JP5786322B2 - Ferrite core - Google Patents

Ferrite core Download PDF

Info

Publication number
JP5786322B2
JP5786322B2 JP2010267377A JP2010267377A JP5786322B2 JP 5786322 B2 JP5786322 B2 JP 5786322B2 JP 2010267377 A JP2010267377 A JP 2010267377A JP 2010267377 A JP2010267377 A JP 2010267377A JP 5786322 B2 JP5786322 B2 JP 5786322B2
Authority
JP
Japan
Prior art keywords
mass
temperature
parts
content
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010267377A
Other languages
Japanese (ja)
Other versions
JP2012116700A (en
Inventor
安原 克志
克志 安原
森 健太郎
健太郎 森
正浩 蒲生
正浩 蒲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2010267377A priority Critical patent/JP5786322B2/en
Priority to KR1020110125640A priority patent/KR101267302B1/en
Priority to CN201110390569.XA priority patent/CN102486957B/en
Publication of JP2012116700A publication Critical patent/JP2012116700A/en
Application granted granted Critical
Publication of JP5786322B2 publication Critical patent/JP5786322B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、Fe、Mn及びZnを含む主成分と、Co、Ti、Si及びCaを含む副成分とを含有する焼結体からなるフェライトコアに関する。   The present invention relates to a ferrite core made of a sintered body containing a main component containing Fe, Mn and Zn and a subcomponent containing Co, Ti, Si and Ca.

電源用トランスなどの磁心材料として、フェライト焼結体が使用されている。コア(磁心)を形成するフェライト焼結体は、フェライトコアと呼ばれ、Mn及びZnを含有するMnZn系フェライトが広く使用されている。機器の使用時における発熱量を低減する観点から、フェライトコアは、電力損失(コアロス)の値が広い温度範囲にわたって小さいことが求められる(下記特許文献1参照)。   Ferrite sintered bodies are used as magnetic core materials for power transformers and the like. The ferrite sintered body forming the core (magnetic core) is called a ferrite core, and MnZn-based ferrite containing Mn and Zn is widely used. From the viewpoint of reducing the amount of heat generated during use of the device, the ferrite core is required to have a small power loss (core loss) value over a wide temperature range (see Patent Document 1 below).

近年、電子機器や電源の小型化に対応するため、大きな部品容積を占めるコアの小型化、薄型化が強く望まれている。また、電子機器においては、部品の高密度化も進展している。かかる状況下、発熱による温度上昇が大きくなる傾向にあり、これに伴い、フェライトコアの温度も高くなる傾向にある。例えば、特許文献2には、高温条件下における使用に好適なフェライト焼結体及びその製造方法が開示されている。   In recent years, in order to cope with the downsizing of electronic devices and power supplies, there has been a strong demand for downsizing and thinning of a core that occupies a large part volume. In electronic devices, the density of parts is also increasing. Under such circumstances, the temperature rise due to heat generation tends to increase, and the temperature of the ferrite core tends to increase accordingly. For example, Patent Literature 2 discloses a ferrite sintered body suitable for use under high temperature conditions and a method for manufacturing the same.

特開2005−119892号公報JP 2005-119892 A 特開2009−227554号公報JP 2009-227554 A

ところで、従来、磁心材料が高温条件下における使用に適したものであるか否かについて、磁心材料の「ボトム温度」を測定して評価を行っていた。このボトム温度は、電力損失が極小値を示す温度を意味する。特許文献1,2においても動作温度と電力損失の関係から磁心材料の温度特性を評価し、その適否を評価している。   By the way, conventionally, whether or not the magnetic core material is suitable for use under high temperature conditions has been evaluated by measuring the “bottom temperature” of the magnetic core material. This bottom temperature means a temperature at which the power loss has a minimum value. In Patent Documents 1 and 2, the temperature characteristics of the magnetic core material are evaluated from the relationship between the operating temperature and the power loss, and the suitability is evaluated.

従来、電子機器や電源などの動作温度がボトム温度よりも低ければ、使用時にコアの温度が徐々に上昇したとしても、発熱量が徐々に小さくなるため、熱暴走の発生を十分に防止できるものと考えられていた。しかし、本発明者らは、コアが実装された機器を連続的に運転した場合を想定し、連続的に励磁してコアの温度変化を測定したところ、動作温度がボトム温度よりも低い場合でもコアの温度が上昇を続ける場合があることを見出した。   Conventionally, if the operating temperature of electronic devices and power supplies is lower than the bottom temperature, even if the temperature of the core gradually rises during use, the amount of heat generation will gradually decrease, so that the occurrence of thermal runaway can be sufficiently prevented It was thought. However, the present inventors have assumed that the device on which the core is mounted is operated continuously, and when the temperature change of the core is measured by exciting continuously, even when the operating temperature is lower than the bottom temperature. It has been found that the core temperature may continue to rise.

上記のボトム温度による評価と、連続運転時におけるコアの温度測定の結果との乖離は、ボトム温度の測定方法に起因すると本発明者らは推察する。すなわち、ボトム温度は、コアを所定の温度とした後、瞬間的に又はごく短時間(5秒程度)励磁してコアの電力損失を測定し、設定温度を変更しながら当該測定を繰り返し行うことによって求められる値である。つまり、ボトム温度が連続的に励磁して測定される値ではないことが上記乖離の主因と推察される。   The present inventors infer that the difference between the evaluation based on the bottom temperature and the result of the core temperature measurement during continuous operation is caused by the bottom temperature measurement method. That is, the bottom temperature is measured by repeatedly measuring the core while measuring the power loss by exciting the core instantaneously or for a very short time (about 5 seconds) after setting the core at a predetermined temperature. Is a value obtained by. In other words, it is presumed that the bottom temperature is not a value measured by continuous excitation.

ボトム温度が比較的高く、ボトム温度における電力損失が十分に小さい磁心材料は、励磁開始時における初期特性(静特性)が良好であるといえるが、かかる材料の中には連続的な励磁によってコア温度が上昇するものがある。   A core material with a relatively high bottom temperature and a sufficiently low power loss at the bottom temperature is said to have good initial characteristics (static characteristics) at the start of excitation. Some temperature rises.

そこで、本発明は、連続的に励磁するような環境にあっても、コア温度が上昇するのを十分に抑制でき且つ飽和磁束密度が十分に高いフェライトコアを提供することを目的とする。   Accordingly, an object of the present invention is to provide a ferrite core that can sufficiently suppress an increase in core temperature and has a sufficiently high saturation magnetic flux density even in an environment in which continuous excitation is performed.

本発明者らは、連続的に励磁した場合でもコア温度の上昇を十分に抑制でき且つ飽和磁束密度が十分に高いフェライト焼結体の組成について鋭意検討したところ、FeとZnの比率を適正な範囲内としたフェライト焼結体がコアとして有用であることを見出した。   The present inventors have intensively studied the composition of a ferrite sintered body that can sufficiently suppress an increase in core temperature even when continuously excited and has a sufficiently high saturation magnetic flux density. It was found that a ferrite sintered body within the range is useful as a core.

すなわち、本発明に係るフェライトコアは、それぞれ酸化物に換算したとき、51.0〜54.0モル%のFe、34.5〜40.0モル%のMnO、及び、9.0〜11.5モル%のZnOからなる主成分と、主成分の上記酸化物の合計質量1質量部に対し、以下の(1)〜(4)に示す量のCo、Ti、Si及びCaを含む副成分とを含有し、Feの含有率をAモル%とし、ZnOの含有率をBモル%とすると比率A/Bの値が4.5〜6.0である。
(1)CoOに換算すると1200×10−6〜5000×10−6質量部に相等する量のCo、
(2)TiOに換算すると1200×10−6〜6000×10−6質量部に相等する量のTi、
(3)SiOに換算すると50×10−6〜150×10−6質量部に相等する量のSi、
(4)CaCOに換算すると500×10−6〜1500×10−6質量部に相等する量のCa。
That is, the ferrite core of the present invention, when converted to the respective oxides, 51.0 to 54.0 mol% of Fe 2 O 3, 34.5~40.0 mol% of MnO, and 9.0 Co, Ti, Si, and Ca in the amounts shown in the following (1) to (4) with respect to 1 mass part of the total mass of the main component consisting of ˜11.5 mol% ZnO and the above-mentioned main oxide. When the content ratio of Fe 2 O 3 is A mol% and the content ratio of ZnO is B mol%, the value of the ratio A / B is 4.5 to 6.0.
(1) When converted to CoO, an amount of Co equivalent to 1200 × 10 −6 to 5000 × 10 −6 parts by mass,
(2) When converted to TiO 2 , an amount of Ti equivalent to 1200 × 10 −6 to 6000 × 10 −6 parts by mass,
(3) When converted to SiO 2 , an amount of Si equivalent to 50 × 10 −6 to 150 × 10 −6 parts by mass,
(4) When converted to CaCO 3 , an amount of Ca equivalent to 500 × 10 −6 to 1500 × 10 −6 parts by mass.

上記フェライトコアは、温度上昇をより一層抑制する観点から、Moの含有量が上記主成分の酸化物の合計質量1質量部に対し、MoO換算で50×10−6質量部未満であることが好ましい。また、上記フェライトコアは、副成分が主成分の上記酸化物の合計質量1質量部に対し、以下の(5),(6)に示す量のNb及び/又はVを更に含むことが好ましい。
(5)Nbに換算すると100×10−6〜400×10−6質量部に相等する量のNb、
(6)Vに換算すると50×10−6〜400×10−6質量部に相等する量のV。
From the viewpoint of further suppressing temperature rise, the ferrite core has a Mo content of less than 50 × 10 −6 parts by mass in terms of MoO 3 with respect to 1 part by mass of the total mass of the main component oxide. Is preferred. Moreover, it is preferable that the said ferrite core further contains Nb and / or V of the quantity shown to the following (5), (6) with respect to 1 mass part of total mass of the said oxide whose subcomponent is a main component.
(5) When converted to Nb 2 O 5 , an amount of Nb equivalent to 100 × 10 −6 to 400 × 10 −6 parts by mass,
(6) V converted to V 2 O 5 is an amount of V equivalent to 50 × 10 −6 to 400 × 10 −6 parts by mass.

フェライトコアが、副成分として上記(5),(6)に示す量のNb及び/又はVを含むものであると、フェライトコアの粒界が高抵抗化して、電力損失を一層低減できる。   When the ferrite core contains Nb and / or V in the amounts shown in the above (5) and (6) as subcomponents, the grain boundary of the ferrite core becomes high resistance, and the power loss can be further reduced.

本発明によれば、連続的に励磁するような環境にあっても、コア温度が上昇するのを十分に抑制でき且つ飽和磁束密度が十分に高いフェライトコアが提供される。   According to the present invention, there is provided a ferrite core that can sufficiently suppress an increase in core temperature and has a sufficiently high saturation magnetic flux density even in an environment in which continuous excitation is performed.

本発明に係るフェライトコアの一実施形態を示す斜視図である。1 is a perspective view showing an embodiment of a ferrite core according to the present invention. 本焼成工程における温度設定の一例を示すグラフである。It is a graph which shows an example of the temperature setting in a main baking process. Feの含有率とZnOの含有率の比(A/B)とコアの上昇温度(ΔT)の関係を示すグラフである。Is a graph showing the relationship between the ratio of the content of the ZnO content of the Fe 2 O 3 (A / B ) as the core of the temperature rise ([Delta] T). Feの含有率とZnOの含有率の比(A/B)と飽和磁束密度の関係を示すグラフである。Fe content and ZnO ratio of the content of the 2 O 3 (A / B) and a graph showing the relationship between the saturation magnetic flux density. Feの含有率とZnOの含有率の比(A/B)とボトム温度における電力損失の関係を示すグラフである。The ratio of the content of the ZnO content of the Fe 2 O 3 and (A / B) is a graph showing the relationship between the power loss at the bottom temperature.

以下、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1は、本実施形態に係るフェライトコア(磁心)を示す斜視図である。図1に示すように、E字型のフェライトコア10は、E型コアなどと呼ばれ、トランスなどに使用される。フェライトコア10のようなE型コアが採用されたトランスとしては、内部に2つのE型コアが対向配置されたものが知られている。   FIG. 1 is a perspective view showing a ferrite core (magnetic core) according to this embodiment. As shown in FIG. 1, the E-shaped ferrite core 10 is called an E-type core and is used for a transformer or the like. As a transformer in which an E-type core such as the ferrite core 10 is adopted, a transformer in which two E-type cores are arranged to face each other is known.

<フェライトコア>
フェライトコア10はフェライト焼結体で構成され、Fe、Mn及びZnを含む主成分と、Co、Ti、Si及びCaを含む副成分とを含有する。フェライトコアの主成分は、それぞれ酸化物に換算したとき、51.0〜54.0モル%のFe、34.5〜40.0モル%のMnO、及び、9.0〜11.5モル%のZnOからなる。フェライト焼結体の副成分は、主成分の上記酸化物の合計質量1質量部に対し、以下の(1)〜(4)に示す量のCo、Ti、Si及びCaを含有する。
(1)CoOに換算すると1200×10−6〜5000×10−6質量部に相等する量のCo、
(2)TiOに換算すると1200×10−6〜6000×10−6質量部に相等する量のTi、
(3)SiOに換算すると50×10−6〜150×10−6質量部に相等する量のSi、
(4)CaCOに換算すると500×10−6〜1500×10−6質量部に相等する量のCa。
<Ferrite core>
The ferrite core 10 is made of a ferrite sintered body, and contains a main component including Fe, Mn, and Zn and a subcomponent including Co, Ti, Si, and Ca. The main component of the ferrite core, when converted to the respective oxides, 51.0 to 54.0 mol% of Fe 2 O 3, 34.5~40.0 mol% of MnO, and 9.0 to 11. It consists of 5 mol% ZnO. The subcomponent of the ferrite sintered body contains Co, Ti, Si, and Ca in the amounts shown in the following (1) to (4) with respect to 1 part by mass of the total mass of the main oxide.
(1) When converted to CoO, an amount of Co equivalent to 1200 × 10 −6 to 5000 × 10 −6 parts by mass,
(2) When converted to TiO 2 , an amount of Ti equivalent to 1200 × 10 −6 to 6000 × 10 −6 parts by mass,
(3) When converted to SiO 2 , an amount of Si equivalent to 50 × 10 −6 to 150 × 10 −6 parts by mass,
(4) When converted to CaCO 3 , an amount of Ca equivalent to 500 × 10 −6 to 1500 × 10 −6 parts by mass.

フェライトコア10をなすフェライト焼結体は、Feの含有率をAモル%とし、ZnOの含有率をBモル%とすると、比率A/Bの値が4.5〜6.0である。A/Bの値が4.5未満であると、飽和磁束密度が低くなり、6.0を超えると、コアの上昇温度が高くなる。かかる観点から、A/Bの値は好ましくは4.5〜5.9であり、より好ましくは4.5〜5.8である。フェライトコア10は、高温条件下(100〜150℃程度)における高い信頼性を有するため、動作温度が高温となりやすい小型化機器又は部品が高密度に実装された機器にも好適に用いることができる。 The ferrite sintered body forming the ferrite core 10 has a ratio A / B of 4.5 to 6.0, where the Fe 2 O 3 content is A mol% and the ZnO content is B mol%. is there. When the value of A / B is less than 4.5, the saturation magnetic flux density becomes low, and when it exceeds 6.0, the temperature rise of the core becomes high. From this viewpoint, the value of A / B is preferably 4.5 to 5.9, and more preferably 4.5 to 5.8. Since the ferrite core 10 has high reliability under high temperature conditions (about 100 to 150 ° C.), the ferrite core 10 can be suitably used for a miniaturized device in which the operating temperature is likely to be high or a device in which components are mounted at a high density. .

フェライトコア10をなすフェライト焼結体を上記のような組成とした理由は以下の通りである。   The reason why the ferrite sintered body forming the ferrite core 10 has the above composition is as follows.

(主成分)
フェライト焼結体のFeの含有率が51.0モル%未満であると、飽和磁束密度が低くなる。他方、Feの含有率が54.0モル%を超えると、高温条件下で使用した場合に性能の経時劣化が顕著となる。Feの含有率は、51.5〜53.5モル%であることがより好ましい。
(Main component)
When the content of Fe 2 O 3 in the ferrite sintered body is less than 51.0 mol%, the saturation magnetic flux density is lowered. On the other hand, when the content of Fe 2 O 3 exceeds 54.0 mol%, the deterioration with time of the performance becomes significant when used under high temperature conditions. The content of Fe 2 O 3 is more preferably 51.5 to 53.5 mol%.

フェライト焼結体のZnOの含有率が9.0モル%未満であると、コアの上昇温度が高くなる。他方、ZnOの含有率が11.5モル%を超えると、飽和磁束密度が低くなる。ZnOの含有率は、9.0〜11.0モル%であることがより好ましい。   When the ZnO content of the ferrite sintered body is less than 9.0 mol%, the temperature at which the core rises increases. On the other hand, when the ZnO content exceeds 11.5 mol%, the saturation magnetic flux density is lowered. As for the content rate of ZnO, it is more preferable that it is 9.0-11.0 mol%.

フェライト焼結体のMnOの含有率は、他の主成分であるFe及びZnOの含有率を定めると、主成分のうちの残部として定まるものである。 The content of MnO in the ferrite sintered body is determined as the balance of the main components when the content of Fe 2 O 3 and ZnO, which are other main components, is determined.

(副成分)
機器の熱暴走を一層確実に防止するためには、連続的に励磁して長期にわたって運転しても電力損失が著しく増大することなく、なるべく低い電力損失を維持することが望ましい。Coは、磁気異方性定数K1が比較的大きな正の値であるため、適量のCoを含有せしめることで、高温条件下における電力損失の温度変化率を十分に抑制できるという効果が奏される。
(Subcomponent)
In order to more reliably prevent thermal runaway of the device, it is desirable to maintain as low a power loss as possible without causing a significant increase in power loss even when continuously excited and operated for a long period of time. Since Co has a relatively large positive value of the magnetic anisotropy constant K1, the effect of being able to sufficiently suppress the temperature change rate of power loss under high temperature conditions is obtained by including an appropriate amount of Co. .

フェライト焼結体のCoの含有量(CoO換算)が、主成分の酸化物の合計質量1質量部に対し、1200×10−6質量部未満であると、高温条件下における電力損失の増大が顕著となる。他方、Coの含有量(CoO換算)が5000×10−6質量部を超えると、高温条件下における電力損失の温度変化率は抑制されるものの、電力損失の低減が不十分となる。Coの含有量(CoO換算)は、1500×10−6質量部より多く且つ4500×10−6質量部未満であることが好ましく、1800×10−6〜4000×10−6質量部であることがより好ましい。 When the content of Co in the ferrite sintered body (CoO conversion) is less than 1200 × 10 −6 parts by mass with respect to 1 part by mass of the total mass of the main component oxides, the power loss under high temperature conditions is increased. Become prominent. On the other hand, when the Co content (CoO conversion) exceeds 5000 × 10 −6 parts by mass, the rate of change in power loss under high temperature conditions is suppressed, but the reduction in power loss is insufficient. The content of Co (in terms of CoO) is preferably more than 1500 × 10 −6 parts by mass and less than 4500 × 10 −6 parts by mass, preferably 1800 × 10 −6 to 4000 × 10 −6 parts by mass. Is more preferable.

Coを含有するフェライト焼結体に、適量のTiを含有せしめることで、電力損失の増大を招来することなく、高温条件下での使用による性能の経時劣化を抑制できるという効果が奏される。フェライト焼結体のTiの含有量(TiO換算)が、主成分の酸化物の合計質量1質量部に対し、1200×10−6質量部未満であると、高温条件下で使用した場合に性能の経時劣化が顕著となる。他方、Tiの含有量(TiO換算)が6000×10−6質量部を超えると、飽和磁束密度が低下する。Tiの含有量(TiO換算)は、1500×10−6質量部より多く且つ5000×10−6質量部未満であることが好ましく、1500×10−6〜4000×10−6質量部であることがより好ましい。 By including an appropriate amount of Ti in the ferrite sintered body containing Co, there is an effect that deterioration of performance due to use under high-temperature conditions can be suppressed without causing an increase in power loss. When used under high-temperature conditions, the content of Ti in the ferrite sintered body (in terms of TiO 2 ) is less than 1200 × 10 −6 parts by mass relative to 1 part by mass of the total mass of the main component oxides. Deterioration of performance over time becomes remarkable. On the other hand, when the content of Ti (in terms of TiO 2 ) exceeds 6000 × 10 −6 parts by mass, the saturation magnetic flux density decreases. The Ti content (in terms of TiO 2 ) is preferably more than 1500 × 10 −6 parts by mass and less than 5000 × 10 −6 parts by mass, and is preferably 1500 × 10 −6 to 4000 × 10 −6 parts by mass. It is more preferable.

Siは、フェライト焼結体の焼結性を高める作用を有するとともに、粒界の高抵抗化に寄与するため、適量のSiを含有せしめることで、電力損失の低減化が図られる。フェライト焼結体のSiの含有量(SiO換算)が、主成分の酸化物の合計質量1質量部に対し、50×10−6質量部未満であると、フェライト焼結体における高抵抗層の形成が不十分となり、電力損失の低減が不十分となる。他方、Siの含有量(SiO換算)が150×10−6質量部を超えると、異常な粒成長を招来し、電力損失の低減が不十分となる。Siの含有量(SiO換算)は、60×10−6〜130×10−6質量部であることが好ましい。 Since Si has the effect of enhancing the sinterability of the ferrite sintered body and contributes to the increase in resistance of the grain boundary, the power loss can be reduced by containing an appropriate amount of Si. The high resistance layer in the ferrite sintered body when the Si content (SiO 2 equivalent) of the ferrite sintered body is less than 50 × 10 −6 parts by mass with respect to 1 part by mass of the total mass of the main component oxides. Is insufficiently formed, and power loss is not sufficiently reduced. On the other hand, if the Si content (in terms of SiO 2 ) exceeds 150 × 10 −6 parts by mass, abnormal grain growth is caused, and the reduction in power loss becomes insufficient. The Si content (in terms of SiO 2 ) is preferably 60 × 10 −6 to 130 × 10 −6 parts by mass.

Caは、上述のSiと同様、フェライト焼結体の焼結性を高める作用を有するとともに、粒界の高抵抗化に寄与するため、適量のCaを含有せしめることで、電力損失の低減化が図られる。フェライト焼結体のCaの含有量(CaCO換算)が、主成分の酸化物の合計質量1質量部に対し、500×10−6質量部未満であると、フェライト焼結体における高抵抗層の形成が不十分となり、電力損失の低減が不十分となる。他方、Caの含有量(CaCO換算)が1500×10−6質量部を超えると、異常な粒成長を招来し、電力損失の低減が不十分となる。Caの含有量(CaCO換算)は、600×10−6〜1300×10−6質量部であることが好ましい。 Ca, like Si described above, has the effect of enhancing the sinterability of the ferrite sintered body and contributes to the increase in the resistance of the grain boundary. Therefore, by containing an appropriate amount of Ca, the power loss can be reduced. Figured. When the Ca content (calculated as CaCO 3 ) of the ferrite sintered body is less than 500 × 10 −6 parts by mass with respect to 1 part by mass of the main component oxide, the high resistance layer in the ferrite sintered body Is insufficiently formed, and power loss is not sufficiently reduced. On the other hand, when the Ca content (CaCO 3 equivalent) exceeds 1500 × 10 −6 parts by mass, abnormal grain growth is caused and the reduction of power loss becomes insufficient. The Ca content (CaCO 3 equivalent) is preferably 600 × 10 −6 to 1300 × 10 −6 parts by mass.

本実施形態に係るフェライト焼結体は、副成分が主成分の上記酸化物の合計質量1質量部に対し、以下の(5),(6)に示す量のNb及び/又はVを更に含むことが好ましい。
(5)Nbに換算すると100×10−6〜400×10−6質量部に相等する量のNb、
(6)Vに換算すると50×10−6〜400×10−6質量部に相等する量のV。
The ferrite sintered body according to the present embodiment further includes Nb and / or V in the amounts shown in the following (5) and (6) with respect to 1 part by mass of the total mass of the oxides whose main component is the subcomponent. It is preferable.
(5) When converted to Nb 2 O 5 , an amount of Nb equivalent to 100 × 10 −6 to 400 × 10 −6 parts by mass,
(6) V converted to V 2 O 5 is an amount of V equivalent to 50 × 10 −6 to 400 × 10 −6 parts by mass.

Nbは、フェライト焼結体の粒界の高抵抗化に寄与するため、適量のNbを含有せしめることで、電力損失の低減化が図られる。フェライト焼結体のNbの含有量(Nb換算)が、主成分の酸化物の合計質量1質量部に対し、100×10−6質量部未満であると、粒界の高抵抗化が不十分となりやすく、電力損失の低減が不十分となる傾向がある。他方、Nbの含有量(Nb換算)が400×10−6質量部を超えると、結晶組織の不均一性を助長する傾向がある。Nbの含有量(Nb換算)は、150×10−6〜400×10−6質量部であることが好ましい。 Since Nb contributes to increasing the resistance of the grain boundary of the ferrite sintered body, the power loss can be reduced by adding an appropriate amount of Nb. When the content of Nb (converted to Nb 2 O 5 ) of the ferrite sintered body is less than 100 × 10 −6 parts by mass with respect to 1 part by mass of the total mass of the main component oxide, the resistance of the grain boundary is increased. Tends to be insufficient, and power loss tends to be insufficiently reduced. On the other hand, if the Nb content (in terms of Nb 2 O 5 ) exceeds 400 × 10 −6 parts by mass, the crystal structure tends to be non-uniform. The Nb content (in terms of Nb 2 O 5 ) is preferably 150 × 10 −6 to 400 × 10 −6 parts by mass.

Vは、上述のNbと同様、フェライト焼結体の粒界の高抵抗化に寄与するため、適量のVを含有せしめることで、電力損失の低減化が図られる。フェライト焼結体のVの含有量(V換算)が、主成分の酸化物の合計質量1質量部に対し、50×10−6質量部未満であると、粒界の高抵抗化が不十分となりやすく、電力損失の低減が不十分となる傾向がある。他方、Vの含有量(V換算)が400×10−6質量部を超えると、結晶組織の不均一性を助長する傾向がある。Vの含有量(V換算)は、50×10−6〜300×10−6質量部であることが好ましい。 V, like Nb described above, contributes to increasing the resistance of the grain boundaries of the ferrite sintered body, so that the power loss can be reduced by adding an appropriate amount of V. When the content of V (calculated in terms of V 2 O 5 ) of the ferrite sintered body is less than 50 × 10 −6 parts by mass with respect to 1 part by mass of the total mass of the main component oxide, the resistance of the grain boundary is increased. Tends to be insufficient, and power loss tends to be insufficiently reduced. On the other hand, when the V content (V 2 O 5 equivalent) exceeds 400 × 10 −6 parts by mass, the crystal structure tends to be non-uniform. The V content (in terms of V 2 O 5 ) is preferably 50 × 10 −6 to 300 × 10 −6 parts by mass.

フェライト焼結体に、Nb及びVの両方を含有せしめる場合は、Nb及びVの分子量に基づき、Nb及びVの合計含有量を適宜調整すればよい。 When both Nb and V are contained in the ferrite sintered body, the total content of Nb and V may be appropriately adjusted based on the molecular weights of Nb 2 O 5 and V 2 O 5 .

本実施形態に係るフェライト焼結体は、副成分が主成分の上記酸化物の合計質量1質量部に対し、Moを以下の(7)に示す量とすることが好ましい。
(7)MoOに換算すると50×10−6質量部未満に相等する量のMo。
In the ferrite sintered body according to the present embodiment, it is preferable to set Mo to an amount shown in the following (7) with respect to 1 part by mass of the total mass of the above oxides whose main component is a subcomponent.
(7) Mo equivalent to less than 50 × 10 −6 parts by mass when converted to MoO 3.

Moは、フェライトの異常粒成長を抑制するため、適量のMoを含有せしめることで、電力損失の低減化が図られる。ただし、フェライト焼結体のMoの含有量(MoO換算)が、主成分の酸化物の合計質量1質量部に対し、50×10−6質量部以上であると、コアの上昇温度が増大する傾向がある。Moの含有量(MoO換算)は、40×10−6質量部未満であることが好ましく、20×10−6未満であることがより好ましい。 Since Mo suppresses abnormal grain growth of ferrite, the power loss can be reduced by adding an appropriate amount of Mo. However, when the content of Mo in the ferrite sintered body (MoO 3 equivalent) is 50 × 10 −6 parts by mass or more with respect to 1 part by mass of the total mass of the main component oxide, the temperature rise of the core increases. Tend to. The Mo content (MoO 3 equivalent) is preferably less than 40 × 10 −6 parts by mass, and more preferably less than 20 × 10 −6 .

本実施形態に係るフェライト焼結体は、上記以外の成分を更に含有するものであってもよい。例えば、Ta(Ta)、Zr(ZrO)及びHf(HfO)は、上述のNb,Vと同様、フェライト焼結体の粒界の高抵抗化に寄与するため、これらを適量含有せしめることで、電力損失の低減化が図られる。 The ferrite sintered body according to the present embodiment may further contain components other than those described above. For example, Ta (Ta 2 O 5 ), Zr (ZrO 2 ), and Hf (HfO 2 ) contribute to increasing the resistance of the grain boundary of the ferrite sintered body in the same manner as Nb and V described above. The power loss can be reduced by the inclusion.

<フェライトコアの製造方法>
次に、フェライトコア10の製造方法について説明する。
<Ferrite core manufacturing method>
Next, a method for manufacturing the ferrite core 10 will be described.

はじめに、主成分をなす酸化鉄α−Fe、酸化マンガンMn及び酸化亜鉛ZnOを用意し、これら酸化物を混合して混合物を得る。このとき、Feの含有率Aが51.0〜54.0モル%であり且つZnOの含有率Bが9.0〜11.5モル%であるとともに、A/B(モル比)が4.5〜6.0となるように原料を混合し、残部を主としてMnで構成する。このとき、最終的に得られる混合物中の各酸化物成分の構成比が上記酸化物に換算して上記範囲内となるように上記酸化物とともに他の化合物を混合してもよい。 First, iron oxide α-Fe 2 O 3 , manganese oxide Mn 3 O 4 and zinc oxide ZnO as main components are prepared, and these oxides are mixed to obtain a mixture. At this time, the content A of Fe 2 O 3 is 51.0 to 54.0 mol%, the content B of ZnO is 9.0 to 11.5 mol%, and A / B (molar ratio) The raw materials are mixed so that becomes 4.5 to 6.0, and the remainder is mainly composed of Mn 3 O 4 . At this time, you may mix another compound with the said oxide so that the composition ratio of each oxide component in the mixture finally obtained may be converted into the said oxide, and may become in the said range.

次いで、上記主成分の混合物を仮焼成して仮焼成物を得る(仮焼工程)。仮焼は通常は空気中で行えばよい。仮焼温度は混合物を構成する成分に依存するが、800〜1100℃とすることが好ましい。また、仮焼時間は、混合物を構成する成分に依存するが、1〜3時間とすることが好ましい。その後、得られた仮焼成物をボールミル等により粉砕して粉砕粉を得る。   Next, the mixture of the main components is temporarily fired to obtain a temporarily fired product (a calcining step). The calcination is usually performed in the air. The calcination temperature depends on the components constituting the mixture, but is preferably 800 to 1100 ° C. Moreover, although calcining time is dependent on the component which comprises a mixture, it is preferable to set it as 1-3 hours. Thereafter, the obtained calcined product is pulverized by a ball mill or the like to obtain a pulverized powder.

他方、副成分をなす酸化コバルトCoO、酸化チタンTiO、酸化ケイ素SiO、炭酸カルシウムCaCOを用意し、所定量の上記副成分を混合して混合物を得る。上述の主成分原料の仮焼成物を粉砕する際、副成分原料の上記混合物を添加し、両者を混合する。これにより、本焼成用の原料混合粉を得る(混合工程)。ここで、上記成分以外の副成分(Nb,V,Ta,ZrO,HfOなど)を適宜添加してもよい。なお、最終的に得られる混合物中の各副成分の含有量が上記範囲内となるように上記化合物の代わりに他の化合物を用いてもよい。また、例えば、CoOの代わりにCoやCaCOの代わりにCaOを使用してもよい。 On the other hand, cobalt oxide CoO, titanium oxide TiO 2 , silicon oxide SiO 2 , and calcium carbonate CaCO 3 that are subcomponents are prepared, and a predetermined amount of the subcomponents are mixed to obtain a mixture. When the above-mentioned calcined product of the main component material is pulverized, the above mixture of subcomponent materials is added and mixed. Thereby, the raw material mixed powder for main baking is obtained (mixing process). Here, subcomponents (Nb 2 O 5 , V 2 O 5 , Ta 2 O 5 , ZrO 2 , HfO 2, etc.) other than the above components may be added as appropriate. In addition, you may use another compound instead of the said compound so that content of each subcomponent in the mixture finally obtained may be in the said range. Further, for example, it may be used CaO instead of Co 3 O 4 or CaCO 3, instead of the CoO.

続いて、上記のようにして得られる原料混合粉と、ポリビニルアルコール等の適当なバインダとを混合し、フェライトコア10と同形状、即ちE字型に成型して成型体を得る。   Subsequently, the raw material mixed powder obtained as described above and a suitable binder such as polyvinyl alcohol are mixed and molded into the same shape as the ferrite core 10, that is, an E-shape to obtain a molded body.

次に、成型体を加熱炉内において焼成する(本焼成工程)。図2は、本焼成工程における温度設定の一例を示すグラフである。図2に示すように、本焼成工程は、加熱炉内の成型体を徐々に加熱する昇温工程S1と、温度を1250〜1350℃に保持する温度保持工程S2と、保持温度から徐々に降温する徐冷工程S3と、徐冷工程S3の終了後に急冷する急冷工程S4とを少なくとも有する。   Next, the molded body is fired in a heating furnace (main firing step). FIG. 2 is a graph showing an example of temperature setting in the main firing step. As shown in FIG. 2, the main firing step includes a temperature raising step S1 for gradually heating the molded body in the heating furnace, a temperature holding step S2 for keeping the temperature at 1250 to 1350 ° C., and a temperature lowering gradually from the holding temperature. A slow cooling step S3 and a rapid cooling step S4 for rapid cooling after the end of the slow cooling step S3.

昇温工程S1は、加熱炉内の温度を後述の保持温度にまで昇温する工程である。昇温速度は、10〜300℃/時間とすることが好ましい。   The temperature raising step S1 is a step of raising the temperature in the heating furnace to a holding temperature described later. The heating rate is preferably 10 to 300 ° C./hour.

昇温工程S1によって所定の温度(1250〜1350℃)に到達すると、この温度に維持する温度保持工程S2を行う。温度保持工程S2における保持温度が1250℃未満であると、フェライト焼結体の粒成長が不十分となり、ヒステリシス損失が増大するため、電力損失の低減が不十分となる。他方、保持温度が1350℃を超えると、フェライト焼結体の粒成長が過剰となり、渦電流損失が増大するため、電力損失の低減が不十分となる。保持温度を1250〜1350℃とすることで、ヒステリシス損失と渦電流損失とのバランスがとれ、高温領域における電力損失を十分に低減できる。   When a predetermined temperature (1250 to 1350 ° C.) is reached by the temperature raising step S1, a temperature holding step S2 for maintaining this temperature is performed. When the holding temperature in the temperature holding step S2 is less than 1250 ° C., the grain growth of the ferrite sintered body becomes insufficient and the hysteresis loss increases, so that the reduction in power loss becomes insufficient. On the other hand, if the holding temperature exceeds 1350 ° C., the grain growth of the ferrite sintered body becomes excessive and the eddy current loss increases, so that the reduction of power loss becomes insufficient. By setting the holding temperature to 1250 to 1350 ° C., the hysteresis loss and the eddy current loss are balanced, and the power loss in the high temperature region can be sufficiently reduced.

上述の保持温度で焼成を行う時間(保持時間)は、2時間30分以上であることが好ましい。保持時間が2時間30分未満であると、温度1250〜1350℃で焼成を行った場合でも粒成長が不十分となり、電力損失の低減が不十分となりやすい。保持時間は粉砕粉を構成する原料に依存するが、3〜10時間とすることがより好ましい。   The time (holding time) for firing at the above holding temperature is preferably 2 hours 30 minutes or more. When the holding time is less than 2 hours 30 minutes, grain growth is insufficient even when firing is performed at a temperature of 1250 to 1350 ° C., and power loss is likely to be insufficiently reduced. The holding time depends on the raw materials constituting the pulverized powder, but is preferably 3 to 10 hours.

温度保持工程S2の終了後、徐冷工程S3を行う。徐冷工程S3における徐冷速度は、150℃/時間以下であることが好ましい。徐冷速度が150℃/時間を超えると、フェライト焼結体の粒内の残留応力が大きくなりやすく、これにより電力損失の低減が不十分となる傾向がある。なお、上記徐冷速度は、徐冷帯域での平均値を意味するものであり、これを超える速度で温度が低下する部分があってもよい。   After completion of the temperature holding step S2, a slow cooling step S3 is performed. The slow cooling rate in the slow cooling step S3 is preferably 150 ° C./hour or less. When the slow cooling rate exceeds 150 ° C./hour, the residual stress in the grains of the ferrite sintered body tends to increase, and this tends to result in insufficient reduction of power loss. In addition, the said slow cooling rate means the average value in a slow cooling zone, and there may be a part where temperature falls at the speed | rate exceeding this.

徐冷工程S3において保持温度から降温するに際し、加熱炉内の酸素濃度を制御し、連続的又は段階的に下げる操作を行う(酸素濃度調整工程)。このような操作を行うことで、温度1200℃における酸素濃度を0.2〜2.0体積%とし且つ温度1100℃における酸素濃度を0.020〜0.60体積%とすることが好ましい。   When the temperature is lowered from the holding temperature in the slow cooling step S3, the oxygen concentration in the heating furnace is controlled, and an operation for continuously or stepwise decreasing is performed (oxygen concentration adjusting step). By performing such an operation, the oxygen concentration at a temperature of 1200 ° C. is preferably 0.2 to 2.0% by volume and the oxygen concentration at a temperature of 1100 ° C. is preferably 0.020 to 0.60% by volume.

徐冷工程S3を終了し、急冷工程S4を開始する温度(徐冷終了温度)は、950〜1150℃であることが好ましい。徐冷終了温度が1150℃よりも高いと、フェライト焼結体の粒界の形成が不十分になりやすく、これにより電力損失の低減が不十分となる傾向がある。他方、徐冷終了温度が950℃よりも低いと、フェライト焼結体の粒界に異相が生じやすく、これにより電力損失の低減が不十分となる傾向がある。   The temperature at which the slow cooling step S3 is finished and the rapid cooling step S4 is started (slow cooling end temperature) is preferably 950 to 1150 ° C. When the annealing end temperature is higher than 1150 ° C., the formation of grain boundaries in the ferrite sintered body tends to be insufficient, and this tends to result in insufficient reduction of power loss. On the other hand, if the annealing end temperature is lower than 950 ° C., a heterogeneous phase is likely to occur at the grain boundaries of the ferrite sintered body, which tends to result in insufficient reduction of power loss.

徐冷工程S3の終了後、急冷工程S4を行う。少なくとも徐冷終了温度から800℃に到達するまで温度範囲については、降温速度を150℃/時間以上とすることが好ましい。当該温度領域における降温速度が150℃/時間未満であると、フェライト焼結体の粒界に異相が生じやすく、これにより電力損失の低減が不十分となる傾向がある。徐冷工程S3の終了後は、フェライトの酸化を防止する観点から、加熱炉内を窒素雰囲気(酸素濃度0.03体積%以下)とすることが好ましい。   After completion of the slow cooling step S3, a rapid cooling step S4 is performed. Regarding the temperature range at least from the end temperature of the slow cooling until reaching 800 ° C., the rate of temperature decrease is preferably 150 ° C./hour or more. If the rate of temperature decrease in the temperature region is less than 150 ° C./hour, a heterogeneous phase is likely to occur at the grain boundaries of the ferrite sintered body, and this tends to result in insufficient power loss reduction. After completion of the slow cooling step S3, the inside of the heating furnace is preferably a nitrogen atmosphere (oxygen concentration of 0.03% by volume or less) from the viewpoint of preventing the oxidation of ferrite.

本発明は、上記実施形態に限定されるものではない。例えば上記フェライトコア10の製造方法においては、フェライトコア10を所定形状(E字型)とするために、本焼成の前に粉砕粉とバインダとの混合物を成型しているが、粉砕粉を本焼成した後、加工することによって所定形状のフェライトコアを製造してもよい。   The present invention is not limited to the above embodiment. For example, in the manufacturing method of the ferrite core 10, a mixture of pulverized powder and a binder is molded before the main firing in order to make the ferrite core 10 have a predetermined shape (E shape). After firing, a ferrite core having a predetermined shape may be manufactured by processing.

また、上記実施形態では、主成分原料を仮焼して得られた仮焼成物を粉砕する際、副成分原料を添加することで本焼成用の混合粉を調製する場合を例示したが、当該混合粉は次のようにして調製してもよい。例えば、仮焼前の主成分原料と副成分原料とを混合して得られた混合物を仮焼した後、仮焼成物を粉砕することによって本焼成用の混合粉を得てもよい。あるいは、仮焼前の主成分原料と副成分原料とを混合して得られた混合粉を仮焼した後、仮焼成物を粉砕する際、更に副成分原料などを添加することによって本焼成用の混合粉を得てもよい。   In the above embodiment, when the calcined product obtained by calcining the main component raw material is pulverized, the case where the mixed powder for main firing is prepared by adding the subcomponent raw material is exemplified. The mixed powder may be prepared as follows. For example, after calcining a mixture obtained by mixing a main component material and a subcomponent material before calcining, a mixed powder for main firing may be obtained by pulverizing the calcined product. Alternatively, after calcining the mixed powder obtained by mixing the main component raw material and subcomponent raw material before calcining, when the calcined product is pulverized, further subcomponent raw materials are added for the main firing. You may obtain mixed powder.

また、上記実施形態では、E字形状のフェライトコア10を例示したが、フェライトコアの形状は、これに限定されるものではない。フェライトコアの形状は、そのフェライトコアが内蔵される機器の形状や用途に応じて決定することができる。   Moreover, in the said embodiment, although the E-shaped ferrite core 10 was illustrated, the shape of a ferrite core is not limited to this. The shape of the ferrite core can be determined according to the shape and application of the device in which the ferrite core is built.

(試料1〜33の調製)
各成分原料を最終的に表1,2に示した組成になるように秤量し、ボールミルを用いて湿式混合した。原料混合物を乾燥させた後、空気中において、900℃程度の温度で仮焼した。得られた仮焼粉をボールミルに投入し、所望の粒子径となるまで湿式粉砕を3時間行った。
(Preparation of samples 1 to 33)
Each component raw material was finally weighed so as to have the composition shown in Tables 1 and 2, and wet mixed using a ball mill. After the raw material mixture was dried, it was calcined at a temperature of about 900 ° C. in the air. The obtained calcined powder was put into a ball mill and wet pulverized for 3 hours until a desired particle size was obtained.

こうして得られた粉砕粉を乾燥し、粉砕粉100質量部に対してポリビニルアルコールを0.8質量部加えて造粒した後、得られた混合物を約150MPaの圧力で加圧成型し、トロイダル状成型体及びE字型成型体を得た。成型体を表3に示す条件で本焼成を行い、寸法が外径20mm、内径10mm、高さ5mmのトロイダル状及び複数のE字型フェライトコアを得た。E字型フェライトコアの中脚及び外脚の上面部を、面精度を向上させるために研磨加工した。   The pulverized powder thus obtained was dried, granulated by adding 0.8 parts by mass of polyvinyl alcohol to 100 parts by mass of the pulverized powder, and then the resulting mixture was pressure-molded at a pressure of about 150 MPa to obtain a toroidal shape. A molded body and an E-shaped molded body were obtained. The molded body was subjected to main firing under the conditions shown in Table 3 to obtain a toroidal shape and a plurality of E-shaped ferrite cores having dimensions of an outer diameter of 20 mm, an inner diameter of 10 mm, and a height of 5 mm. The upper surfaces of the middle and outer legs of the E-shaped ferrite core were polished to improve surface accuracy.

(コア温度)
試料1〜33からそれぞれ製造した2個のE字型のフェライトコアを対向配置して閉磁路を形成した。フェライトコアの初期温度を100℃とし、その後、磁束密度230mT、周波数100kHzの条件で連続的に励磁してコア温度が安定したところで、熱電対でコア温度を測定した。これにより、コアの上昇温度(ΔT)を測定した。
(Core temperature)
Two E-shaped ferrite cores respectively manufactured from Samples 1 to 33 were arranged to face each other to form a closed magnetic circuit. The initial temperature of the ferrite core was set to 100 ° C., and then the core temperature was measured with a thermocouple when the core temperature was stabilized by continuous excitation under the conditions of a magnetic flux density of 230 mT and a frequency of 100 kHz. Thereby, the rising temperature (ΔT) of the core was measured.

(電力損失)
トロイダル状のフェライトコアの電力損失を次のようにして測定した。すなわち、岩通計測製B−Hアナライザにて磁束密度200mT、周波数100kHzの条件で温度25〜150℃の範囲の電力損失を測定した。温度範囲25〜150℃において電力損失の測定値が極小値を示す温度(ボトム温度)を求めた。また、ボトム温度における電力損失の値(電力損失の極小値)を求めた。
(Power loss)
The power loss of the toroidal ferrite core was measured as follows. That is, the power loss in the temperature range of 25 to 150 ° C. was measured with a BH analyzer manufactured by Iwadori Measurement under the conditions of a magnetic flux density of 200 mT and a frequency of 100 kHz. The temperature (bottom temperature) at which the measured value of the power loss showed a minimum value in the temperature range of 25 to 150 ° C. was obtained. Moreover, the value of power loss at the bottom temperature (minimum value of power loss) was obtained.

(飽和磁束密度)
トロイダル状のフェライトコアの150℃における飽和磁束密度を、メトロン技研製B−Hカーブトレーサーにて1200A/mの磁界を印加して測定した。
(Saturation magnetic flux density)
The saturation magnetic flux density at 150 ° C. of the toroidal ferrite core was measured by applying a magnetic field of 1200 A / m with a BH curve tracer manufactured by Metron Giken.

(電力損失変化率)
電力損失の測定を行った後の各フェライトコアを温度200℃に設定された恒温槽内に56時間にわたって貯蔵した。その後、上記と同様の方法によって、各フェライトコアの電力損失の測定を再度行った。上記の貯蔵処理を行う前後の同一温度における電力損失の測定値を下記式に代入し、各温度の電力損失の変化率を算出した。温度25〜150℃の範囲で電力損失の変化率の最大値を電力損失変化率と定義した。

Figure 0005786322
(Power loss change rate)
Each ferrite core after measuring the power loss was stored in a thermostat set at a temperature of 200 ° C. for 56 hours. Thereafter, the power loss of each ferrite core was measured again by the same method as described above. The measured value of the power loss at the same temperature before and after performing the above storage treatment was substituted into the following formula to calculate the rate of change in power loss at each temperature. The maximum value of the power loss change rate in the temperature range of 25 to 150 ° C. was defined as the power loss change rate.
Figure 0005786322

表1,2及び図3〜5に測定結果を示す。図3,4に示すとおり、実施例に係るフェライトコアはコア温度の上昇が十分に抑えられているとともに飽和磁束密度が十分に高い。なお、図5に示すとおり、Feの含有率とZnOの含有率の比(A/B)と電力損失の間には特段の相関は認められない。 Tables 1 and 2 and FIGS. 3 to 5 show the measurement results. As shown in FIGS. 3 and 4, the ferrite core according to the example has a sufficiently high saturation magnetic flux density while sufficiently suppressing an increase in core temperature. In addition, as shown in FIG. 5, no special correlation is recognized between the ratio (A / B) of the content ratio of Fe 2 O 3 and the content ratio of ZnO and power loss.

Figure 0005786322
Figure 0005786322

Figure 0005786322
Figure 0005786322

Figure 0005786322
Figure 0005786322

10…フェライトコア(磁心)。 10: Ferrite core (magnetic core).

Claims (5)

それぞれ酸化物に換算したとき、51.0〜54.0モル%のFe 、34.5〜40.0モル%のMnO、及び、9.0〜11.5モル%のZnOからなる主成分と、
前記主成分の前記酸化物の合計質量1質量部に対し、CoOに換算すると1200×10 −6 〜5000×10 −6 質量部のCo、TiOに換算すると2300×10−6〜6000×10−6質量部のTi、SiO に換算すると50×10 −6 〜150×10 −6 質量部のSi、及び、CaCO に換算すると500×10 −6 〜1500×10 −6 質量部のCaを含む副成分と、
を含有し、
Fe の含有率をAモル%とし、ZnOの含有率をBモル%とすると、比率A/Bの値が4.5〜6.0であるフェライトコア。
When converted to the respective oxides, 51.0 to 54.0 mol% of Fe 2 O 3, 34.5 to 40.0 mol% of MnO, and consists of 9.0 to 11.5 mol% of ZnO The main component,
When converted to CoO, 1200 × 10 −6 to 5000 × 10 −6 parts by mass of Co and TiO 2 are converted to 2300 × 10 −6 to 6000 × 10 with respect to 1 mass part of the total mass of the oxides of the main component. When converted to -6 parts by mass of Ti and SiO 2 , 50 × 10 −6 to 150 × 10 −6 parts by mass of Si and when converted to CaCO 3 , 500 × 10 −6 to 1500 × 10 −6 parts by mass of Ca A subcomponent containing
Containing
A ferrite core having a ratio A / B of 4.5 to 6.0, where the Fe 2 O 3 content is A mol% and the ZnO content is B mol% .
それぞれ酸化物に換算したとき、51.0〜54.0モル%のFe 、34.5〜40.0モル%のMnO、及び、9.0〜11.5モル%のZnOからなる主成分と、
前記主成分の前記酸化物の合計質量1質量部に対し、CoOに換算すると2800×10−6〜5000×10−6質量部のCo、TiO に換算すると1200×10 −6 〜6000×10 −6 質量部のTi、SiO に換算すると50×10 −6 〜150×10 −6 質量部のSi、及び、CaCO に換算すると500×10 −6 〜1500×10 −6 質量部のCaを含む副成分と、
を含有し、
Fe の含有率をAモル%とし、ZnOの含有率をBモル%とすると、比率A/Bの値が4.5〜6.0でありるフェライトコア。
When converted to the respective oxides, 51.0 to 54.0 mol% of Fe 2 O 3, 34.5 to 40.0 mol% of MnO, and consists of 9.0 to 11.5 mol% of ZnO The main component,
When converted to CoO, 2800 × 10 −6 to 5000 × 10 −6 parts by mass of Co and TiO 2 are converted to 1200 × 10 −6 to 6000 × 10 with respect to 1 mass part of the total mass of the oxides of the main component. When converted to -6 parts by mass of Ti and SiO 2 , 50 × 10 −6 to 150 × 10 −6 parts by mass of Si and when converted to CaCO 3 , 500 × 10 −6 to 1500 × 10 −6 parts by mass of Ca A subcomponent containing
Containing
A ferrite core having a ratio A / B of 4.5 to 6.0, where the Fe 2 O 3 content is A mol% and the ZnO content is B mol% .
Moの含有量は、前記主成分の前記酸化物の合計質量1質量部に対し、MoO換算で50×10−6質量部未満である、請求項1又は2に記載のフェライトコア。 The content of Mo is the total mass 1 part by mass of the oxide of the main component is less than 50 × 10 -6 parts by weight calculated as MoO 3, ferrite core according to claim 1 or 2. 前記副成分は、前記主成分の前記酸化物の合計質量1質量部に対し、Nbに換算で100×10−6〜400×10−6質量部のNbを更に含む、請求項1〜3のいずれか一項に記載のフェライトコア。 The subcomponent, with respect to the total mass 1 part by mass of the oxide of the main component, further containing Nb of 100 × 10 -6 ~400 × 10 -6 parts by terms of Nb 2 O 5, claim 1 The ferrite core as described in any one of -3. 前記副成分は、前記主成分の前記酸化物の合計質量1質量部に対し、Vに換算すると50×10−6〜400×10−6質量部のVを更に含む、請求項1〜のいずれか一項に記載のフェライトコア。 The subcomponent, with respect to the total mass 1 part by mass of the oxide of the main component, further includes a V of 50 × 10 -6 ~400 × 10 -6 parts by weight in terms of V 2 O 5, claim 1 The ferrite core according to any one of to 4 .
JP2010267377A 2010-11-30 2010-11-30 Ferrite core Active JP5786322B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010267377A JP5786322B2 (en) 2010-11-30 2010-11-30 Ferrite core
KR1020110125640A KR101267302B1 (en) 2010-11-30 2011-11-29 Ferrite Core
CN201110390569.XA CN102486957B (en) 2010-11-30 2011-11-30 Ferrite magnetic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010267377A JP5786322B2 (en) 2010-11-30 2010-11-30 Ferrite core

Publications (2)

Publication Number Publication Date
JP2012116700A JP2012116700A (en) 2012-06-21
JP5786322B2 true JP5786322B2 (en) 2015-09-30

Family

ID=46152435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010267377A Active JP5786322B2 (en) 2010-11-30 2010-11-30 Ferrite core

Country Status (3)

Country Link
JP (1) JP5786322B2 (en)
KR (1) KR101267302B1 (en)
CN (1) CN102486957B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104051113B (en) * 2014-06-24 2016-06-22 铜陵三佳变压器有限责任公司 A kind of Ni-based ferrite core material for transformator
JP6416808B2 (en) * 2016-02-15 2018-10-31 Jfeケミカル株式会社 MnZnCo ferrite
JP6454309B2 (en) * 2016-08-25 2019-01-16 Jfeケミカル株式会社 MnZnCo ferrite
CN107399965B (en) * 2017-06-26 2020-11-06 重庆正峰电子有限公司 Wide-temperature high-current MnZn ferrite
CN111978079B (en) * 2020-07-21 2022-02-18 横店集团东磁股份有限公司 Wireless charging magnetic core for smart watch and preparation method thereof
JP6827584B1 (en) * 2020-07-30 2021-02-10 株式会社トーキン MnZn-based ferrite and its manufacturing method
WO2023182133A1 (en) * 2022-03-23 2023-09-28 戸田工業株式会社 MnZn-BASED FERRITE

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214213A (en) * 1998-01-23 1999-08-06 Tdk Corp Ferrite, transformer and its driving method
JP3917325B2 (en) * 1999-05-25 2007-05-23 Jfeケミカル株式会社 Ferrite
JP2001068326A (en) * 1999-08-30 2001-03-16 Tdk Corp MnZn BASED FERRITE
JP2004035372A (en) * 2002-07-08 2004-02-05 Minebea Co Ltd Low loss ferrite material
JP2005119892A (en) * 2003-10-14 2005-05-12 Fdk Corp Low-loss ferrite
CN100357220C (en) * 2005-07-15 2007-12-26 上海宝钢天通磁业有限公司 Production of high-frequency and low-consumption Mn-Zn ferrite material
JP5332254B2 (en) * 2008-03-25 2013-11-06 Tdk株式会社 Ferrite sintered body

Also Published As

Publication number Publication date
KR101267302B1 (en) 2013-05-24
CN102486957A (en) 2012-06-06
JP2012116700A (en) 2012-06-21
KR20120059408A (en) 2012-06-08
CN102486957B (en) 2015-06-03

Similar Documents

Publication Publication Date Title
JP5332254B2 (en) Ferrite sintered body
JP5786322B2 (en) Ferrite core
KR100627117B1 (en) Ferrite Material
JP5181175B2 (en) Mn-Zn-Co ferrite
CN106915956A (en) MnZnLi based ferrites, magnetic core and transformer
JP2007197245A (en) Mn-Co-Zn FERRITE AND MAGNETIC CORE FOR TRANSFORMER
JP2008247675A (en) METHOD OF MANUFACTURING MnZn-BASED FERRITE
JP2007112695A (en) METHOD FOR PRODUCING Mn FERRITE
JP2007204349A (en) Manufacturing method of low-loss oxide magnetic material
JP3588693B2 (en) Mn-Zn ferrite and method for producing the same
JP5828308B2 (en) Ferrite core and transformer
JP3924272B2 (en) Mn-Zn ferrite, transformer core and transformer
JP2004161593A (en) Ferritic material
JP4656949B2 (en) High saturation magnetic flux density Mn-Zn-Ni ferrite
KR101435429B1 (en) Ferrite core and transformer
JP6314758B2 (en) MnZn ferrite and MnZn ferrite large core
JP4750563B2 (en) MnCoZn ferrite and transformer core
KR101370665B1 (en) Ferrite core and transformer
JP6079172B2 (en) Ferrite core and transformer
JP2005272229A (en) HIGH SATURATION MAGNETIC FLUX DENSITY Mn-Zn-Ni-BASED FERRITE
JP2005108977A (en) Mn-Zn SYSTEM FERRITE, MAGNETIC CORE FOR TRANSFORMER, AND TRANSFORMER
KR101990781B1 (en) Ferrite and transformer
JP6413750B2 (en) Ferrite sintered body, electronic component using the same, and power supply device
JP2005187247A (en) Manufacturing method of low-loss oxide magnetic material
JP2005029416A (en) Ferrite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150422

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150713

R150 Certificate of patent or registration of utility model

Ref document number: 5786322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150