturation magnetic flux density than Ni-based ferrite, and has a smaller core loss than magnetic cores that use Fe-based or Co-based amorphous, pure iron, Fe-Si, Fe-Ni, Fe-Si-Cr, Fe-Si-Al, or other metal-based magnetic materials. Small core loss is advantageous in terms of reducing power consumption in power supply circuits.
A description of this MnZn-based ferrite core for use in the high frequency range is given in Patent Document 1.

国際公開第2017/164351号International Publication No. 2017/164351 特開平6-204023号公報Japanese Patent Application Laid-Open No. 6-204023

特許文献1には、1MHz以上の高周波数領域で優れた磁気特性が得られるMnZn系フェライト磁心に関する記載がある。しかしながら、特許文献1では、焼結体からなる磁心に関する記載のみである。焼結体からなる磁心の場合、形成できる形状にある程度制限があり、自由な形態の磁心を得るには課題があった。
特許文献2には、焼成した後、粉砕するフェライト粉末の製造方法であって、粉砕されたフェライト粉末をアニール処理するフェライト粉末の製造方法の記載がある。しかし、特許文献2には、詳細な粉砕方法の記載はなく、また、記載されているアニール処理は、熱処理温度が700~950℃、焼成時間が4時間という高温で長時間の熱処理である。更に、特許文献2のものは、Ni-Cu-Zn系フェライトであり、MnZn系フェライトとは異なる材料である。
Patent Document 1 describes an MnZn-based ferrite core that provides excellent magnetic properties in the high frequency range of 1 MHz or more. However, Patent Document 1 only describes a magnetic core made of a sintered body. In the case of a magnetic core made of a sintered body, there is a certain degree of limitation on the shape that can be formed, and there is a problem in obtaining a magnetic core of a free shape.
Patent Document 2 describes a method for producing ferrite powder by sintering and then pulverizing the pulverized ferrite powder, and then annealing the pulverized ferrite powder. However, Patent Document 2 does not describe the pulverization method in detail, and the annealing treatment described is a high-temperature, long-term heat treatment at a heat treatment temperature of 700 to 950°C and a sintering time of 4 hours. Furthermore, the ferrite in Patent Document 2 is a Ni-Cu-Zn ferrite, which is a different material from MnZn ferrite.

このため、500kHz以上の高周波数領域、特に1~5MHzの高周波数領域で利用可能なMnZn系フェライト粉が求められているが、それを得る方法は、明らかとはなっていなかった。
したがって本発明の目的は、500kHz以上、特に1~5MHzの高周波数領域において、有用なMnZn系フェライト粉を用いたMnZn系フェライト磁心の製造方法を提供することにある。
For this reason, there is a demand for MnZn-based ferrite powder that can be used in the high frequency range of 500 kHz or more, particularly in the high frequency range of 1 to 5 MHz, but a method for obtaining such powder has not yet been clarified.
Therefore, an object of the present invention is to provide a method for producing an MnZn-based ferrite magnetic core using MnZn-based ferrite powder that is useful in the high frequency range of 500 kHz or more, particularly 1 to 5 MHz.

上記課題を解決するための具体的手段には、以下の態様が含まれる。
<1> 主成分としてFe、Zn及びMnを含み、副成分として少なくともCoを含み、前記主成分が、Fe 換算で53~56モル%のFe、ZnO換算で3~9モル%のZn及びMnO換算で残部Mnからなり、前記副成分が、前記酸化物換算での主成分の合計100質量部に対して、Co 換算で0.05~0.4質量部のCoを含むMnZn系フェライト磁心の製造方法であって、
原料粉末を成形して成形体を得る成形工程と、
前記成形体を焼結し、150℃未満の温度まで冷却してMnZn系フェライト焼結体を得る焼結工程と、
得られた前記MnZn系フェライト焼結体を粉砕してMnZn系フェライト粉を得る粉砕工程と、
前記MnZn系フェライト粉を成形する工程と、を備え、
更に、前記MnZn系フェライト焼結体を熱処理する熱処理工程と、前記MnZn系フェライト焼結体を粉砕した前記MnZn系フェライト粉を熱処理する熱処理工程とのうち、少なくとも一方の熱処理工程を備え、前記熱処理工程が、
条件1:200℃以上、及び
条件2:(Tc-90)℃~(Tc+100)℃[ただし、Tcは前記MnZn系フェライト粉の主成分に含まれるFe及びZnOのモル%から計算により求められるキュリー温度(℃)である。]
を満たす温度まで加熱し、一定時間保持した後、前記保持温度から50℃/時間以下の速度で降温する熱処理工程であり、
前記粉砕工程は粗粉砕工程と微粉砕工程とを含み、
前記MnZn系フェライト粉は、レーザー回折散乱式粒度分布測定法により得られる体積基準粒度分布において、粒径1μmの小粒径側からの通過分積算(%)が15%以下となる粒度分布を備えることを特徴とするMnZn系フェライト磁心の製造方法。
Specific means for solving the above problems include the following aspects.
<1> A method for producing an MnZn- based ferrite core, comprising Fe, Zn, and Mn as main components and at least Co as an auxiliary component, the main components being 53 to 56 mol % Fe calculated as Fe2O3 , 3 to 9 mol % Zn calculated as ZnO, and the remainder Mn calculated as MnO, the auxiliary component comprising 0.05 to 0.4 parts by mass of Co calculated as Co3O4 per 100 parts by mass of the main components calculated as oxide,
a molding step of molding the raw material powder to obtain a molded body;
a sintering step of sintering the molded body and cooling it to a temperature of less than 150° C. to obtain a MnZn-based ferrite sintered body;
A pulverization step of pulverizing the obtained MnZn-based ferrite sintered body to obtain MnZn-based ferrite powder;
and a step of molding the MnZn ferrite powder .
The method further includes at least one of a heat treatment step of heat treating the MnZn-based ferrite sintered body and a heat treatment step of heat treating the MnZn-based ferrite powder obtained by pulverizing the MnZn-based ferrite sintered body, and the heat treatment step is
Condition 1: 200°C or higher, and Condition 2: (Tc-90)°C to (Tc+100)°C [where Tc is the Curie temperature ( ° C) calculated from the mole percentages of Fe2O3 and ZnO contained in the main components of the MnZn-based ferrite powder.]
a heat treatment process in which the temperature is increased to a temperature that satisfies the above-mentioned condition, the temperature is maintained for a certain period of time, and then the temperature is decreased from the maintained temperature at a rate of 50° C./hour or less ,
The pulverization step includes a coarse pulverization step and a fine pulverization step,
The MnZn-based ferrite powder has a particle size distribution in which the cumulative percentage of particles passing through from the small particle size side of 1 μm in a volumetric particle size distribution obtained by a laser diffraction scattering type particle size distribution measurement method is 15% or less .

<2> 前記MnZn系フェライト粉は平均粒径D50が100μm以下である、<1>に記載のMnZn系フェライト粉の製造方法
<2> The method for producing MnZn-based ferrite powder according to <1> , wherein the MnZn-based ferrite powder has an average particle size D50 of 100 μm or less .

<4> 前記MnZn系フェライト粉は、前記酸化物換算での前記主成分の合計100質量部に対して、副成分として更に、SiO換算で0.003~0.015質量部のSi、CaCO換算で0.06~0.3質量部のCa、V換算で0~0.1質量部のV、並びに合計で0~0.3質量部のNb(Nb換算)及び/又はTa(Ta換算)を含む、<1>~<3>のいずれかに記載のMnZn系フェライト磁心の製造方法。
<4> The method for producing an MnZn-based ferrite magnetic core according to any one of <1> to <3>, wherein the MnZn-based ferrite powder further contains, as auxiliary components, 0.003 to 0.015 parts by mass of Si in terms of SiO2 , 0.06 to 0.3 parts by mass of Ca in terms of CaCO3 , 0 to 0.1 parts by mass of V in terms of V2O5 , and a total of 0 to 0.3 parts by mass of Nb (in terms of Nb2O5 ) and/or Ta (in terms of Ta2O5 ), relative to a total of 100 parts by mass of the main components in terms of the oxides.

<5> 前記焼結工程は、昇温工程と、高温保持工程と、降温工程とを有し、
前記高温保持工程は、保持温度が1050℃超1150℃未満で、雰囲気中の酸素濃度が0.4~2体積%であり、
前記降温工程中、900℃から400℃まで降温させる際の酸素濃度を0.001~0.2体積%の範囲とし、(Tc+70)℃から100℃までの間の降温速度を50℃/時間以上とする、<1>~<3>のいずれかに記載のMnZn系フェライト磁心の製造方法。
<6> 前記降温工程中、前記保持温度から100℃までの間の降温速度を50℃/時間以上とする、<5>に記載のMnZn系フェライト磁心の製造方法。
<7> 前記MnZn系フェライト磁心がトランス又はチョークコイル用である、<1>~<6>のいずれかに記載のMnZn系フェライト磁心の製造方法。
<5> The sintering step includes a temperature increasing step, a high-temperature holding step, and a temperature decreasing step,
The high-temperature holding step has a holding temperature of more than 1050° C. and less than 1150° C., and an oxygen concentration in the atmosphere is 0.4 to 2% by volume;
The method for producing an MnZn-based ferrite magnetic core according to any one of <1> to <3>, wherein, in the temperature-lowering step, the oxygen concentration when lowering the temperature from 900° C. to 400° C. is in the range of 0.001 to 0.2 volume %, and the temperature-lowering rate from (Tc+70)° C. to 100° C. is 50° C./hour or more.
<6> The method for producing an MnZn ferrite core according to <5>, wherein, during the temperature decreasing step, the temperature decreasing rate from the holding temperature to 100° C. is 50° C./hour or more.
<7> The method for producing an MnZn-based ferrite core according to any one of <1> to <6>, wherein the MnZn-based ferrite core is for a transformer or a choke coil.

本発明によれば、500kHz以上の高周波数領域において、有用なMnZn系フェライト磁心が得られる。
According to the present invention, it is possible to obtain an MnZn-based ferrite core that is useful in the high frequency range of 500 kHz or more.

実施例の熱処理工程の温度条件を示す図である。FIG. 4 is a diagram showing temperature conditions in a heat treatment process in an example. 実施例のMnZn系フェライト粉の粒度分布である。3 shows the particle size distribution of the MnZn ferrite powder of the embodiment. 実施例のMnZn系フェライト粉の電子顕微鏡写真である。3 is an electron microscope photograph of the MnZn ferrite powder of the embodiment.

本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。本明細書において段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本明細書において、「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
以下、本発明の実施形態について説明するが、本発明は、以下に記載の実施形態に限定されるものではなく、技術的思想の範囲内で適宜変更可能である。
In this specification, a numerical range expressed using "to" means a range including the numerical values described before and after "to" as the lower and upper limits. In the numerical ranges described in stages in this specification, the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of another numerical range described in stages. In addition, in the numerical ranges described in this specification, the upper limit or lower limit of the numerical range may be replaced with a value shown in the examples.
In this specification, the term "process" includes not only an independent process but also a process that cannot be clearly distinguished from other processes as long as the intended purpose of the process is achieved.
Hereinafter, an embodiment of the present invention will be described, however, the present invention is not limited to the embodiment described below and can be modified as appropriate within the scope of the technical concept.

本発明の一実施形態は、Fe換算で53~56モル%のFe、ZnO換算で3~9モル%のZn及びMnO換算で残部Mnを主成分として含み、前記酸化物換算での前記主成分の合計100質量部に対して、Co換算で0.05~0.4質量部のCoを副成分として含むMnZn系フェライト粉の製造方法であって、
MnZn系フェライトの原料粉末を成形して成形体を得る成形工程と、
前記成形体を焼結し、150℃未満の温度まで冷却しMnZn系フェライトの焼結体を得る焼結工程と、
得られたMnZn系フェライトの焼結体を粉砕してMnZn系フェライト粉を得る粉砕工程と、を備え、
更に、前記MnZn系フェライトの焼結体を熱処理する熱処理工程と、前記MnZn系フェライトの焼結体を粉砕したMnZn系フェライト粉を熱処理する熱処理工程とのうち、少なくとも一方の熱処理工程を備え、前記熱処理工程が、
条件1:200℃以上、及び
条件2:(Tc-90)℃~(Tc+100)℃[ただし、Tcは前記MnZn系フェライトの主成分に含まれるFe及びZnOのモル%から計算により求められるキュリー温度(℃)である。]
を満たす温度まで加熱し、一定時間保持した後、前記保持温度から50℃/時間以下の速度で降温する熱処理工程であることを特徴とするMnZn系フェライト粉の製造方法である。
One embodiment of the present invention is a method for producing an MnZn-based ferrite powder containing, as main components, 53 to 56 mol % Fe calculated as Fe2O3 , 3 to 9 mol % Zn calculated as ZnO, and the remainder Mn calculated as MnO, and containing, as an auxiliary component, 0.05 to 0.4 mass parts Co calculated as Co3O4 per 100 mass parts of the total of the main components calculated as oxides,
a molding step of molding a raw material powder of MnZn-based ferrite to obtain a molded body;
a sintering step of sintering the molded body and cooling it to a temperature of less than 150° C. to obtain a sintered body of MnZn-based ferrite;
A pulverization step of pulverizing the obtained sintered body of MnZn-based ferrite to obtain MnZn-based ferrite powder,
The method further includes at least one of a heat treatment step of heat treating the sintered body of MnZn-based ferrite and a heat treatment step of heat treating MZn-based ferrite powder obtained by pulverizing the sintered body of MnZn-based ferrite, and the heat treatment step is
Condition 1: 200°C or higher, and Condition 2: (Tc-90)°C to (Tc+100)°C [where Tc is the Curie temperature ( ° C) calculated from the mole percentages of Fe2O3 and ZnO contained in the main components of the MnZn-based ferrite.]
and then, after maintaining the temperature for a certain period of time, lowering the temperature from the maintained temperature at a rate of 50° C./hour or less.

[1]組成
この実施形態のMnZn系フェライトの組成について、以下に記載する。
MnZn系フェライトはFe、Zn及びMnを所定の範囲として、所望の初透磁率、飽和磁束密度等の磁気特性を得る。更に、副成分としてCoを加えて結晶磁気異方性定数の調整を行うことで、磁心損失の温度特性を改善することができる。
[1] Composition The composition of the MnZn-based ferrite of this embodiment will be described below.
MnZn ferrite has the desired magnetic properties such as initial permeability, saturation magnetic flux density, etc., by setting Fe, Zn, and Mn within the specified ranges. Furthermore, by adding Co as an auxiliary component to adjust the magnetocrystalline anisotropy constant, the temperature characteristics of the magnetic core loss can be improved.

本実施形態のMnZn系フェライトは、主成分としてFe、Zn及びMnを含み、副成分として少なくともCoを含み、前記主成分が、Fe換算で53~56モル%のFe、ZnO換算で3~9モル%のZn及びMnO換算で残部Mnからなり、前記副成分が、前記酸化物換算での主成分の合計100質量部に対して、Co換算で0.05~0.4質量部のCoを含む。副成分は、更に、前記酸化物換算での主成分の合計100質量部に対して、SiO換算で0.003~0.015質量部のSi、CaCO換算で0.06~0.3質量部のCa、V換算で0~0.1質量部のV、並びに合計で0~0.3質量部のNb(Nb換算)及び/又はTa(Ta換算)を含んでもよい。 The MnZn-based ferrite of this embodiment contains Fe, Zn, and Mn as main components, and at least Co as an auxiliary component, the main components being 53 to 56 mol% Fe as calculated as Fe 2 O 3 , 3 to 9 mol% Zn as calculated as ZnO, and the remainder Mn as calculated as MnO, and the auxiliary components contain 0.05 to 0.4 parts by mass Co as calculated as Co 3 O 4 relative to a total of 100 parts by mass of the main components as calculated as oxides. The auxiliary components may further contain 0.003 to 0.015 parts by mass Si as calculated as SiO 2 , 0.06 to 0.3 parts by mass Ca as calculated as CaCO 3 , 0 to 0.1 parts by mass V as calculated as V 2 O 5 , and a total of 0 to 0.3 parts by mass Nb (as calculated as Nb 2 O 5 ) and/or Ta (as calculated as Ta 2 O 5 ) relative to a total of 100 parts by mass of the main components as calculated as oxides.

FeはCoとともに磁心損失の温度特性を制御する効果を有し、量が少なすぎると、磁心損失が極小となる温度が高温になりすぎ、量が多すぎると、磁心損失が極小となる温度が低温になりすぎ、磁心損失が極小となる温度を20~100℃の間とするのが困難で、0~120℃における磁心損失が劣化する。Fe含有量が、Fe換算で53~56モル%の間であれば、1MHz以上の高周波数領域で低損失とすることができる。Fe含有量は、更に好ましくはFe換算で54~55モル%である。 Fe, together with Co, has the effect of controlling the temperature characteristics of core loss; if the amount is too small, the temperature at which core loss is minimal becomes too high, while if the amount is too large, the temperature at which core loss is minimal becomes too low, making it difficult to set the temperature at which core loss is minimal between 20 and 100°C, and core loss at 0 to 120 °C deteriorates. If the Fe content is between 53 and 56 mol% calculated as Fe2O3 , low loss can be achieved in the high frequency range of 1 MHz or more. The Fe content is more preferably between 54 and 55 mol% calculated as Fe2O3 .

Znは透磁率の周波数特性を制御する効果を有し、磁心損失においては磁壁共鳴などの損失に係る残留損失の制御に特に影響を及ぼし、量が少ないほどより高周波数領域での磁心損失が低くなる。Zn含有量が、ZnO換算で3~9モル%であれば1MHz以上の高周波数領域、特に3MHzまでの周波数領域で低損失とすることができる。Zn含有量は、更に好ましくはZnO換算で5~8モル%である。
MnはMnO換算で残部となる。
Zn has the effect of controlling the frequency characteristic of magnetic permeability, and has a particular effect on controlling residual loss related to losses such as domain wall resonance in magnetic core loss, and the smaller the content, the lower the magnetic core loss in the high frequency range. If the Zn content is 3 to 9 mol % calculated as ZnO, low loss can be achieved in the high frequency range of 1 MHz or more, particularly in the frequency range up to 3 MHz. The Zn content is more preferably 5 to 8 mol % calculated as ZnO.
Mn is the balance calculated as MnO.

Fe及びZnOのモル%から計算により求められるキュリー温度(Tc)は、Fe含有量及びZn含有量が上記範囲であれば250~330℃の範囲となり実用上差し支えのない温度である。 The Curie temperature (Tc) calculated from the molar percentages of Fe 2 O 3 and ZnO is in the range of 250 to 330° C. if the Fe content and Zn content are within the above ranges, which is a practically acceptable temperature range.

本実施形態のMnZn系フェライトは、副成分として少なくともCoを含む。Co2+はFe2+とともに正の結晶磁気異方性定数K1を有する金属イオンとして、磁心損失が最小となる温度を調整する効果を有し、更にFe2+に比べ大きな結晶磁気異方性定数K1を有することから、磁心損失の温度依存性を改善するのに有効な元素である。量が少なすぎると温度依存性を改善する効果が少なく、量が多すぎると低温度域での損失の増加が著しく、実用上好ましくない。またCo含有量が前記酸化物換算での前記主成分の合計100質量部に対してCo換算で0.05~0.4質量部であれば、熱処理によってFe2+イオンとともにCo2+イオンを再配列させ誘導磁気異方性を制御することにより、実用温度範囲で磁心損失をいっそう低減でき、かつ温度依存性を改善することができる。Co含有量は、更に好ましくはCo換算で0.1~0.3質量部である。 The MnZn-based ferrite of this embodiment contains at least Co as an auxiliary component. Co 2+ , together with Fe 2+ , is a metal ion having a positive magnetocrystalline anisotropy constant K1, and has the effect of adjusting the temperature at which the core loss is minimized. Furthermore, since Co 2+ has a larger magnetocrystalline anisotropy constant K1 than Fe 2+ , it is an effective element for improving the temperature dependency of the core loss. If the amount is too small, the effect of improving the temperature dependency is small, and if the amount is too large, the loss in the low temperature range increases significantly, which is not preferable in practical use. Furthermore, if the Co content is 0.05 to 0.4 parts by mass in terms of Co 3 O 4 with respect to a total of 100 parts by mass of the main components in terms of the oxide, the Co 2+ ions can be rearranged together with the Fe 2+ ions by heat treatment to control the induced magnetic anisotropy, thereby further reducing the core loss in the practical temperature range and improving the temperature dependency. The Co content is more preferably 0.1 to 0.3 parts by mass in terms of Co 3 O 4 .

副成分として更にCa及びSiを含むのが好ましい。Siは粒界に偏析し粒界抵抗を高め、渦電流損失を低減し、もって高周波数領域における磁心損失を低減させる効果を有し、量が少なすぎると粒界抵抗を高める効果が少なく、量が多すぎると逆に結晶の肥大化を誘発し磁心損失を劣化させる。Si含有量が、前記酸化物換算での前記主成分の合計100質量部に対してSiO換算で0.003~0.015質量部であれば渦電流損失を低減するに十分な粒界抵抗を確保でき、1MHz以上の高周波数領域で低損失とすることができる。Si含有量は、更に好ましくはSiO換算で0.005~0.01質量部である。 It is preferable to further include Ca and Si as minor components. Si segregates at grain boundaries to increase grain boundary resistance, reduce eddy current loss, and thus has the effect of reducing core loss in the high frequency range. If the amount is too small, the effect of increasing grain boundary resistance is small, and if the amount is too large, it induces crystal thickening and deteriorates core loss. If the Si content is 0.003 to 0.015 parts by mass in SiO2 equivalent to a total of 100 parts by mass of the main components in terms of the oxides, sufficient grain boundary resistance can be secured to reduce eddy current loss, and low loss can be achieved in the high frequency range of 1 MHz or more. The Si content is more preferably 0.005 to 0.01 parts by mass in SiO2 equivalent.

CaはSiと同様に粒界に偏析し、粒界抵抗を高め、渦電流損失を低減させ、もって高周波数領域における磁心損失を低減させる効果を有する。量が少なすぎると粒界抵抗を高める効果が少なく、量が多すぎると逆に結晶の肥大化を誘発し磁心損失を劣化させる。Ca含有量が、前記酸化物換算での前記主成分の合計100質量部に対してCaCO換算で0.06~0.3質量部であれば渦電流損失を低減するのに十分な粒界抵抗を確保でき、1MHz以上の高周波領域で低損失とすることができる。Ca含有量は、更に好ましくはCaCO換算で0.06~0.2質量部である。 Ca, like Si, segregates at grain boundaries, increases grain boundary resistance, reduces eddy current loss, and thus has the effect of reducing core loss in the high frequency range. If the amount is too small, the effect of increasing grain boundary resistance is small, and if the amount is too large, it induces crystal thickening and deteriorates core loss. If the Ca content is 0.06 to 0.3 parts by mass in CaCO3 equivalent per 100 parts by mass of the total of the main components in terms of the oxides, sufficient grain boundary resistance can be secured to reduce eddy current loss, and low loss can be achieved in the high frequency range of 1 MHz or more. The Ca content is more preferably 0.06 to 0.2 parts by mass in terms of CaCO3 .

副成分として更に5a族金属のV、Nb又Taを含んでも良い(5a族金属とはV、Nb及びTaからなる群から選ばれた少なくとも一種であり、以下総称して5a族と呼ぶ)。5a族金属はSi及びCaとともに粒界に主に酸化物として偏析し、粒界相をより高抵抗化することにより、磁心損失を更に低減させる効果を有する。 The alloy may further contain Group 5a metals V, Nb, or Ta as a secondary component (Group 5a metal is at least one selected from the group consisting of V, Nb, and Ta, hereinafter collectively referred to as Group 5a). Group 5a metals, together with Si and Ca, segregate mainly as oxides at grain boundaries, and by increasing the resistance of the grain boundary phase, have the effect of further reducing core loss.

VはNb及びTaより低融点で、結晶粒の成長を促進する機能も有する。Vは、他の5a族に比べ低融点であることから粒界との濡れ性が良いと考えられ、焼結体の加工性を向上し、欠け等の発生を抑制する効果も有する。Vは量が多すぎると結晶の肥大化を誘発し磁心損失を劣化させる。V含有量が、前記酸化物換算での前記主成分の合計100質量部に対してV換算で0~0.1質量部であれば渦電流損失を低減するに十分な粒界抵抗を確保でき、1MHz以上の高周波数領域で低損失とすることができる。V含有量は、更に好ましくはV換算で0~0.05質量部である。 V has a lower melting point than Nb and Ta, and also has the function of promoting the growth of crystal grains. V has a lower melting point than other 5a group elements, so it is thought to have good wettability with grain boundaries, and it also has the effect of improving the workability of the sintered body and suppressing the occurrence of chipping. If the amount of V is too large, it induces crystal thickening and deteriorates the magnetic core loss. If the V content is 0 to 0.1 parts by mass in V 2 O 5 conversion with respect to 100 parts by mass of the total of the main components in terms of the oxides, it is possible to ensure sufficient grain boundary resistance to reduce eddy current loss, and low loss can be achieved in the high frequency range of 1 MHz or more. The V content is more preferably 0 to 0.05 parts by mass in V 2 O 5 conversion.

Nb及び/又はTaは、結晶粒の成長を抑制し均一な結晶組織とし、磁心損失を低減する効果も有する。Nb及びTaはVより高融点であり、Ca及びSiとともにFeとの酸化物による低融点化を阻止する効果も有する。Nb及びTaは、量が多すぎると粒内に偏析し磁心損失を劣化させる。前記酸化物換算での前記主成分の合計100質量部に対してNb(Nb換算)及びTa(Ta換算)の総量が0~0.3質量部であれば渦電流損失を低減するのに十分な粒界抵抗を確保でき、1MHz以上の高周波数領域で低損失とすることができる。更に、Nb及びTaは熱処理後における磁心損失のうち、特に高温(100℃)でのヒステリシス損失、残留損失を低減する効果を有し、高周波領域で広い温度範囲での低損失化を実現するのに有効である。Nb(Nb換算)及びTa(Ta換算の総量は、更に好ましくは0~0.2質量部である。 Nb and/or Ta also have the effect of suppressing the growth of crystal grains, forming a uniform crystal structure, and reducing core loss. Nb and Ta have a higher melting point than V, and together with Ca and Si, have the effect of preventing the melting point from being lowered by oxides with Fe. If the amount of Nb and Ta is too large, they segregate within the grains and deteriorate the core loss. If the total amount of Nb (Nb 2 O 5 conversion) and Ta (Ta 2 O 5 conversion) is 0 to 0.3 parts by mass with respect to a total of 100 parts by mass of the main components in terms of the oxides, sufficient grain boundary resistance can be secured to reduce eddy current loss, and low loss can be achieved in a high frequency range of 1 MHz or more. Furthermore, Nb and Ta have the effect of reducing hysteresis loss and residual loss, especially at high temperatures (100°C), among the core losses after heat treatment, and are effective in realizing low loss over a wide temperature range in the high frequency range. The total amount of Nb (calculated as Nb 2 O 5 ) and Ta (calculated as Ta 2 O 5) is more preferably 0 to 0.2 parts by mass.

Ta含有量はTa換算で0~0.1質量部であるのが好ましく、0~0.05質量部であるのがより好ましい。Nb含有量は、Nb換算で0.05質量部以下(0は含まない)であるのが好ましく、0.01~0.04質量部であるのがより好ましい。 The Ta content is preferably 0 to 0.1 parts by mass, and more preferably 0 to 0.05 parts by mass, calculated as Ta 2 O 5. The Nb content is preferably 0.05 parts by mass or less (excluding 0), and more preferably 0.01 to 0.04 parts by mass, calculated as Nb 2 O 5 .

本実施形態のMnZn系フェライトは、2~5μmの平均結晶粒径を有するのが好ましい。平均結晶粒径が5μm以下であれば、渦電流損失が低減し、かつ磁壁の減少から残留損失が低減し、高周波数領域での磁心損失が低下する。しかし、平均結晶粒径が2μm未満であると、粒界が磁壁のピンニング点として作用し、また反磁界の影響から、透磁率の低下及び磁心損失の増加を誘発する傾向となる。平均結晶粒径が5μmを超えると、渦電流損失の増加により1MHz以上の高周波数領域における磁心損失が増加する傾向となる。
なお、平均結晶粒径はMnZn系フェライトの焼結体の断面を鏡面研磨し、サーマルエッチング(950~1050℃で1時間、N中で処理)し、その断面を光学顕微鏡又は走査型電子顕微鏡で2000倍にて写真撮影し、この写真上の60μm×40μmの長方形領域を基準に求積法(JIS H0501-1986相当)により算出することができる。結晶粒径の大きさによって十分な粒子数(300個以上)がカウントできない場合は、観察される粒子数が300個以上となるよう観察領域を適宜調整することができる。
The MnZn ferrite of this embodiment preferably has an average crystal grain size of 2 to 5 μm. If the average crystal grain size is 5 μm or less, the eddy current loss is reduced, and the residual loss is reduced due to the reduction in the domain walls, and the core loss in the high frequency range is reduced. However, if the average crystal grain size is less than 2 μm, the grain boundaries act as pinning points for the domain walls, and the influence of the demagnetizing field tends to induce a decrease in magnetic permeability and an increase in core loss. If the average crystal grain size exceeds 5 μm, the eddy current loss increases, and the core loss in the high frequency range of 1 MHz or more tends to increase.
The average crystal grain size can be calculated by mirror-polishing a cross section of a sintered MnZn ferrite body, thermally etching (treatment in N2 at 950-1050°C for 1 hour), photographing the cross section with an optical microscope or scanning electron microscope at 2000x magnification, and calculating by quadrature method (equivalent to JIS H0501-1986) based on a rectangular area of 60 μm x 40 μm on the photograph. If a sufficient number of particles (300 or more) cannot be counted due to the size of the crystal grain size, the observation area can be appropriately adjusted so that the number of particles observed is 300 or more.

[2]製造方法
(1)成形工程
MnZn系フェライトの原料粉末としては、主成分の原料としてFe、Mn及びZnOの粉末を使用し、副成分の原料としてCo、SiO、CaCO等の粉末を使用する。焼結工程に供する成形体は、主成分の原料を仮焼成した仮焼粉に、副成分の原料を投入し、所定の平均粒径となるまで粉砕及び混合し、得られた混合物にバインダとして例えばポリビニルアルコールを加えて得られる造粒粉を用いて形成される。なおCoは主成分の原料とともに仮焼成前に加えても良い。バインダは有機物であって昇温工程にてほぼ分解するが、条件によっては焼結後にカーボンが残留して磁気特性を劣化させる場合があり、低酸素濃度雰囲気への切り替えのタイミングは、バインダが十分に分解するように適宜調整するのが望ましい。
成形体の形状としては、例えば、100mm×100mm×3mmの平板状とすることができる。焼結後に粉砕されるため、粉砕工程にて都合の良い形状とすればよい。平板状としては、特に限定するものではないが1辺が10mm~100mm程度の矩形状で、厚さが1mm~5mm程度の平板状とすることが好ましい。
[2] Manufacturing method (1) Molding process As the raw material powder of MnZn-based ferrite, Fe2O3 , Mn3O4 and ZnO powders are used as the raw material of the main component, and Co3O4 , SiO2 , CaCO3 , etc. are used as the raw material of the subcomponent. The molded body to be subjected to the sintering process is formed by adding the raw material of the subcomponent to the calcined powder obtained by calcining the raw material of the main component, pulverizing and mixing until a predetermined average particle size is obtained, and using a granulated powder obtained by adding, for example, polyvinyl alcohol as a binder to the obtained mixture. Note that Co3O4 may be added before the calcination together with the raw material of the main component. The binder is an organic matter and is almost decomposed in the heating process, but depending on the conditions, carbon may remain after sintering and deteriorate the magnetic properties, and it is desirable to appropriately adjust the timing of switching to a low oxygen concentration atmosphere so that the binder is sufficiently decomposed.
The shape of the molded body can be, for example, a flat plate of 100 mm x 100 mm x 3 mm. Since it is crushed after sintering, it should be in a shape that is convenient for the crushing process. The flat plate shape is not particularly limited, but is preferably a rectangular shape with one side of about 10 mm to 100 mm and a thickness of about 1 mm to 5 mm.

(2)焼結工程
MnZn系フェライトの原料粉末の成形体を焼結することによって、MnZn系フェライトの焼結体を得る。前記焼結は、昇温工程と、高温保持工程と、降温工程とを有する。前記高温保持工程において、保持温度は1050℃超1150℃未満とするのが好ましく、雰囲気中の酸素濃度を0.4~2体積%とするのが好ましい。降温工程において少なくとも(Tc+70)℃から100℃までの間の降温速度は50℃/時間以上とするのが好ましく、更に前記保持温度から100℃までの間の降温速度は、50℃/時間以上とするのが好ましい。
(2) Sintering process A sintered body of MnZn-based ferrite is obtained by sintering a compact of the raw material powder of MnZn-based ferrite. The sintering process includes a heating process, a high-temperature holding process, and a temperature lowering process. In the high-temperature holding process, the holding temperature is preferably higher than 1050°C and lower than 1150°C, and the oxygen concentration in the atmosphere is preferably 0.4 to 2% by volume. In the temperature lowering process, the temperature lowering rate from at least (Tc+70)°C to 100°C is preferably 50°C/hour or more, and further the temperature lowering rate from the holding temperature to 100°C is preferably 50°C/hour or more.

(a)昇温工程
昇温工程においては、少なくとも900℃以上で、雰囲気中の酸素濃度を0.4~2体積%の範囲とするのが好ましい。フェライトの生成が開始される900℃以上の温度で酸素濃度を制御する事で、より緻密で高密度の焼結体を得る事ができる。
(a) Heating Step In the heating step, it is preferable to set the oxygen concentration in the atmosphere to a range of 0.4 to 2% by volume at least at 900° C. By controlling the oxygen concentration at a temperature of 900° C. or higher where ferrite formation starts, a denser and higher density sintered body can be obtained.

(b)高温保持工程
高温保持工程における保持温度が1050℃以下であると十分な焼結密度が得られず、微細な結晶と空孔を多く含む組織となり易い。保持温度が1150℃以上であると、焼結は促進されるが、得られる結晶粒は相対的に大きな粒径となり易く、その結果、渦電流損失が増加する傾向がある。そのため、高温保持工程における保持温度が前記規定から外れると磁心損失が大きくなる傾向にある。高温保持工程における保持温度を1150℃未満として低温化する事で、結晶の肥大化を抑制することが可能となり、渦電流損失の増加をより抑制することができる。本発明において、高温保持工程における保持温度は、好ましくは1060~1140℃であり、更に好ましくは1070~1130℃である。
(b) High-temperature holding step If the holding temperature in the high-temperature holding step is 1050°C or lower, sufficient sintering density cannot be obtained, and the structure tends to contain many fine crystals and voids. If the holding temperature is 1150°C or higher, sintering is promoted, but the crystal grains obtained tend to have a relatively large grain size, and as a result, eddy current loss tends to increase. Therefore, if the holding temperature in the high-temperature holding step deviates from the above-mentioned regulation, the magnetic core loss tends to increase. By lowering the holding temperature in the high-temperature holding step to less than 1150°C, it is possible to suppress the enlargement of the crystals, and the increase in eddy current loss can be further suppressed. In the present invention, the holding temperature in the high-temperature holding step is preferably 1060 to 1140°C, and more preferably 1070 to 1130°C.

高温保持工程における酸素濃度が0.4体積%未満では、雰囲気が還元的となり、焼結して得られるMnZn系フェライトが低抵抗化して渦電流損失が増加する。一方、酸素濃度が2体積%超では、雰囲気が酸化的になりすぎるため、低抵抗のヘマタイトが生成され易くなり、かつ得られる結晶粒の粒径が相対的に大きくなり、部分的に結晶の肥大化を起こし易い。そのため、渦電流損失が増加し、高周波数、高励磁磁束密度で、低温から高温に至る全温度領域(0~120℃)において磁心損失が大きくなる傾向となる。 If the oxygen concentration in the high-temperature holding step is less than 0.4% by volume, the atmosphere becomes reducing, and the resistance of the MnZn ferrite obtained by sintering becomes low, resulting in increased eddy current loss. On the other hand, if the oxygen concentration exceeds 2% by volume, the atmosphere becomes too oxidizing, making it easier for low-resistance hematite to be produced, and the grain size of the resulting crystal grains becomes relatively large, making it easier for partial crystal enlargement to occur. As a result, eddy current loss increases, and there is a tendency for core loss to increase at high frequencies and high excitation magnetic flux densities over the entire temperature range from low to high temperatures (0 to 120°C).

酸素濃度は保持温度に応じて設定するのが好ましく、保持温度が高いほど相対的に酸素濃度を高く設定する。保持温度に応じた酸素濃度の設定によってCaが結晶粒界に偏析して粒界が高抵抗化して磁心損失を低減する事ができる。 It is preferable to set the oxygen concentration according to the holding temperature, and the higher the holding temperature, the higher the oxygen concentration should be set. By setting the oxygen concentration according to the holding temperature, Ca segregates at the grain boundaries, increasing the resistance of the grain boundaries and reducing core loss.

酸素濃度が低いほど正の結晶磁気異方性定数を有するFe2+量が増加し、磁心損失の極小となる温度が低くなる傾向にあるので、酸素濃度は前記範囲から外れないように設定するのが好ましい。 The lower the oxygen concentration, the greater the amount of Fe 2+ having a positive magnetocrystalline anisotropy constant, and the lower the temperature at which the core loss is minimized. Therefore, it is preferable to set the oxygen concentration so as not to deviate from the above range.

(c)降温工程
高温保持工程の後に続く降温工程では、まず高温保持工程の雰囲気から酸素濃度を低下させ、過度の酸化及び過度の還元を防ぐような酸素濃度に設定する。900℃から400℃の温度範囲で、雰囲気の酸素濃度を0.001~0.2体積%とすることによりFe2+生成量を好ましい範囲で調整できる。ここで、高温保持工程の後に続く降温工程において、雰囲気を所定の酸素濃度に調整する900℃から400℃までの間を第1降温工程と呼ぶ。
(c) Temperature-reducing step In the temperature-reducing step following the high-temperature-retaining step, the oxygen concentration is first reduced from the atmosphere in the high-temperature-retaining step, and set to an oxygen concentration that prevents excessive oxidation and excessive reduction. In the temperature range from 900°C to 400°C, the amount of Fe2 + generated can be adjusted within a preferred range by setting the oxygen concentration in the atmosphere to 0.001 to 0.2 volume %. Here, in the temperature-reducing step following the high-temperature-retaining step, the period from 900°C to 400°C in which the atmosphere is adjusted to a predetermined oxygen concentration is called the first temperature-reducing step.

高温保持工程から続いて、降温工程においても酸素濃度を制御し前記範囲に調整することにより、MnZn系フェライトの粒界にCaを偏析させるとともに、結晶粒内に固溶するCa量を適宜制御して、結晶粒内と粒界の抵抗を高めて渦電流損失に係る磁心損失を低減することができる。 By controlling the oxygen concentration in the cooling process following the high-temperature holding process and adjusting it to the above range, Ca is segregated at the grain boundaries of the MnZn ferrite, and the amount of Ca dissolved in the crystal grains is appropriately controlled, increasing the resistance within the crystal grains and at the grain boundaries, thereby reducing the magnetic core loss related to eddy current loss.

第1降温工程での降温速度は、焼結炉内の温度及び酸素濃度の調整が可能な範囲であれ
ば特に限定されないが、50~300℃/時間とするのが好ましい。第1降温工程での降温速度が50℃/時間未満であると焼結工程に時間を要し、焼結炉内に滞留する時間が長くなり、生産性が低下してコストの上昇を招くので好ましくない。一方、降温速度が300℃/時間超であると、焼結炉の能力にもよるが焼結炉内の温度や酸素濃度の均一性を保つのが困難な場合がある。
The temperature drop rate in the first temperature drop step is not particularly limited as long as it is within a range that allows adjustment of the temperature and oxygen concentration in the sintering furnace, but is preferably 50 to 300°C/hour. If the temperature drop rate in the first temperature drop step is less than 50°C/hour, the sintering step takes time, the residence time in the sintering furnace increases, productivity decreases, and costs increase, which is not preferable. On the other hand, if the temperature drop rate exceeds 300°C/hour, it may be difficult to maintain the uniformity of the temperature and oxygen concentration in the sintering furnace, depending on the capacity of the sintering furnace.

高温保持工程における保持温度と酸素濃度とを所定の範囲とし、第1降温工程において900℃から400℃まで降温させる際の酸素濃度を特定の範囲で制御する事で、結晶粒径のばらつきを抑え、Co2+イオン及びFe2+イオンを適正な量に制御し磁心損失を低減することができる。 By setting the holding temperature and oxygen concentration in the high-temperature holding step within a predetermined range, and controlling the oxygen concentration within a specific range when lowering the temperature from 900°C to 400°C in the first cooling step, it is possible to suppress variation in crystal grain size, control the amounts of Co2 + ions and Fe2+ ions to appropriate levels, and reduce core loss.

降温工程では、MnZn系フェライトの主成分を構成する酸化鉄(Fe)と酸化亜鉛(ZnO)とのモル%から計算により求められるキュリー温度をTc(℃)としたとき、(Tc+70)℃から100℃までの間の降温速度を50℃/時間~300℃/時間とするのが好ましい。典型的には400℃から100℃まで間の降温速度を50℃/時間~300℃/時間とするのが望ましい。ここで降温工程においてTcを含む(Tc+70)℃から100℃までの温度範囲を所定の降温速度で降温する間を第2降温工程と呼ぶ。 In the temperature decreasing step, when the Curie temperature calculated from the mole percentages of iron oxide (Fe 2 O 3 ) and zinc oxide (ZnO) constituting the main components of the MnZn ferrite is Tc (° C.), the temperature decreasing rate from (Tc+70)° C. to 100° C. is preferably 50° C./hour to 300° C./hour. Typically, the temperature decreasing rate from 400° C. to 100° C. is desirably 50° C./hour to 300° C./hour. Here, the period during which the temperature is decreased at a predetermined temperature decreasing rate in the temperature range from (Tc+70)° C. to 100° C., including Tc, in the temperature decreasing step is referred to as the second temperature decreasing step.

第2降温工程での降温速度を50℃/時間未満とすると、Co2+及びFe2+に起因する誘導磁気異方性の影響を受け易く高温側の磁心損失が劣化する場合があり望ましくない。一方、降温速度が300℃/時間超であると、焼結炉の能力にもよるが、焼結炉内の温度や降温速度を調整するのが困難な場合がある。 If the cooling rate in the second cooling step is less than 50° C./hour, the magnetic core loss on the high temperature side may deteriorate due to the influence of induced magnetic anisotropy caused by Co 2+ and Fe 2+ , which is undesirable. On the other hand, if the cooling rate exceeds 300° C./hour, it may be difficult to adjust the temperature and cooling rate in the sintering furnace, depending on the capacity of the sintering furnace.

第2降温工程における雰囲気は、不活性ガス雰囲気でも良いし大気雰囲気でも構わない。第1降温工程の酸素濃度を制御した雰囲気のまま、又は第2降温工程の途中で大気雰囲気や不活性ガス雰囲気にしても構わない。 The atmosphere in the second cooling step may be an inert gas atmosphere or an air atmosphere. The atmosphere with the controlled oxygen concentration in the first cooling step may remain the same, or may be changed to an air atmosphere or an inert gas atmosphere midway through the second cooling step.

(3)粉砕工程
MnZn系フェライトの焼結体を粉砕してMnZn系フェライト粉を得る。
粉砕工程では、粗粉砕工程と微粉砕工程とに分けて行うことが好ましい。粗粉砕と微粉砕との間に中粉砕工程を設けてもよい。粉砕の工程数は適宜選択できる。
(3) Crushing Step The sintered body of MnZn-based ferrite is crushed to obtain MnZn-based ferrite powder.
The pulverization step is preferably divided into a coarse pulverization step and a fine pulverization step. A medium pulverization step may be provided between the coarse pulverization and the fine pulverization. The number of pulverization steps can be appropriately selected.

本実施形態において、粗粉砕工程は、大きさが数mm角程度の粗粉砕粉となるように行うことが好ましい。例えば、固定式と揺動式2枚の板状粉砕歯を有し、入口と出口で角度を設けて出口側を狭め粉砕された粗粉砕粉を隙間から排出する構造を有する連続式ジョークラッシャーを用いることができる。粒度調整は出口間隔の設定幅を調整することにより行うことができる。 In this embodiment, the coarse crushing process is preferably carried out so that the coarsely crushed powder is a few mm square. For example, a continuous jaw crusher can be used that has two plate-shaped crushing teeth, one fixed and one swinging, and has an angle at the inlet and outlet, narrowing the outlet side and discharging the crushed coarsely crushed powder through the gap. Particle size adjustment can be performed by adjusting the set width of the outlet gap.

この粗粉砕工程で得られた粗粉砕粉は、例えば、目開き1.5mmの篩を用いて分級し、篩を通過した粗粉砕粉を微粉砕工程に送ることができる。篩に残った粗粉砕粉は、再度粗粉砕工程に戻し、所望の大きさとなるまで粗粉砕すればよい。なお、ここで用いる篩は、目開き3mm以下とすることが好ましい。更に2mm以下が好ましい。また、この篩を用いた分級は、振動篩機を用いることができる。 The coarsely pulverized powder obtained in this coarse pulverization process can be classified, for example, using a sieve with 1.5 mm openings, and the coarsely pulverized powder that passes through the sieve can be sent to the fine pulverization process. The coarsely pulverized powder that remains on the sieve can be returned to the coarse pulverization process again and coarsely pulverized to the desired size. The sieve used here preferably has an opening of 3 mm or less, more preferably 2 mm or less. A vibrating sieve can be used for classification using this sieve.

微粉砕工程では、粗粉砕粉を微粉砕して、おおむね100μm以下の微粉砕粉を得る。
この微粉砕工程では、例えば、振動式ミルを用いることができる。振動式ミルには連続式とバッチ式があり、粉砕ドラム中に粉砕用のメディア(球状や棒状のもの)を配置し、処理物とメディアを激しく振動させることで粉砕する機構となっている。粒度はメディア量やその形態、処理物の投入量、処理時間、振幅量等で調整できる。
In the fine pulverization step, the coarsely pulverized powder is pulverized to obtain a fine pulverized powder having a size of about 100 μm or less.
In this fine grinding process, for example, a vibrating mill can be used. Vibrating mills are available in continuous and batch types, and are pulverized by placing pulverizing media (spherical or rod-shaped) in a grinding drum and vigorously vibrating the material to be processed and the media. The particle size can be adjusted by the amount and shape of the media, the input amount of the material to be processed, the processing time, the amount of vibration, etc.

この微粉砕工程で得られた微粉砕粉は、例えば、目開き198μmの篩を用いて分級し、篩を通過した微粉砕粉を粉砕工程後のMnZn系フェライト粉として用いることができる。篩に残ったMnZn系フェライトの粉砕粉は、再度微粉砕工程に戻し、所望の大きさとなるまで微粉砕すればよい。なお、ここで用いる篩の目開き上限値は目的の粒度にあわせ、例えば汎用で用いられる30μm~200μm程度の目開きを有する篩を適宜選択し調整すればよい。また、この篩を用いた分級は、振動篩機を用いることができる。この篩はMnZn系フェライト粉の粒径の上限を決めるものであるが、微細過ぎる粉砕粉を除くために、粒径の下限を決める篩を行ってもよい。 The finely pulverized powder obtained in this pulverization process is classified, for example, using a sieve with a mesh size of 198 μm, and the finely pulverized powder that passes through the sieve can be used as the MnZn-based ferrite powder after the pulverization process. The pulverized powder of MnZn-based ferrite that remains on the sieve can be returned to the pulverization process again and pulverized to the desired size. The upper limit of the mesh size of the sieve used here can be appropriately selected and adjusted according to the target particle size, for example, a sieve with a mesh size of about 30 μm to 200 μm that is used for general purposes. In addition, a vibrating sieve can be used for classification using this sieve. This sieve determines the upper limit of the particle size of the MnZn-based ferrite powder, but in order to remove pulverized powder that is too fine, a sieve that determines the lower limit of the particle size may also be used.

(4)熱処理工程
本実施形態では、MnZn系フェライトの焼結体を粉砕する前に熱処理する熱処理工程と、MnZn系フェライトの焼結体を粉砕したMnZn系フェライト粉を熱処理する熱処理工程とのうち、少なくとも一方の熱処理工程を備える。なお、両方の熱処理工程を行ってもよい。
この熱処理工程は、
条件1:200℃以上、及び
条件2:(Tc-90)℃~(Tc+100)℃[ただし、Tcは前記MnZn系フェライトの主成分に含まれるFe2O3及びZnOのモル%から計算により求められるキュリー温度(℃)である。]
を満たす温度まで加熱し、一定時間保持した後、前記保持温度から50℃/時間以下の速度で降温する熱処理工程である。
前記保持温度が、200℃未満又は(Tc-90)℃未満であると、MnZn系フェライトの磁心損失の低減効果が得られ難くなる。また(Tc+100)℃超であると磁心損失の低減効果が上限に達する。前記保持温度からの降温速度が50℃/時間超であると、磁心損失の低減効果が十分に発揮されなくなる。なお、降温速度は保持温度から150℃までの温度範囲で算出する。
(4) Heat Treatment Step In this embodiment, at least one of a heat treatment step of heat treating the MnZn-based ferrite sintered body before crushing it and a heat treatment step of heat treating the MnZn-based ferrite powder obtained by crushing the MnZn-based ferrite sintered body is provided. Note that both heat treatment steps may be performed.
This heat treatment process is
Condition 1: 200°C or higher, and Condition 2: (Tc-90)°C to (Tc+100)°C [where Tc is the Curie temperature (°C) calculated from the mole percentages of Fe2O3 and ZnO contained in the main components of the MnZn-based ferrite.]
This is a heat treatment process in which the material is heated to a temperature that satisfies the above condition, held for a certain period of time, and then cooled from the held temperature at a rate of 50° C./hour or less.
If the holding temperature is less than 200°C or less than (Tc-90)°C, it becomes difficult to obtain the effect of reducing the magnetic core loss of the MnZn ferrite. If the temperature exceeds (Tc+100)°C, the effect of reducing the magnetic core loss reaches an upper limit. If the cooling rate from the holding temperature exceeds 50°C/hour, the effect of reducing the magnetic core loss is not sufficiently exhibited. The cooling rate is calculated in the temperature range from the holding temperature to 150°C.

前記熱処理は大気中で行なっても良いし、還元雰囲気中で行なっても良い。大気中など酸化雰囲気である場合には、MnZn系フェライトの酸化による磁気特性劣化を防ぐように、熱処理はその温度の上限を400℃以下とするのが好ましく、降温速度が5℃/時間程度と遅い場合は350℃未満とするのが好ましい。また還元雰囲気であれば、熱処理の温度の上限は酸化によって限定されないが、磁心損失の低減効果が上限に達することを考慮すれば、酸化雰囲気での熱処理と同様に400℃以下とするのが好ましい。 The heat treatment may be performed in air or in a reducing atmosphere. In the case of an oxidizing atmosphere such as air, the upper limit of the heat treatment temperature is preferably 400°C or less to prevent the magnetic properties from deteriorating due to oxidation of the MnZn ferrite, and is preferably less than 350°C when the temperature drop rate is slow, about 5°C/hour. In the case of a reducing atmosphere, the upper limit of the heat treatment temperature is not limited by oxidation, but considering that the effect of reducing magnetic core loss will reach an upper limit, it is preferable to set it to 400°C or less, as in the case of heat treatment in an oxidizing atmosphere.

熱処理における昇温速度は特に限定するものではないが、装置の性能や熱応力による歪の影響を受けない程度に適宜選定すれば良く、典型的には100℃~300℃/時間とすれば良い。 The heating rate in the heat treatment is not particularly limited, but may be appropriately selected so as not to be affected by the performance of the device or distortion due to thermal stress, and is typically set to 100°C to 300°C/hour.

熱処理における保持時間は特に限定するものではないが、装置内に配置した試料が所定の温度に至るに必要な時間を設ければ良く、典型的には1時間程度とすれば良い。
本発明の熱処理は熱処理炉(電気炉、恒温槽等)を用いて行うことができる。
The holding time in the heat treatment is not particularly limited, but it is sufficient to provide a time required for the sample placed in the apparatus to reach a predetermined temperature, typically about one hour.
The heat treatment of the present invention can be carried out using a heat treatment furnace (electric furnace, constant temperature bath, etc.).

本実施形態のMnZn系フェライト粉は、粒径が1μm以下のものは少ない方が良い。過粉砕となると焼結体を構成する結晶が破壊され、粉砕粉の平均粒径が小さくなるに従い特性が劣化する傾向にある。MnZn系フェライト粉は、粒径1μmの通過分積算(%)が15%以下となる粒度分布を備えることが好ましい。更に好ましくは10%以下であり、分級により0%としても良い。このMnZn系フェライトの平均結晶粒径が約2~5μmであるので、1μm以下のものは、特性への寄与が低く、その含有量は少ない方が好ましい。
また、このMnZn系フェライト粉は、樹脂等と混ぜられ、磁心等の形態に成形されて使用されることが考えられる。このとき、粒径が大きいと、均一な混錬や充填密度が上がらない。そのため、平均粒径D50は100μm以下であることが好ましい。
本実施形態のMnZn系フェライト粉は、平均粒径D50が1μm以上であることが好ましく、更に好ましくは5μm以上であり、10μm以上であるのがいっそう好ましい。また、100μm以下であるのが好ましく、更に好ましくは90μm以下であり、80μm以下であるのがいっそう好ましい。
In the present embodiment, the MnZn ferrite powder should preferably have a small particle size of 1 μm or less. If the powder is over-pulverized, the crystals constituting the sintered body are destroyed, and the properties tend to deteriorate as the average particle size of the pulverized powder becomes smaller. The MnZn ferrite powder preferably has a particle size distribution in which the cumulative percentage of particles passing through a particle size of 1 μm is 15% or less. More preferably, it is 10% or less, and it may be 0% by classification. Since the average crystal particle size of this MnZn ferrite is about 2 to 5 μm, particles of 1 μm or less have a low contribution to the properties, and therefore a small content is preferable.
In addition, this MnZn ferrite powder is mixed with resin and molded into a magnetic core. If the particle size is large, uniform mixing and filling density are not achieved. Therefore, it is preferable that the average particle size D50 is 100 μm or less.
The MnZn ferrite powder of this embodiment has an average particle size D50 of preferably 1 μm or more, more preferably 5 μm or more, and even more preferably 10 μm or more. Also, it is preferably 100 μm or less, more preferably 90 μm or less, and even more preferably 80 μm or less.

表1に示す組成となるようにMnZn系フェライトの原料粉末を準備した。主成分の原料には、Fe、Mn(MnO換算)及びZnOを用い、これらを湿式混合した後乾燥させ、900℃で1.5時間仮焼成した。次いで、ボールミルに仮焼成粉100質量部に対して、Co、SiO、CaCO、V、Ta及びNbを表1に示すように加えて、平均粉砕粒径(空気透過法)が0.8~1.0μmとなるまで粉砕・混合した。得られた混合物にバインダとしてポリビニルアルコールを加え、スプレードライヤーにて顆粒化した後、196MPaで加圧成形して平板状の成形体(100mm×100mm×3mm)を得た。得られた成形体を雰囲気調整が可能な電気焼結炉にて焼結して、平板状の焼結体を得た。その平均結晶粒径は3μmであった。 The raw powder of MnZn-based ferrite was prepared so as to have the composition shown in Table 1. Fe 2 O 3 , Mn 3 O 4 (MnO equivalent) and ZnO were used as the raw materials of the main components, which were wet mixed, dried and pre-fired at 900°C for 1.5 hours. Next, Co 3 O 4 , SiO 2 , CaCO 3 , V 2 O 5 , Ta 2 O 5 and Nb 2 O 5 were added to a ball mill with respect to 100 parts by mass of the pre-fired powder as shown in Table 1, and the mixture was ground and mixed until the average ground particle size (air permeation method) was 0.8 to 1.0 μm. Polyvinyl alcohol was added as a binder to the resulting mixture, which was granulated with a spray dryer and then pressure-molded at 196 MPa to obtain a plate-shaped molded body (100 mm x 100 mm x 3 mm). The resulting molded body was sintered in an electric sintering furnace capable of adjusting the atmosphere to obtain a plate-shaped sintered body. The average crystal grain size was 3 μm.

Figure 0007484086000001
Figure 0007484086000001

焼結は、室温から750℃に至る間の昇温工程においては大気中で行い、750℃にてNガスでの置換を開始して酸素濃度を徐々に低下させ900℃で酸素濃度を0.65体積%にし、1115℃に設定された高温保持工程の温度まで、昇温速度130℃/時間で昇温した。高温保持工程では酸素濃度を0.65体積%とし、4時間保持した。降温工程では、1000℃から850℃まで酸素濃度を徐々に低下させ、1000℃で0.65体積%、900℃で0.05体積%、850℃以下で0.005体積%となるように調整した。降温工程では150℃/時間の降温速度で100℃まで降温した後、電気焼結炉から平板状の焼結体を取り出した。なお酸素濃度はジルコニア式酸素分析装置で測定し、温度は焼結炉に設けられた熱電対にて測温した。 Sintering was performed in the air during the temperature increase process from room temperature to 750 ° C., and at 750 ° C., replacement with N2 gas was started to gradually reduce the oxygen concentration, and the oxygen concentration was set to 0.65 vol.% at 900 ° C., and the temperature was increased at a temperature increase rate of 130 ° C. / hour to the temperature of the high-temperature holding process set at 1115 ° C. In the high-temperature holding process, the oxygen concentration was set to 0.65 vol.% and held for 4 hours. In the temperature reduction process, the oxygen concentration was gradually reduced from 1000 ° C. to 850 ° C., and adjusted to 0.65 vol.% at 1000 ° C., 0.05 vol.% at 900 ° C., and 0.005 vol.% at 850 ° C. or less. In the temperature reduction process, the temperature was reduced to 100 ° C. at a temperature reduction rate of 150 ° C. / hour, and then the flat sintered body was taken out from the electric sintering furnace. The oxygen concentration was measured with a zirconia type oxygen analyzer, and the temperature was measured with a thermocouple installed in the sintering furnace.

(キュリー温度)
フェライト(丸善株式会社、昭和61年11月30日発行、第6刷、79頁)に記載の式:
Tc=12.8×[y-(2/3)×z]-358(℃)、[ただし、y及びzはそれぞれFe及びZnOのモル%である。]
により計算で求めた。実施例のキュリー温度は270℃であった。
(Curie temperature)
Ferrite (Maruzen Co., Ltd., published on November 30, 1986, 6th printing, page 79):
Tc = 12.8 x [y - (2/3) x z] - 358 (°C), where y and z are the mole percentages of Fe2O3 and ZnO , respectively.
The Curie temperature in this example was 270° C.

平板状の焼結体に対して、以下のように熱処理を行なった。図1に実施例の熱処理工程の温度条件を示す。熱処理は、室温から1.5時間で昇温させ、250℃に到達後1時間その温度で保持して、炉内の温度を安定させた後、150℃まで5℃/時間の降温速度で降温を行い、150℃未満の温度になった後、炉内に外気を導入して試料を冷却して行った。熱処理は大気中で行なった。 The flat sintered body was subjected to heat treatment as follows. Figure 1 shows the temperature conditions of the heat treatment process in the example. The heat treatment was carried out by raising the temperature from room temperature over 1.5 hours, and after reaching 250°C, maintaining that temperature for 1 hour to stabilize the temperature inside the furnace, lowering the temperature to 150°C at a rate of 5°C/hour. After the temperature fell below 150°C, outside air was introduced into the furnace to cool the sample. The heat treatment was carried out in the atmosphere.

熱処理工程後の平板状の焼結体を連続式ジョークラッシャーである前川工業所製ファインジョークラッシャー(登録商標)SC-1007を用い、出口間隔20mmにて粗粉砕した。次いで粗粉砕粉を、振動篩機を用いて分級した。ここで、目開き1.4mmの篩を用い、その篩を通過した粗粉砕粉を微粉砕した。 The flat sintered body after the heat treatment process was coarsely crushed using a continuous jaw crusher, Mayekawa Industries Fine Jaw Crusher (registered trademark) SC-1007, with an outlet gap of 20 mm. The coarsely crushed powder was then classified using a vibrating sieve. Here, a sieve with 1.4 mm openings was used, and the coarsely crushed powder that passed through the sieve was finely crushed.

微粉砕は、振動ミルを用いた。本実施形態では鉄製の球状メディアでバッチ式の振動ミルを用い15分の粉砕時間で実施し微粉砕粉を得た。
次いで微粉砕粉を、振動篩機を用いて分級した。ここで、目開き198μmの篩を用い、その篩を通過した微粉砕粉をMnZn系フェライト粉とした。
このMnZn系フェライト粉に対し、平板状の焼結体に行った熱処理と同じ熱処理を行うこともできる。
The fine pulverization was carried out using a vibration mill. In this embodiment, the fine pulverization was carried out for 15 minutes using a batch type vibration mill with iron spherical media to obtain a finely pulverized powder.
The finely pulverized powder was then classified using a vibrating sieve with a mesh size of 198 μm, and the finely pulverized powder that passed through the sieve was designated as MnZn-based ferrite powder.
This MnZn ferrite powder can be subjected to the same heat treatment as that given to the flat sintered body.

得られたMnZn系フェライト粉の粒度分布を図2に示す。図2は粒径(粒子径)(μm)を横軸とし、頻度(%)と通過分積算(%)とを縦軸として、粒度分布を示している。なお、縦軸は体積%である。この粒度分布は、レーザー回折散乱式粒度分布測定法にて堀場製LA-920を用い測定した。測定条件は以下の通りである。
<透過率>
・「最適レンジ上限」 95% 、「最適レンジ下限」 70%
<試料調整>
・「循環速度」 15(装置レンジ)
・「超音波作動時間」 3分
・「超音波強度」 7(装置レンジ)
<測定条件設定>
・「データ読み込み回数」 10 回
・「測定中超音波動作」 する
<表示条件設定>
・「分布形状」 標準
・「反復回数」 30 回
・「相対屈折率」 2.50-4.00i
・「粒子系基準」 体積
このMnZn系フェライト粉は、平均粒径D50(メジアン径)が5.1μmであった。また、粒径1μmの通過分積算(%)は、約10%であった。
また、このMnZn系フェライト粉の電子顕微鏡写真を図3に示す。得られたMnZn系フェライト粉は、粒内破壊、粒界破壊の両方の破壊モードが混在した表面を有している。
The particle size distribution of the obtained MnZn ferrite powder is shown in Figure 2. Figure 2 shows the particle size distribution with the particle size (particle diameter) (μm) on the horizontal axis and the frequency (%) and cumulative passing amount (%) on the vertical axis. The vertical axis is volume %. This particle size distribution was measured by a laser diffraction scattering type particle size distribution measuring method using a HORIBA LA-920. The measurement conditions are as follows:
<Transmittance>
- "Optimal upper limit" 95%, "optimal lower limit" 70%
<Sample preparation>
・"Circulation speed" 15 (device range)
・"Ultrasonic operation time" 3 minutes ・"Ultrasonic intensity" 7 (device range)
<Measurement condition settings>
・"Data reading count" 10 times ・"Ultrasonic operation during measurement" Yes <Display condition settings>
・"Distribution shape" Standard ・"Number of repetitions" 30 times ・"Relative refractive index" 2.50-4.00i
"Particle-based" Volume The MnZn ferrite powder had an average particle size D50 (median diameter) of 5.1 μm. The cumulative percentage of particles with a particle size of 1 μm passing through was about 10%.
An electron microscope photograph of this MnZn ferrite powder is shown in Figure 3. The obtained MnZn ferrite powder has a surface on which both intragranular and intergranular fracture modes are mixed.

本実施例により、平均粒径D50が100μm以下のMnZn系フェライト粉が得られた。本MnZn系フェライトは1~5MHzの高周波数領域において、有用な材料であり、本MnZn系フェライト粉を用いた部品等の低損失化に有用なものとなる。 In this example, MnZn-based ferrite powder with an average particle size D50 of 100 μm or less was obtained. This MnZn-based ferrite is a useful material in the high frequency range of 1 to 5 MHz, and is useful for reducing loss in components that use this MZn-based ferrite powder.

本発明のMnZn系フェライト粉は、1~5MHzの高周波数領域において使用される電子部品等に用いられる磁性体として、有用な材料となり得る。このMnZn系フェライト粉は、樹脂等と混ぜられて、必要とされる形態に成形されて、磁心等として機能させることができる。このMnZn系フェライトは、1~5MHzの高周波数領域において優れた磁気特性を発揮するものであり、このMnZn系フェライト粉を用いた部品等の低損失化に寄与することが期待できる。 The MnZn-based ferrite powder of the present invention can be a useful material as a magnetic body used in electronic components and the like used in the high frequency range of 1 to 5 MHz. This MnZn-based ferrite powder can be mixed with resin, etc., molded into the required shape, and can function as a magnetic core, etc. This MnZn-based ferrite exhibits excellent magnetic properties in the high frequency range of 1 to 5 MHz, and is expected to contribute to reducing loss in components and the like that use this MZn-based ferrite powder.

Claims (7)

主成分としてFe、Zn及びMnを含み、副成分として少なくともCoを含み、前記主成分が、Fe 換算で53~56モル%のFe、ZnO換算で3~9モル%のZn及びMnO換算で残部Mnからなり、前記副成分が、前記酸化物換算での主成分の合計100質量部に対して、Co 換算で0.05~0.4質量部のCoを含むMnZn系フェライト磁心の製造方法であって、
原料粉末を成形して成形体を得る成形工程と、
前記成形体を焼結し、150℃未満の温度まで冷却してMnZn系フェライト焼結体を得る焼結工程と、
得られた前記MnZn系フェライト焼結体を粉砕してMnZn系フェライト粉を得る粉砕工程と、
前記MnZn系フェライト粉を成形する工程と、を備え、
更に、前記MnZn系フェライト焼結体を熱処理する熱処理工程と、前記MnZn系フェライト焼結体を粉砕した前記MnZn系フェライト粉を熱処理する熱処理工程とのうち、少なくとも一方の熱処理工程を備え、前記熱処理工程が、
条件1:200℃以上、及び
条件2:(Tc-90)℃~(Tc+100)℃[ただし、Tcは前記MnZn系フェライト粉の主成分に含まれるFe及びZnOのモル%から計算により求められるキュリー温度(℃)である。]
を満たす温度まで加熱し、一定時間保持した後、前記保持温度から50℃/時間以下の速度で降温する熱処理工程であり、
前記粉砕工程は粗粉砕工程と微粉砕工程とを含み、
前記MnZn系フェライト粉は、レーザー回折散乱式粒度分布測定法により得られる体積基準粒度分布において、粒径1μmの小粒径側からの通過分積算(%)が15%以下となる粒度分布を備えることを特徴とするMnZn系フェライト磁心の製造方法。
A method for producing an MnZn-based ferrite core, comprising Fe, Zn and Mn as main components and at least Co as an auxiliary component, the main components being 53 to 56 mol % Fe calculated as Fe2O3 , 3 to 9 mol % Zn calculated as ZnO and the remainder Mn calculated as MnO, the auxiliary component comprising 0.05 to 0.4 parts by mass of Co calculated as Co3O4 per 100 parts by mass of the main components calculated as oxide ,
a molding step of molding the raw material powder to obtain a molded body;
a sintering step of sintering the molded body and cooling it to a temperature of less than 150° C. to obtain a MnZn-based ferrite sintered body;
A pulverization step of pulverizing the obtained MnZn-based ferrite sintered body to obtain MnZn-based ferrite powder;
and a step of molding the MnZn ferrite powder .
The method further includes at least one of a heat treatment step of heat treating the MnZn-based ferrite sintered body and a heat treatment step of heat treating the MnZn-based ferrite powder obtained by pulverizing the MnZn-based ferrite sintered body, and the heat treatment step is
Condition 1: 200°C or higher, and Condition 2: (Tc-90)°C to (Tc+100)°C [where Tc is the Curie temperature ( ° C) calculated from the mole percentages of Fe2O3 and ZnO contained in the main components of the MnZn-based ferrite powder.]
a heat treatment process in which the temperature is increased to a temperature that satisfies the above-mentioned condition, the temperature is maintained for a certain period of time, and then the temperature is decreased from the maintained temperature at a rate of 50° C./hour or less,
The pulverization step includes a coarse pulverization step and a fine pulverization step,
The MnZn-based ferrite powder has a particle size distribution in which the cumulative percentage of particles passing through from the small particle size side of 1 μm in a volumetric particle size distribution obtained by a laser diffraction scattering type particle size distribution measurement method is 15% or less .
前記MnZn系フェライト粉は平均粒径D50が100μm以下である、請求項1に記載のMnZn系フェライト磁心の製造方法。 2. The method for producing a MnZn based ferrite magnetic core according to claim 1, wherein the MnZn based ferrite powder has an average particle size D50 of 100 μm or less . 前記粉砕工程は、前記粗粉砕工程と前記微粉砕工程との間に中粉砕工程をさらに含むことを特徴とする請求項1に記載のMnZn系フェライト磁心の製造方法。 2. The method for producing an MnZn ferrite core according to claim 1, wherein the pulverizing step further includes a medium pulverizing step between the coarse pulverizing step and the fine pulverizing step. 前記MnZn系フェライト粉は、前記酸化物換算での前記主成分の合計100質量部に対して、副成分として更に、SiO換算で0.003~0.015質量部のSi、CaCO換算で0.06~0.3質量部のCa、V換算で0~0.1質量部のV、並びに合計で0~0.3質量部のNb(Nb換算)及び/又はTa(Ta換算)を含む、請求項1~3のいずれかに記載のMnZn系フェライト磁心の製造方法。 The method for producing an MnZn-based ferrite magnetic core according to any one of claims 1 to 3, wherein the MnZn-based ferrite powder further contains, as auxiliary components, 0.003 to 0.015 parts by mass of Si in terms of SiO2 , 0.06 to 0.3 parts by mass of Ca in terms of CaCO3 , 0 to 0.1 parts by mass of V in terms of V2O5 , and a total of 0 to 0.3 parts by mass of Nb (in terms of Nb2O5) and/or Ta (in terms of Ta2O5 ) , relative to a total of 100 parts by mass of the main components in terms of the oxides. 前記焼結工程は、昇温工程と、高温保持工程と、降温工程とを有し、
前記高温保持工程は、保持温度が1050℃超1150℃未満で、雰囲気中の酸素濃度が0.4~2体積%であり、
前記降温工程中、900℃から400℃まで降温させる際の酸素濃度を0.001~0.2体積%の範囲とし、(Tc+70)℃から100℃までの間の降温速度を50℃/時間以上とする、請求項1~3のいずれかに記載のMnZn系フェライト磁心の製造方法。
The sintering step includes a temperature increasing step, a high temperature holding step, and a temperature decreasing step,
The high-temperature holding step has a holding temperature of more than 1050° C. and less than 1150° C., and an oxygen concentration in the atmosphere is 0.4 to 2% by volume;
The method for producing a MnZn-based ferrite magnetic core according to any one of claims 1 to 3, wherein, during the temperature-lowering step, the oxygen concentration when lowering the temperature from 900°C to 400°C is in the range of 0.001 to 0.2 volume %, and the temperature-lowering rate from (Tc+70)°C to 100°C is 50° C /hour or more.
前記降温工程中、前記保持温度から100℃までの間の降温速度を50℃/時間以上とする、請求項5に記載のMnZn系フェライト磁心の製造方法。 6. The method for producing an MnZn ferrite magnetic core according to claim 5, wherein, during the temperature decreasing step, the temperature is decreased at a rate of 50[deg.] C./hour or more from the holding temperature to 100[deg.] C. 前記MnZn系フェライト磁心がトランス又はチョークコイル用である、請求項1~6のいずれかに記載のMnZn系フェライト磁心の製造方法。7. The method for producing a MnZn ferrite core according to claim 1, wherein the MnZn ferrite core is for a transformer or a choke coil.
JP2019091799A 2019-05-15 2019-05-15 Manufacturing method of MnZn ferrite core Active JP7484086B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019091799A JP7484086B2 (en) 2019-05-15 2019-05-15 Manufacturing method of MnZn ferrite core
JP2023072825A JP2023095907A (en) 2019-05-15 2023-04-27 MnZn BASED FERRITE POWDER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019091799A JP7484086B2 (en) 2019-05-15 2019-05-15 Manufacturing method of MnZn ferrite core

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023072825A Division JP2023095907A (en) 2019-05-15 2023-04-27 MnZn BASED FERRITE POWDER

Publications (2)

Publication Number Publication Date
JP2020186149A JP2020186149A (en) 2020-11-19
JP7484086B2 true JP7484086B2 (en) 2024-05-16

Family

ID=73222897

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019091799A Active JP7484086B2 (en) 2019-05-15 2019-05-15 Manufacturing method of MnZn ferrite core
JP2023072825A Pending JP2023095907A (en) 2019-05-15 2023-04-27 MnZn BASED FERRITE POWDER

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023072825A Pending JP2023095907A (en) 2019-05-15 2023-04-27 MnZn BASED FERRITE POWDER

Country Status (1)

Country Link
JP (2) JP7484086B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7247773B2 (en) * 2019-06-13 2023-03-29 株式会社プロテリアル Method for producing MnZn ferrite powder
CN112456994A (en) * 2020-11-27 2021-03-09 天通控股股份有限公司 Low-temperature sintered high-frequency low-loss MnZn soft magnetic ferrite and preparation method thereof
CN115010480A (en) * 2022-07-04 2022-09-06 娄底市玖鑫电子科技有限公司 Preparation method of manganese-zinc ferrite KAH100 material
CN115677337B (en) * 2022-11-17 2023-10-03 横店集团东磁股份有限公司 Power ferrite material and preparation method and application thereof
CN115650718A (en) * 2022-11-18 2023-01-31 浙江工业大学 Manganese-zinc ferrite material with ultra-wide temperature, low power consumption and magnetic conductivity and temperature stability and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004189513A (en) 2002-12-09 2004-07-08 Fdk Corp Method of producing functional ferritic grain
JP2007112695A (en) 2005-09-22 2007-05-10 Tdk Corp METHOD FOR PRODUCING Mn FERRITE
JP2008105169A (en) 2006-09-30 2008-05-08 Fdk Corp Paste material
JP2009073724A (en) 2007-08-31 2009-04-09 Hitachi Metals Ltd Ferrite material and method for producing ferrite material
JP2013091590A (en) 2011-10-27 2013-05-16 Tdk Corp Ferrite composition for noncontact type temperature measurement
WO2017164351A1 (en) 2016-03-25 2017-09-28 日立金属株式会社 METHOD FOR PRODUCING Mn-Zn SYSTEM FERRITE MAGNETIC CORE, AND Mn-Zn SYSTEM FERRITE MAGNETIC CORE

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04196201A (en) * 1990-11-27 1992-07-16 Matsushita Electric Ind Co Ltd Manufacture of ferrite magnetic substance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004189513A (en) 2002-12-09 2004-07-08 Fdk Corp Method of producing functional ferritic grain
JP2007112695A (en) 2005-09-22 2007-05-10 Tdk Corp METHOD FOR PRODUCING Mn FERRITE
JP2008105169A (en) 2006-09-30 2008-05-08 Fdk Corp Paste material
JP2009073724A (en) 2007-08-31 2009-04-09 Hitachi Metals Ltd Ferrite material and method for producing ferrite material
JP2013091590A (en) 2011-10-27 2013-05-16 Tdk Corp Ferrite composition for noncontact type temperature measurement
WO2017164351A1 (en) 2016-03-25 2017-09-28 日立金属株式会社 METHOD FOR PRODUCING Mn-Zn SYSTEM FERRITE MAGNETIC CORE, AND Mn-Zn SYSTEM FERRITE MAGNETIC CORE

Also Published As

Publication number Publication date
JP2020186149A (en) 2020-11-19
JP2023095907A (en) 2023-07-06

Similar Documents

Publication Publication Date Title
JP7484086B2 (en) Manufacturing method of MnZn ferrite core
JP6856064B2 (en) Manufacturing method of MnZn-based ferrite core and MnZn-based ferrite core
EP3239114B1 (en) Method for producing mnzn-based ferrite
WO2017164350A1 (en) METHOD FOR PRODUCING MnZn-BASED FERRITE, AND MnZn-BASED FERRITE
JP2023075218A (en) MnZn BASED FERRITE POWDER
JPWO2019123681A1 (en) MnCoZn ferrite and method for producing the same
JP6730546B1 (en) MnCoZn ferrite and method for producing the same
CN112041953B (en) MnZn ferrite and method for producing same
TWI751302B (en) Nickel-based ferrite sintered body, coil parts, and manufacturing method of nickel-based ferrite sintered body
JP4031886B2 (en) Method for producing Ni-Zn ferrite
JPWO2020189035A1 (en) MnCoZn-based ferrite and its manufacturing method
JPWO2020158335A1 (en) MnZn-based ferrite and its manufacturing method
JP2003267777A (en) Ferrite material and ferrite core using the same
TWI727622B (en) Manganese-zinc fertilizer granulated iron and its manufacturing method
JPWO2020189036A1 (en) MnZn-based ferrite and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230920

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240415

R150 Certificate of patent or registration of utility model

Ref document number: 7484086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150