JP2013088223A - 光デバイス及び検出装置 - Google Patents
光デバイス及び検出装置 Download PDFInfo
- Publication number
- JP2013088223A JP2013088223A JP2011227746A JP2011227746A JP2013088223A JP 2013088223 A JP2013088223 A JP 2013088223A JP 2011227746 A JP2011227746 A JP 2011227746A JP 2011227746 A JP2011227746 A JP 2011227746A JP 2013088223 A JP2013088223 A JP 2013088223A
- Authority
- JP
- Japan
- Prior art keywords
- period
- protrusion group
- optical device
- surface plasmon
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 26
- 238000001514 detection method Methods 0.000 title claims abstract description 14
- 239000002082 metal nanoparticle Substances 0.000 claims abstract description 23
- 239000004020 conductor Substances 0.000 claims abstract description 18
- 239000002184 metal Substances 0.000 claims description 41
- 229910052751 metal Inorganic materials 0.000 claims description 41
- 239000002086 nanomaterial Substances 0.000 claims description 12
- 230000008878 coupling Effects 0.000 claims description 11
- 238000010168 coupling process Methods 0.000 claims description 11
- 238000005859 coupling reaction Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 11
- 239000000758 substrate Substances 0.000 abstract description 9
- 230000004807 localization Effects 0.000 abstract 1
- 230000005684 electric field Effects 0.000 description 43
- 238000001069 Raman spectroscopy Methods 0.000 description 30
- 239000010931 gold Substances 0.000 description 24
- 230000005284 excitation Effects 0.000 description 20
- 238000000034 method Methods 0.000 description 15
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 14
- 230000035945 sensitivity Effects 0.000 description 11
- 239000002105 nanoparticle Substances 0.000 description 9
- 230000001902 propagating effect Effects 0.000 description 9
- 229910004298 SiO 2 Inorganic materials 0.000 description 8
- 239000006185 dispersion Substances 0.000 description 8
- 239000010419 fine particle Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000004416 surface enhanced Raman spectroscopy Methods 0.000 description 6
- 238000000862 absorption spectrum Methods 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 239000013076 target substance Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 238000001237 Raman spectrum Methods 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 230000005260 alpha ray Effects 0.000 description 2
- 230000002902 bimodal effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000003574 free electron Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 239000010944 silver (metal) Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000009149 molecular binding Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000011896 sensitive detection Methods 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/55—Specular reflectivity
- G01N21/552—Attenuated total reflection
- G01N21/553—Attenuated total reflection and using surface plasmons
- G01N21/554—Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/60—Systems using moiré fringes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/12—Generating the spectrum; Monochromators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/12—Generating the spectrum; Monochromators
- G01J3/26—Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Optics & Photonics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
【解決手段】 光デバイス100は、基材101の導体表面102より突起して、第1方向Xに沿って第1周期で配列される第1突起群110と、導体表面及び第1突起群を覆う誘電体層120と、誘電体層120上にて金属ナノ粒子130Aが第1方向Xに沿って第1周期と異なる第2周期で配列されて成る第2突起群130とを有し、第1周期及び第2周期の一方をPx1とし、第1周期及び第2周期の他方をPx2とし、照射光の波長をλとしたとき、λ>Px1>Px2を満足し、かつ、0<Px1−Px2<Px1/2を満足する。
【選択図】 図6
Description
基材の導体表面より突起して、第1方向に沿って第1周期で配列される第1突起群と、
前記導体表面及び前記第1突起群を覆う誘電体層と、
前記誘電体層上にて金属ナノ粒子が前記第1方向に沿って前記第1周期と異なる第2周期で配列されて成る第2突起群と、
を有し、
前記第1周期及び前記第2周期の一方をPx1とし、前記第1周期及び前記第2周期の他方をPx2とし、照射光の波長をλとしたとき、λ>Px1>Px2を満足し、かつ、0<Px1−Px2<Px1/2を満足する光デバイスに関する。
Px=Px1*Px2/(Px1−Px2)…(1)
と表わされる。λ>Px1>Px2のもとで式(1)に基づくと、
Px1−Px2=Px1−[Px/(Px+Px1)]Px1
=Px1[1−Px/(Px+Px1)]
=Px1[1−1/(1+Px1/Px)]
となる。ここで、0<Px1<Pxであるから、
0<Px1−Px2<Px1/2…(2)
が成立する。
Px=2π/K0=Px1*Px2/(Px1−Px2)…(3)
となる。
基材の導体表面より突起して、第1方向に沿って第1周期で配列される第1突起群と、
前記導体表面及び前記第1突起群を覆う誘電体層と、
前記誘電体層上にて金属ナノ粒子が前記第1方向に沿って前記第1周期と異なる第2周期で配列されて成る第2突起群と、
を有し、
前記第1周期と前記第2周期とによりモアレを発現させ、モアレによって局在表面プラズモと伝播表面プラズモンの結合を強める光デバイスに関する。
上述した光デバイスと、
光源と、
光検出部と、
を有し、
前記光デバイスの前記第2突起群に試料が導入され、
前記光デバイスは、前記光源からの前記波長λの光が照射されることで前記試料を反映した光を出射し、
前記光検出部は、前記光デバイスからの前記試料を反映した光を検出する検出装置に関する。この検出装置は、表面増強ラマン散乱を適用して高感度な検出が可能となる。
図4(A)に、ラマン散乱分光法の原理的な説明図を示す。図4(A)に示すように、単一波長の光Linを標的分子X(標的物)に照射すると、散乱光の中には、入射光Linの波長λinと異なる波長λ2のラマン散乱光Ramが発生する。このラマン散乱光Ramと入射光Linとのエネルギー差は、標的分子Xの振動準位や回転準位や電子準位のエネルギーに対応している。標的分子Xは、その構造に応じた特有の振動エネルギーをもつため、単一波長の光Linを用いることで、標的分子Xを特定できる。
上式(4)より、表面増強ラマン散乱過程における増強度を高めるには、励起過程における増強度とラマン散乱過程における増強度の両方を同時に高める必要がある。そのために本実施形態では、図5に示すように、励起波長及びラマン散乱波長の近傍だけに強い2つの共鳴ピークを発生させる。これにより、両散乱過程の相乗効果によって、局所電場の増強効果を飛躍的に高めることができる。
図6(A)(B)に、本発明の一実施形態に係る表面プラズモン共鳴センサーチップ(光デバイス)100の構造を模式的に示した。図6(A)は断面図であり、いずれもセンサーチップ100の一部を示している。図7(A)(B)は、誘電体形成前の製造途中のセンサーチップの概略者視図である。
本実施形態では、Px1>Px2としたとき、周期Px1と周期Px2との差が僅かであれば、第2突起群130の第2周期はPx1及びPx2の何れであってもホットサイドの密度を高めることができる。第2突起群の第2周期をPx2(<Px1)とすることで、ホットサイドの密度をより高めることができる。以下では、第1突起群110の第1方向Xでの周期が第1周期Px1であり、第2突起群130の第1方向Xでの周期が第2周期Px2(<Px1)として説明する。
Px=Px1*Px2/(Px1−Px2)…(1)
と表わされる。λ>Px1>Px2のもとで式(1)に基づくと、
Px1−Px2=Px1−[Px/(Px+Px1)]Px1
=Px1[1−Px/(Px+Px1)]
=Px1[1−1/(1+Px1/Px)]
となる。ここで、0<Px1<Pxであるから、
0<Px1−Px2<Px1/2…(2)
が成立する。
Px=2π/K0=Px1*Px2/(Px1−Px2)…(3)
となる。
図9に、より具体的な実施例を示す。角柱形状を有するAgナノ粒子130Aが第1,第2方向X,Yにて第2周期Px2=第4周期Py2=120nmで並んでいる。このAgナノ粒子130Aの一辺の長さは80nm、高さは20nmである。他方、Au格子110は一次元であり、その第1周期Px1=100nm、高さは20nmである。Agナノ粒子130AはSiO2層120を介してAu格子110の上に形成されている。SiO2層の厚さは、厚い場所で40nm、薄い場所で20nmである。これらふたつの周期構造により発生するモアレの周期は式(1)から600nmとなる。なお、図9は、モアレ一周期分に相当する長さ部分の構造を示している。
式(5)からわかるように、ラマン散乱における増強度を高めるには、励起過程における増強度と散乱過程における増強度の両方を同時に高める必要がある。したがって、センサーチップ100が励起波長および散乱波長の近傍に強い共鳴ピークをもてば、両過程の相乗効果により増強効果は飛躍的に高まることになる。
図12(A)〜図12(D)に、図9に示す実施例のセンサーチップ100の製造方法を示す。まず、図12(A)に示すように、フォトリソグラフィその他の方法で石英ガラス基板101の表面へ凹凸格子101Aを形成する。つぎに、図12(A)に示すように、凹凸格子101Aの表面へスパッタ法でAu膜110Aを厚さ100nmで成膜し、Au格子(第1突起群)110を形成する。つぎに、図12(B)に示すように、Au格子110の上にゾルゲル法によりSIO2層(誘電体層)120を形成し、SIO2層120の表面を平坦化する。さらに、図12(C)に示すように、平らにされたSIO2層120の表面へインプリントその他の方法でレジストパターン121を形成する。レジストパターン121として、図13(A)にはドットパターンの例を、図13(B)には楕円パターンの例を示した。つぎに、図12(C)に示すように、レジストパターン121の上からAgを真空蒸着し、その後でレジストパターン121を除去すれば、図12(D)に示すようにAgナノ粒子130Aが二次元配列された金属ナノ構造(第2突起群)130が形成される(リフトオフ)。本実施例では、金属ナノ構造130の素材と金属格子構造110の素材は異なる金属であるが、同じ金属の組み合わせ(例えばAgとAg、AuとAu)を用いることも可能である。
図14は、上述したセンサーチップ(光デバイス)100(図14では符号260)を備えた検出装置200の一例を示す模式図である。標的物質(図示せず)のA方向から検出装置200に搬入されてB方向に搬出される。励起光源210から出射されたレーザーはコリメータレンズで平行光にされ、偏光制御素子230を通過し、ダイクロイックミラー240によってセンサーチップ260の方向に導かれる。レーザーは対物レンズ250で集光され、センサーチップ260に入射する。このとき、センサーチップ260の表面(例えば、金属ナノ構造130が形成された面)には標的物質(図示せず)が配置されている。なお、ファン(図示せず)の駆動を制御することにより、標的物質は搬入口から搬送部内部に導入され、排出口から搬送部外部に排出されるようになっている。
Claims (8)
- 基材の導体表面より突起して、第1方向に沿って第1周期で配列される第1突起群と、
前記導体表面及び前記第1突起群を覆う誘電体層と、
前記誘電体層上にて金属ナノ粒子が前記第1方向に沿って前記第1周期と異なる第2周期で配列されて成る第2突起群と、
を有し、
前記第1周期及び前記第2周期の一方をPx1とし、前記第1周期及び前記第2周期の他方をPx2とし、照射光の波長をλとしたとき、λ>Px1>Px2を満足し、かつ、0<Px1−Px2<Px1/2を満足することを特徴とする光デバイス。 - 請求項1において、
前記第2突起群の前記第2周期をPx2とし、前記第1突起群の前記第1周期をPx1)としたことを特徴とする光デバイス。 - 請求項1または2において、
前記第1周期及び前記第2周期の差及び積に基づいて前記第1方向にて周期Pxのモアレが形成され、モアレの周期Pは、λ>Px>Px1>Px2を満足することを特徴とする光デバイス。 - 請求項1乃至3のいずれかにおいて、
前記第1突起群は、前記第1方向に沿って前記第1周期で配列され金属格子であり、
前記第2突起群は、前記第1方向に沿って前記第2周期で配列され、かつ、前記第1方向と交差する第2方向でも周期的に配列された前記金属ナノ粒子から成る金属ナノ構造であることを特徴とする光デバイス。 - 請求項1乃至3のいずれかにおいて、
前記第1突起群は、前記第1方向に沿って前記第1周期で配列され、かつ、前記第1方向と交差する第2方向にて第3周期で配列された二次元金属格子であり、
前記第2突起群は、前記第1方向に沿って前記第2周期で配列され、かつ、前記第2方向にて第4周期で配列された前期金属ナノ粒子から成る金属ナノ構造であり、
前記第3周期及び前記第4周期の一方をPy1とし、前記第1周期及び前記第2周期の他方をPy2としたとき、λ>Py2>Py1を満足し、かつ、0<Py2−Py1<Py2/2を満足することを特徴とする光デバイス。 - 請求項1乃至5のいずれかにおいて、
前記第2突起群が形成される前記誘電体の表面は平坦面であることを特徴とする光デバイス。 - 基材の導体表面より突起して、第1方向に沿って第1周期で配列される第1突起群と、
前記導体表面及び前記第1突起群を覆う誘電体層と、
前記誘電体層上にて金属ナノ粒子が前記第1方向に沿って前記第1周期と異なる第2周期で配列されて成る第2突起群と、
を有し、
前記第1周期と前記第2周期とによりモアレを発現させ、モアレによって局在表面プラズモと伝播表面プラズモンPSPの結合を強めることを特徴とする光デバイス。 - 請求項1乃至7のいずれか記載の光デバイスと、
光源と、
光検出部と、
を有し、
前記光デバイスの前記第2突起群に試料が導入され、
前記光デバイスは、前記光源からの前記波長λの光が照射されることで前記試料を反映した光を出射し、
前記光検出部は、前記光デバイスからの前記試料を反映した光を検出することを特徴とする検出装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011227746A JP5821511B2 (ja) | 2011-10-17 | 2011-10-17 | 光デバイス及び検出装置 |
US13/651,791 US9057697B2 (en) | 2011-10-17 | 2012-10-15 | Optical device with propagating and localized surface plasmons and detection apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011227746A JP5821511B2 (ja) | 2011-10-17 | 2011-10-17 | 光デバイス及び検出装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013088223A true JP2013088223A (ja) | 2013-05-13 |
JP5821511B2 JP5821511B2 (ja) | 2015-11-24 |
Family
ID=48085360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011227746A Expired - Fee Related JP5821511B2 (ja) | 2011-10-17 | 2011-10-17 | 光デバイス及び検出装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US9057697B2 (ja) |
JP (1) | JP5821511B2 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015176768A (ja) * | 2014-03-14 | 2015-10-05 | スタンレー電気株式会社 | フィラメント、偏光放射光源装置、偏波赤外放射ヒーター、および、フィラメントの製造方法 |
CN106289094A (zh) * | 2015-05-26 | 2017-01-04 | 中国科学院微电子研究所 | 一种利用表面等离激元散射频谱检测纳米颗粒形貌的方法和装置 |
US9658165B2 (en) | 2014-05-08 | 2017-05-23 | Seiko Epson Corporation | Electronic field enhancement element, analysis device, and electronic apparatus |
JP2018105665A (ja) * | 2016-12-26 | 2018-07-05 | コニカミノルタ株式会社 | 歪センサー及び歪量測定方法 |
CN112213820A (zh) * | 2020-09-14 | 2021-01-12 | 桂林电子科技大学 | 一种基于表面等离激元共振的mimi型微纳全光开关 |
KR20230028616A (ko) * | 2021-08-19 | 2023-03-02 | 경희대학교 산학협력단 | 준주기성 금속나노구조를 포함하는 상향변환 플라즈모닉 구조체 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101431958B1 (ko) * | 2013-01-31 | 2014-08-21 | 연세대학교 산학협력단 | 초고해상도 광학 영상 장치 및 이를 이용한 광학 영상 방법 |
JP2014169955A (ja) * | 2013-03-05 | 2014-09-18 | Seiko Epson Corp | 分析装置、分析方法、これらに用いる光学素子および電子機器、並びに光学素子の設計方法 |
TWI498541B (zh) * | 2013-05-30 | 2015-09-01 | Univ Nat Cheng Kung | 具不對稱週期粒子排列之定域化表面電漿共振檢測系統 |
TWI498540B (zh) * | 2013-05-30 | 2015-09-01 | Univ Nat Cheng Kung | 具不對稱粒子形狀之定域化表面電漿共振檢測系統 |
JP2015055482A (ja) * | 2013-09-10 | 2015-03-23 | セイコーエプソン株式会社 | 分析装置、分析方法、これらに用いる光学素子及び電子機器 |
JP2015152492A (ja) * | 2014-02-17 | 2015-08-24 | セイコーエプソン株式会社 | 分析装置、及び電子機器 |
JP6365817B2 (ja) * | 2014-02-17 | 2018-08-01 | セイコーエプソン株式会社 | 分析装置、及び電子機器 |
JP2016142617A (ja) * | 2015-02-02 | 2016-08-08 | セイコーエプソン株式会社 | 電場増強素子、分析装置、及び電子機器 |
JP6613736B2 (ja) * | 2015-09-07 | 2019-12-04 | セイコーエプソン株式会社 | 物質検出方法および物質検出装置 |
WO2017052196A1 (ko) * | 2015-09-21 | 2017-03-30 | 한국과학기술원 | 전기쌍극자의 공간채움을 이용한 광대역 초고굴절률 중시 결정 구조체 및 이를 이용한 광학 장치 |
CN105573010A (zh) * | 2016-03-01 | 2016-05-11 | 中国科学院半导体研究所 | 用于表面增强相干反斯托克斯拉曼散射的纳米结构 |
US11959859B2 (en) | 2021-06-02 | 2024-04-16 | Edwin Thomas Carlen | Multi-gas detection system and method |
US20230105874A1 (en) * | 2021-09-24 | 2023-04-06 | The Government Of The United Of America, As Represented By The Secretary Of The Navy | Weakly coupled absorber to plasmonic device |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3452837B2 (ja) | 1999-06-14 | 2003-10-06 | 理化学研究所 | 局在プラズモン共鳴センサー |
US7079250B2 (en) | 2002-01-08 | 2006-07-18 | Fuji Photo Film Co., Ltd. | Structure, structure manufacturing method and sensor using the same |
JP4231701B2 (ja) | 2002-01-08 | 2009-03-04 | 富士フイルム株式会社 | プラズモン共鳴デバイス |
JP3897703B2 (ja) | 2002-01-11 | 2007-03-28 | キヤノン株式会社 | センサ装置およびそれを用いた検査方法 |
US7399445B2 (en) | 2002-01-11 | 2008-07-15 | Canon Kabushiki Kaisha | Chemical sensor |
US7279253B2 (en) * | 2003-09-12 | 2007-10-09 | Canon Kabushiki Kaisha | Near-field light generating structure, near-field exposure mask, and near-field generating method |
BRPI0511255A (pt) | 2004-05-19 | 2007-11-27 | Vp Holding Llc | sensor óptico com estrutura de plasmon em camadas para detecção intensificada de grupos quìmicos através de sers |
JP2007240361A (ja) | 2006-03-09 | 2007-09-20 | Sekisui Chem Co Ltd | 局在プラズモン増強センサ |
JP4994682B2 (ja) | 2006-03-16 | 2012-08-08 | キヤノン株式会社 | 検知素子、該検知素子を用いた標的物質検知装置及び標的物質を検知する方法 |
JP5286515B2 (ja) | 2006-05-11 | 2013-09-11 | 国立大学法人秋田大学 | センサチップ及びセンサチップ製造方法 |
US7639355B2 (en) | 2007-06-26 | 2009-12-29 | Hewlett-Packard Development Company, L.P. | Electric-field-enhancement structure and detection apparatus using same |
JP4621270B2 (ja) * | 2007-07-13 | 2011-01-26 | キヤノン株式会社 | 光学フィルタ |
AU2009273804B2 (en) | 2008-07-25 | 2014-06-26 | Georgia State University Research Foundation, Inc. | Antimicrobial compositions and methods of use |
US8415611B2 (en) | 2009-11-19 | 2013-04-09 | Seiko Epson Corporation | Sensor chip, sensor cartridge, and analysis apparatus |
JP5621394B2 (ja) | 2009-11-19 | 2014-11-12 | セイコーエプソン株式会社 | センサーチップ、センサーカートリッジ及び分析装置 |
JP5589656B2 (ja) | 2009-12-11 | 2014-09-17 | セイコーエプソン株式会社 | センサーチップ、センサーカートリッジ及び分析装置 |
JP5609241B2 (ja) | 2010-04-28 | 2014-10-22 | セイコーエプソン株式会社 | 分光方法及び分析装置 |
JP5560891B2 (ja) | 2010-05-13 | 2014-07-30 | セイコーエプソン株式会社 | 光デバイス及び分析装置 |
-
2011
- 2011-10-17 JP JP2011227746A patent/JP5821511B2/ja not_active Expired - Fee Related
-
2012
- 2012-10-15 US US13/651,791 patent/US9057697B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015176768A (ja) * | 2014-03-14 | 2015-10-05 | スタンレー電気株式会社 | フィラメント、偏光放射光源装置、偏波赤外放射ヒーター、および、フィラメントの製造方法 |
US9658165B2 (en) | 2014-05-08 | 2017-05-23 | Seiko Epson Corporation | Electronic field enhancement element, analysis device, and electronic apparatus |
US9880100B2 (en) | 2014-05-08 | 2018-01-30 | Seiko Epson Corporation | Electronic field enhancement element, analysis device, and electronic apparatus |
CN106289094A (zh) * | 2015-05-26 | 2017-01-04 | 中国科学院微电子研究所 | 一种利用表面等离激元散射频谱检测纳米颗粒形貌的方法和装置 |
CN106289094B (zh) * | 2015-05-26 | 2019-06-04 | 中国科学院微电子研究所 | 一种利用表面等离激元散射频谱检测纳米颗粒形貌的方法和装置 |
JP2018105665A (ja) * | 2016-12-26 | 2018-07-05 | コニカミノルタ株式会社 | 歪センサー及び歪量測定方法 |
CN112213820A (zh) * | 2020-09-14 | 2021-01-12 | 桂林电子科技大学 | 一种基于表面等离激元共振的mimi型微纳全光开关 |
CN112213820B (zh) * | 2020-09-14 | 2022-10-14 | 桂林电子科技大学 | 一种基于表面等离激元共振的mimi型微纳全光开关 |
KR20230028616A (ko) * | 2021-08-19 | 2023-03-02 | 경희대학교 산학협력단 | 준주기성 금속나노구조를 포함하는 상향변환 플라즈모닉 구조체 |
KR102661310B1 (ko) | 2021-08-19 | 2024-04-29 | 경희대학교 산학협력단 | 준주기성 금속나노구조를 포함하는 상향변환 플라즈모닉 구조체 |
Also Published As
Publication number | Publication date |
---|---|
US9057697B2 (en) | 2015-06-16 |
JP5821511B2 (ja) | 2015-11-24 |
US20130092823A1 (en) | 2013-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5821511B2 (ja) | 光デバイス及び検出装置 | |
JP5810667B2 (ja) | 光デバイス及び検出装置 | |
US9404861B2 (en) | Nanostructure diffraction gratings for integrated spectroscopy and sensing | |
JP5609241B2 (ja) | 分光方法及び分析装置 | |
Cotrufo et al. | Spin-dependent emission from arrays of planar chiral nanoantennas due to lattice and localized plasmon resonances | |
JP5565215B2 (ja) | センサーチップ、センサーカートリッジ及び分析装置 | |
US9151666B2 (en) | Sensor chip, sensor cartridge, and analysis apparatus | |
Williams et al. | Accessing surface plasmons with Ni microarrays for enhanced IR absorption by monolayers | |
JP5560891B2 (ja) | 光デバイス及び分析装置 | |
JP2015055482A (ja) | 分析装置、分析方法、これらに用いる光学素子及び電子機器 | |
JP2010531995A (ja) | 電界強化構造、及び該構造を利用した検出装置 | |
US20140242573A1 (en) | Optical element, analysis device, analysis method and electronic apparatus | |
EP3022547B1 (en) | Device for use in the detection of binding affinities | |
JP5796395B2 (ja) | 光学デバイス、検出装置及び検出方法 | |
JP2013096939A (ja) | 光デバイス及び検出装置 | |
JP2016003946A (ja) | 電場増強素子、分析装置、及び電子機器 | |
US9880100B2 (en) | Electronic field enhancement element, analysis device, and electronic apparatus | |
US20160223466A1 (en) | Electric-field enhancement element, analysis device, and electronic apparatus | |
JP2014119262A (ja) | 光学デバイス、検出装置、及び電子機器 | |
JP2015078904A (ja) | 光学素子、分析装置、及び電子機器 | |
JP6648888B2 (ja) | 表面増強ラマン散乱分析用基板、その製造方法およびその使用方法 | |
US20240328953A1 (en) | Electric field enhancing element and raman spectroscopic device | |
JP6373553B2 (ja) | アレイ型センサーを使用した測定装置 | |
JP2015212625A (ja) | 分析方法 | |
JP2015232526A (ja) | ラマン分光分析用信号増幅装置、ラマン分光分析装置及びラマン分光分析方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141015 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150729 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150804 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150814 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150908 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150921 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5821511 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |