JP2010076962A - MnZnLi-BASED FERRITE - Google Patents

MnZnLi-BASED FERRITE Download PDF

Info

Publication number
JP2010076962A
JP2010076962A JP2008245344A JP2008245344A JP2010076962A JP 2010076962 A JP2010076962 A JP 2010076962A JP 2008245344 A JP2008245344 A JP 2008245344A JP 2008245344 A JP2008245344 A JP 2008245344A JP 2010076962 A JP2010076962 A JP 2010076962A
Authority
JP
Japan
Prior art keywords
mnznli
terms
loss
mol
pcv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008245344A
Other languages
Japanese (ja)
Other versions
JP4623183B2 (en
Inventor
Isao Nakahata
功 中畑
Xiaolong Li
小龍 李
Tomofumi Kuroda
朋史 黒田
Seirai Kuruma
声雷 車
Kentaro Mori
健太郎 森
Takuya Aoki
卓也 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2008245344A priority Critical patent/JP4623183B2/en
Priority to TW098129425A priority patent/TWI393692B/en
Priority to KR1020090089864A priority patent/KR101053431B1/en
Priority to CN2009101733954A priority patent/CN101684044B/en
Publication of JP2010076962A publication Critical patent/JP2010076962A/en
Application granted granted Critical
Publication of JP4623183B2 publication Critical patent/JP4623183B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F2003/106Magnetic circuits using combinations of different magnetic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Structural Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)
  • Compounds Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new MnZnLi-based ferrite which has excellent high saturation magnetic flux density characteristics and excellent characteristics of reducing the temperature dependency of magnetic loss (core loss), can improve bending strength and further improve product yield, and are excellent in thermal shock resistance. <P>SOLUTION: The MnZnLi-based ferrite contains 54.0-58.0 mol% iron oxide expressed in terms of Fe<SB>2</SB>O<SB>3</SB>, 3.0-10.0 mol% zinc oxide expressed in terms of ZnO, 0.3-1.5 mol% lithium oxide expressed in terms of LiO<SB>0.5</SB>and the balance manganese oxide (expressed in terms of MnO) as main constituents and 500-2,000 weight ppm Co expressed in terms of CoO is incorporated as an accessary constituent to the main constituents. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、MnZnLi系フェライトに係り、さらに詳しくは、スッチング電源などの電源トランス等の磁心に用いられるMnZnLi系フェライトであって、特に、広い温度帯域において磁気損失(コアロス)が小さく、かつ、焼結体強度、特に抗折強度(曲げ強度)の向上が図られるMnZnLi系フェライトに関する。   The present invention relates to an MnZnLi-based ferrite, and more specifically, an MnZnLi-based ferrite used for a magnetic core of a power transformer such as a switching power supply, and particularly has a small magnetic loss (core loss) in a wide temperature range and is sintered. The present invention relates to a MnZnLi-based ferrite that can improve the strength of the body, particularly the bending strength (bending strength).

近年、電子機器の小型化、高出力化が急速に進んでいる。それに伴い各種部品の高集積化、高速処理化が進み、電力を供給する電源ラインの大電流化が要求されている。トランス、チョークコイルといった部品に対しても大電力での駆動が求められており、さらに自動車等の使用環境の高温化や、駆動時の発熱による温度上昇から、100℃付近での安定駆動が求められている。   In recent years, electronic devices have been rapidly reduced in size and output. Along with this, various components have been highly integrated and high-speed processing has progressed, and there has been a demand for increasing the current of the power supply line for supplying power. Drives with high power are also required for components such as transformers and choke coils. Furthermore, stable driving at around 100 ° C is required due to high temperatures in the usage environment of automobiles and temperature rise due to heat generated during driving. It has been.

大電流駆動に対応するため、フェライト磁心に対しては、高温、例えば100℃以上での温度領域での高飽和磁束密度が要求されている。さらに、磁気的安定性に優れ、高信頼性を担保するために、100℃付近での磁気損失(コアロス)値を小さくでき、しかも100℃付近での磁気損失(コアロス)値の温度依存性を小さくでき、しかも、高温貯蔵性に優れたフェライトの提案が望まれている。   In order to cope with a large current drive, the ferrite core is required to have a high saturation magnetic flux density at a high temperature, for example, in a temperature region of 100 ° C. or higher. Furthermore, in order to ensure excellent magnetic stability and high reliability, the magnetic loss (core loss) value near 100 ° C can be reduced, and the temperature dependence of the magnetic loss (core loss) value near 100 ° C can be reduced. There is a demand for a ferrite that can be made small and excellent in high-temperature storage.

また、フェライト磁心の小型・薄型化への対応から高抗折強度化が要求されている。しかしながらトランスに主に用いられるMnZnフェライトは抗折強度が低いという問題がある。また、トランスを半田槽に浸漬し半田付けを行う工程がある場合は、コアの耐熱衝撃性が要求される。   In addition, a high bending strength is required in order to reduce the size and thickness of ferrite cores. However, MnZn ferrite mainly used for transformers has a problem of low bending strength. Further, when there is a step of soldering by immersing the transformer in a solder bath, the thermal shock resistance of the core is required.

本願と関連すると思われる先行技術として以下の文献がある。   There are the following documents as prior art which is considered to be related to the present application.

(1)特許第3487243号
飽和磁束密度が高くかつ磁心損失が最小となる温度を実用的な温度に容易にすることを目的として、副成分としてLi、Ca、Siを必須成分として添加したMnZn系フェライトの開示がなされている。
(1) Japanese Patent No. 3487243 A MnZn system in which Li, Ca, and Si are added as essential components for the purpose of facilitating the temperature at which the saturation magnetic flux density is high and the magnetic core loss is minimized to a practical temperature. Ferrite is disclosed.

(2)特開2007−238429公報
100℃においてより高い飽和磁束密度を有し、かつ100℃におけるコア損失が低いフェライト材料を提供することを目的として、副成分としてLiを添加したMnZnフェライトの開示がなされている。
(2) Japanese Unexamined Patent Publication No. 2007-238429 Disclosure of MnZn ferrite with Li added as an accessory component for the purpose of providing a ferrite material having a higher saturation magnetic flux density at 100 ° C. and a low core loss at 100 ° C. Has been made.

(3)特許第3924272号
高温度帯域においてコアロスが小さく、さらに高温度の貯蔵下においてもコアロスの劣化が少ないフェライト材料を提供することを目的として、副成分としてCoを添加したMnZn系フェライトの開示がなされている。
(3) Patent No. 3924272 Disclosure of MnZn-based ferrite to which Co is added as an auxiliary component for the purpose of providing a ferrite material with small core loss in a high temperature range and little deterioration of core loss even under high temperature storage Has been made.

(4)特公平4−3089
リチウムー亜鉛−マンガンフェライトにCoを含有してなるフェライト材料の開示がなされている。しかしながら、リチウム含有量は、亜鉛、マンガンのそれぞれの含有量よりも多く、本願発明の範囲とは全く異なっている。さらに、この先行技術におけるFe23量は、化学量論組成よりも少ない。
(4) JP 4-3089
A ferrite material containing Co in lithium-zinc-manganese ferrite has been disclosed. However, the lithium content is larger than the respective contents of zinc and manganese, and is completely different from the scope of the present invention. Furthermore, the amount of Fe 2 O 3 in this prior art is less than the stoichiometric composition.

特許第3487243号Japanese Patent No. 3487243 特開2007−238429公報JP 2007-238429 A 特許第3924272号Japanese Patent No. 3924272 特公平4−3089JP 30-3089

上述した高飽和磁束密度特性、磁気損失(コアロス)値の温度依存性を低減する特性、等の要求に際限はなく、さらなる特性向上が図られるMnZnLi系フェライトの提案が求められている。   There is no limit to the requirements for the high saturation magnetic flux density characteristics, the characteristics for reducing the temperature dependence of the magnetic loss (core loss) value, and the like, and proposals for MnZnLi-based ferrites that can further improve the characteristics are demanded.

さらに、上記の各先行技術は、高い飽和磁束密度、100℃近傍におけるコア損失の低下、および高温貯蔵下におけるコアロスの劣化、等の効果に注目して、組成配合されたものであって、特に抗折強度の向上を目的として組成配合されたものではない。従って、従来のMnZnLi系フェライト製品における抗折強度は決して十分なものとは言えず、例えば、トランス用磁心の製造過程およびトランス組立工程における割れ、欠け等の発生を極めて有効に防止し、製品歩留まりのさらなる向上を図ることができ、さらにはコアの耐熱衝撃性に優れる新たなMnZnLi系フェライトの提案が求められている。   Furthermore, each of the above prior arts is a composition blended, paying attention to effects such as a high saturation magnetic flux density, a decrease in core loss near 100 ° C., and a deterioration in core loss under high temperature storage. It is not formulated for the purpose of improving the bending strength. Therefore, the bending strength of conventional MnZnLi ferrite products cannot be said to be sufficient. For example, the production yield of the product is extremely effectively prevented from occurring, such as cracking and chipping in the manufacturing process of the transformer core and the transformer assembly process. There has been a demand for a new MnZnLi-based ferrite that can further improve the thermal resistance of the core and that is excellent in the thermal shock resistance of the core.

本発明はこのような実状のもとに創案されたものであって、その目的は、高飽和磁束密度特性、磁気損失(コアロス)値の温度依存性を低減する特性に優れ、さらに、抗折強度の向上が図れて製品歩留まりの向上が図れ、さらにはコアの耐熱衝撃性に優れる新たなMnZnLi系フェライトを提供することにある。   The present invention was devised based on such a situation, and its purpose is excellent in high saturation magnetic flux density characteristics, characteristics that reduce the temperature dependence of magnetic loss (core loss) value, and resistance to bending. An object of the present invention is to provide a new MnZnLi-based ferrite that can improve the strength, improve the product yield, and have excellent thermal shock resistance of the core.

このような課題を解決するために、本発明は、主成分として、酸化鉄をFe23換算で54.0〜58.0モル%、酸化亜鉛をZnO換算で3.0〜10.0モル%、酸化リチウムをLiO0.5換算で0.3〜1.5モル%、酸化マンガンを残部(MnO換算)含有するMnZnLi系フェライトであって、前記主成分に対して、副成分としてCoをCoO換算で500〜2000重量ppm含有させてなるように構成される。 In order to solve such problems, the present invention has, as main components, iron oxide in an amount of 54.0 to 58.0 mol% in terms of Fe 2 O 3 and zinc oxide in an amount of 3.0 to 10.0 in terms of ZnO. MnZnLi ferrite containing 0.3% to 1.5% by mole of lithium oxide in terms of LiO 0.5 and the balance of manganese oxide (in terms of MnO), Co being CoO as an accessory component with respect to the main component. It is comprised so that it may contain 500-2000 weight ppm in conversion.

また、本発明のMnZnLi系フェライトの好ましい態様として、100kHz、200mTの正弦波交流磁界を印加し、測定温度を種々変えて得られた磁気損失(コアロス)Pcvの値を、測定温度との関係で示したグラフにおいて、グラフの最下点に相当するボトム温度Tbにおける磁気損失(コアロス)の値をPcvb、ボトム温度Tbから20℃高い温度(Tb+20℃)における磁気損失(コアロス)の値Pcvb+20、とした場合、この20℃間における磁気損失変化率の値δ2=〔(Pcvb+20−Pcvb)/Pcvb×100〕が、15%以下であるように構成される。 Further, as a preferred embodiment of the MnZnLi ferrite of the present invention, the value of magnetic loss (core loss) Pcv obtained by applying a sinusoidal AC magnetic field of 100 kHz and 200 mT and changing the measurement temperature in various ways is related to the measurement temperature. In the graph shown, the value of magnetic loss (core loss) at the bottom temperature Tb corresponding to the lowest point of the graph is Pcv b , and the value of magnetic loss (core loss) at a temperature 20 ° C. higher than the bottom temperature Tb (Tb + 20 ° C.) Pcv b. +20 , the magnetic loss change rate value δ2 = [(Pcv b + 20 −Pcv b ) / Pcv b × 100] between 20 ° C. is 15% or less.

また、本発明のMnZnLi系フェライトの好ましい態様として、100℃での飽和磁束密度Bsは、430mT以上であるように構成される。   Moreover, as a preferable aspect of the MnZnLi ferrite of the present invention, the saturation magnetic flux density Bs at 100 ° C. is configured to be 430 mT or more.

また、本発明のMnZnLi系フェライトの好ましい態様として、ボトム温度Tbが70℃以上であるように構成される。   Moreover, as a preferable aspect of the MnZnLi ferrite of the present invention, the bottom temperature Tb is configured to be 70 ° C. or higher.

本発明のトランス用磁心は、前記MnZnLi系フェライトから構成される。   The transformer magnetic core of the present invention is composed of the MnZnLi ferrite.

本発明のトランスは、前記トランス用磁心を用いた構成される。   The transformer of the present invention is configured using the transformer magnetic core.

本発明は、主成分として、酸化鉄をFe23換算で54.0〜58.0モル%、酸化亜鉛をZnO換算で3.0〜10.0モル%、酸化リチウムをLiO0.5換算で0.3〜1.5モル%、酸化マンガンを残部(MnO換算)含有するMnZnLi系フェライトであって、前記主成分に対して、副成分としてCoをCoO換算で500〜2000重量ppm含有させてなるように構成されているので、高飽和磁束密度特性、磁気損失(コアロス)値の温度依存性を低減する特性に優れ、さらに、抗折強度の向上が図れ製品歩留まりのさらなる向上を図ることができ、さらにはコアの耐熱衝撃性に優れるという効果が発現する。 The present invention, as a main component, 54.0 to 58.0 mol% of iron oxide calculated as Fe 2 O 3, zinc oxide 3.0 to 10.0 mol% in terms of ZnO, the lithium oxide in LiO 0.5 in terms 0.3 to 1.5 mol%, MnZnLi ferrite containing the remainder of manganese oxide (in terms of MnO), wherein Co is contained as an accessory component in an amount of 500 to 2000 ppm by weight in terms of CoO with respect to the main component. Therefore, the high saturation magnetic flux density characteristics and the characteristics that reduce the temperature dependence of the magnetic loss (core loss) value are excellent. Furthermore, the bending strength can be improved and the product yield can be further improved. In addition, the effect of excellent thermal shock resistance of the core is exhibited.

以下、本発明のMnZnLi系フェライトについて詳細に説明する。   Hereinafter, the MnZnLi ferrite of the present invention will be described in detail.

〔本発明のMnZnLi系フェライトの説明〕
(主成分組成についての説明)
本発明のMnZnLi系フェライトは、主成分として、酸化鉄をFe23換算で54.0〜58.0モル%(好ましくは、54.5〜57.5モル%、より好ましくは、55.0〜57.0モル%)、酸化亜鉛をZnO換算で3.0〜10.0モル%(好ましくは、3.5〜9.0モル%、より好ましくは、4.0〜8.0モル%)、酸化リチウムをLiO0.5換算で0.3〜1.5モル%(好ましくは、0.35〜1.45モル%、より好ましくは、0.4〜1.4モル%)、酸化マンガンを残部(MnO換算)含有している。
[Description of MnZnLi ferrite of the present invention]
(Description of the main component composition)
MnZnLi ferrite of the present invention, as a main component, 54.0 to 58.0 mol% of iron oxide calculated as Fe 2 O 3 (preferably, 54.5 to 57.5 mol%, more preferably, 55. 0 to 57.0 mol%) and zinc oxide in terms of ZnO, 3.0 to 10.0 mol% (preferably 3.5 to 9.0 mol%, more preferably 4.0 to 8.0 mol) %), 0.3 to 1.5 mol% (preferably 0.35 to 1.45 mol%, more preferably 0.4 to 1.4 mol%) of lithium oxide in terms of LiO 0.5 , manganese oxide Is contained (in terms of MnO).

上記の主成分組成において、Fe23量が58.0モル%を超えると、コアロスが増大するという不都合が生じる傾向にある。また、Fe23量が54.0未満となると飽和磁束密度が低下するという不都合が生じる傾向にある。 In the above-mentioned main component composition, if the amount of Fe 2 O 3 exceeds 58.0 mol%, there is a tendency that the inconvenience that the core loss increases. In addition, when the amount of Fe 2 O 3 is less than 54.0, there is a tendency that the saturation magnetic flux density is lowered.

また、上記の主成分組成において、ZnO量が3.0モル%未満であると、コアロスの温度特性が高くなるという不都合が生じる傾向にある。また、ZnO量が10.0モル%を超えると、飽和磁束密度が低くなるという不都合が生じる傾向にある。   Further, in the above main component composition, when the ZnO amount is less than 3.0 mol%, there is a tendency that the temperature characteristic of the core loss becomes high. On the other hand, if the amount of ZnO exceeds 10.0 mol%, there is a tendency for the disadvantage that the saturation magnetic flux density is lowered.

上記の主成分組成において、LiO0.5量が0.3モル%未満となると、抗折強度が低くなるという不都合が生じる傾向にある。また、LiO0.5量が1.5モル%を超えると、コアロスが高くなるという不都合が生じる傾向にある。また、このLiO0.5量は、後述するCoO量との関係で、コアの耐熱衝撃性の向上についての相乗効果を発揮する。 In the above main component composition, when the amount of LiO 0.5 is less than 0.3 mol%, there is a tendency that the bending strength is lowered. On the other hand, when the amount of LiO 0.5 exceeds 1.5 mol%, there is a tendency that the core loss increases. Further, the amount of LiO 0.5 exhibits a synergistic effect for improving the thermal shock resistance of the core in relation to the amount of CoO described later.

(副成分組成についての説明)
本発明のMnZnLi系フェライトは、副成分として、Coを必須成分として含有する。副成分の原料としては、酸化物、あるいは加熱により酸化物となる化合物の粉末が用いられる。具体的には、添加時の形態で、CoOを用いることができる。
(Explanation about subcomponent composition)
The MnZnLi ferrite of the present invention contains Co as an essential component as a subcomponent. As a raw material for the auxiliary component, an oxide or a powder of a compound that becomes an oxide by heating is used. Specifically, CoO can be used in the form at the time of addition.

このような副成分は、前記主成分に対して、CoをCoO換算で500〜2000重量ppm(好ましくは、600〜1800重量ppm、より好ましくは、700〜1500重量ppm)含有している。   Such subcomponents contain 500 to 2000 ppm by weight of Co in terms of CoO (preferably 600 to 1800 ppm by weight, more preferably 700 to 1500 ppm by weight) with respect to the main component.

CoO量が500重量ppm未満となると、コアロスの温度特性が大きくなるという不都合が生じる傾向にある。また、CoO量が2000重量ppmを越えると、コアロスが高くなるという不都合が生じる傾向にある。このCoO量は、LiO0.5量との関係で、コアの耐熱衝撃性の向上についての相乗効果を発揮する。 When the amount of CoO is less than 500 ppm by weight, there is a tendency that the temperature characteristic of the core loss becomes large. On the other hand, when the amount of CoO exceeds 2000 ppm by weight, there is a tendency that the core loss increases. This amount of CoO exhibits a synergistic effect for improving the thermal shock resistance of the core in relation to the amount of LiO 0.5 .

また、本発明の作用効果を逸脱しない範囲で、上記の副成分に加えて、ZrO2、SiO2、CaCO3、Nb25、V25、Ta25、NiO、TiO2、SnO2、等の他の副成分を添加することができる。 Further, without departing from the effects of the present invention, in addition to the sub-components of the, ZrO 2, SiO 2, CaCO 3, Nb 2 O 5, V 2 O 5, Ta 2 O 5, NiO, TiO 2, Other subcomponents such as SnO 2 can be added.

フェライト焼結体の焼結密度は、4.70g/cm3以上とすることが好ましい。上限に特に制限はないが、通常、5.00g/cm3程度とされる。焼結密度が、4.70g/cm3未満となると、飽和磁束密度が低下するとともに、抗折強度が低下するという不都合が生じる傾向がある。 The sintered density of the ferrite sintered body is preferably 4.70 g / cm 3 or more. The upper limit is not particularly limited, but is usually about 5.00 g / cm 3 . When the sintered density is less than 4.70 g / cm 3 , there is a tendency that the saturation magnetic flux density is lowered and the bending strength is lowered.

(本発明のフェライト焼結体の物性についての説明)
本発明のフェライトは、以下の物性を備えている。
(Description of physical properties of the ferrite sintered body of the present invention)
The ferrite of the present invention has the following physical properties.

(1)抗折強度
本発明における抗折強度は以下の要領で求められる。
ファインセラミックスの常温における3点曲げ試験であり、JIS R1601に準じて求める。数値が大きいほど抗折強度が高い。
(1) Folding strength
The bending strength in this invention is calculated | required in the following ways.
This is a three-point bending test at room temperature for fine ceramics, and is determined according to JIS R1601. The greater the value, the higher the bending strength.

本発明における曲げ強度の目標値は、14.0Kgf/mm2以上である。 The target value of bending strength in the present invention is 14.0 Kgf / mm 2 or more.

(2)磁気損失(コアロス)値の温度依存性
本発明における磁気損失値の温度依存性は、以下の要領で求められる。
100kHz、200mTの正弦波交流磁界を印加し、測定温度を種々変えて得られた磁気損失(コアロス)Pcvの値を、測定温度との関係でグラフにする。
(2) Temperature dependence of magnetic loss (core loss) value
The temperature dependence of the magnetic loss value in the present invention is obtained in the following manner.
The value of magnetic loss (core loss) Pcv obtained by applying a sinusoidal AC magnetic field of 100 kHz and 200 mT and changing the measurement temperature in various ways is graphed in relation to the measurement temperature.

このグラフにおいて、グラフの最下点に相当するボトム温度Tbにおける磁気損失(コアロス)の値Pcvb、およびボトム温度Tbから20℃高い温度(Tb+20℃)における磁気損失(コアロス)の値Pcvb+20をそれぞれ求める。本発明におけるボトム温度Tbは、70℃以上であることが好ましい。 In this graph, the magnetic loss (core loss) value Pcv b at the bottom temperature Tb corresponding to the lowest point of the graph, and the magnetic loss (core loss) value Pcv b + at a temperature 20 ° C. higher than the bottom temperature Tb (Tb + 20 ° C.). Find 20 each. The bottom temperature Tb in the present invention is preferably 70 ° C. or higher.

本発明におけるボトム温度Tbにおける磁気損失(コアロス)の値Pcvbの目標値は、450KW/m3以下である。 The target value of the magnetic loss (core loss) value Pcv b at the bottom temperature Tb in the present invention is 450 KW / m 3 or less.

これらの値を用いて、20℃間における磁気損失変化率の値δ2=〔(Pcvb+20−Pcvb)/Pcvb×100〕を算出する。本発明においては、20℃間における磁気損失変化率の値δ2は、15%以下である。 Using these values, the value δ2 = [(Pcv b + 20 −Pcv b ) / Pcv b × 100] of the magnetic loss change rate at 20 ° C. is calculated. In the present invention, the value δ2 of the magnetic loss change rate between 20 ° C. is 15% or less.

(3)飽和磁束密度Bm
100℃での飽和磁束密度Bsは、430mT以上である。
(3) Saturation magnetic flux density Bm
The saturation magnetic flux density Bs at 100 ° C. is 430 mT or more.

(4) 耐熱衝撃性
評価基準は以下のとおり
(4) Thermal shock resistance
Evaluation criteria are as follows

○… 400℃の半田槽に浸漬してコアにクラックが入らない。
×… 400℃の半田槽に浸漬してコアにクラックが入る。
○ ... No cracks in the core when immersed in a solder bath at 400 ° C.
X: The core is cracked when immersed in a solder bath at 400 ° C.

〔MnZnLi系フェライトの製造方法〕
次いで、本発明のMnZnLi系フェライトの好適な製造工程の一例について説明する。
[Method for producing MnZnLi-based ferrite]
Next, an example of a suitable manufacturing process for the MnZnLi ferrite of the present invention will be described.

(1)目標のフェライトが得られるように金属イオンの比率が所定成分となるように秤量する工程
主成分の原料として、酸化物または加熱により酸化物となる化合物、例えば、炭酸塩、水酸化物、蓚酸塩、硝酸塩などの粉末が用いられる。各原料粉末の平均粒径は、0.1〜3.0μm程度の範囲で適宜選定すればよい。なお、上述した原料粉末に限らず、2種以上の金属を含む複合酸化物の粉末を原料粉末としてもよい。原料粉末は所定の組成となるように、それぞれ、秤量される。
(1) Step of weighing so that the ratio of metal ions is a predetermined component so that a target ferrite can be obtained. As a raw material of a main component, an oxide or a compound that becomes an oxide by heating, for example, carbonate, hydroxide Powders such as oxalate and nitrate are used. What is necessary is just to select suitably the average particle diameter of each raw material powder in the range of about 0.1-3.0 micrometers. In addition, not only the raw material powder mentioned above but it is good also considering the powder of the complex oxide containing 2 or more types of metals as raw material powder. Each raw material powder is weighed so as to have a predetermined composition.

なお、Li化合物は、水に対して不溶性ないし難溶性の化合物を用いることが好ましい。ここで本発明における「水に対して不溶性ないし難溶性の化合物(以下、単に「水不溶性の化合物」と称す)」とは、水100g(温度20℃)に対する化合物である溶質の量(グラム数)が1g以下の化合物をいう。このような水不溶性のLi化合物としては、MnZn系フェライト用に使用されるために、Liと、Fe、Mn、Znの中から選定された少なくとも1種以上の成分を含有する酸化物とすることが望ましい。好ましくは、(1)Liと、Feとの成分を含有するLiFeO2、LiFe58、Li2Fe35、Li5FeO4等の酸化物や、(2)Liと、Mnとの成分を含有するLiMn24、LiMnO2等の酸化物である。このような水不溶性のLi化合物を用いることによって、製品ロット間の特性バラツキを抑制することができ、製造歩留まりの向上および製品品質の信頼性の向上を図ることができる。 The Li compound is preferably a compound that is insoluble or hardly soluble in water. In the present invention, “a compound that is insoluble or hardly soluble in water (hereinafter simply referred to as“ water-insoluble compound ”)” refers to the amount of solute (grams) in 100 g of water (temperature 20 ° C.). ) Refers to a compound of 1 g or less. Such a water-insoluble Li compound is an oxide containing at least one component selected from Li and Fe, Mn, and Zn in order to be used for MnZn ferrite. Is desirable. Preferably, (1) an oxide such as LiFeO 2 , LiFe 5 O 8 , Li 2 Fe 3 O 5 , or Li 5 FeO 4 containing components of Li and Fe, or (2) Li and Mn It is an oxide such as LiMn 2 O 4 or LiMnO 2 containing a component. By using such a water-insoluble Li compound, it is possible to suppress variation in characteristics between product lots, and to improve manufacturing yield and reliability of product quality.

(2)秤量物を湿式ないしは乾燥により混合した後の仮焼き工程
原料粉末をボールミルにより例えば湿式混合し、乾燥、粉砕、篩いかけをした後、700〜1000℃の温度範囲内で所定時間保持する仮焼きが行われる。仮焼きの保持時間は1〜5時間の範囲内で適宜選定すればよい。
(2) The calcining process raw material powder after the weighed product is mixed by wet or drying, for example, wet-mixed by a ball mill, dried, pulverized and sieved, and then held within a temperature range of 700 to 1000 ° C. for a predetermined time. Calcination is performed. What is necessary is just to select suitably the holding time of calcination within the range of 1 to 5 hours.

(3)仮焼き粉の粉砕工程
仮焼き後、仮焼体は、例えば、平均粒径0.5〜5.0μm程度までに粉砕される。
(3) Crushing step of calcined powder After calcining, the calcined body is pulverized to an average particle size of about 0.5 to 5.0 μm, for example.

通常、副成分であるCoOは、この粉砕工程で所定量添加される。すなわち、仮焼粉砕後に得られた主成分の粉末に、副成分であるCoOが所定量添加され混合される。なお配合工程でなく、この粉砕工程でLi成分を添加してもよい。   Usually, a predetermined amount of CoO as a subcomponent is added in this pulverization step. That is, a predetermined amount of CoO as a subcomponent is added to and mixed with the main component powder obtained after calcining and pulverization. Note that the Li component may be added in this pulverization step instead of the blending step.

(4)造粒・成形工程
粉砕された粉末は、後の成形工程を円滑にするために顆粒に造粒される。この際、粉砕粉末に適当なバインダ、例えばポリビニルアルコール(PVA)を少量添加することが望ましい。得られる顆粒の粒径は80〜200μm程度とすることが望ましい。造粒粉末を加圧成形した、例えば、トロイダル形状の成形体を成形する。
(4) Granulation / molding process The pulverized powder is granulated into granules to facilitate the subsequent molding process. At this time, it is desirable to add a small amount of an appropriate binder such as polyvinyl alcohol (PVA) to the pulverized powder. The particle size of the obtained granules is preferably about 80 to 200 μm. For example, a toroidal shaped product obtained by pressure-molding the granulated powder is formed.

(5)焼成工程
成形された成形体は焼成工程において焼成される。
(5) Firing step The molded body is fired in the firing step.

焼成工程においては、焼成温度と焼成雰囲気を制御する必要がある。焼成は1150〜1350℃の範囲で所定時間保持することにより行われる。   In the firing step, it is necessary to control the firing temperature and firing atmosphere. Firing is performed by holding for a predetermined time in the range of 1150 to 1350 ° C.

以下、具体的実施例を挙げて本発明をさらに詳細に説明する。
〔実験例I〕
下記表1のサンプルNo.I−3に示されるように、最終組成における酸化鉄がFe23換算で56.0モル%、酸化マンガンがMnO換算で37.1モル%、酸化亜鉛がZnO換算で6.0モル%、酸化リチウムがLiO0.5換算で0.9モル%となるように主成分となる主成分原料を秤量した。なお、Li原料としては、LiFeO2を用い、LiFeO2中のFe量を考慮して、Fe成分について調整した。
Hereinafter, the present invention will be described in more detail with reference to specific examples.
[Experimental Example I]
Sample No. in Table 1 below. As shown in I-3, the final 56.0 mol% of iron oxide in the composition in terms of Fe 2 O 3, 37.1 mol% manganese oxide in terms of MnO, zinc oxide 6.0 mol% calculated as ZnO The main component material as the main component was weighed so that lithium oxide was 0.9 mol% in terms of LiO 0.5 . Note that LiFeO 2 was used as the Li raw material, and the Fe component was adjusted in consideration of the amount of Fe in LiFeO 2 .

秤量した原料を、湿式ボールミルを用いて16時間湿式混合した後、乾燥させた。   The weighed raw materials were wet-mixed for 16 hours using a wet ball mill and then dried.

次いで、乾燥物を大気中、900℃で3時間仮焼きした後、粉砕した   Next, the dried product was calcined in the atmosphere at 900 ° C. for 3 hours and then pulverized.

得られた仮焼き粉末に、副成分の原料として、CoO粉末を加え、混合粉砕して得られた混合物粉末にバインダを加え、顆粒化した後、成形してトロイダル形状の成形体を得た。なお、副成分原料は、主成分原料対して、CoOが1000重量ppm含有されるように添加した。なおLi成分は粉砕時に加えてもよい。   To the obtained calcined powder, CoO powder was added as a raw material of an auxiliary component, a binder was added to the mixture powder obtained by mixing and pulverizing, granulated, and then molded to obtain a toroidal shaped body. The subcomponent raw material was added so that CoO was contained at 1000 ppm by weight with respect to the main component raw material. The Li component may be added during pulverization.

トロイダル形状の成形物を、1350℃の温度で酸素分圧を制御しつつ焼成して、下記表1に示されるサンプルNo.I−3のフェライト焼成体を作製した。   The toroidal shaped product was fired at a temperature of 1350 ° C. while controlling the oxygen partial pressure. A sintered ferrite body of I-3 was prepared.

このサンプルNo.I−3のフェライト焼成体の作製手法をベースとし、これに準じて下記表1に示される種々のサンプルを作製した。   This sample No. Various samples shown in the following Table 1 were produced based on the production method of the sintered ferrite body of I-3.

これら表1に示される各サンプルについて、
(1)ボトム温度Tb、
(2)ボトム温度Tbにおける磁気損失(コアロス)Pcvb
(3)ボトム温度Tbから20℃高い温度(Tb+20℃)における磁気損失(コアロス)の値Pcvb+20
(4)コアロス温度依存性δ2、
(5)抗折強度(3点曲げ強度)、
(6)飽和磁束密度Bm、
(7)耐熱衝撃性、
をそれぞれ測定した。
For each sample shown in Table 1,
(1) Bottom temperature Tb,
(2) Magnetic loss (core loss) Pcv b at the bottom temperature Tb,
(3) Magnetic loss (core loss) value Pcv b + 20 at a temperature 20 ° C. higher than the bottom temperature Tb (Tb + 20 ° C.),
(4) Core loss temperature dependency δ2,
(5) Folding strength (3-point bending strength),
(6) saturation magnetic flux density Bm,
(7) Thermal shock resistance,
Was measured respectively.

なお、各測定要領は、上述したとおりとした。
結果を下記表1中に示した。
Each measurement procedure was as described above.
The results are shown in Table 1 below.

Figure 2010076962
Figure 2010076962

Figure 2010076962
Figure 2010076962

上記表1に示される実験例Iの結果より、本発明の効果は明らかである。
すなわち、本発明は、主成分として、酸化鉄をFe23換算で54.0〜58.0モル%、酸化亜鉛をZnO換算で3.0〜10.0モル%、酸化リチウムをLiO0.5換算で0.3〜1.5モル%、酸化マンガンを残部(MnO換算)含有するMnZnLi系フェライトであって、前記主成分に対して、副成分としてCoをCoO換算で500〜2000重量ppm含有させて構成されているので、高飽和磁束密度特性、磁気損失(コアロス)値の温度依存性を低減する特性に優れ、さらに、抗折強度の向上が図れ製品歩留まりのさらなる向上を図ることができ、さらにはコアの耐熱衝撃性に優れるという効果が発現する。
The effect of the present invention is clear from the results of Experimental Example I shown in Table 1 above.
That is, the present invention provides, as a main component, 54.0 to 58.0 mol% of iron oxide calculated as Fe 2 O 3, 3.0 to 10.0 mol% of zinc oxide calculated as ZnO, lithium oxide LiO 0.5 MnZnLi-based ferrite containing 0.3 to 1.5 mol% in terms of conversion and the remainder of manganese oxide (in terms of MnO), and containing 500 to 2000 ppm by weight of Co as a subcomponent with respect to the main component in terms of CoO As a result, the high saturation magnetic flux density characteristics and the characteristics that reduce the temperature dependence of the magnetic loss (core loss) value are excellent. Furthermore, the bending strength can be improved and the product yield can be further improved. Furthermore, the effect of excellent thermal shock resistance of the core is manifested.

本発明のMnZnLi系フェライトの製造方法は、幅広く各種の電気部品産業に利用できる。   The method for producing MnZnLi ferrite of the present invention can be widely used in various electric parts industries.

Claims (6)

主成分として、酸化鉄をFe23換算で54.0〜58.0モル%、酸化亜鉛をZnO換算で3.0〜10.0モル%、酸化リチウムをLiO0.5換算で0.3〜1.5モル%、酸化マンガンを残部(MnO換算)含有するMnZnLi系フェライトであって、
前記主成分に対して、副成分としてCoをCoO換算で500〜2000重量ppm含有させてなることを特徴とするMnZn系フェライト。
As a main component, 0.3 to iron oxide from 54.0 to 58.0 mol% in terms of Fe 2 O 3, 3.0 to 10.0 mol% of zinc oxide calculated as ZnO, lithium oxide with LiO 0.5 in terms A MnZnLi-based ferrite containing 1.5 mol% and the remainder of manganese oxide (in terms of MnO),
An MnZn-based ferrite comprising 500 to 2000 ppm by weight of Co as a subcomponent with respect to the main component.
100kHz、200mTの正弦波交流磁界を印加し、測定温度を種々変えて得られた磁気損失(コアロス)Pcvの値を、測定温度との関係で示したグラフにおいて、グラフの最下点に相当するボトム温度Tbにおける磁気損失(コアロス)の値をPcvb、ボトム温度Tbから20℃高い温度(Tb+20℃)における磁気損失(コアロス)の値Pcvb+20、とした場合、この20℃間における磁気損失変化率の値δ2=〔(Pcvb+20−Pcvb)/Pcvb×100〕が、15%以下である請求項1に記載のMnZnLi系フェライト。 In the graph showing the value of magnetic loss (core loss) Pcv obtained by applying a sinusoidal AC magnetic field of 100 kHz and 200 mT and changing the measurement temperature in various ways, it corresponds to the lowest point of the graph. When the value of the magnetic loss (core loss) at the bottom temperature Tb is Pcv b and the value of the magnetic loss (core loss) at the temperature 20 ° C. higher than the bottom temperature Tb (Tb + 20 ° C.) is Pcv b + 20 , the magnetism between 20 ° C. 2. The MnZnLi ferrite according to claim 1, wherein the loss change rate value δ < b > 2 = [(Pcv b + 20 −Pcv b ) / Pcv b × 100] is 15% or less. 100℃での飽和磁束密度Bsは、430mT以上である請求項1または請求項2に記載のMnZnLi系フェライト。   The MnZnLi ferrite according to claim 1 or 2, wherein a saturation magnetic flux density Bs at 100 ° C is 430 mT or more. ボトム温度Tbが70℃以上である請求項2または請求項3に記載のMnZnLi系フェライト。   The MnZnLi-based ferrite according to claim 2 or 3, wherein the bottom temperature Tb is 70 ° C or higher. 請求項1ないし請求項4のいずれかに記載のMnZnLi系フェライトから構成されるトランス用磁心。   A transformer magnetic core comprising the MnZnLi-based ferrite according to any one of claims 1 to 4. 請求項5に記載のトランス用磁心を用いたトランス。   A transformer using the transformer magnetic core according to claim 5.
JP2008245344A 2008-09-25 2008-09-25 MnZnLi ferrite Active JP4623183B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008245344A JP4623183B2 (en) 2008-09-25 2008-09-25 MnZnLi ferrite
TW098129425A TWI393692B (en) 2008-09-25 2009-09-01 MnZnLi ferrite
KR1020090089864A KR101053431B1 (en) 2008-09-25 2009-09-23 Mn Fern Ferrite
CN2009101733954A CN101684044B (en) 2008-09-25 2009-09-24 Mnznli system ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008245344A JP4623183B2 (en) 2008-09-25 2008-09-25 MnZnLi ferrite

Publications (2)

Publication Number Publication Date
JP2010076962A true JP2010076962A (en) 2010-04-08
JP4623183B2 JP4623183B2 (en) 2011-02-02

Family

ID=42047467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008245344A Active JP4623183B2 (en) 2008-09-25 2008-09-25 MnZnLi ferrite

Country Status (4)

Country Link
JP (1) JP4623183B2 (en)
KR (1) KR101053431B1 (en)
CN (1) CN101684044B (en)
TW (1) TWI393692B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102442820A (en) * 2010-09-30 2012-05-09 Tdk株式会社 Ferrite material

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI486977B (en) * 2011-01-04 2015-06-01 中國鋼鐵股份有限公司 Meth od for manufacturing ferrite powder with coated phosphate method for manufacturing
CN103848620B (en) * 2012-12-06 2015-07-22 北京有色金属研究总院 LiMnZn ferrite material and preparation method thereof
CN103232577B (en) * 2013-04-02 2016-03-09 山东建筑大学 A kind of magnetic nanometer composite material
JP6032379B2 (en) * 2015-04-02 2016-11-30 Tdk株式会社 Ferrite composition and electronic component
JP6551057B2 (en) * 2015-08-26 2019-07-31 Tdk株式会社 Ferrite core, electronic component, and power supply device
JP2017075085A (en) * 2015-10-16 2017-04-20 Tdk株式会社 MnZnLi-BASED FERRITE, MAGNETIC CORE AND TRANSFORMER
CN110357610B (en) * 2019-07-26 2020-12-29 横店集团东磁股份有限公司 Nickel-zinc ferrite material, and preparation method and application thereof
CN112028619A (en) * 2020-09-16 2020-12-04 无锡斯贝尔磁性材料有限公司 high-Bs low-power-consumption manganese-zinc soft magnetic ferrite material and preparation method thereof
CN112341179A (en) * 2020-10-29 2021-02-09 南京新康达磁业股份有限公司 High-frequency manganese-zinc ferrite material, and preparation method and application thereof
CN112239358B (en) * 2020-10-30 2022-11-29 成都子之源绿能科技有限公司 Microwave LiZnTiMn gyromagnetic ferrite material and preparation method thereof
RU2759859C1 (en) * 2021-04-09 2021-11-18 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Radio absorbing ferrite
CN113603473B (en) * 2021-08-20 2022-08-16 安徽华林磁电科技有限公司 Mn-Zn ferrite filter material with high magnetic permeability

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231555B1 (en) * 1967-07-25 1977-08-16
JPH06333724A (en) * 1993-05-25 1994-12-02 Nippon Steel Corp Sintered ferrite with crystallite particle and manufacture thereof
JP2007238429A (en) * 2006-02-08 2007-09-20 Tdk Corp Ferrite material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3475295D1 (en) * 1983-09-12 1988-12-29 Philips Nv Magnet core of lithium-zinc-manganese ferrite
KR880002423B1 (en) * 1985-11-20 1988-11-08 삼성전자 주식회사 Mn zn single crystal ferrite
JP2001064076A (en) * 1999-08-26 2001-03-13 Tdk Corp Magnetic ferrite material and its production
US20060118756A1 (en) * 2002-09-26 2006-06-08 Kenya Takagawa Ferrite material
JP4129917B2 (en) * 2003-01-10 2008-08-06 Tdk株式会社 Ferrite material and manufacturing method thereof
JP2005247652A (en) 2004-03-05 2005-09-15 Tdk Corp TRANSFORMER, MAGNETIC CORE FOR TRANSFORMER, Mn-Zn-BASED FERRITE AND METHOD FOR MANUFACTURING THE SAME

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231555B1 (en) * 1967-07-25 1977-08-16
JPH06333724A (en) * 1993-05-25 1994-12-02 Nippon Steel Corp Sintered ferrite with crystallite particle and manufacture thereof
JP2007238429A (en) * 2006-02-08 2007-09-20 Tdk Corp Ferrite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102442820A (en) * 2010-09-30 2012-05-09 Tdk株式会社 Ferrite material

Also Published As

Publication number Publication date
JP4623183B2 (en) 2011-02-02
TW201022177A (en) 2010-06-16
KR20100035113A (en) 2010-04-02
CN101684044B (en) 2012-12-05
KR101053431B1 (en) 2011-08-03
CN101684044A (en) 2010-03-31
TWI393692B (en) 2013-04-21

Similar Documents

Publication Publication Date Title
JP4623183B2 (en) MnZnLi ferrite
CN101712547B (en) NiMnZn-based ferrite
JP2007238429A (en) Ferrite material
JP2010173888A (en) METHOD FOR PRODUCING MnZn FERRITE
KR100627117B1 (en) Ferrite Material
JP4129917B2 (en) Ferrite material and manufacturing method thereof
JP4279995B2 (en) MnZn ferrite
JP2017075085A (en) MnZnLi-BASED FERRITE, MAGNETIC CORE AND TRANSFORMER
JP2008247675A (en) METHOD OF MANUFACTURING MnZn-BASED FERRITE
JP5089963B2 (en) Method for producing MnZnNi ferrite
JP4281990B2 (en) Ferrite material
JP5019023B2 (en) Mn-Zn ferrite material
JP4656949B2 (en) High saturation magnetic flux density Mn-Zn-Ni ferrite
JP2007031240A (en) METHOD FOR MANUFACTURING MnZn FERRITE AND MnZn FERRITE
JP2007197246A (en) Mn-Co-Zn FERRITE AND MAGNETIC CORE FOR TRANSFORMER
JP2007297232A (en) Method for producing oxide magnetic material
JP4089970B2 (en) Ferrite material manufacturing method
JP5882811B2 (en) Ferrite sintered body and pulse transformer core comprising the same
JP2008290906A (en) METHOD OF MANUFACTURING MnZn-BASED FERRITE
JP2012069869A (en) Mnzn based ferrite core
JP2008290907A (en) METHOD OF MANUFACTURING MnZn-BASED FERRITE
JP2005029416A (en) Ferrite material
JP2007197253A (en) METHOD OF MANUFACTURING Mn-Zn FERRITE
JP2006298728A (en) Mn-Zn-BASED FERRITE MATERIAL
JP2011088774A (en) HIGH RESISTANCE HIGH SATURATION MAGNETIC FLUX DENSITY MnZnCrCo FERRITE

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R150 Certificate of patent or registration of utility model

Ref document number: 4623183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3