JP2013088193A - Wear detection device and wear detection method - Google Patents

Wear detection device and wear detection method Download PDF

Info

Publication number
JP2013088193A
JP2013088193A JP2011227217A JP2011227217A JP2013088193A JP 2013088193 A JP2013088193 A JP 2013088193A JP 2011227217 A JP2011227217 A JP 2011227217A JP 2011227217 A JP2011227217 A JP 2011227217A JP 2013088193 A JP2013088193 A JP 2013088193A
Authority
JP
Japan
Prior art keywords
wear
coil
side component
gauge
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011227217A
Other languages
Japanese (ja)
Other versions
JP5825033B2 (en
Inventor
Taketoshi Takano
武寿 高野
Kazuya Ono
一也 小野
Koan Sok Baek
官錫 白
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011227217A priority Critical patent/JP5825033B2/en
Publication of JP2013088193A publication Critical patent/JP2013088193A/en
Application granted granted Critical
Publication of JP5825033B2 publication Critical patent/JP5825033B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To appropriately detect wear conditions of a wearing side component by using a control device placed in an opposite side component, without connecting the wearing side component and the opposite side component, that move relative to each other, with wiring or the like.SOLUTION: A wear detection device of the present invention comprises: a wear gauge 4 that is provided on a wearing side component 2 and where a wear detection line 43 is provided on a tip unit 41 arranged along a sliding surface 21 of the wearing side component 2; an opposite side coil 7 provided in an opposite side component 3; a wearing side coil 5 that is provided in the wearing side component 2, that is connected to the wear detection line 43, and that approaches to or separates from the opposite side coil 7 in a sliding direction according to sliding movement of the wearing side component 2; and a control device 9 that is provided on the opposite side component 3 and that detects wearing conditions of the wear gauge 4 on the basis of electric current flowing in an opposite side closed circuit 11 including the opposite side coil 7.

Description

本発明は、摩耗検知装置および摩耗検知方法に関し、特に、産業機械の摺動部の摩耗を検知する摩耗検知装置および摩耗検知方法に関する。   The present invention relates to a wear detection device and a wear detection method, and more particularly, to a wear detection device and a wear detection method for detecting wear of a sliding portion of an industrial machine.

産業機械の摺動部の摩耗を検知するための摩耗ゲージとして、例えば特許文献1記載の摩耗ゲージが提案されている。この特許文献1記載の摩耗ゲージは、複数の摩耗検知用ラインを含む摩耗検知回路を絶縁板上に設けたものであり、摺動部の摩耗に伴い摩耗検知用ラインが段階的に摩滅することを利用して、摺動部の摩耗状態を検知する。つまり、摩耗ゲージ先端部の摩耗検知用ラインが摩滅して断線すれば、摩耗ゲージから測定部に電気信号が流れなくなるので、当該断線した摩耗検知用ラインの位置まで摺動部の摩耗が進行したことを把握することができる。   As a wear gauge for detecting wear of a sliding portion of an industrial machine, for example, a wear gauge described in Patent Document 1 has been proposed. The wear gauge described in Patent Document 1 is provided with a wear detection circuit including a plurality of wear detection lines on an insulating plate, and the wear detection line wears out in stages as the sliding part wears. Is used to detect the wear state of the sliding portion. In other words, if the wear detection line at the tip of the wear gauge is worn out and disconnected, the electrical signal will not flow from the wear gauge to the measurement section, so the wear of the sliding part has progressed to the position of the disconnected wear detection line. I can understand that.

特開2008−164377号公報JP 2008-164377 A

ところで、各種の産業機械の摺動部を構成する摩耗側部品と、それに対向する対向側部品のうち、摩耗側部品の摩耗状態を検知する場合、上記特許文献1記載のような摩耗ゲージを、摩耗検知対象である摩耗側部品に設置する必要がある。一方、摩耗ゲージにより得られる摩耗状態の情報を処理する制御装置(特許文献1の測定部)等については、設置スペースや、動作の安定性、装置保護等の観点から、対向側部品に設置することが望ましい。   By the way, when detecting the wear state of the wear side part among the wear side part constituting the sliding part of various industrial machines and the opposed side part facing the wear side part, the wear gauge as described in Patent Document 1 above, It is necessary to install it on the wear side part that is subject to wear detection. On the other hand, a control device (measurement unit of Patent Document 1) that processes information on the wear state obtained by the wear gauge is installed on the opposite side component from the viewpoint of installation space, operational stability, device protection, and the like. It is desirable.

しかしながら、上記のように摩耗側部品に摩耗ゲージを設置し、対向側部品に制御装置等を設置する場合、特許文献1記載のように摩耗ゲージと制御装置の間を電気的に接続することが困難であるという問題があった。例えば、レシプロコンプレッサにおいてシリンダ(対向側部品に相当する。)に対して高速で摺動するピストン(摩耗側部品に相当する。)の摩耗を検知したい場合を考える。この場合、ピストンに設けられた摩耗ゲージと、シリンダに設けられた制御装置とを、配線や接触端子等を用いて電気的に接続することは、非常に困難である。したがって、産業機械の稼働中(摩耗側部品の摺動中)に、摩耗側部品の摩耗ゲージで得られる情報を対向側部品の制御装置に対して好適に伝達し、摩耗側部品の摩耗状態を適切に検知可能な方法が希求されていた。   However, when a wear gauge is installed on the wear side component as described above and a control device or the like is installed on the opposite side component, the wear gauge and the control device can be electrically connected as described in Patent Document 1. There was a problem that it was difficult. For example, let us consider a case where it is desired to detect the wear of a piston (corresponding to a wear-side component) that slides at high speed with respect to a cylinder (corresponding to a facing-side component) in a reciprocating compressor. In this case, it is very difficult to electrically connect the wear gauge provided on the piston and the control device provided on the cylinder using wiring, contact terminals, or the like. Therefore, during the operation of the industrial machine (while the wear side part is sliding), the information obtained from the wear gauge of the wear side part is suitably transmitted to the control device of the opposite side part, and the wear state of the wear side part is indicated. There was a need for an appropriately detectable method.

そこで、本発明は、上記課題に鑑みてなされたものであり、相対移動する摩耗側部品と対向側部品を配線等で接続することなく、対向側部品に設置された制御装置により摩耗側部品の摩耗状態を適切に検知することが可能な摩耗検知装置および摩耗検知方法を提供することを目的としている。   Therefore, the present invention has been made in view of the above problems, and without connecting the wear-side component and the opposed-side component that move relative to each other by wiring or the like, the control device installed in the opposed-side component allows the wear-side component to be An object of the present invention is to provide a wear detection device and a wear detection method capable of appropriately detecting a wear state.

上記課題を解決するために、対向側部品との摺動に伴う摩耗側部品の摩耗を検知する本発明の摩耗検知装置は、摩耗側部品に設けられ、摩耗側部品の摺動面に沿って配置された先端部に摩耗検知用ラインが設けられた摩耗ゲージと、対向側部品に設けられる対向側コイルと、摩耗側部品に設けられ、摩耗検知用ラインに接続され、摩耗側部品の摺動に伴って対向側コイルに対して摺動方向に接近または離隔する摩耗側コイルと、対向側部品に設けられ、対向側コイルを含む対向側閉回路に流れる電流に基づいて摩耗ゲージの摩耗状態を検知する制御装置と、を備えることを特徴とする。   In order to solve the above-mentioned problem, a wear detection device of the present invention for detecting wear of a wear-side component accompanying sliding with a facing-side component is provided in the wear-side component, along the sliding surface of the wear-side component. Wear gauge with a wear detection line provided at the tip, a facing coil provided in the facing part, a wear side part, connected to the wear detecting line, and sliding of the wear side part A wear side coil that approaches or separates in the sliding direction with respect to the opposite side coil, and a wear gauge is determined based on the current flowing in the opposite side closed circuit including the opposite side coil. And a control device for detection.

摩耗側コイルのコイル軸および対向側コイルのコイル軸は、摩耗側部品の摺動方向に対して平行であるようにしてもよい。   The coil axis of the wear side coil and the coil axis of the opposed coil may be parallel to the sliding direction of the wear side part.

対向側閉回路は、交流電源と電流計測用抵抗をさらに含み、摩耗検知装置は、対向側閉回路の電流計測用抵抗に流れる交流電流を直流電流に整流する整流回路と、整流回路により整流された直流電流に対応する直流電圧を基準値と比較し、当該比較結果を示す計測信号を制御装置に出力するコンパレータと、直流電圧を所定時間だけ遅延させることにより、制御装置による検出タイミングを示す検出タイミング信号を生成する遅延回路と、をさらに備え、制御装置は、検出タイミング信号が示す検出タイミングにおける計測信号に基づいて、摩耗ゲージの摩耗状態を検知するようにしてもよい。   The opposite side closed circuit further includes an AC power source and a current measurement resistor, and the wear detection device is rectified by a rectifier circuit that rectifies the AC current flowing through the current measurement resistor of the opposite side closed circuit into a DC current, and the rectifier circuit. Compares the DC voltage corresponding to the measured DC current with a reference value, outputs a measurement signal indicating the comparison result to the control device, and detects the detection timing indicated by the control device by delaying the DC voltage by a predetermined time. A delay circuit that generates a timing signal, and the control device may detect a wear state of the wear gauge based on a measurement signal at a detection timing indicated by the detection timing signal.

上記課題を解決するために、対向側部品に設けられる対向側コイルと、対向側部品との摺動に伴って摩耗する摩耗側部品に設けられ、摩耗側部品の摺動面に沿って配置された先端部に摩耗検知用ラインが設けられた摩耗ゲージと、摩耗側部品に設けられ、摩耗検知用ラインに接続され、摩耗側部品の摺動に伴って対向側コイルに対して摺動方向に接近または離隔する摩耗側コイルと、により摩耗側部品の摩耗を検知する、本発明の摩耗検知方法は、摩耗側コイルが対向側コイルに対して摺動方向に接近または離隔したときの対向側コイルを含む対向側閉回路に流れる電流を検出し、検出した電流に基づいて摩耗ゲージの摩耗状態を検知することを特徴とする。   In order to solve the above-mentioned problems, the opposed coil provided in the opposed component and the worn component that wears as the opposed component slides are disposed along the sliding surface of the worn component. A wear gauge with a wear detection line at the tip and a wear side part, connected to the wear detection line, and in the sliding direction with respect to the opposing coil as the wear side part slides. The wear detection method of the present invention for detecting wear of a wear side component by a wear side coil that approaches or separates from the opposite side coil when the wear side coil approaches or separates in the sliding direction with respect to the opposite side coil. The current flowing through the closed circuit on the opposite side is detected, and the wear state of the wear gauge is detected based on the detected current.

上記摩耗検知装置や摩耗検知方法によれば、摩耗側部品の摺動面とともに、摩耗ゲージの先端部が摩耗するので、当該摩耗が進行すれば、摩耗検知用ラインが摩滅して断線する。摩耗検知用ラインが断線していないときには、摩耗側部品の摩耗側コイルと対向側部品の対向側コイルとが電磁的に結合して、対向側閉回路に電流低下が発生するので、対向側部品の制御装置は、摩耗検知用ラインが断線しておらず、摩耗ゲージの摩耗量が摩耗検知用ラインにまで達していないことを検知する。一方、摩耗検知用ラインが断線したときには、摩耗側コイルと対向側コイルとが電磁的に結合せず、対向側閉回路に電流低下が発生しないので、対向側部品の制御装置は、摩耗検知用ラインが断線し、摩耗ゲージの摩耗量が摩耗検知用ラインを超えたことを検知する。これにより、摩耗側部品と対向側部品の間で、摩耗側コイルと対向側コイルによる電磁的結合を利用して、摩耗ゲージの摩耗量を伝達できるので、対向側部品側から摩耗側部品の摺動面の摩耗状態を適切に検知可能である。   According to the wear detection device and the wear detection method, the tip of the wear gauge is worn together with the sliding surface of the wear side component. Therefore, when the wear proceeds, the wear detection line is worn and disconnected. When the wear detection line is not disconnected, the wear-side coil of the wear-side component and the counter-side coil of the counter-side component are electromagnetically coupled, causing a current drop in the counter-side closed circuit. The control device detects that the wear detection line is not disconnected and the wear amount of the wear gauge does not reach the wear detection line. On the other hand, when the wear detection line is disconnected, the wear side coil and the counter side coil are not electromagnetically coupled, and no current drop occurs in the counter side closed circuit. Detects when the line is disconnected and the wear amount of the wear gauge exceeds the wear detection line. As a result, the wear amount of the wear gauge can be transmitted between the wear side component and the facing side component by using electromagnetic coupling between the wear side coil and the facing side coil. The wear state of the moving surface can be detected appropriately.

本発明によれば、相対移動する摩耗側部品と対向側部品を配線等で接続することなく、対向側部品に設置された制御装置により摩耗側部品の摩耗状態を適切に検知することができる。   According to the present invention, the wear state of the wear-side component can be appropriately detected by the control device installed in the facing-side component without connecting the relatively moving wear-side component and the facing-side component by wiring or the like.

本発明の第1の実施形態に係る摩耗検知装置が適用されるレシプロコンプレッサのシリンダ機構を示す縦断面図である。It is a longitudinal cross-sectional view which shows the cylinder mechanism of the reciprocating compressor to which the abrasion detection apparatus which concerns on the 1st Embodiment of this invention is applied. 同実施形態に係る摩耗検知装置の回路構成を示す図である。It is a figure which shows the circuit structure of the abrasion detection apparatus which concerns on the same embodiment. 同実施形態に係るコイルがすれ違うときに、閉回路の電流計測用抵抗に印可される電圧波形を示す波形図である。It is a wave form diagram showing a voltage waveform impressed to resistance for current measurement of a closed circuit when a coil concerning the embodiment passes each other. 同実施形態に係る計測回路の回路構成例を示す図である。It is a figure showing an example of circuit composition of a measurement circuit concerning the embodiment. 本発明の第2の実施形態に係る摩耗ゲージを示す平面図である。It is a top view which shows the wear gauge which concerns on the 2nd Embodiment of this invention. 同実施形態に係る摩耗検知装置の第1の回路構成例を示す図である。It is a figure which shows the 1st circuit structural example of the abrasion detection apparatus which concerns on the same embodiment. 同実施形態に係る摩耗検知装置の第2の回路構成例を示す図である。It is a figure which shows the 2nd circuit structural example of the abrasion detection apparatus which concerns on the same embodiment. 本発明の第3の実施形態に係る摩耗検知装置の回路構成を示す図である。It is a figure which shows the circuit structure of the abrasion detection apparatus which concerns on the 3rd Embodiment of this invention.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。
[1.第1の実施形態]
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.
[1. First Embodiment]

[1.1.摩耗検知対象の産業機械]
まず、本発明の第1の実施形態に係る摩耗検知装置が適用される産業機械の具体例について説明する。
[1.1. Industrial machines subject to wear detection]
First, a specific example of an industrial machine to which the wear detection device according to the first embodiment of the present invention is applied will be described.

一般に、産業機械は、複数の部材を相対移動させる各種の機構を具備している。このうち、一方の部材を他方の部材に対して接触させながら摺動させる摺動機構では、その摺動部における摩擦により、双方の部材が摩耗する。本実施形態に係る摩耗検知装置は、かかる産業機械の摺動部の摩耗状態、特に、当該摺動部を構成する摩耗側部品と対向側部品のうち摩耗側部品(摺動部材)の摩耗状態を検知するためのものである。以下では、対向側部品に対して摩耗側部品が摺動する例を挙げて説明するが、例えば、レール上を走行体(自動走行台車、気動車等)が移動するシステムにおいて、レールに摩耗側部品を構成し、走行体に対向側部品を構成し、レールの摩耗側部品の構成部位を通過する際に摩耗を検知するといったように、対向側部品が摩耗側部品に対して摺動する場合も本実施形態に含まれる。   In general, an industrial machine includes various mechanisms that relatively move a plurality of members. Among these, in a sliding mechanism that slides while bringing one member into contact with the other member, both members wear due to friction at the sliding portion. The wear detection device according to the present embodiment is a wear state of a sliding portion of such an industrial machine, in particular, a wear state of a wear side component (sliding member) among a wear side component and a counter side component constituting the slide portion. It is for detecting. In the following, an example in which the wear side part slides with respect to the opposite side part will be described. For example, in a system in which a traveling body (automatic traveling carriage, train, etc.) moves on the rail, the wear side part is placed on the rail. In the case where the opposite side part slides with respect to the wear side part, for example, the opposite side part is constituted on the traveling body, and the wear is detected when passing the component part of the wear side part of the rail. It is included in this embodiment.

ここで、産業機械の摺動機構とは、ある部材と他の部材が相対的に摺動するものであれば、任意の機構であってよいが、例えば、往復運動機構や回転機構などが含まれる。ここで、往復運動機構は、レシプロコンプレッサ、レシプロエンジン等におけるシリンダ機構、工作機械等におけるガイドレールを用いたスライド機構などである。回転機構は、コンプレッサ、ガスタービン等に用いられる各種の軸受(例えばスラストベアリング)、工作機械の切削工具、自動車のタイヤやブレーキパッド、工作機械のクラッチやブレーキパッド、圧延機のロールなどが含まれる。   Here, the sliding mechanism of the industrial machine may be any mechanism as long as a certain member and another member slide relative to each other, but includes, for example, a reciprocating mechanism and a rotating mechanism. It is. Here, the reciprocating mechanism is a cylinder mechanism in a reciprocating compressor, a reciprocating engine or the like, a slide mechanism using a guide rail in a machine tool or the like. The rotation mechanism includes various bearings (for example, thrust bearings) used for compressors, gas turbines, machine tool cutting tools, automobile tires and brake pads, machine tool clutches and brake pads, rolling mill rolls, and the like. .

以下の説明では主に、産業機械の摺動機構として、レシプロコンプレッサのピストンとシリンダの例を挙げ、摩耗検知対象の摩耗側部品がピストンリングであり、対向側部品がシリンダである場合について説明するが、本発明の摩耗検知対象はかかる例に限定されるものではない。   In the following explanation, an example of a piston and cylinder of a reciprocating compressor is mainly given as a sliding mechanism of an industrial machine, and a case where a wear side component to be detected for wear is a piston ring and a facing side component is a cylinder will be described. However, the wear detection target of the present invention is not limited to such an example.

ここで、図1を参照して、本実施形態に係る摩耗検知装置が適用されるレシプロコンプレッサの概略構成について説明する。図1は本実施形態に係る摩耗検知装置が適用されるレシプロコンプレッサ100のシリンダ機構を示す縦断面図である。   Here, a schematic configuration of a reciprocating compressor to which the wear detection device according to the present embodiment is applied will be described with reference to FIG. FIG. 1 is a longitudinal sectional view showing a cylinder mechanism of a reciprocating compressor 100 to which a wear detecting device according to this embodiment is applied.

図1に示すように、レシプロコンプレッサ100は、シリンダ101と、ピストン102と、ピストンロッド103と、ピストンリング104と、プルリング105と、吸入弁106と、排出弁107とを備える。レシプロコンプレッサ100は、無給油式でも給油式であってもよいが、本実施形態では、無給油式のコンプレッサの例について説明する。   As shown in FIG. 1, the reciprocating compressor 100 includes a cylinder 101, a piston 102, a piston rod 103, a piston ring 104, a pull ring 105, a suction valve 106, and a discharge valve 107. The reciprocating compressor 100 may be an oilless type or an oiling type, but in this embodiment, an example of an oilless type compressor will be described.

シリンダ101は、例えば円筒形状を有し、その内部にピストン102が往復運動可能に設置される。シリンダ101やピストン102は、例えば鋳鉄、アルミニウム合金などで形成される。シリンダ101の内周面は、ハードクロームメッキまたは金属溶射を施した後、ホーニング仕上げが施されている。   The cylinder 101 has, for example, a cylindrical shape, and a piston 102 is installed inside the cylinder 101 so as to be able to reciprocate. The cylinder 101 and the piston 102 are made of, for example, cast iron or aluminum alloy. The inner peripheral surface of the cylinder 101 is subjected to honing after hard chrome plating or metal spraying.

ピストン102は、ピストンロッド103に支持されており、当該ピストンロッド103の下端に連結された不図示のクランク機構により、シリンダ101内を上下に往復する。ピストン102の外周面には、例えば、上下2つのピストンリング104と、中央部に1つのプルリング105が設けられている。ピストンリング104およびプルリング105は、素材自体に潤滑性のあるカーボンまたはポリテトラフルオロエチレン等で形成されている。ピストンリング104は、例えば4または6分割のギャップレスタイプであり、その内側にエキスパンダースプリング(図示せず。)が設けられている。これにより、ピストンリング104の摩耗が進行しても、ギャップができず、スプリングの作用により最低限必要な面圧を維持することができるので、許容摩耗代を大きくとることができ、長寿命化が図れる。また、プルリング105は、ピストン102とシリンダ101とが直接接触することを防止する機能を有する。   The piston 102 is supported by the piston rod 103, and reciprocates up and down in the cylinder 101 by a crank mechanism (not shown) connected to the lower end of the piston rod 103. On the outer peripheral surface of the piston 102, for example, two upper and lower piston rings 104 and one pull ring 105 are provided at the center. The piston ring 104 and the pull ring 105 are made of carbon or polytetrafluoroethylene having lubricity in the material itself. The piston ring 104 is, for example, a gapless type that is divided into four or six parts, and an expander spring (not shown) is provided inside thereof. As a result, even if the wear of the piston ring 104 progresses, a gap is not formed, and the minimum required surface pressure can be maintained by the action of the spring, so that the allowable wear allowance can be increased and the life is extended. Can be planned. The pull ring 105 has a function of preventing the piston 102 and the cylinder 101 from coming into direct contact.

吸入弁106および排出弁107は、シリンダ101内の空間で気体を圧縮するようにピストン102の往復動作に合わせて開閉する。   The suction valve 106 and the discharge valve 107 open and close in accordance with the reciprocating motion of the piston 102 so as to compress gas in the space in the cylinder 101.

上記構成のレシプロコンプレッサ100の稼働時には、吸入弁106および排出弁107が適宜開閉しながら、シリンダ101内でピストン102が上下に摺動(往復運運)する。これにより、シリンダ101内に吸入された気体(例えば空気)を圧縮して、高圧の気体を製造することができる。   When the reciprocating compressor 100 having the above-described configuration is operated, the piston 102 slides up and down (reciprocating) in the cylinder 101 while the suction valve 106 and the discharge valve 107 are appropriately opened and closed. Thereby, the gas (for example, air) suck | inhaled in the cylinder 101 can be compressed, and a high voltage | pressure gas can be manufactured.

ところで、上記ピストン102の摺動動作中には、ピストン102外周のピストンリング104およびプルリング105がシリンダ101の内周面と接触して摩擦する。したがってピストン102の摺動動作が繰り返されると、ピストンリング104およびプルリング105の外周部が徐々に摩耗していく。このため、ピストンリング104およびプルリング105の摩耗量が許容摩耗代に達したときには、これらリングを交換する必要があり、そのためには、当該摩耗量を検知するための装置を設ける必要がある。以下の説明では、本実施形態に係る摩耗検知装置により、上記レシプロコンプレッサ100のピストンリング104の摩耗量を検知する例について説明する。   By the way, during the sliding movement of the piston 102, the piston ring 104 and the pull ring 105 on the outer periphery of the piston 102 come into contact with the inner peripheral surface of the cylinder 101 and rub against each other. Therefore, when the sliding motion of the piston 102 is repeated, the outer peripheral portions of the piston ring 104 and the pull ring 105 are gradually worn. For this reason, when the wear amount of the piston ring 104 and the pull ring 105 reaches the allowable wear allowance, it is necessary to replace these rings, and for that purpose, it is necessary to provide a device for detecting the wear amount. In the following description, an example in which the wear amount of the piston ring 104 of the reciprocating compressor 100 is detected by the wear detection device according to the present embodiment will be described.

[1.2.摩耗検知装置の構成]
次に、図2を参照して、本実施形態に係る摩耗検知装置の全体構成について説明する。図2は、本実施形態に係る摩耗検知装置の回路構成を示す図である。
[1.2. Configuration of wear detection device]
Next, the overall configuration of the wear detection device according to this embodiment will be described with reference to FIG. FIG. 2 is a diagram illustrating a circuit configuration of the wear detection device according to the present embodiment.

図2に示すように、本実施形態に係る摩耗検知装置は、産業機械の摺動部1付近に設置される。この産業機械の摺動部1は、摩耗側部品2と対向側部品3とからなり、摩耗側部品2は、対向側部品3に対して少なくとも一部を接触させながら周期的に摺動する。図示の例では、摩耗側部品2は、対向側部品3に対して所定の摺動方向(例えば図の上下方向)に所定の摺動ストロークで往復運動する。このとき、摩耗側部品2の摺動面21と、対向側部品3の摺動面31とは接触しており(図2では説明の便宜のため非接触で表している。)、上記摺動動作が繰り返されると、摺動面21と摺動面31が擦り合わされて摩耗する。例えば、産業機械がレシプロコンプレッサ100であり、摩耗側部品2が、当該レシプロコンプレッサ100のピストン102外周に設けられたピストンリング104であり、対向側部品3が、当該レシプロコンプレッサ100のシリンダ101である場合を考える。この場合、シリンダ101内でピストン102が往復運動すると、ピストンリング104の外周面(即ち、摺動面21)がシリンダ101の内周面(即ち、摺動面31)と摩擦して、徐々に摩耗する。   As shown in FIG. 2, the wear detection device according to the present embodiment is installed in the vicinity of the sliding portion 1 of the industrial machine. The sliding part 1 of this industrial machine includes a wear-side component 2 and a facing-side component 3, and the wear-side component 2 periodically slides while at least partly contacting the facing-side component 3. In the illustrated example, the wear side component 2 reciprocates with a predetermined sliding stroke in a predetermined sliding direction (for example, the vertical direction in the figure) with respect to the opposing side component 3. At this time, the sliding surface 21 of the wear-side component 2 and the sliding surface 31 of the facing-side component 3 are in contact (in FIG. 2, they are shown as non-contact for convenience of explanation), and the above-described sliding. When the operation is repeated, the sliding surface 21 and the sliding surface 31 are rubbed and worn. For example, the industrial machine is the reciprocating compressor 100, the wear side component 2 is the piston ring 104 provided on the outer periphery of the piston 102 of the reciprocating compressor 100, and the facing side component 3 is the cylinder 101 of the reciprocating compressor 100. Think about the case. In this case, when the piston 102 reciprocates in the cylinder 101, the outer peripheral surface (that is, the sliding surface 21) of the piston ring 104 rubs against the inner peripheral surface (that is, the sliding surface 31) of the cylinder 101, and gradually. Wear.

本実施形態に係る摩耗検知装置は、上記のような摺動動作に伴って摩耗する摩耗側部品2の摺動面21の摩耗状態を検知するためのものである。図2に示すように、摩耗検知装置は、摩耗ゲージ4と、摩耗側コイル5と、マッチング抵抗6と、対向側コイル7と、計測回路8と、制御装置9とを主に備える。これら摩耗検知装置の各構成要素は、産業機械の摩耗側部品2と対向側部品3に分散して配置される。   The wear detection device according to the present embodiment is for detecting the wear state of the sliding surface 21 of the wear side component 2 that wears with the sliding operation as described above. As shown in FIG. 2, the wear detection device mainly includes a wear gauge 4, a wear side coil 5, a matching resistor 6, a counter side coil 7, a measurement circuit 8, and a control device 9. Each component of these wear detection devices is distributed and arranged in the wear side component 2 and the opposed side component 3 of the industrial machine.

摩耗側部品2には、摩耗ゲージ4と、当該摩耗ゲージ4に接続された摩耗側コイル5およびマッチング抵抗6とが設置される。摩耗ゲージ4は、摩耗側部品2の摺動面21の摩耗を検知する機能を有する。摩耗ゲージ4は、摩耗側部品2の摺動部1付近に設けられ、当該摩耗ゲージ4の先端部41の先端面41aは、摩耗側部品2の摩耗面(即ち、摺動面21)に沿って配置される。この摩耗ゲージ4の先端部には、後述する摩耗検知用ライン43が設置されている。摩耗ゲージ4の先端部41が摩耗して摩耗検知用ライン43が断線すると、摩耗側コイル5が対向側コイル7と電磁的に結合しなくなるが、その詳細については後述する。   The wear side component 2 is provided with a wear gauge 4, a wear side coil 5 and a matching resistor 6 connected to the wear gauge 4. The wear gauge 4 has a function of detecting wear of the sliding surface 21 of the wear side component 2. The wear gauge 4 is provided in the vicinity of the sliding portion 1 of the wear side component 2, and the tip surface 41 a of the tip portion 41 of the wear gauge 4 is along the wear surface (that is, the slide surface 21) of the wear side component 2. Arranged. A wear detection line 43 to be described later is installed at the tip of the wear gauge 4. When the tip 41 of the wear gauge 4 is worn and the wear detection line 43 is disconnected, the wear side coil 5 is not electromagnetically coupled to the counter side coil 7, details of which will be described later.

摩耗側コイル5は、摩耗側部品2に設けられるコイルである。この摩耗側コイル5は、対向側部品3に設けられた対向側コイル7と電磁的に結合することで、摩耗ゲージ4の摩耗検知用ライン43の断線の有無を摩耗側部品2から対向側部品3に伝達する機能を有する。   The wear side coil 5 is a coil provided in the wear side component 2. The wear-side coil 5 is electromagnetically coupled to the opposed-side coil 7 provided on the opposed-side component 3, thereby determining whether or not the wear detection line 43 of the wear gauge 4 is disconnected from the worn-side component 2. 3 is transmitted.

また、マッチング抵抗6は、摩耗側部品2に設けられる抵抗であり、摩耗側コイル5と対向側コイル7の電磁的結合をマッチングする機能を有する。このマッチング抵抗6の抵抗値は、対向側部品3の対向側閉回路11全体の抵抗値に合わせて設定される。例えば、摩耗側コイル5の巻き数と対向側コイル7の巻き数とが同程度であれば、マッチング抵抗6の抵抗値は、電流計測用抵抗13の抵抗値と、交流電源12の内部抵抗の抵抗値との和であることが好ましい。これにより、摩耗側閉回路10全体の抵抗値と、対向側閉回路11全体の抵抗値とが同程度になるので、対向側部品3による検出感度を上昇させることができる。   The matching resistor 6 is a resistor provided on the wear side component 2 and has a function of matching the electromagnetic coupling between the wear side coil 5 and the counter side coil 7. The resistance value of the matching resistor 6 is set in accordance with the resistance value of the entire opposing side closed circuit 11 of the opposing part 3. For example, if the number of turns of the wear side coil 5 and the number of turns of the opposed coil 7 are approximately the same, the resistance value of the matching resistor 6 is the resistance value of the current measuring resistor 13 and the internal resistance of the AC power source 12. A sum of the resistance value is preferable. Thereby, since the resistance value of the wear side closed circuit 10 as a whole and the resistance value of the counter side closed circuit 11 as a whole are approximately the same, the detection sensitivity of the counter part 3 can be increased.

かかる摩耗側コイル5とマッチング抵抗6は、摩耗ゲージ4に接続されて、摩耗側閉回路10(以下、閉回路10という。)を構成する。この閉回路10では、摩耗側コイル5とマッチング抵抗6が直列に接続されている。また、摩耗側コイル5とマッチング抵抗6は、対向側部品3に対する摩耗側部品2の対向面22に沿って配置されている。対向面22と摺動面21は平行であり、図示のように摩耗側部品2の対向面22と摺動面21の間に段差があってもよいし、或いは面一であってもよい。   The wear side coil 5 and the matching resistor 6 are connected to the wear gauge 4 to constitute a wear side closed circuit 10 (hereinafter referred to as a closed circuit 10). In the closed circuit 10, the wear side coil 5 and the matching resistor 6 are connected in series. Further, the wear side coil 5 and the matching resistor 6 are arranged along the facing surface 22 of the wear side component 2 with respect to the facing side component 3. The facing surface 22 and the sliding surface 21 are parallel, and there may be a step between the facing surface 22 and the sliding surface 21 of the wear side component 2 as shown in the figure, or they may be flush with each other.

一方、対向側部品3には、対向側コイル7と、計測回路8と、制御装置9が設置される。また、対向側コイル7は、上記摩耗側部品2に設けられた摩耗側コイル5と電磁的に結合することで、摩耗ゲージ4の摩耗検知用ライン43の断線の有無を摩耗側部品2から受信する機能を有する。この対向側コイル7は、交流電源12および電流計測用抵抗13に接続されて、対向側閉回路11(以下、閉回路11という。)を構成する。交流電源12は、閉回路11に交流電圧を印可する。また、電流計測用抵抗13は、交流電源12により閉回路11に流れる電流を電圧換算値として計測するための抵抗である。   On the other hand, the facing side component 3 is provided with a facing coil 7, a measurement circuit 8, and a control device 9. Further, the opposing coil 7 is electromagnetically coupled to the wear side coil 5 provided on the wear side component 2 so as to receive from the wear side component 2 whether or not the wear detection line 43 of the wear gauge 4 is disconnected. Has the function of The opposing coil 7 is connected to an AC power source 12 and a current measuring resistor 13 to constitute an opposing closed circuit 11 (hereinafter referred to as a closed circuit 11). The AC power supply 12 applies an AC voltage to the closed circuit 11. The current measuring resistor 13 is a resistor for measuring the current flowing through the closed circuit 11 by the AC power supply 12 as a voltage converted value.

上記対向側コイル7は、摩耗側部品2に対する対向側部品3の対向面32に沿って配置されている。対向面32と摺動面31は平行であり、図示のように対向側部品3の対向面32と摺動面31とが面一であってもよいし、或いは対向面32と摺動面31の間に段差があってもよい。なお、対向面22と対向面32の間には所定の隙間が設けられるが、摺動部1の構造的制約から対向面22と対向面32が接触していてもよい。対向側コイル7は、摩耗側部品2の摩耗側コイル5と対をなしている。そして、摩耗側部品2が摺動して所定位置に移動したときに、摩耗側コイル5と対向側コイル7とが所定の距離範囲内に接近して対向するように、摩耗側部品2および対向側部品3における当該摩耗側コイル5と対向側コイル7の配置が調整されている。さらに、上記摩耗側コイル5のコイル軸と対向側コイル7のコイル軸とが相互に平行になるように、摩耗側コイル5と対向側コイル7が配置されている。   The facing coil 7 is disposed along the facing surface 32 of the facing part 3 with respect to the wear side part 2. The facing surface 32 and the sliding surface 31 are parallel to each other, and the facing surface 32 and the sliding surface 31 of the facing-side component 3 may be flush with each other as shown in the figure, or the facing surface 32 and the sliding surface 31 may be flush with each other. There may be a step between them. A predetermined gap is provided between the facing surface 22 and the facing surface 32, but the facing surface 22 and the facing surface 32 may be in contact with each other due to structural limitations of the sliding portion 1. The facing side coil 7 is paired with the wear side coil 5 of the wear side component 2. Then, when the wear side component 2 slides and moves to a predetermined position, the wear side component 2 and the opposite side coil 5 face each other so that the wear side coil 5 and the opposite side coil 7 face each other within a predetermined distance range. The arrangement of the wear side coil 5 and the counter side coil 7 in the side part 3 is adjusted. Further, the wear side coil 5 and the opposed side coil 7 are arranged so that the coil axis of the wear side coil 5 and the coil axis of the opposed side coil 7 are parallel to each other.

かかる配置により、摩耗側部品2が摺動方向(例えば図の上下方向)に摺動するときに、摩耗側コイル5と対向側コイル7とが当該摺動方向に相互に相対移動して、接近または離隔する。これにより、摩耗側コイル5と対向側コイル7とが所定の距離内に接近したときには、相互に電磁的に結合するが、ある程度離隔したときには、当該電磁的結合が無くなる。   With this arrangement, when the wear side component 2 slides in the sliding direction (for example, the vertical direction in the figure), the wear side coil 5 and the opposed coil 7 move relative to each other in the sliding direction and approach each other. Or separate. Thereby, when the wear side coil 5 and the opposed coil 7 approach each other within a predetermined distance, they are electromagnetically coupled to each other, but when they are separated to some extent, the electromagnetic coupling is lost.

この電磁的結合についてより詳細に説明する。対向側部品3の摺動中は、対向側部品3の閉回路11には交流電源12により交流電圧が印可されているため、対向側コイル7には定常の交流電流が流れている。そして、摩耗側部品2に対する対向側部品3の摺動に伴い、摩耗側コイル5が対向側コイル7に対して摺動方向に接近していき、摺動方向にすれ違う。このとき、対向側コイル7により摩耗側コイル5が励起されて、対向側コイル7にとって誘導負荷が生じ、対向側コイル7を含む閉回路11に流れる電流が一時的に低下する。この状態が、対向側コイル7と摩耗側コイル5が電磁的に結合している状態である。その後、摩耗側コイル5が対向側コイル7からある程度離隔すれば、上記誘導負荷も消滅し、対向側コイル7に流れる交流電流も定常状態に戻る。   This electromagnetic coupling will be described in more detail. During the sliding of the facing part 3, an alternating current voltage is applied to the closed circuit 11 of the facing part 3 by the alternating current power supply 12, so that a steady alternating current flows in the facing coil 7. Then, as the facing part 3 slides with respect to the wear side part 2, the wear side coil 5 approaches the facing side coil 7 in the sliding direction and passes in the sliding direction. At this time, the wear-side coil 5 is excited by the facing coil 7, an inductive load is generated in the facing coil 7, and the current flowing through the closed circuit 11 including the facing coil 7 is temporarily reduced. This state is a state in which the opposed coil 7 and the wear side coil 5 are electromagnetically coupled. Thereafter, if the wear-side coil 5 is separated from the counter-side coil 7 to some extent, the inductive load disappears, and the alternating current flowing through the counter-side coil 7 returns to a steady state.

上記のようにして摩耗側コイル5と対向側コイル7とが電磁的に結合可能であるのは、摩耗ゲージ4の摩耗検知用ライン43が断線しておらず、閉回路10が導通しているときである。即ち、摩耗検知用ライン43が断線しているときは、閉回路10に電流が流れないので、対向側コイル7による摩耗側コイル5の励起がほぼ生じず、対向側コイル7にも誘導負荷が生じない。一方、摩耗検知用ライン43が断線していないときは、上記のように摩耗側コイル5が励起されて、対向側コイル7に誘導負荷が生じる。   The wear side coil 5 and the counter side coil 7 can be electromagnetically coupled as described above because the wear detection line 43 of the wear gauge 4 is not disconnected and the closed circuit 10 is conductive. Is the time. That is, when the wear detection line 43 is disconnected, no current flows in the closed circuit 10, so that the wear side coil 5 is not substantially excited by the facing side coil 7, and an inductive load is also applied to the facing side coil 7. Does not occur. On the other hand, when the wear detection line 43 is not broken, the wear side coil 5 is excited as described above, and an inductive load is generated in the counter side coil 7.

ここで、図3を参照して、上記摩耗側コイル5と対向側コイル7の電磁的な結合により、閉回路11に流れる電流が低下する具体例について説明する。図3は、摩耗側コイル5と対向側コイル7がすれ違うときに、閉回路11の電流計測用抵抗13の両端に生じる電位差の波形(後述する計測回路8による整流後の電圧波形)を示す。図3(a)は、摩耗検知用ライン43が断線しているため、コイル間の電磁的結合が生じない場合の電圧波形であり、図3(b)は、摩耗検知用ライン43が断線していないため、コイル間の電磁的結合が生じる場合の電圧波形である。   Here, with reference to FIG. 3, a specific example in which the current flowing through the closed circuit 11 decreases due to electromagnetic coupling between the wear side coil 5 and the opposed side coil 7 will be described. FIG. 3 shows a waveform of a potential difference (voltage waveform after rectification by the measurement circuit 8 described later) generated at both ends of the current measurement resistor 13 of the closed circuit 11 when the wear side coil 5 and the opposite side coil 7 pass each other. FIG. 3A shows a voltage waveform in the case where electromagnetic coupling between the coils does not occur because the wear detection line 43 is broken. FIG. 3B shows the wear detection line 43 broken. This is a voltage waveform when electromagnetic coupling between coils occurs.

摩耗検知用ライン43が断線している場合、摩耗側コイル5と対向側コイル7がすれ違ったとしても、両者が電磁的に結合せず、対向側コイル7に誘導負荷が発生しない。このため、図3(a)に示すように、電流計測用抵抗13の両端の電圧は、多少は増減するがほぼ一定値Vである。これに対し、摩耗検知用ライン43が断線していない場合、摩耗側コイル5と対向側コイル7がすれ違うときに、両者が電磁的に結合するので、対向側コイル7に誘導負荷が発生する。このため、図3(b)に示すように、電流計測用抵抗13の両端の電圧が大きく低下する。この際、電圧値は、両コイルがすれ違う当初に大きく立ち下がった後に、多少回復して定常時よりも低い電圧値Vを所定時間維持し、その後、両コイルのすれ違いが完了した時点で、大きく立ち上がり、定常時の電圧値Vとなる。したがって、このようなVからVへの電圧の低下(即ち、閉回路11に流れる電流の低下)を検知すれば、摩耗検知用ライン43が断線していないと判定できる。 When the wear detection line 43 is disconnected, even if the wear side coil 5 and the opposed coil 7 pass each other, they are not electromagnetically coupled, and no inductive load is generated in the opposed coil 7. Therefore, as shown in FIG. 3 (a), the voltage across the current measurement resistor 13 is somewhat increases or decreases is substantially constant value V 0. On the other hand, when the wear detection line 43 is not disconnected, when the wear side coil 5 and the opposite side coil 7 pass each other, they are electromagnetically coupled to each other, so that an inductive load is generated in the opposite side coil 7. For this reason, as shown in FIG.3 (b), the voltage of the both ends of the resistance 13 for electric current measurement falls large. At this time, the voltage value greatly recovered at the beginning when the two coils pass each other, recovers somewhat, and maintains a voltage value V 1 lower than the steady state for a predetermined time. Thereafter, when the passing between the two coils is completed, The voltage rises greatly and becomes a steady-state voltage value V 0 . Therefore, if such a decrease in voltage from V 0 to V 1 (that is, a decrease in current flowing through the closed circuit 11) is detected, it can be determined that the wear detection line 43 is not broken.

以上のように、摩耗側コイル5と対向側コイル7は、相互に電磁的に結合することで、摩耗ゲージ4で検知される摩耗に関する情報を摩耗側部品2から対向側部品3に非接触方式で伝達する手段として機能する。   As described above, the wear-side coil 5 and the counter-side coil 7 are electromagnetically coupled to each other, so that information on wear detected by the wear gauge 4 is not contacted from the wear-side component 2 to the counter-side component 3. It functions as a means of transmission.

また、上記の電磁的結合を確実に行うためには、摩耗側部品2が摺動ストロークのうちの所定位置に移動したときに、摩耗側コイル5のコイル軸と対向側コイル7のコイル軸が相互に平行であり、かつ、摩耗側コイル5と対向側コイル7が所定距離内に接近可能であればよい。さらに、この電磁的結合をできるだけ長時間継続するためには、図2に示すように、摩耗側コイル5のコイル軸および対向側コイル7のコイル軸が、摩耗側部品2の摺動方向に対して平行であることが好ましい。これにより、摩耗側部品2の摺動時に、摩耗側コイル5と対向側コイル7がコイル軸方向にすれ違うので、両者が相互に電磁的に結合する時間を長く確保できる。したがって、閉回路11に流れる電流が低下する時間が長くなり、後述する制御装置9による検知可能時間も長くなるので、当該対向側コイル7の電流低下を容易かつ的確に検知可能となる。しかし、かかる例に限定されず、摩耗側コイル5のコイル軸および対向側コイル7のコイル軸が、摺動方向に対して直交または傾斜していてもよく、この場合でも、上記電磁的な結合により電流低下を実現させることは可能である。   Further, in order to reliably perform the electromagnetic coupling described above, when the wear side component 2 moves to a predetermined position in the sliding stroke, the coil axis of the wear side coil 5 and the coil axis of the counter side coil 7 are It is only necessary that they are parallel to each other and that the wear side coil 5 and the facing side coil 7 are accessible within a predetermined distance. Furthermore, in order to continue this electromagnetic coupling for as long as possible, as shown in FIG. 2, the coil axis of the wear side coil 5 and the coil axis of the opposed side coil 7 are moved relative to the sliding direction of the wear side component 2. Are preferably parallel. Thereby, when the wear side component 2 is slid, the wear side coil 5 and the opposed side coil 7 pass in the coil axial direction, so that it is possible to ensure a long time for the electromagnetic coupling between them. Accordingly, the time during which the current flowing through the closed circuit 11 decreases and the time that can be detected by the control device 9 described later also increases, so that the current decrease in the counter-side coil 7 can be detected easily and accurately. However, the present invention is not limited to this example, and the coil axis of the wear side coil 5 and the coil axis of the opposed side coil 7 may be orthogonal to or inclined with respect to the sliding direction. Thus, it is possible to realize a current drop.

また、対向側部品3の対向側コイル7を含む閉回路11には、計測回路8を介して制御装置9が接続されている。計測回路8は、電流計測用抵抗13の両端に接続されており、当該電流計測用抵抗13に流れる交流電流を電圧換算値として計測し、計測信号を制御装置9に出力する。   A control device 9 is connected to the closed circuit 11 including the opposed coil 7 of the opposed component 3 via a measuring circuit 8. The measurement circuit 8 is connected to both ends of the current measurement resistor 13, measures the alternating current flowing through the current measurement resistor 13 as a voltage conversion value, and outputs a measurement signal to the control device 9.

ここで、図4を参照して、計測回路8の具体例について説明する。図4に示す例の計測回路8は、整流回路81と、コンパレータ82と、遅延回路83と、コンパレータ84とを備える。整流回路81は、例えば4つのダイオードからなるブリッジ整流回路で構成され、電流計測用抵抗13の両端に接続される。整流回路81は、電流計測用抵抗13に流れる交流電流を直流電流に整流する。この整流回路81には、遅延回路83、コンパレータ82、84が接続されている。   Here, a specific example of the measurement circuit 8 will be described with reference to FIG. The measurement circuit 8 in the example illustrated in FIG. 4 includes a rectifier circuit 81, a comparator 82, a delay circuit 83, and a comparator 84. The rectifier circuit 81 is configured by a bridge rectifier circuit including, for example, four diodes, and is connected to both ends of the current measurement resistor 13. The rectifier circuit 81 rectifies the alternating current flowing through the current measuring resistor 13 into a direct current. A delay circuit 83 and comparators 82 and 84 are connected to the rectifier circuit 81.

コンパレータ82は、整流回路81により整流された直流電流に対応する直流電圧を、所定の基準電圧値Vrefと比較し、当該比較結果を示す信号(以下、計測信号という)を制御装置9に出力する。例えば、コンパレータ82は、当該直流電圧の電圧値が基準電圧値Vref以上であればHigh信号を、当該基準電圧値Vref未満であればLow信号を出力する。ここでは、基準電圧値VrefをV<Vref<Vに設定するとよい。 The comparator 82 compares a DC voltage corresponding to the DC current rectified by the rectifier circuit 81 with a predetermined reference voltage value Vref, and outputs a signal indicating the comparison result (hereinafter referred to as a measurement signal) to the control device 9. . For example, the comparator 82 outputs a High signal if the voltage value of the DC voltage is greater than or equal to the reference voltage value Vref, and outputs a Low signal if the voltage value is less than the reference voltage value Vref. Here, the reference voltage value Vref may be set to V 1 <Vref <V 0 .

遅延回路83およびコンパレータ84は、整流回路81で得られる直流電圧の信号を所定時間だけ遅延させることで、制御信号9による検出タイミングを示す検出タイミング信号を生成する。図3(b)に示したように、電流計測用抵抗13に流れる電流の低下(即ち、電流計測用抵抗13に印可される電圧の低下)が開始した時点から所定時間経過後には、当該電圧低下が一定時間安定し、電圧値がVとなる。上記検出タイミング信号は、当該電流低下が安定した時点(例えば、上記図3(b)のA時点)を示す、例えば、立ち上がりまたは立ち下がり信号である。制御装置9には、上記コンパレータ82から計測信号が入力されるが、制御装置9は、その計測信号のうちのどの時点での値を用いて、閉回路11の電圧低下を判断するかを決定する必要がある。そこで、遅延回路83により、上記整流された直流電圧の信号を遅延させ、さらにコンパレータ84により、その遅延信号を基準電圧値Vrefと比較することで、上記検出タイミング信号を生成し、制御装置9に判断するタイミングを提供する。 The delay circuit 83 and the comparator 84 generate a detection timing signal indicating the detection timing by the control signal 9 by delaying the DC voltage signal obtained by the rectification circuit 81 by a predetermined time. As shown in FIG. 3 (b), after a lapse of a predetermined time from the start of the decrease in the current flowing through the current measurement resistor 13 (that is, the decrease in the voltage applied to the current measurement resistor 13), the voltage drop a certain time stable, the voltage value becomes V 1. The detection timing signal is, for example, a rising or falling signal indicating the time when the current drop is stabilized (for example, time A in FIG. 3B). The measurement signal is input to the control device 9 from the comparator 82. The control device 9 determines at which point of the measurement signal the voltage drop of the closed circuit 11 is determined. There is a need to. Therefore, the delay circuit 83 delays the rectified DC voltage signal, and the comparator 84 compares the delayed signal with the reference voltage value Vref, thereby generating the detection timing signal and Provide timing to judge.

制御装置9は、例えば、マイクロコンピュータなどの演算装置で構成される。この制御装置9は、上記閉回路11の電流計測用抵抗13に流れる電流に基づいて、摩耗ゲージ4の摩耗状態(即ち、摩耗側部品2の摩耗状態)を検知する機能を有する。具体的には、制御装置9は、上記遅延回路83から入力される検出タイミング信号に基づき、上記計測回路8のコンパレータ82から入力される計測信号のうち、当該検出タイミングにおける信号値に基づいて、摩耗ゲージ4の摩耗状態を検知する。   The control device 9 is configured by an arithmetic device such as a microcomputer, for example. The control device 9 has a function of detecting the wear state of the wear gauge 4 (that is, the wear state of the wear side component 2) based on the current flowing through the current measuring resistor 13 of the closed circuit 11. Specifically, the control device 9 is based on the detection timing signal input from the delay circuit 83, based on the signal value at the detection timing among the measurement signals input from the comparator 82 of the measurement circuit 8. The wear state of the wear gauge 4 is detected.

上記図3を用いて説明したように、閉回路11に流れる電流値(即ち、電流計測用抵抗13の両端の電圧差)は、摩耗ゲージ4の断線状態(即ち、摩耗ゲージ4の摩耗状態)と相関がある。摩耗ゲージ4が摩滅して断線し、閉回路10が導通していない場合には、摩耗側コイル5と対向側コイル7が電磁的に結合しないので、閉回路11に流れる電流値は低下しない。一方、摩耗ゲージ4が断線していない場合には、摩耗側コイル5と対向側コイル7が電磁的に結合するので、閉回路11に流れる電流値が低下する。   As described with reference to FIG. 3, the value of the current flowing through the closed circuit 11 (that is, the voltage difference between both ends of the current measuring resistor 13) is the disconnection state of the wear gauge 4 (that is, the wear state of the wear gauge 4). There is a correlation. When the wear gauge 4 is worn out and disconnected, and the closed circuit 10 is not conductive, the wear side coil 5 and the opposed coil 7 are not electromagnetically coupled, so the value of the current flowing through the closed circuit 11 does not decrease. On the other hand, when the wear gauge 4 is not disconnected, the wear side coil 5 and the counter side coil 7 are electromagnetically coupled, so that the value of the current flowing through the closed circuit 11 decreases.

したがって、制御装置9は、摩耗側部品2の1回の摺動ストローク中に、閉回路11に流れる電流値が低下したか否かを検知することで、摩耗ゲージ4の摩耗状態を判断することができる。例えば、1回の摺動ストローク中において上記検出タイミングで電流低下が生じている場合には、制御装置9は、摩耗ゲージ4の先端部41が摩耗検知ライン43の位置まで摩耗していないと判断する。一方、1回の摺動ストローク中において上記検出タイミングで電流低下が生じていない場合には、制御装置9は、摩耗ゲージ4の先端部41が少なくとも摩耗検知ライン43の位置以上に摩耗していると判断する。   Therefore, the control device 9 determines the wear state of the wear gauge 4 by detecting whether or not the value of the current flowing through the closed circuit 11 has decreased during one sliding stroke of the wear side component 2. Can do. For example, when a current drop occurs at the above detection timing during one sliding stroke, the control device 9 determines that the tip 41 of the wear gauge 4 has not been worn to the position of the wear detection line 43. To do. On the other hand, when no current drop occurs at the detection timing during one sliding stroke, the control device 9 wears the tip 41 of the wear gauge 4 at least beyond the position of the wear detection line 43. Judge.

[1.3.摩耗ゲージの構成]
次に、図2を参照して、本実施形態に係る摩耗ゲージ4の構成について説明する。
[1.3. Wear gauge configuration]
Next, the configuration of the wear gauge 4 according to the present embodiment will be described with reference to FIG.

図2に示したように、摩耗ゲージ4は、摩耗検知対象である摩耗側部品2に設置され、その先端部41の摩耗を計測する。摩耗ゲージ4の先端部41が摩耗検知対象部位(即ち、摩耗側部品2の摺動面21)に露出していれば、摩耗ゲージ4は、摩耗側部品2に埋設されてもよいし、摩耗側部品2の側面に貼り付けられてもよい。摩耗ゲージ4の先端部41は、摩耗ゲージ4の長手方向の一側端部であって、摩耗検知対象部位とともに摩耗する部分である。本実施形態では、摩耗ゲージ4の先端部41は、摩耗側部品2の摺動面21に沿って配置され、摩耗ゲージ4の先端面41a(先端部41の端面)が摩耗側部品2の摺動面21と面一となっている。   As shown in FIG. 2, the wear gauge 4 is installed on the wear-side component 2 that is a wear detection target, and measures the wear of the tip portion 41. If the tip 41 of the wear gauge 4 is exposed to the wear detection target part (that is, the sliding surface 21 of the wear side part 2), the wear gauge 4 may be embedded in the wear side part 2 or wear. You may affix on the side surface of the side component 2. FIG. The distal end portion 41 of the wear gauge 4 is one end portion in the longitudinal direction of the wear gauge 4 and is a portion that wears with the wear detection target portion. In the present embodiment, the tip portion 41 of the wear gauge 4 is disposed along the sliding surface 21 of the wear side component 2, and the tip surface 41 a (end surface of the tip portion 41) of the wear gauge 4 is slid on the wear side component 2. It is flush with the moving surface 21.

摩耗ゲージ4の本体は、例えば、矩形板状のプリント基板からなり、一般的なプリント基板製造技術を用いて製造可能である。プリント基板の材質は、絶縁材料であれば、ガラスエポキシ等、摩耗検知対象である摩耗側部品2の材質に応じて適宜選択することができる。かかるプリント基板は、リジッド基板またはフレキシブル基板のいずれであってもよい。リジッド基板を用いた場合には、摩耗ゲージ4自体がある程度の剛性を有することとなるので、特殊な保持部材を別途使用することなく、摩耗ゲージ4を摩耗側部品2の検知対象部位に固定可能となる。一方、フィルム状のフレキシブル基板を用いた場合には、摩耗ゲージ4が変形自在となるので、摩耗側部品2の検知対象部位に自由に取り付け可能となる。また、フィルム状であるため、摩耗ゲージ4から発生する摩耗粉は微小であり、摩耗側部品2より柔らかい素材で構成することが可能であるため、摩耗側部品2や対向側部品3の摩耗に及ぼす影響は極めて小さい。   The main body of the wear gauge 4 is made of, for example, a rectangular printed board, and can be manufactured using a general printed board manufacturing technique. If the material of a printed circuit board is an insulating material, it can select suitably according to the material of the wear side components 2 which are abrasion detection objects, such as glass epoxy. Such a printed board may be a rigid board or a flexible board. When a rigid board is used, the wear gauge 4 itself has a certain degree of rigidity, so that the wear gauge 4 can be fixed to the detection target portion of the wear side component 2 without using a special holding member. It becomes. On the other hand, when a film-like flexible substrate is used, the wear gauge 4 can be freely deformed, so that it can be freely attached to the detection target portion of the wear side component 2. Further, since it is in the form of a film, the wear powder generated from the wear gauge 4 is minute and can be made of a softer material than the wear side component 2, so that the wear side component 2 and the opposed side component 3 are worn. The effect is very small.

かかる摩耗ゲージ4の基板面にはプリントライン42が形成されている。プリントライン42は、電気信号を伝達する配線の一例であり、摩耗ゲージ4の基板外縁部を周回するように延設される。このプリントライン42のうち、摩耗ゲージ4の先端部41に配置される部分が、摩耗検知用ライン43を構成する。この摩耗検知用ライン43は、摩耗ゲージ4の先端部41において摩耗側部品2の摺動面21と平行に延びている。摩耗検知用ライン43は、摩耗ゲージ4の先端面41aに露出して配置されてもよいし、所望する摩耗量に応じた所定距離Lだけ当該先端面41aよりも内側に配置されてもよい。この摩耗検知用ライン43と摩耗ゲージ4の先端面41aとの距離Lが、摩耗ゲージ4で検知可能な摩耗量(基準摩耗量)となる。   A printed line 42 is formed on the substrate surface of the wear gauge 4. The print line 42 is an example of a wiring that transmits an electrical signal, and is extended so as to go around the substrate outer edge portion of the wear gauge 4. Of the print line 42, the portion disposed at the tip 41 of the wear gauge 4 constitutes a wear detection line 43. The wear detection line 43 extends in parallel with the sliding surface 21 of the wear side component 2 at the tip 41 of the wear gauge 4. The wear detection line 43 may be disposed so as to be exposed on the front end surface 41a of the wear gauge 4, or may be disposed on the inner side of the front end surface 41a by a predetermined distance L corresponding to a desired amount of wear. A distance L between the wear detection line 43 and the tip surface 41a of the wear gauge 4 is a wear amount (reference wear amount) that can be detected by the wear gauge 4.

なお、本実施形態に係る摩耗検知用ライン43は直線状であるが、かかる例に限定されない。摩耗検知用ラインの少なくとも一部が摩耗ゲージ4の先端面41aに沿って配置されていれば、摩耗検知用ラインの形状は、摩耗検知対象部位の形状や範囲に合わせて、曲線状、波状、V字状、コの字型など、任意の形状であってよい。   The wear detection line 43 according to this embodiment is linear, but is not limited to this example. If at least a part of the wear detection line is arranged along the tip surface 41a of the wear gauge 4, the shape of the wear detection line is curved, wavy, The shape may be any shape such as a V shape or a U shape.

摩耗ゲージ4のプリントライン42の両端部は、一対の端子44、44を介して上記摩耗側コイル5およびマッチング抵抗6を含む閉回路10に接続されている。したがって、摩耗検知用ライン43が断線していなければ、摩耗側コイル5と対向側コイル7が電磁的に結合し、摩耗側コイル5が励起されて摩耗側コイル5に誘導起電力が生じ、閉回路10およびプリントライン42に電流が流れる。これにより、対向側コイル7にとって摩耗側コイル5が誘導負荷となり、対向側部品3の閉回路11に流れる電流を低下させることが可能となる。   Both ends of the print line 42 of the wear gauge 4 are connected to the closed circuit 10 including the wear side coil 5 and the matching resistor 6 via a pair of terminals 44, 44. Therefore, if the wear detection line 43 is not disconnected, the wear side coil 5 and the counter side coil 7 are electromagnetically coupled, the wear side coil 5 is excited, and an induced electromotive force is generated in the wear side coil 5 to close it. A current flows through the circuit 10 and the printed line 42. As a result, the wear side coil 5 becomes an inductive load for the facing side coil 7, and the current flowing through the closed circuit 11 of the facing side component 3 can be reduced.

また、上記摩耗側コイル5およびマッチング抵抗6を含む閉回路10が搭載される基板と、摩耗ゲージ4が搭載される基板を分離し、できるだけ両者を離隔配置してもよい。これにより、摩耗側部品2の摺動面21や摩耗ゲージ4の摩耗粉が、摩耗側コイル5近傍に到達しにくくなるので、当該摩耗粉が摩耗側コイル5と対向側コイル7の電磁的な結合を妨害することを抑制して、当該電磁的な結合を安定的に実現できる。さらに、摩耗ゲージ4や閉回路10が搭載される基板を個々にメンテナンス(交換)することができるので、便利である。   Further, the substrate on which the closed circuit 10 including the wear side coil 5 and the matching resistor 6 is mounted and the substrate on which the wear gauge 4 is mounted may be separated, and both may be separated as much as possible. This makes it difficult for the wear powder on the sliding surface 21 of the wear side component 2 and the wear gauge 4 to reach the vicinity of the wear side coil 5, so that the wear powder is electromagnetically generated between the wear side coil 5 and the opposed side coil 7. The electromagnetic coupling can be stably realized by suppressing the interference with the coupling. Furthermore, since the substrate on which the wear gauge 4 and the closed circuit 10 are mounted can be individually maintained (replaced), it is convenient.

以上、摩耗ゲージ4の構成および配置について説明した。上記の摩耗ゲージ4を摩耗側部品2に設置することにより、摩耗側部品2の摺動時に、摩耗側部品2の摺動面21の摩耗に伴って、摩耗ゲージ4の先端部41も同様に摩耗する。したがって、当該摩耗が進行すれば、摩耗ゲージ4の先端部41の摩耗検知用ライン43が摩滅して断線し、閉回路10およびプリントライン42に電流が流れなくなる。このように、本実施形態に係る摩耗ゲージ4は、摩耗検知用ライン43の断線の有無を利用して、先端部41の摩耗状態、即ち、摩耗検知対象部位である摩耗側部品2の摺動面21の摩耗状態を検知する。さらに、摩耗ゲージ4は、その内部回路に電流が流れるか否かによって、摩耗状態を表す情報を伝達する。   The configuration and arrangement of the wear gauge 4 have been described above. By installing the wear gauge 4 on the wear-side component 2, when the wear-side component 2 slides, the tip 41 of the wear gauge 4 is similarly applied along with the wear of the sliding surface 21 of the wear-side component 2. Wear. Therefore, if the wear progresses, the wear detection line 43 at the tip 41 of the wear gauge 4 is worn and disconnected, and no current flows through the closed circuit 10 and the print line 42. As described above, the wear gauge 4 according to the present embodiment utilizes the presence or absence of the disconnection of the wear detection line 43 to wear the tip portion 41, that is, the sliding of the wear side component 2 that is a wear detection target portion. The wear state of the surface 21 is detected. Further, the wear gauge 4 transmits information indicating a wear state depending on whether or not a current flows through the internal circuit.

[1.4.摩耗検知装置による摩耗検知方法]
次に、本実施形態に係る摩耗検知装置を用いて、摩耗側部品2の摺動面21の摩耗状態を検知する方法について説明する。
[1.4. Wear detection method using wear detector]
Next, a method for detecting the wear state of the sliding surface 21 of the wear side component 2 using the wear detection device according to the present embodiment will be described.

産業機械、例えば図1に示したレシプロコンプレッサ100が稼働して、シリンダ101内をピストン102が繰り返し摺動すると、当該摺動動作により、ピストンリング104の外周面(摩耗側部品2の摺動面21)がシリンダ101の内周面(対向側部品3の摺動面31)と摩擦して、当該摺動面21の摩耗が徐々に進行する。   When an industrial machine, for example, the reciprocating compressor 100 shown in FIG. 1 is operated and the piston 102 repeatedly slides in the cylinder 101, the outer peripheral surface of the piston ring 104 (the sliding surface of the wear side component 2) is caused by the sliding operation. 21) rubs against the inner peripheral surface of the cylinder 101 (sliding surface 31 of the opposed part 3), and wear of the sliding surface 21 gradually proceeds.

この際、摩耗側部品2の摺動面21の摩耗量が基準摩耗量未満である場合には、上記摩耗ゲージ4の摩耗検知用ライン43が断線していない。したがって、摩耗側部品2においては、摩耗側コイル5に対向側コイル7が接近すれば、摩耗側コイル5に誘導起電力が生じて、閉回路10に電流が流れることが可能な状態である。一方、対向側部品3においては、交流電源12からの電力供給により常時、閉回路11に交流電流が流れている。   At this time, if the wear amount of the sliding surface 21 of the wear side component 2 is less than the reference wear amount, the wear detection line 43 of the wear gauge 4 is not broken. Therefore, in the wear side component 2, when the opposed coil 7 approaches the wear side coil 5, an induced electromotive force is generated in the wear side coil 5, and a current can flow through the closed circuit 10. On the other hand, in the facing component 3, an alternating current always flows in the closed circuit 11 by supplying power from the alternating current power supply 12.

上記摺動動作中は、摩耗側部品2は対向側部品3に対して摺動方向(例えば図2の上下方向)に所定の摺動ストロークで往復運動しており、両者の対向面22、32は相互に平行でありつつも、摺動方向に相対移動する。このため、摩耗側部品2の摩耗側コイル5は、対向側部品3の対向側コイル7に対して対向する位置に配置されたり、図中の上方または下方にずれた位置に配置されたりすることを繰り返す。   During the sliding operation, the wear side component 2 reciprocates with a predetermined sliding stroke in the sliding direction (for example, the vertical direction in FIG. 2) with respect to the opposing side component 3, and the opposing surfaces 22 and 32 of the both sides are moved. Although they are parallel to each other, they move relative to each other in the sliding direction. For this reason, the wear side coil 5 of the wear side component 2 is arranged at a position facing the opposed side coil 7 of the opposed side component 3, or is arranged at a position shifted upward or downward in the drawing. repeat.

そして、上記摺動動作途中に、摩耗側部品2の摩耗側コイル5と対向側部品3の対向側コイル7とが正対するようにして、すれ違う。このとき、摩耗側コイル5は、対向側コイル7と電磁的に結合して誘導起電力を生じ、この誘導起電力により閉回路10およびプリントライン42に電流が流れる。つまり、摩耗側コイル5と対向側コイル7の電磁的な結合により、対向側部品3の交流電源12から摩耗側部品2のマッチング抵抗6に対して給電が生じる。   In the course of the sliding operation, the wear side coil 5 of the wear side component 2 and the facing side coil 7 of the facing side component 3 face each other. At this time, the wear-side coil 5 is electromagnetically coupled to the opposed coil 7 to generate an induced electromotive force, and a current flows through the closed circuit 10 and the printed line 42 due to the induced electromotive force. That is, due to the electromagnetic coupling between the wear side coil 5 and the facing side coil 7, power is supplied from the AC power supply 12 of the facing side component 3 to the matching resistor 6 of the wear side component 2.

このように摩耗側コイル5と対向側コイル7が周期的にすれ違うときには、対向側コイル7にとって電気的な負荷(結合先の摩耗側コイル5の誘導負荷)が生じるため、対向側部品3の閉回路11に流れる電流が低下する。この結果、計測回路8により計測された閉回路11の電流値が制御装置9に伝達され、制御装置9は、閉回路11の電流低下を検知することで、摩耗ゲージ4の摩耗検知用ライン43が断線していないこと、即ち、摩耗ゲージ4の先端部41および摩耗側部品2の摺動面21の摩耗量が基準摩耗量に達していないことを検知できる。   Thus, when the wear side coil 5 and the counter side coil 7 pass each other periodically, an electrical load (inductive load of the wear side coil 5 at the coupling destination) is generated on the counter side coil 7, so that the counter side component 3 is closed. The current flowing through the circuit 11 is reduced. As a result, the current value of the closed circuit 11 measured by the measurement circuit 8 is transmitted to the control device 9, and the control device 9 detects the current drop of the closed circuit 11, thereby detecting the wear detection line 43 of the wear gauge 4. Can be detected that the wear amount of the tip 41 of the wear gauge 4 and the sliding surface 21 of the wear side component 2 has not reached the reference wear amount.

一方、摩耗側部品2の摺動により、摩耗側部品2の摺動面21の摩耗が進行して、その摩耗量が基準摩耗量以上となった場合には、上記摩耗ゲージ4の摩耗検知用ライン43が摩滅して断線する。このように摩耗検知用ライン43が断線すると、プリントライン42の電気抵抗が無限大(絶縁状態)となり、閉回路10が導通しなくなる。したがって、たとえ摩耗側コイル5が対向側コイル7に接近したとしても、両者が電磁的に結合しないので、対向側部品3の閉回路11の電流低下も生じない。   On the other hand, if the wear of the sliding surface 21 of the wear side component 2 progresses due to the sliding of the wear side component 2 and the wear amount exceeds the reference wear amount, the wear gauge 4 is used for wear detection. Line 43 is worn out and disconnected. When the wear detection line 43 is disconnected in this way, the electrical resistance of the print line 42 becomes infinite (insulated), and the closed circuit 10 does not conduct. Therefore, even if the wear-side coil 5 approaches the counter-side coil 7, the currents of the closed circuit 11 of the counter-side component 3 do not decrease because they are not electromagnetically coupled.

したがって、この場合には、摩耗側部品2が1ストローク以上摺動しても、対向側部品3の閉回路11の電流が低下せず、ほぼ一定値を維持する。よって、制御装置9は、閉回路11の一時的な電流の低下が無いことを検知することで、摩耗検知用ライン43が断線したこと、即ち、摩耗ゲージ4の先端部41および摩耗側部品2の摺動面21の摩耗量が基準摩耗量を超えたことを検知することができる。   Therefore, in this case, even if the wear side component 2 slides for one stroke or more, the current of the closed circuit 11 of the facing side component 3 does not decrease and maintains a substantially constant value. Therefore, the control device 9 detects that the current of the closed circuit 11 is not temporarily reduced, so that the wear detection line 43 is disconnected, that is, the tip 41 of the wear gauge 4 and the wear side component 2. It can be detected that the wear amount of the sliding surface 21 exceeds the reference wear amount.

[1.5.効果]
以上説明したように、第1の実施形態に係る摩耗検知装置によれば、摩耗検知用ライン43が摩耗したときの回路の断線を検出することにより、摩耗側部品2の摺動面21の摩耗量が基準摩耗量以上であることを検知することができる。摩耗検知方式としては、摩耗検知用ライン43の断線を利用する単純な方式であるため、振動や水分付着等の外乱に強く、摩耗判定が容易である。また、摩耗ゲージ4を用いて摩耗検知対象の実際の摩耗量を測定するため、誤差のない正確な測定が可能となる。
[1.5. effect]
As described above, according to the wear detection device according to the first embodiment, the wear of the sliding surface 21 of the wear side component 2 is detected by detecting the disconnection of the circuit when the wear detection line 43 is worn. It can be detected that the amount is not less than the reference wear amount. Since the wear detection method is a simple method using the disconnection of the wear detection line 43, it is resistant to disturbances such as vibration and moisture adhesion, and wear determination is easy. In addition, since the actual wear amount of the wear detection target is measured using the wear gauge 4, accurate measurement without error is possible.

さらに、本実施形態によれば、相対移動する摩耗側部品2と対向側部品3の間において、上記一対のコイルの電磁的結合を利用して、摩耗ゲージ4で得た摩耗状態に関する情報を非接触で伝達することが可能である。このため、対向側部品3に設置された制御装置9は、摩耗側部品2の摺動ストローク中に、対向側部品3の閉回路11に流れる電流を連続的に計測して、当該電流の一時的な低下の有無を検知することにより、摩耗ゲージ4の断線有無、即ち、摩耗側部品2の摩耗有無を検知することができる。したがって、摩耗側部品2と対向側部品3を配線や端子等を用いて電気的に接続することなく、対向側部品3の制御装置9により、摩耗側部品2の摩耗状態を適切に検知することが可能となる。   Furthermore, according to the present embodiment, information on the wear state obtained by the wear gauge 4 is not obtained using the electromagnetic coupling of the pair of coils between the wear-side component 2 and the opposed-side component 3 that move relative to each other. It is possible to transmit by contact. For this reason, the control device 9 installed in the facing side component 3 continuously measures the current flowing through the closed circuit 11 of the facing side component 3 during the sliding stroke of the wear side component 2 to temporarily store the current. By detecting the presence or absence of a general decrease, it is possible to detect whether the wear gauge 4 is disconnected, that is, whether the wear side component 2 is worn. Therefore, it is possible to appropriately detect the wear state of the wear-side component 2 by the control device 9 of the facing-side component 3 without electrically connecting the wear-side component 2 and the facing-side component 3 using wiring, terminals, or the like. Is possible.

また、摩耗側部品2に摩耗側コイル5を設置し、対向側部品3に対向側コイル7と交流電源12を設置することで、対向側部品3から摩耗側部品2に対して非接触で給電することができる。したがって、摩耗側部品2と対向側部品3を、給電ラインを用いて電気的に接続しなくてもよいので、摺動部材である摩耗側部品2に対する給電構造を簡素化および安定化できる。さらに、摩耗側部品2に電池等の電源を設置しなくてもよいので、摩耗側部品2における電池の交換等といったメンテナンス作業を省略でき、電池の寿命を気にすることなく、摩耗側部品2に安定的に給電することができる。   Further, by providing the wear side coil 5 on the wear side component 2 and installing the counter side coil 7 and the AC power source 12 on the opposite side component 3, power is supplied from the opposite side component 3 to the wear side component 2 in a non-contact manner. can do. Therefore, since it is not necessary to electrically connect the wear side component 2 and the facing side component 3 using a power supply line, the power supply structure for the wear side component 2 which is a sliding member can be simplified and stabilized. Furthermore, since it is not necessary to install a power source such as a battery on the wear side component 2, maintenance work such as replacement of the battery in the wear side component 2 can be omitted, and the wear side component 2 can be omitted without worrying about the life of the battery. Can be stably fed.

また、本実施形態に係る摩耗検知方法は、産業機械の稼働中、即ち摩耗側部品2の摺動動作中に、摩耗側部品2の摺動面21の摩耗状態を検知することができる。したがって、摩耗側部品2の摺動動作を停止することなく、当該摩耗側部品2の摩耗状態をリアルタイムで検知できるので、産業機械の稼働率を向上でき、摩耗検知のための時間と費用を削減できる。   In addition, the wear detection method according to the present embodiment can detect the wear state of the sliding surface 21 of the wear side component 2 during operation of the industrial machine, that is, during the sliding operation of the wear side component 2. Therefore, since the wear state of the wear side component 2 can be detected in real time without stopping the sliding operation of the wear side component 2, the operating rate of the industrial machine can be improved and the time and cost for wear detection can be reduced. it can.

[2.第2の実施形態]
次に、本発明の第2の実施形態に係る摩耗検知装置について説明する。第2の実施形態に係る摩耗検知装置は、上記第1の実施形態と比べて、摩耗ゲージに複数の摩耗検知用ラインを設け、摩耗側部品の摩耗量を段階的に検知する点で相違し、その他の機能構成は上記第1の実施形態と同様であるので、その詳細説明は省略する。
[2. Second Embodiment]
Next, a wear detection apparatus according to a second embodiment of the present invention will be described. The wear detection device according to the second embodiment is different from the first embodiment in that a plurality of wear detection lines are provided in the wear gauge and the wear amount of the wear side part is detected stepwise. Other functional configurations are the same as those in the first embodiment, and thus detailed description thereof is omitted.

[2.1.摩耗ゲージの構成]
まず、図5を参照して、本発明の第2の実施形態に係る摩耗ゲージ40について説明する。図5は、本実施形態に係る摩耗ゲージ40を示す平面図である。
[2.1. Wear gauge configuration]
First, with reference to FIG. 5, the abrasion gauge 40 which concerns on the 2nd Embodiment of this invention is demonstrated. FIG. 5 is a plan view showing the wear gauge 40 according to the present embodiment.

図5(a)に示すように、第2の実施形態に係る摩耗ゲージ40の本体は、例えば、矩形板状のプリント基板からなり、一般的なプリント基板製造技術を用いて製造可能である。このプリント基板の種類や材質は、第1の実施形態に係る摩耗ゲージ4と同様のものを使用できる。   As shown in FIG. 5A, the main body of the wear gauge 40 according to the second embodiment is made of, for example, a rectangular printed board, and can be manufactured using a general printed board manufacturing technique. The kind and material of this printed circuit board can be the same as those of the wear gauge 4 according to the first embodiment.

かかる摩耗ゲージ40の基板面には、複数のプリントライン42A〜42E(以下、「プリントライン42」と総称する場合がある。)が形成されている。これらのプリントライン42A〜42Eのうち、摩耗ゲージ40の先端部41に配置される部分がそれぞれ、摩耗検知用ライン43A〜43Eを構成する。また、上記各プリントライン42の一端部(即ち、各摩耗検知用ライン43A〜43Eの端部)はそれぞれ、外部接続用の端子47A〜47Eに接続されている。当該各プリントライン42の他端部はともに、1本の共通プリントライン45に接続されており、当該共通プリントライン45の端部は、外部接続用の共通端子46に接続されている。   A plurality of print lines 42 </ b> A to 42 </ b> E (hereinafter may be collectively referred to as “print lines 42”) are formed on the substrate surface of the wear gauge 40. Of these print lines 42A to 42E, portions disposed at the tip 41 of the wear gauge 40 constitute wear detection lines 43A to 43E, respectively. One end of each print line 42 (that is, the end of each wear detection line 43A to 43E) is connected to an external connection terminal 47A to 47E, respectively. The other end of each print line 42 is connected to one common print line 45, and the end of the common print line 45 is connected to a common terminal 46 for external connection.

このように、第2の実施形態に係る摩耗ゲージ40の先端部41には、複数の摩耗検知用ライン43A〜43E(以下、「摩耗検知用ライン43」と総称する場合がある。)が相互に間隔を空けて配置されている。これら複数の摩耗検知用ライン43はいずれも、摩耗側部品2の摺動方向および先端面41aに対して平行に配置されている。   As described above, a plurality of wear detection lines 43 </ b> A to 43 </ b> E (hereinafter, may be collectively referred to as “wear detection lines 43”) are mutually provided at the distal end portion 41 of the wear gauge 40 according to the second embodiment. Are arranged at intervals. Each of the plurality of wear detection lines 43 is arranged in parallel with the sliding direction of the wear side component 2 and the tip surface 41a.

摩耗検知用ライン43Aは、摩耗ゲージ40の先端面41aに最も近い位置(距離L1)に形成されている。図示の例では、摩耗検知用ライン43Aと先端面41aの距離L1はゼロ超であるが、L1=0として、摩耗検知用ライン43Aを先端面41aに露出させてもよい。摩耗検知用ライン43Bは、先端面41aから距離L2の位置に形成されている。同様に、他の摩耗検知用ライン43C、43D、43Eは、先端面41aから距離L3、L4、L5の位置にそれぞれ形成されている。距離L1〜L5はそれぞれ、序数が大きいほど距離が長くなっている。これら摩耗検知用ライン43A〜43Eと摩耗ゲージ40の先端面41aとの距離L1〜L5が、摩耗ゲージ40で検知可能な摩耗量となる。   The wear detection line 43 </ b> A is formed at a position (distance L <b> 1) closest to the tip surface 41 a of the wear gauge 40. In the illustrated example, the distance L1 between the wear detection line 43A and the tip surface 41a is greater than zero, but the wear detection line 43A may be exposed to the tip surface 41a with L1 = 0. The wear detection line 43B is formed at a position of a distance L2 from the distal end surface 41a. Similarly, the other wear detection lines 43C, 43D, and 43E are formed at distances L3, L4, and L5 from the distal end surface 41a, respectively. Each of the distances L1 to L5 is longer as the ordinal number is larger. The distances L1 to L5 between the wear detection lines 43A to 43E and the tip surface 41a of the wear gauge 40 are wear amounts that can be detected by the wear gauge 40.

なお、図示の例では、5本の摩耗検知用ライン43が設けられているが、かかる例に限定されず、任意の複数本の摩耗検知用ライン43を設けてもよい。また、摩耗検知用ライン43の形状も、図示のような直線状に限られず、摩耗検知対象部位の形状や範囲に合わせて、曲線状、波状、V字状、コの字型など、任意の形状であってよい。さらに、摩耗検知用ライン43の相互間隔も、検知したい摩耗量に合わせて任意に設定可能である。   In the illustrated example, five wear detection lines 43 are provided. However, the present invention is not limited to this example, and an arbitrary plurality of wear detection lines 43 may be provided. Further, the shape of the wear detection line 43 is not limited to the linear shape as shown in the figure, and may be any shape such as a curved shape, a wavy shape, a V shape, and a U shape according to the shape and range of the wear detection target portion. It may be a shape. Furthermore, the mutual interval between the wear detection lines 43 can be arbitrarily set according to the amount of wear to be detected.

かかる摩耗ゲージ40は、第1の実施形態と同様に、摩耗検知対象である摩耗側部品2に設置される。この際、摩耗ゲージ40の先端部41は、摩耗側部品2の摺動面21に沿って配置され、摩耗ゲージ40の先端面41aは、摩耗検知対象部位である摩耗側部品2の摺動面21と面一となる。かかる摩耗ゲージ40の先端部41は、摩耗検知対象部位とともに摩耗し、複数の摩耗検知用ライン43が段階的に摩滅することで、摩耗検知対象部位の摩耗量を段階的に計測する。   Similar to the first embodiment, the wear gauge 40 is installed on the wear-side component 2 that is a wear detection target. At this time, the tip portion 41 of the wear gauge 40 is disposed along the sliding surface 21 of the wear side component 2, and the tip surface 41a of the wear gauge 40 is a slide surface of the wear side component 2 that is a wear detection target site. 21 and the same level. The distal end portion 41 of the wear gauge 40 is worn together with the wear detection target portion, and the wear amount of the wear detection target portion is measured stepwise by the plurality of wear detection lines 43 being worn stepwise.

図5(b)は、摩耗ゲージ40の先端部41が、先端面41aから距離L6(L1<L6<L2)だけ摩耗した状態を示す。この場合、最も外側の摩耗検知用ライン43Aは摩滅しているので、プリントライン42Aは断線するが、その内側の摩耗検知用ライン43B〜43Eはいずれも摩耗しておらず、プリントライン42B〜42Eは導通している。このように、摩耗ゲージ40は、複数の摩耗検知用ライン43の断線の有無によって、摩耗検知対象部位(摩耗側部品2の摺動面21)の摩耗量を段階的に計測することができる。   FIG. 5B shows a state where the tip 41 of the wear gauge 40 is worn away from the tip 41a by a distance L6 (L1 <L6 <L2). In this case, since the outermost wear detection line 43A is worn out, the print line 42A is disconnected, but the inner wear detection lines 43B to 43E are not worn, and the print lines 42B to 42E. Is conducting. As described above, the wear gauge 40 can measure the amount of wear at the wear detection target portion (the sliding surface 21 of the wear side component 2) stepwise depending on whether or not the plurality of wear detection lines 43 are disconnected.

産業機械の稼働時には、摩耗側部品2と対向側部品3との摺動により、摩耗側部品2の摺動面21の摩耗が進行し、それに伴い、摩耗ゲージ40の先端部41も摩耗する。そして、摩耗量がL1を超えたときに、摺動面21に最も近い摩耗検知用ライン43Aが摩滅して断線し、プリントライン42Aの導通が遮断される。さらに、摩耗側部品2の摩耗とともに、摩耗ゲージ40がさらに摩耗し、摩耗量がL2を超えたときに、次の摩耗検知用ライン43Bも摩滅して断線する。同様に、摩耗ゲージ40の摩耗がさらに進行するにつれ、摩耗検知用ライン43C、43D、43Eが順次摩滅して、断線することにより、摩耗量がL3〜L5を超えたことを計測できる。   During the operation of the industrial machine, the sliding of the wear side part 2 and the facing part 3 causes the wear of the sliding surface 21 of the wear side part 2, and the tip 41 of the wear gauge 40 is also worn. When the wear amount exceeds L1, the wear detection line 43A closest to the sliding surface 21 is worn out and disconnected, and the conduction of the print line 42A is interrupted. Further, along with the wear of the wear side component 2, when the wear gauge 40 is further worn and the wear amount exceeds L2, the next wear detection line 43B is also worn out and disconnected. Similarly, as the wear of the wear gauge 40 further progresses, the wear detection lines 43C, 43D, and 43E are sequentially worn out and disconnected, whereby it is possible to measure that the wear amount has exceeded L3 to L5.

この摩耗ゲージ40の先端部41の摩耗量L1〜L5は、摩耗側部品2の摺動面21の摩耗量と同一であるため、摩耗ゲージ40の先端部41の摩耗量を段階的に計測することにより、摩耗側部品2の摩耗量を段階的に検知することができる。以上のように、本実施形態に係る摩耗ゲージ40は、複数の摩耗検知用ライン43の断線を利用して、摩耗側部品2の摩耗量を連続的に多段階で計測できることを特徴としている。以下に、かかる摩耗ゲージ40による計測情報を制御装置9に伝達するための回路構成について説明する。なお、以下の回路構成例では、説明の便宜上、摩耗ゲージ40に3本の摩耗検知ライン43を設ける例について説明するが、上記図5のように5本の摩耗検知ライン43A〜43Eを設ける場合や、その他任意の複数本の摩耗検知ライン43を設ける場合も同様である。   Since the wear amounts L1 to L5 of the tip portion 41 of the wear gauge 40 are the same as the wear amount of the sliding surface 21 of the wear side component 2, the wear amount of the tip portion 41 of the wear gauge 40 is measured stepwise. Thus, the wear amount of the wear side component 2 can be detected stepwise. As described above, the wear gauge 40 according to the present embodiment is characterized in that the wear amount of the wear-side component 2 can be continuously measured in multiple stages using the disconnection of the plurality of wear detection lines 43. Below, the circuit structure for transmitting the measurement information by this wear gauge 40 to the control apparatus 9 is demonstrated. In the following circuit configuration example, for convenience of explanation, an example in which three wear detection lines 43 are provided in the wear gauge 40 will be described. However, in the case where five wear detection lines 43A to 43E are provided as shown in FIG. The same applies to the case where any other plural wear detection lines 43 are provided.

[2.2.摩耗検知装置の第1の回路構成例および動作]
まず、図6を参照して、上記摩耗ゲージ40に対応した摩耗検知装置の第1の回路構成例について説明する。図6は、本実施形態に係る摩耗検知装置の第1の回路構成例を示す図である。
[2.2. First Circuit Configuration Example and Operation of Wear Detection Device]
First, a first circuit configuration example of a wear detection device corresponding to the wear gauge 40 will be described with reference to FIG. FIG. 6 is a diagram illustrating a first circuit configuration example of the wear detection device according to the present embodiment.

図6に示すように、第1の回路構成例では、摩耗ゲージ40の複数の摩耗検知用ライン43A〜43Cにそれぞれ対応するように、摩耗側部品2に、複数の摩耗検知用回路が設置されている。一方、対向側部品3においては、摩耗検知用回路は1つだけ設置され、共通化されている。即ち、第1の回路構成例の摩耗検知装置は、摩耗側部品2に設置される複数対の摩耗側コイル5A〜5Cおよびマッチング抵抗6A〜6Cと、対向側部品3に設置される一対の対向側コイル7および計測回路8とを備える。   As shown in FIG. 6, in the first circuit configuration example, a plurality of wear detection circuits are installed on the wear side component 2 so as to correspond to the plurality of wear detection lines 43A to 43C of the wear gauge 40, respectively. ing. On the other hand, in the facing component 3, only one wear detection circuit is installed and shared. That is, the wear detection device of the first circuit configuration example includes a plurality of pairs of wear-side coils 5A to 5C and matching resistors 6A to 6C installed on the wear-side component 2, and a pair of facing electrodes installed on the facing-side component 3. A side coil 7 and a measurement circuit 8 are provided.

摩耗側部品2においては、3本の摩耗検知用ライン43A〜43Cに対応して、3つの閉回路10A〜10Cが設けられている。各閉回路10A〜10Cには、一対の摩耗側コイル5A〜5Cおよびマッチング抵抗6A〜6Cがそれぞれ設置される。例えば、閉回路10Aは、摩耗側コイル5Aとマッチング抵抗6Aを含み、当該閉回路10Aの両端は、摩耗ゲージ40の共通端子46と端子47Aを介して、摩耗検知用ライン43Aに接続されている。摩耗検知用ライン43Aの導通時には、閉回路10Aに電流が流れるため、摩耗側コイル5Aは対向側コイル7と電磁的に結合可能であるが、摩耗検知用ライン43Aの断線時には、閉回路10Aに電流が流れないため、摩耗側コイル5Aは対向側コイル7と電磁的に結合不能である。他の摩耗検知用ライン43B〜43Cおよび摩耗側コイル5B〜5Cについても同様である。   In the wear side component 2, three closed circuits 10A to 10C are provided corresponding to the three wear detection lines 43A to 43C. In each closed circuit 10A to 10C, a pair of wear side coils 5A to 5C and matching resistors 6A to 6C are installed. For example, the closed circuit 10A includes a wear side coil 5A and a matching resistor 6A, and both ends of the closed circuit 10A are connected to the wear detection line 43A via a common terminal 46 and a terminal 47A of the wear gauge 40. . Since the current flows through the closed circuit 10A when the wear detection line 43A is conductive, the wear side coil 5A can be electromagnetically coupled to the opposing coil 7. However, when the wear detection line 43A is disconnected, the closed circuit 10A is switched to the closed circuit 10A. Since no current flows, the wear side coil 5 </ b> A cannot be electromagnetically coupled to the facing side coil 7. The same applies to the other wear detection lines 43B to 43C and the wear side coils 5B to 5C.

一方、対向側部品3においては、上述の第1の実施形態と同様に1つの閉回路11のみが設けられており、当該閉回路11には、対向側コイル7、交流電源12および電流計測用抵抗13が設置される。上記摩耗側部品2の3つの摩耗側コイル5A〜5Cは、摩耗側部品2の摺動方向に並んで配列されており、対向側部品3の対向側コイル7は、摩耗側部品2の摺動中に3つの摩耗側コイル5A〜5Cに対してそれぞれ対向可能に配置されている。また、閉回路11の電流計測用抵抗13の両端に、計測回路8(図4参照。)が接続されており、閉回路11は当該計測回路8を介して制御装置9に接続されている。これにより、閉回路11の電流計測用抵抗13に流れる電流値を計測した計測信号が、制御装置9の入力端子に入力される。   On the other hand, the opposed component 3 is provided with only one closed circuit 11 as in the first embodiment, and the closed circuit 11 includes the opposed coil 7, the AC power supply 12, and a current measuring device. A resistor 13 is installed. The three wear side coils 5 </ b> A to 5 </ b> C of the wear side component 2 are arranged side by side in the sliding direction of the wear side component 2, and the facing side coil 7 of the facing side component 3 slides on the wear side component 2. It arrange | positions so that it may each oppose with respect to the three wear side coils 5A-5C inside. A measurement circuit 8 (see FIG. 4) is connected to both ends of the current measurement resistor 13 of the closed circuit 11, and the closed circuit 11 is connected to the control device 9 via the measurement circuit 8. As a result, a measurement signal obtained by measuring the current value flowing through the current measuring resistor 13 of the closed circuit 11 is input to the input terminal of the control device 9.

以上のような回路構成により、摩耗側部品2の摺動中に、対向側部品3の対向側コイル7は、摩耗側部品2の各摩耗側コイル5A〜5Cと順次対向してすれ違う。この際、摩耗検知ライン43A〜43Cが断線していなければ、対向側コイル7と各摩耗側コイル5A〜5Cが順次、電磁的に結合し、それぞれの結合時において、対向側部品3の閉回路11に流れる交流電流が一時的に低下する。図示の例では、1回の摺動ストローク中において対向側コイル7が3つの摩耗側コイル5A〜5Cとすれ違うときに、それぞれ1回、合計3回の電流低下が発生する。   With the circuit configuration as described above, during the sliding of the wear side component 2, the facing side coil 7 of the facing side component 3 sequentially passes the respective wear side coils 5A to 5C of the wear side component 2. At this time, if the wear detection lines 43A to 43C are not disconnected, the opposed coil 7 and the worn coils 5A to 5C are sequentially electromagnetically coupled, and at the time of coupling, the closed circuit of the opposed component 3 is closed. 11 temporarily decreases. In the illustrated example, when the opposing coil 7 passes the three wear-side coils 5A to 5C during one sliding stroke, current reduction occurs three times in total, once each.

一方、摩耗検知ライン43A〜43Cの少なくともいずれかが断線している場合、当該断線した摩耗検知ライン43に接続された摩耗側コイル5は、対向側コイル7と電磁的に結合しない。このため、当該摩耗側コイル5と対向側コイル7がすれ違っても、対向側部品3の閉回路11の電流低下が発生しない。例えば、摩耗検知用ライン43Aが断線している場合には、摩耗側コイル5Aと対向側コイル7とがすれ違ったとしても、摩耗側コイル5Aは対向側コイル7と電磁的に結合しないので、閉回路11の電流低下は発生しない。他の摩耗検知用ライン43B〜43Cや摩耗側コイル5B〜5Cについても同様である。   On the other hand, when at least one of the wear detection lines 43 </ b> A to 43 </ b> C is disconnected, the wear side coil 5 connected to the disconnected wear detection line 43 is not electromagnetically coupled to the opposed coil 7. For this reason, even if the said wear side coil 5 and the opposing coil 7 pass, the electric current fall of the closed circuit 11 of the opposing component 3 does not generate | occur | produce. For example, when the wear detection line 43A is disconnected, even if the wear side coil 5A and the opposite side coil 7 pass each other, the wear side coil 5A is not electromagnetically coupled to the opposite side coil 7, so that it is closed. A current drop in the circuit 11 does not occur. The same applies to the other wear detection lines 43B to 43C and the wear side coils 5B to 5C.

したがって、摩耗により断線した摩耗検知ライン43の本数分だけ、閉回路11の電流低下の発生回数が減少する。例えば、摩耗検知ライン43Aが断線し、摩耗検知ライン43B、43Cが導通している場合、1回の摺動ストローク中における閉回路11の電流低下の発生回数は2回である。また、摩耗検知ライン43Aおよび43Bが断線し、摩耗検知ライン43Cが導通している場合、1回の摺動ストローク中における閉回路11の電流低下の発生回数は1回である。そして、摩耗検知ライン43A〜43Cの全てが断線すると、閉回路11の電流低下が発生しなくなる。   Therefore, the number of occurrences of current drop in the closed circuit 11 is reduced by the number of wear detection lines 43 that are disconnected due to wear. For example, when the wear detection line 43A is disconnected and the wear detection lines 43B and 43C are conductive, the number of times the current drop of the closed circuit 11 occurs during one sliding stroke is two. In addition, when the wear detection lines 43A and 43B are disconnected and the wear detection line 43C is conductive, the number of occurrences of current drop in the closed circuit 11 during one sliding stroke is one. When all of the wear detection lines 43A to 43C are disconnected, the current drop in the closed circuit 11 does not occur.

このように、各摩耗側コイル5A〜5Cと対向側コイル7の電磁的な結合による閉回路11の電流低下の発生回数を利用して、摩耗ゲージ40の各摩耗検知用ライン43A〜43Cの断線の有無を、摩耗側部品2から対向側部品3に伝達することができる。したがって、制御装置9は、1回の摺動ストローク中における閉回路11の電流低下の発生回数に基づいて、摩耗検知用ライン43A〜43Cの断線の有無を検知して、摩耗側部品2の摩耗量が、0〜L3の範囲内のどの程度であるかを段階的に検知できる。   As described above, the wear detection lines 43A to 43C of the wear gauge 40 are disconnected by using the number of occurrences of the current drop of the closed circuit 11 due to the electromagnetic coupling between the wear side coils 5A to 5C and the opposed coil 7. Can be transmitted from the wear-side component 2 to the opposite-side component 3. Therefore, the control device 9 detects the presence or absence of disconnection of the wear detection lines 43A to 43C based on the number of times the current drop of the closed circuit 11 occurs during one sliding stroke, and wears the wear side component 2. It is possible to detect step by step how much the amount is in the range of 0 to L3.

上記のように、計測回路8は、閉回路11の電流低下の計測結果を示す計測信号を制御装置9に出力する。摩耗検知用ライン43A〜43Cがいずれも断線していない場合、制御装置9の入力端子には、1回の摺動ストローク中に3回の電流低下を示す計測信号が入力される。当該3回の電流低下は、対向側コイル7が各摩耗検知用ライン43A〜43Cに接続された全ての摩耗側コイル5A〜5Cと電磁的に結合したことを表す。   As described above, the measurement circuit 8 outputs a measurement signal indicating the measurement result of the current drop of the closed circuit 11 to the control device 9. When none of the wear detection lines 43 </ b> A to 43 </ b> C is disconnected, a measurement signal indicating a current drop three times during one sliding stroke is input to the input terminal of the control device 9. The three current drops indicate that the opposing coil 7 is electromagnetically coupled to all the wear side coils 5A to 5C connected to the wear detection lines 43A to 43C.

制御装置9は、上記計測回路8から入力された検知タイミング信号に基づき計測信号の値を検出し、当該検出した値を、予め設定された閾値と比較することで、電流低下の有無を判定する。そして、制御装置9は、1回の摺動ストロークにおける電流低下の発生回数をカウントすることで、3本の摩耗検知用ライン43A〜43Cの断線の有無を判定する。例えば、電流低下の発生回数が3回である場合には、制御装置9は、全ての摩耗検知用ライン43A〜43Cが断線しておらず、摩耗側部品2の摩耗量がL1未満であると判定する。一方、電流低下の発生回数が2回である場合には、制御装置9は、摩耗検知用ライン43Aのみが断線し、その他の摩耗検知用ライン43B、43Cが断線しておらず、摩耗側部品2の摩耗量がL1以上、L2未満であると判定する(図5参照。)。なお、図示はしないが、電流低下の発生回数が1、0である場合も同様にして、制御装置9は、摩耗検知用ライン43A〜43Cの断線の有無と、摩耗量を判定することができる。   The control device 9 detects the value of the measurement signal based on the detection timing signal input from the measurement circuit 8, and compares the detected value with a preset threshold value to determine whether there is a current drop. . And the control apparatus 9 determines the presence or absence of the disconnection of the three wear detection lines 43A-43C by counting the frequency | count of occurrence of the electric current fall in one sliding stroke. For example, when the number of occurrences of the current drop is 3, the control device 9 indicates that all the wear detection lines 43A to 43C are not disconnected and the wear amount of the wear side component 2 is less than L1. judge. On the other hand, when the number of occurrences of the current drop is two times, the control device 9 causes the wear detection line 43A to be disconnected, and the other wear detection lines 43B and 43C are not disconnected. 2 is determined to be greater than or equal to L1 and less than L2 (see FIG. 5). Although not shown, the controller 9 can determine whether or not the wear detection lines 43A to 43C are disconnected and the amount of wear in the same manner when the number of occurrences of current drop is 1 or 0. .

以上のように、制御装置9は、1回の摺動ストローク中における閉回路11の電流低下の発生回数に基づいて、摩耗検知用ライン43A〜43Cの断線の有無を検知することができる。このような対向側部品3の制御装置9によって、摩耗側部品2の摩耗状態を多段階で検知することができる。   As described above, the control device 9 can detect whether or not the wear detection lines 43 </ b> A to 43 </ b> C are disconnected based on the number of occurrences of the current drop of the closed circuit 11 during one sliding stroke. The wear state of the wear side component 2 can be detected in multiple stages by the control device 9 of the facing side component 3 as described above.

また、第1の回路構成例によれば、対向側部品3の摩耗検知用回路(対向側コイル7、交流電源12、閉回路11および計測回路8)が共通化されている。これにより、対向側部品3に摩耗検知用回路を1つだけ設けることによって、次に説明する第2の回路構成例よりも、電子部品数を削減して低コスト化を実現できる。さらに、制御装置9に対する入力が1つで済むので、安価な制御装置を適用でき、適用幅が広がる。   Further, according to the first circuit configuration example, the circuit for detecting wear of the facing part 3 (the facing coil 7, the AC power source 12, the closed circuit 11, and the measuring circuit 8) is shared. As a result, by providing only one wear detection circuit for the facing component 3, it is possible to reduce the number of electronic components and achieve cost reduction compared to the second circuit configuration example described below. Furthermore, since only one input to the control device 9 is required, an inexpensive control device can be applied, and the applicable range is expanded.

[2.3.摩耗検知装置の第2の回路構成例および動作]
次に、図7を参照して、上記摩耗ゲージ40に対応した摩耗検知装置の第2の回路構成例について説明する。図7は、本実施形態に係る摩耗検知装置の第2の回路構成例を示す図である。
[2.3. Second Circuit Configuration Example and Operation of Wear Detection Device]
Next, a second circuit configuration example of the wear detection device corresponding to the wear gauge 40 will be described with reference to FIG. FIG. 7 is a diagram illustrating a second circuit configuration example of the wear detection device according to the present embodiment.

図7に示すように、第2の回路構成例では、摩耗ゲージ40の複数の摩耗検知用ライン43A〜43Cにそれぞれ対応するように、摩耗側部品2に、複数の摩耗検知用回路が設置されるとともに、対向側部品3にも、複数の摩耗検知用回路が設置されている。即ち、第2の回路構成例の摩耗検知装置は、摩耗側部品2に設置される複数対の摩耗側コイル5A〜5Cおよびマッチング抵抗6A〜6Cと、対向側部品3に設置される複数対の対向側コイル7A〜7Cおよび計測回路8A〜8Cとを備える。   As shown in FIG. 7, in the second circuit configuration example, a plurality of wear detection circuits are installed in the wear side component 2 so as to correspond to the plurality of wear detection lines 43A to 43C of the wear gauge 40, respectively. In addition, a plurality of wear detection circuits are also installed in the facing part 3. That is, the wear detection device of the second circuit configuration example includes a plurality of pairs of wear-side coils 5A to 5C and matching resistors 6A to 6C installed on the wear-side component 2, and a plurality of pairs installed on the facing-side component 3. Opposing side coils 7A to 7C and measuring circuits 8A to 8C are provided.

摩耗側部品2においては、3本の摩耗検知用ライン43A〜43Cに対応して、3つの閉回路10A〜10Cが設けられ、各閉回路10A〜10Cには、一対の摩耗側コイル5A〜5Cおよびマッチング抵抗6A〜6Cがそれぞれ設置されている。この摩耗側部品2の回路構成は、上記第1の回路構成例(図6参照。)と同様であるので、詳細説明は省略する。   In the wear side component 2, three closed circuits 10A to 10C are provided corresponding to the three wear detection lines 43A to 43C, and each of the closed circuits 10A to 10C includes a pair of wear side coils 5A to 5C. Matching resistors 6A to 6C are installed. Since the circuit configuration of the wear side component 2 is the same as that of the first circuit configuration example (see FIG. 6), detailed description thereof is omitted.

一方、対向側部品3においては、3本の摩耗検知用ライン43A〜43Cに対応して、3つの閉回路11A〜11Cが設けられており、当該各閉回路11A〜11Cには、対向側コイル7A〜7C、交流電源12A〜12Cおよび電流計測用抵抗13A〜13Cがそれぞれ設置される。各対向側コイル7A〜7Cは摩耗側部品2の摩耗側コイル5A〜5Cにそれぞれ対向可能に配置されている。図示の例では、摩耗側コイル5Aと対向側コイル7Aが対向すると同時に、摩耗側コイル5Bと対向側コイル7Bが対向し、摩耗側コイル5Cと対向側コイル7Cが対向するようになっている。   On the other hand, in the opposite side component 3, three closed circuits 11A to 11C are provided corresponding to the three wear detection lines 43A to 43C, and each of the closed circuits 11A to 11C includes an opposite side coil. 7A to 7C, AC power supplies 12A to 12C, and current measuring resistors 13A to 13C are installed, respectively. The opposing coils 7 </ b> A to 7 </ b> C are arranged to be able to face the wear side coils 5 </ b> A to 5 </ b> C of the wear side component 2, respectively. In the illustrated example, the wear side coil 5A and the facing coil 7B face each other, and at the same time, the wear side coil 5B and the facing coil 7B face each other, and the wear side coil 5C and the facing coil 7C face each other.

また、各閉回路11A〜11Cの電流計測用抵抗13A〜13Cの両端にはそれぞれ、計測回路8A〜8Cが接続されており、各閉回路11A〜11Cは当該各計測回路8A〜8Cを介して独立的に制御装置9に接続されている。これにより、各閉回路11A〜11Cの電流計測用抵抗13A〜13Cに流れる電流値を計測した計測信号が、制御装置9の入力端子に入力される。   Further, measurement circuits 8A to 8C are connected to both ends of the current measurement resistors 13A to 13C of the closed circuits 11A to 11C, respectively, and the closed circuits 11A to 11C are connected via the measurement circuits 8A to 8C, respectively. It is connected to the control device 9 independently. Thereby, a measurement signal obtained by measuring a current value flowing through the current measurement resistors 13A to 13C of the closed circuits 11A to 11C is input to the input terminal of the control device 9.

以上のような回路構成により、摩耗側部品2の摺動中に、対向側部品3の各対向側コイル7A〜7Cは、摩耗側部品2の各摩耗側コイル5A〜5Cと同時に対向してすれ違う。この際、摩耗検知ライン43A〜43Cが断線していなければ、3対の対向側コイル7A〜7Cと各摩耗側コイル5A〜5Cとが同時に電磁的に結合し、それぞれの結合時において、対向側部品3の閉回路11A〜11Cに流れる交流電流が一時的に低下する。   With the circuit configuration as described above, during the sliding of the wear side component 2, the facing side coils 7A to 7C of the facing side component 3 pass each other simultaneously with the wear side coils 5A to 5C of the wear side component 2. . At this time, if the wear detection lines 43A to 43C are not disconnected, the three pairs of opposed coils 7A to 7C and the wear-side coils 5A to 5C are electromagnetically coupled at the same time. The alternating current flowing through the closed circuits 11A to 11C of the component 3 temporarily decreases.

一方、摩耗検知ライン43A〜43Cの少なくともいずれかが断線している場合、当該断線した摩耗検知ライン43に接続された摩耗側コイル5は、対応する対向側コイル7と電磁的に結合しないので、当該対向側コイル7を含む閉回路11の電流低下が発生しない。例えば、摩耗検知用ライン43Aが断線している場合には、摩耗側コイル5Aと対向側コイル7Aとがすれ違ったとしても、摩耗側コイル5Aは対向側コイル7Aと電磁的に結合しないので、閉回路11Aの電流低下は発生しない。他の摩耗検知用ライン43B〜43Cや摩耗側コイル5B〜5C、閉回路11B〜11Cについても同様である。   On the other hand, when at least one of the wear detection lines 43A to 43C is disconnected, the wear side coil 5 connected to the disconnected wear detection line 43 is not electromagnetically coupled to the corresponding opposing coil 7. The current drop of the closed circuit 11 including the counter coil 7 does not occur. For example, when the wear detection line 43A is disconnected, even if the wear side coil 5A and the opposite side coil 7A pass each other, the wear side coil 5A is not electromagnetically coupled to the opposite side coil 7A. The current drop of the circuit 11A does not occur. The same applies to the other wear detection lines 43B to 43C, the wear side coils 5B to 5C, and the closed circuits 11B to 11C.

かかる回路構成においては、3つの対向側コイル7A〜7Cと3つの摩耗側コイル5A〜5Cをそれぞれ対応させ、同時に対向する3対の対向側コイル7と摩耗側コイル5を用いて、各摩耗検知ライン43A〜43Cの断線の有無を個別に検出することが好ましい。つまり、一対の摩耗側コイル5Aと対向側コイル7Aで摩耗検知ライン43Aの断線の有無を検知すると同時に、一対の摩耗側コイル5Bと対向側コイル7Bで摩耗検知ライン43Bの断線の有無を検知し、一対の摩耗側コイル5Cと対向側コイル7Cで摩耗検知ライン43Cの断線の有無を検知すればよい。これにより、摩耗側部品2の摺動ストロークが短い場合や、設置スペースの制約により摩耗側コイル5A〜5Cを摺動方向に対して垂直方向に配列する場合などであっても、全ての摩耗検知ライン43A〜43Cの断線の有無を同時に検知可能となる。なお、図7に示す第2の回路構成例でも、第1の回路構成例と同様に、3つの対向側コイル7A〜7Cのいずれか1つを用いて、摩耗側コイル5A〜5Cの全てに対して順次、電磁的に結合させ、3本の摩耗検知ライン43A〜43Cの全ての断線の有無を検出することも可能である。   In such a circuit configuration, each of the three opposed coils 7A to 7C and the three worn coils 5A to 5C are made to correspond to each other, and each pair of the opposed coils 7 and the worn coils 5 that are simultaneously opposed to each other is used to detect each wear. It is preferable to individually detect the presence or absence of disconnection of the lines 43A to 43C. That is, the pair of wear side coils 5A and the counter side coil 7A detect the presence or absence of disconnection of the wear detection line 43A, and the pair of wear side coils 5B and the counter side coil 7B detect the presence or absence of disconnection of the wear detection line 43B. The presence or absence of disconnection of the wear detection line 43C may be detected by the pair of wear side coils 5C and the opposed side coil 7C. Accordingly, even when the sliding stroke of the wear-side component 2 is short or when the wear-side coils 5A to 5C are arranged in a direction perpendicular to the sliding direction due to installation space restrictions, all wear detection is performed. The presence or absence of disconnection of the lines 43A to 43C can be detected simultaneously. In the second circuit configuration example shown in FIG. 7 as well, in the same way as in the first circuit configuration example, any one of the three opposing coils 7A to 7C is used, and all of the wear side coils 5A to 5C are used. On the other hand, it is also possible to detect the presence or absence of disconnection of all three wear detection lines 43A to 43C by electromagnetically coupling sequentially.

以上のような回路構成により、摩耗側部品2の摺動中に、対向側部品3の各対向側コイル7A〜7Cがそれぞれ、摩耗側部品2の各摩耗側コイル5A〜5Cと対向してすれ違う。この際、摩耗検知ライン43A〜43Cが断線していなければ、各対向側コイル7A〜7Cと各摩耗側コイル5A〜5Cが同時に電磁的に結合し、対向側部品3の閉回路11A〜11Cに流れる交流電流が一時的に低下する。   With the circuit configuration as described above, during the sliding of the wear side component 2, the facing side coils 7A to 7C of the facing side component 3 respectively pass each facing the wear side coils 5A to 5C of the wear side component 2. . At this time, if the wear detection lines 43A to 43C are not disconnected, the opposing coils 7A to 7C and the wear coils 5A to 5C are electromagnetically coupled simultaneously to the closed circuits 11A to 11C of the opposing component 3. The flowing alternating current temporarily decreases.

一方、摩耗検知ライン43A〜43Cの少なくともいずれかが断線している場合、当該断線した摩耗検知ライン43に接続された摩耗側コイル5は、対向側コイル7A〜7Cと電磁的に結合しない。このため、当該摩耗側コイル5と対向側コイル7A〜7Cがすれ違っても、対向側部品3の閉回路11の電流低下が発生しない。例えば、摩耗検知用ライン43Aが断線している場合には、摩耗側コイル5Aと対向側コイル7Aとがすれ違ったとしても、摩耗側コイル5Aは対向側コイル7Aと電磁的に結合しないので、閉回路11の電流低下は発生しない。他の摩耗検知用ライン43B〜43Cや摩耗側コイル5B〜5Cについても同様である。   On the other hand, when at least one of the wear detection lines 43A to 43C is disconnected, the wear side coil 5 connected to the disconnected wear detection line 43 is not electromagnetically coupled to the opposed coils 7A to 7C. For this reason, even if the said wear side coil 5 and opposing side coil 7A-7C pass each other, the electric current fall of the closed circuit 11 of the opposing side component 3 does not generate | occur | produce. For example, when the wear detection line 43A is disconnected, even if the wear side coil 5A and the opposite side coil 7A pass each other, the wear side coil 5A is not electromagnetically coupled to the opposite side coil 7A. A current drop in the circuit 11 does not occur. The same applies to the other wear detection lines 43B to 43C and the wear side coils 5B to 5C.

したがって、摩耗により断線した摩耗検知ライン43に対応する閉回路11には、電流低下が発生しない。例えば、摩耗検知ライン43Aが断線し、摩耗検知ライン43B、43Cが導通している場合、3対の摩耗側コイル5A〜5Cと対向側コイル7A〜7Cとが同時に対向したとき、摩耗検知ライン43Aに対応する閉回路11Aには、電流低下が発生しないが、摩耗検知ライン43B、43Cに対応する閉回路11B、11Cには、電流低下が発生する。よって、制御装置9は、各摩耗検知ライン43A〜43Cに対応する閉回路11A〜11Cの電流低下の発生の有無を検知することで、各摩耗検知ライン43A〜43Cの断線の有無を検知可能である。   Therefore, no current drop occurs in the closed circuit 11 corresponding to the wear detection line 43 that is disconnected due to wear. For example, when the wear detection line 43A is disconnected and the wear detection lines 43B and 43C are conductive, when the three pairs of wear side coils 5A to 5C and the facing side coils 7A to 7C face each other at the same time, the wear detection line 43A No current drop occurs in the closed circuit 11A corresponding to, but a current drop occurs in the closed circuits 11B and 11C corresponding to the wear detection lines 43B and 43C. Therefore, the control device 9 can detect the presence or absence of disconnection of each of the wear detection lines 43A to 43C by detecting the presence or absence of the current drop of the closed circuits 11A to 11C corresponding to the wear detection lines 43A to 43C. is there.

なお、上記のような摩耗検知ライン43Aのみが断線している場合であっても、各対向側コイル7A〜7Cは、断線していない摩耗検知ライン43B、43Cに接続された摩耗側コイル5B、5Cと順次すれ違うので、1回の摺動ストローク中において、各閉回路11A〜11Cには2回の電流低下が発生する。また、摩耗検知ライン43Aおよび43Bが断線し、摩耗検知ライン43Cが導通している場合、1回の摺動ストローク中における各閉回路11A〜11Cの電流低下の発生回数は1回である。したがって、第1の回路構成例と同様に、制御装置9は、各閉回路11A〜11Cの電流低下の発生回数に基づいて、摩耗検知用ライン43A〜43Cの断線の有無を検知することも可能である。   Even if only the wear detection line 43A as described above is disconnected, the opposing coils 7A to 7C are connected to the wear detection lines 43B and 43C that are not disconnected. Since the current passes sequentially from 5C, current drops occur twice in each of the closed circuits 11A to 11C during one sliding stroke. In addition, when the wear detection lines 43A and 43B are disconnected and the wear detection line 43C is conductive, the number of occurrences of current drop in each of the closed circuits 11A to 11C during one sliding stroke is one. Therefore, similarly to the first circuit configuration example, the control device 9 can also detect the presence or absence of disconnection of the wear detection lines 43A to 43C based on the number of occurrences of the current drop in each of the closed circuits 11A to 11C. It is.

以上のように、複数対の摩耗側コイル5A〜5Cと対向側コイル7A〜7Cの電磁的な結合による閉回路11A〜11Cの電流低下の有無、或いは発生回数を利用して、摩耗ゲージ40の各摩耗検知用ライン43A〜43Cの断線の有無を、摩耗側部品2から対向側部品3に伝達することができる。したがって、制御装置9は、1回の摺動ストローク中における閉回路11A〜11Cの電流低下の有無、或いは閉回路11の電流低下の発生回数に基づいて、摩耗検知用ライン43A〜43Cの断線の有無を検知することができる。よって、制御装置9は、摩耗側部品2の摩耗量が、0〜L3の範囲内のどの程度であるかを段階的に検知でき、摩耗側部品2の摩耗状態を多段階で検知することができる。   As described above, the wear gauge 40 of the wear gauge 40 is utilized by using the presence or absence of the current drop of the closed circuits 11A to 11C due to the electromagnetic coupling of the plurality of pairs of wear side coils 5A to 5C and the counter side coils 7A to 7C. The presence / absence of disconnection of each of the wear detection lines 43A to 43C can be transmitted from the wear side component 2 to the facing side component 3. Therefore, the control device 9 determines whether the wear detection lines 43A to 43C are disconnected based on the presence or absence of a current drop in the closed circuits 11A to 11C during one sliding stroke or the number of occurrences of the current drop in the closed circuit 11. The presence or absence can be detected. Therefore, the control device 9 can detect stepwise how much the wear amount of the wear side component 2 is in the range of 0 to L3, and can detect the wear state of the wear side component 2 in multiple steps. it can.

さらに、第2の回路構成例によれば、複数の摩耗検知ライン43A〜43Cに対応する複数対の摩耗側コイル5A〜5Cおよび対向側コイル7A〜7Cを設置しているので、各摩耗検知ライン43A〜43Cの断線の有無に関する情報を同時に、摩耗側部品2から対向側部品3に伝達することができる。さらに、摩耗側部品2の摺動ストロークが短い場合や、設置スペースの制約により、摩耗側部品2の対向面22に沿って複数の摩耗側コイル5A〜5Cを摺動方向に配列できない場合であっても、各摩耗検知ライン43A〜43Cの断線の有無に関する情報を摩耗側部品2から対向側部品3に好適に伝達できる。   Furthermore, according to the second circuit configuration example, a plurality of pairs of wear side coils 5A to 5C and counter side coils 7A to 7C corresponding to the plurality of wear detection lines 43A to 43C are installed. Information regarding the presence or absence of disconnection of 43A to 43C can be transmitted from the wear-side component 2 to the facing-side component 3 at the same time. Furthermore, when the sliding stroke of the wear-side component 2 is short, or when the plurality of wear-side coils 5A to 5C cannot be arranged in the sliding direction along the facing surface 22 of the wear-side component 2 due to installation space restrictions. However, the information regarding the presence or absence of disconnection of each of the wear detection lines 43 </ b> A to 43 </ b> C can be suitably transmitted from the wear side component 2 to the facing side component 3.

[2.4.効果]
以上説明したように、第2の実施形態の摩耗検知装置によれば、第1の実施形態に係る効果に加えて、以下の効果がある。
[2.4. effect]
As described above, according to the wear detection device of the second embodiment, in addition to the effects according to the first embodiment, the following effects can be obtained.

即ち、本実施形態によれば、摩耗ゲージ40に複数の摩耗検知用ライン43A〜43Cを設置するとともに、摩耗側部品2に、各摩耗検知用ライン43A〜43Cに接続される複数の摩耗側コイル5A〜5Cを設ける。また、対向側部品3には、複数の摩耗側コイル5A〜5Cに対して順次、電磁的に結合可能な1つの対向側コイル7を設けるか、または摩耗側コイル5A〜5Cに対して同時に電磁的に結合可能な複数の対向側コイル7A〜7Cを設ける。そして、摩耗側部品2の摩耗に伴って摩耗ゲージ40が摩耗し、摩耗検知用ライン43A〜43Cが順次断線したときに、摩耗側コイル5A〜5Cと対向側コイル7(7A〜7C)の電磁的結合の有無を利用して、当該断線を表す情報を、摩耗側部品2から対向側部品3に伝達する。これにより、制御装置9は、上記電磁的結合による閉回路11の電流低下の有無、或いは、電流低下の有無の発生回数に基づいて、摩耗検知用ライン43A〜43Cの断線の有無を検知することができる。   That is, according to the present embodiment, a plurality of wear detection lines 43A to 43C are installed on the wear gauge 40, and a plurality of wear side coils connected to the wear side parts 2 are connected to the wear detection lines 43A to 43C. 5A-5C are provided. Further, the opposing component 3 is provided with one opposing coil 7 that can be electromagnetically coupled sequentially to the plurality of wear side coils 5A to 5C, or simultaneously electromagnetic to the wear side coils 5A to 5C. A plurality of opposed coils 7A to 7C that can be coupled to each other are provided. When the wear gauge 40 is worn with the wear of the wear side component 2 and the wear detection lines 43A to 43C are sequentially disconnected, the electromagnetic waves of the wear side coils 5A to 5C and the facing side coil 7 (7A to 7C) Information indicating the disconnection is transmitted from the wear-side component 2 to the facing-side component 3 by using the presence or absence of the mechanical coupling. Thereby, the control apparatus 9 detects the presence or absence of the disconnection of the wear detection lines 43A to 43C based on the presence or absence of the current drop in the closed circuit 11 due to the electromagnetic coupling or the number of occurrences of the current drop. Can do.

したがって、摩耗側部品2と対向側部品3を複数の配線等で電気的に接続しなくても、対向側部品3の制御装置9は、摩耗側部品2の摩耗量を多段階で適切に検知することができる。よって、摩耗側部品2の摩耗量の変化を段階的に把握できるため、摩耗量の変化の傾向を把握でき、摩耗側部品2の余寿命と最適なメンテナンスの時期を予測することが可能となる。   Therefore, even if the wear-side component 2 and the facing-side component 3 are not electrically connected by a plurality of wirings, the control device 9 for the facing-side component 3 appropriately detects the wear amount of the wear-side component 2 in multiple stages. can do. Therefore, since the change of the wear amount of the wear side component 2 can be grasped step by step, the tendency of the wear amount change can be grasped, and the remaining life of the wear side component 2 and the optimum maintenance time can be predicted. .

[3.第3の実施形態]
次に、本発明の第3の実施形態に係る摩耗検知装置について説明する。第3の実施形態に係る摩耗検知装置は、上記第1の実施形態と比べて、摩耗側コイルおよび対向側コイルの配置が相違し、その他の機能構成は上記第1の実施形態と同様であるので、その詳細説明は省略する。
[3. Third Embodiment]
Next, a wear detection device according to a third embodiment of the present invention will be described. The wear detection device according to the third embodiment is different from the first embodiment in the arrangement of the wear side coil and the counter side coil, and other functional configurations are the same as those in the first embodiment. Therefore, the detailed description is abbreviate | omitted.

上述した第1の実施形態では、図2に示すように、摩耗側コイル5は、摩耗側部品2の摺動方向と平行な対向面22(摺動面21)に沿って配置され、および対向側コイル7も、当該摺動方向と平行な対向面32(摺動面31)に沿って配置されている。ところが、摩耗側部品2の摺動中は、対向面22と対向面32が摺動方向に相対移動するため、摩耗側コイル5と対向側コイル7も摺動方向に相対移動する。したがって、摩耗側部品2が高速で摺動する場合には、コイル間の電磁的な結合を瞬時に行うことが要求されるので、計測のタイミングを取ることが困難であるとともに、計測時間を短時間で行わなければならず、計測精度を向上し難いという問題があった。   In the first embodiment described above, as shown in FIG. 2, the wear side coil 5 is arranged along the facing surface 22 (sliding surface 21) parallel to the sliding direction of the wear side component 2, and the facing side coil 5. The side coil 7 is also disposed along the facing surface 32 (sliding surface 31) parallel to the sliding direction. However, since the opposed surface 22 and the opposed surface 32 move relatively in the sliding direction while the wear-side component 2 slides, the wear-side coil 5 and the opposed coil 7 also move relatively in the sliding direction. Therefore, when the wear-side component 2 slides at a high speed, it is required to instantaneously perform electromagnetic coupling between the coils, so that it is difficult to take measurement timing and shorten the measurement time. There was a problem that it was difficult to improve measurement accuracy because it had to be done in time.

そこで、第3の実施形態では、かかる問題を解決するために、摩耗側部品2における摩耗側コイル5の配置と、対向側部品3における対向側コイル7の配置を変更したことを特徴とする。以下に、第3の実施形態に係る摩耗検知装置の構成について詳述する。   Therefore, the third embodiment is characterized in that the arrangement of the wear-side coil 5 in the wear-side component 2 and the arrangement of the opposed-side coil 7 in the opposed-side component 3 are changed in order to solve this problem. Below, the structure of the abrasion detection apparatus which concerns on 3rd Embodiment is explained in full detail.

[3.2.摩耗検知装置の構成]
まず、図8を参照して、本発明の第3の実施形態に係る摩耗検知装置の全体構成について説明する。図8は、本実施形態に係る摩耗検知装置の回路構成を示す図である。なお、図8(a)は、摩耗側部品2が摺動ストロークの端部に移動して、一時停止した状態を示し、図8(b)は、摩耗側部品2が摺動ストロークの中央付近で移動中の状態を示す。
[3.2. Configuration of wear detection device]
First, with reference to FIG. 8, the overall configuration of a wear detection apparatus according to the third embodiment of the present invention will be described. FIG. 8 is a diagram illustrating a circuit configuration of the wear detection device according to the present embodiment. 8A shows a state where the wear side component 2 has moved to the end of the sliding stroke and is temporarily stopped, and FIG. 8B shows the wear side component 2 near the center of the sliding stroke. Indicates the moving state.

図8に示すように、第3の実施形態に係る摩耗検知装置では、摩耗側コイル5と対向側コイル7が電磁的に結合する箇所を、摩耗側部品2の摺動方向(図8の上下方向)と平行な対向面22、32(摩耗側部品2の摺動ストロークの途中)ではなく、当該摺動方向と垂直な対向面23、33(即ち、摩耗側部品2の摺動ストロークの端部)に配置する。   As shown in FIG. 8, in the wear detection device according to the third embodiment, the place where the wear side coil 5 and the opposed coil 7 are electromagnetically coupled is defined as the sliding direction of the wear side component 2 (up and down in FIG. 8). Direction) and opposed surfaces 22 and 32 (in the middle of the sliding stroke of the wear-side component 2), but opposed surfaces 23 and 33 perpendicular to the sliding direction (that is, the end of the sliding stroke of the wear-side component 2) Part).

このために、摩耗側部品2の摺動方向の一側端部と対向する対向部34が、対向側部品3に設けられている。この対向側部品3の対向部34は、対向側部品3の本体部から摩耗側部品2側に向けて突出形成された部分である。対向部34は、摺動する摩耗側部品2と衝突せず、かつ、摺動ストロークの端部に移動した摩耗側部品2と近接する位置に設置される。この対向側部品3の対向部34の対向面33は、摺動方向に対して垂直であり、摩耗側部品2の摺動方向の一側端部の対向面23と対向する。そして、かかる対向部34の対向面33に沿って対向側コイル7が配置される。   For this purpose, the facing part 3 is provided with a facing part 34 that faces one end part in the sliding direction of the wear side part 2. The facing portion 34 of the facing side component 3 is a portion formed to protrude from the main body portion of the facing side component 3 toward the wear side component 2 side. The facing portion 34 is installed at a position that does not collide with the sliding wear-side component 2 and is close to the wear-side component 2 that has moved to the end of the sliding stroke. The facing surface 33 of the facing portion 34 of the facing-side component 3 is perpendicular to the sliding direction and faces the facing surface 23 at one end of the sliding direction of the wear-side component 2. The opposing coil 7 is disposed along the opposing surface 33 of the opposing part 34.

一方、摩耗側部品2には、摺動方向の一側端部の対向面23に沿って摩耗側コイル5が配置される。このとき、摩耗側コイル5と対向側コイル7とが摺動方向に対向するように配置される。かかる摩耗側コイル5およびマッチング抵抗6は、閉回路10により摩耗ゲージ4に接続されている。また、上記摩耗側コイル5のコイル軸と対向側コイル7のコイル軸とが相互に平行になるように摩耗側コイル5と対向側コイル7が配置される。また、コイル間の電磁的な結合を好適に実現するため、摩耗側コイル5のコイル軸および対向側コイル7のコイル軸が、摩耗側部品2の摺動方向に対して垂直であることが好ましいが、かかる例に限定されず、これらコイル軸が摺動方向に平行であってもよい。   On the other hand, the wear side coil 2 is provided with the wear side coil 5 along the facing surface 23 at one end portion in the sliding direction. At this time, it arrange | positions so that the wear side coil 5 and the opposing coil 7 may oppose a sliding direction. The wear side coil 5 and the matching resistor 6 are connected to the wear gauge 4 by a closed circuit 10. Further, the wear side coil 5 and the facing side coil 7 are arranged so that the coil axis of the wear side coil 5 and the coil axis of the facing side coil 7 are parallel to each other. Further, in order to suitably realize electromagnetic coupling between the coils, it is preferable that the coil axis of the wear side coil 5 and the coil axis of the opposed side coil 7 are perpendicular to the sliding direction of the wear side component 2. However, the present invention is not limited to this example, and these coil axes may be parallel to the sliding direction.

かかる配置により、摩耗側部品2の摺動中に、当該摩耗側部品2が摺動ストロークの端部に移動して一次停止したときに(図8(a)参照。)、摩耗側部品2の一側端部の対向面23と対向側部品3の対向部34の対向面33とが、最も接近した状態で相互に対向する。このとき、摩耗側コイル5は対向側コイル7に接近し、摩耗検知用ライン43が断線していない場合には、摩耗側コイル5と対向側コイル7が電磁的に結合して、閉回路11の電流計測用抵抗13に流れる電流が低下する。   With this arrangement, when the wear-side part 2 moves to the end of the sliding stroke and temporarily stops during the sliding of the wear-side part 2 (see FIG. 8A), the wear-side part 2 The facing surface 23 at the one end and the facing surface 33 of the facing portion 34 of the facing part 3 face each other in the closest state. At this time, the wear side coil 5 approaches the counter side coil 7, and when the wear detection line 43 is not disconnected, the wear side coil 5 and the counter side coil 7 are electromagnetically coupled to each other to form a closed circuit 11. Current flowing in the current measuring resistor 13 decreases.

したがって、摺動ストロークの端部において摩耗側部品2の移動速度が最も遅くなるときに、摩耗側コイル5と対向側コイル7を最も近接させた状態で対向させることができるので、これらコイル間での電磁的な結合を的確に実現することができる。よって、計測タイミングが取りやすくなり、比較的長い計測時間を確保できるので、対向側部品3から摩耗側部品2の摩耗量状態の計測を容易かつ正確に行うことが可能となる。さらに、摩耗側部品2の摺動面21や摩耗ゲージ4の摩耗粉が、摩耗側コイル5およびマッチング抵抗6の近傍に到達しにくくなるので、当該摩耗粉が摩耗側コイル5と対向側コイル7の電磁的な結合を妨害することを抑制して、当該電磁的な結合を安定的に実現できる。   Therefore, when the moving speed of the wear side component 2 becomes the slowest at the end of the sliding stroke, the wear side coil 5 and the counter side coil 7 can be opposed to each other in the closest state. The electromagnetic coupling can be realized accurately. Therefore, it becomes easy to take the measurement timing, and a relatively long measurement time can be secured. Therefore, it is possible to easily and accurately measure the wear amount state of the wear side component 2 from the facing side component 3. Furthermore, since the wear powder on the sliding surface 21 of the wear side component 2 and the wear gauge 4 does not easily reach the vicinity of the wear side coil 5 and the matching resistor 6, the wear powder does not reach the wear side coil 5 and the counter side coil 7. The electromagnetic coupling can be suppressed, and the electromagnetic coupling can be stably realized.

なお、図8の例では、対向面23、33が摺動方向に対して垂直であったが、かかる例に限定されない。例えば、対向面23、33が摺動方向に対して傾斜していても、上記と同様に電磁的に結合することが可能である。   In addition, in the example of FIG. 8, although the opposing surfaces 23 and 33 were perpendicular | vertical with respect to the sliding direction, it is not limited to this example. For example, even when the opposing surfaces 23 and 33 are inclined with respect to the sliding direction, they can be electromagnetically coupled in the same manner as described above.

また、図8の例では、摩耗側部品2の一側端部の対向面23に摩耗側コイル5を配置したが、かかる例に限定されない。例えば、摩耗側部品2の一側端部の近傍の対向面22に摩耗側コイル5を配置し、これに対向するようにして対向側部品3の対向面32に対向側コイル7を配置してもよい。これによっても、摩耗側部品2の移動速度が遅くなる箇所で、これら素子を対向させることができるので、計測タイミングや計測時間に関して、ほぼ同様の効果が得られる。   Further, in the example of FIG. 8, the wear side coil 5 is disposed on the facing surface 23 at one end of the wear side component 2, but the present invention is not limited to this example. For example, the wear side coil 5 is disposed on the facing surface 22 near one end of the wear side component 2, and the facing coil 7 is disposed on the facing surface 32 of the facing side component 3 so as to face this. Also good. Also by this, since these elements can be made to oppose in the place where the moving speed of the wear side component 2 becomes slow, the substantially same effect is acquired regarding measurement timing and measurement time.

また、図8の例では、摩耗ゲージ4には摩耗検知用ライン43を1本だけ設けたが、かかる例に限定されない。第2の実施形態の摩耗ゲージ40のように複数本の摩耗検知用ライン43A〜43Cを設け、各摩耗検知用ライン43A〜43Cに接続される複数の摩耗検知用回路を、摩耗側部品2の一側端部に設けてもよい。これにより、摩耗側部品2の摩耗量を多段階で検知可能となる。   In the example of FIG. 8, the wear gauge 4 is provided with only one wear detection line 43, but the present invention is not limited to this example. As in the wear gauge 40 of the second embodiment, a plurality of wear detection lines 43A to 43C are provided, and a plurality of wear detection circuits connected to the wear detection lines 43A to 43C are connected to the wear side component 2. You may provide in one side edge part. Thereby, the wear amount of the wear side component 2 can be detected in multiple stages.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this embodiment. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Is done.

例えば、上述した実施形態では、摩耗検知装置の具体的構成について説明したが、摩耗検知装置を用い、摩耗側コイルが対向側コイルに対して摺動方向に接近または離隔したときの対向側コイルを含む対向側閉回路に流れる電流を検出し、検出した電流に基づいて摩耗ゲージの摩耗状態を検知する摩耗検知方法も提供される。また、摩耗検知装置の各構成要素に基づく処理や動作は当該摩耗検知方法にも適用される。   For example, in the above-described embodiment, the specific configuration of the wear detection device has been described. However, when the wear detection device is used and the wear side coil approaches or separates in the sliding direction with respect to the counter side coil, There is also provided a wear detection method for detecting a current flowing through the opposite closed circuit, and detecting a wear state of the wear gauge based on the detected current. Further, the processing and operation based on each component of the wear detection device are also applied to the wear detection method.

本発明は、産業機械の摺動部の摩耗を検知する摩耗検知装置および摩耗検知方法に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for a wear detection device and a wear detection method for detecting wear of a sliding portion of an industrial machine.

1 …摺動部
2 …摩耗側部品
3 …対向側部品
4、40 …摩耗ゲージ
5 …摩耗側コイル
6 …マッチング抵抗
7 …対向側コイル
8 …計測回路
9 …制御装置
10、11 …閉回路
12 …交流電源
13 …電流計測用抵抗
21、31 …摺動面
22、32 …対向面
23、33 …対向面
34 …対向部
41 …先端部
41a …先端面
42 …プリントライン
43 …摩耗検知用ライン
44 …端子
45 …共通プリントライン
46 …共通端子
47 …端子
81 …整流回路
82 …コンパレータ
83 …遅延回路
84 …コンパレータ
100 …レシプロコンプレッサ
101 …シリンダ
102 …ピストン
103 …ピストンロッド
104 …ピストンリング
105 …プルリング
106 …吸入弁
107 …排出弁
DESCRIPTION OF SYMBOLS 1 ... Sliding part 2 ... Wear side part 3 ... Opposite side part 4, 40 ... Wear gauge 5 ... Wear side coil 6 ... Matching resistance 7 ... Opposite side coil 8 ... Measuring circuit 9 ... Control apparatus 10, 11 ... Closed circuit 12 ... AC power supply 13 ... Current measurement resistors 21 and 31 ... Sliding surfaces 22 and 32 ... Opposing surfaces 23 and 33 ... Opposing surfaces 34 ... Opposing portions 41 ... Tip portions 41a ... Tip surfaces 42 ... Print lines 43 ... Wear detection lines 44 ... terminal 45 ... common print line 46 ... common terminal 47 ... terminal 81 ... rectifier circuit 82 ... comparator 83 ... delay circuit 84 ... comparator 100 ... reciprocating compressor 101 ... cylinder 102 ... piston 103 ... piston rod 104 ... piston ring 105 ... pull ring 106 ... Suction valve 107 ... Drain valve

Claims (4)

対向側部品との摺動に伴う摩耗側部品の摩耗を検知する摩耗検知装置において、
前記摩耗側部品に設けられ、前記摩耗側部品の摺動面に沿って配置された先端部に摩耗検知用ラインが設けられた摩耗ゲージと、
前記対向側部品に設けられる対向側コイルと、
前記摩耗側部品に設けられ、前記摩耗検知用ラインに接続され、前記摩耗側部品の摺動に伴って前記対向側コイルに対して摺動方向に接近または離隔する摩耗側コイルと、
前記対向側部品に設けられ、前記対向側コイルを含む対向側閉回路に流れる電流に基づいて前記摩耗ゲージの摩耗状態を検知する制御装置と、
を備えることを特徴とする摩耗検知装置。
In the wear detection device that detects the wear of the wear side part accompanying the sliding with the opposite side part,
A wear gauge provided on the wear side part and provided with a wear detection line at a tip disposed along the sliding surface of the wear side part;
A counter coil provided in the counter component;
A wear-side coil provided on the wear-side component, connected to the wear detection line, and approaching or separating in a sliding direction with respect to the opposed coil as the wear-side component slides;
A control device for detecting a wear state of the wear gauge based on a current provided in the facing part and flowing in a facing closed circuit including the facing coil;
A wear detection device comprising:
前記摩耗側コイルのコイル軸および前記対向側コイルのコイル軸は、前記摩耗側部品の摺動方向に対して平行であることを特徴とする請求項1に記載の摩耗検知装置。   The wear detecting device according to claim 1, wherein a coil axis of the wear side coil and a coil axis of the counter coil are parallel to a sliding direction of the wear side component. 前記対向側閉回路は、交流電源と電流計測用抵抗をさらに含み、
前記摩耗検知装置は、
前記対向側閉回路の前記電流計測用抵抗に流れる交流電流を直流電流に整流する整流回路と、
前記整流回路により整流された前記直流電流に対応する直流電圧を基準値と比較し、当該比較結果を示す計測信号を前記制御装置に出力するコンパレータと、
前記直流電圧を所定時間だけ遅延させることにより、前記制御装置による検出タイミングを示す検出タイミング信号を生成する遅延回路と、
をさらに備え、
前記制御装置は、前記検出タイミング信号が示す検出タイミングにおける前記計測信号に基づいて、前記摩耗ゲージの摩耗状態を検知することを特徴とする請求項1または2に記載の摩耗検知装置。
The opposite closed circuit further includes an AC power source and a current measurement resistor,
The wear detector is
A rectifier circuit that rectifies an alternating current flowing through the current measuring resistor of the opposite side closed circuit into a direct current;
A comparator that compares a DC voltage corresponding to the DC current rectified by the rectifier circuit with a reference value, and outputs a measurement signal indicating the comparison result to the control device;
A delay circuit that generates a detection timing signal indicating a detection timing by the control device by delaying the DC voltage by a predetermined time;
Further comprising
The wear detection device according to claim 1, wherein the control device detects a wear state of the wear gauge based on the measurement signal at a detection timing indicated by the detection timing signal.
対向側部品に設けられる対向側コイルと、該対向側部品との摺動に伴って摩耗する摩耗側部品に設けられ、該摩耗側部品の摺動面に沿って配置された先端部に摩耗検知用ラインが設けられた摩耗ゲージと、該摩耗側部品に設けられ、該摩耗検知用ラインに接続され、該摩耗側部品の摺動に伴って該対向側コイルに対して摺動方向に接近または離隔する摩耗側コイルと、により該摩耗側部品の摩耗を検知する摩耗検知方法であって、
前記摩耗側コイルが前記対向側コイルに対して摺動方向に接近または離隔したときの前記対向側コイルを含む対向側閉回路に流れる電流を検出し、
前記検出した電流に基づいて前記摩耗ゲージの摩耗状態を検知することを特徴とする摩耗検知方法。
Wear detection at the tip of the facing coil provided along the sliding surface of the wear-side component, provided on the wear-side component that wears as the counter-side coil slides on the facing-side component. A wear gauge provided with a work line, and a wear gauge provided on the wear side part, connected to the wear detection line and approaching the opposing coil in the sliding direction as the wear side part slides. A wear detection method for detecting wear of the wear side part by a wear side coil separated from the wear side coil,
Detecting a current flowing in a counter-side closed circuit including the counter-side coil when the wear-side coil approaches or separates in a sliding direction with respect to the counter-side coil;
A wear detection method comprising: detecting a wear state of the wear gauge based on the detected current.
JP2011227217A 2011-10-14 2011-10-14 Wear detection apparatus and wear detection method Active JP5825033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011227217A JP5825033B2 (en) 2011-10-14 2011-10-14 Wear detection apparatus and wear detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011227217A JP5825033B2 (en) 2011-10-14 2011-10-14 Wear detection apparatus and wear detection method

Publications (2)

Publication Number Publication Date
JP2013088193A true JP2013088193A (en) 2013-05-13
JP5825033B2 JP5825033B2 (en) 2015-12-02

Family

ID=48532257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011227217A Active JP5825033B2 (en) 2011-10-14 2011-10-14 Wear detection apparatus and wear detection method

Country Status (1)

Country Link
JP (1) JP5825033B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019168382A (en) * 2018-03-26 2019-10-03 株式会社富士通ゼネラル Signal processing device and sensor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01131105U (en) * 1988-02-29 1989-09-06
JPH0829109A (en) * 1994-07-12 1996-02-02 Eagle Ind Co Ltd Wear detector
JP2523984Y2 (en) * 1987-06-15 1997-01-29 宣夫 福久 Position detection device
JPH1197997A (en) * 1997-09-17 1999-04-09 Fuji Electric Co Ltd Detecting device
JP2006205781A (en) * 2005-01-25 2006-08-10 Toyota Motor Corp Tire state detecting device
JP2006315858A (en) * 2005-04-13 2006-11-24 Bridgestone Corp Abrasion detection device of conveyer belt
JP2008164377A (en) * 2006-12-27 2008-07-17 Univ Of Fukui Wear gauge

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2523984Y2 (en) * 1987-06-15 1997-01-29 宣夫 福久 Position detection device
JPH01131105U (en) * 1988-02-29 1989-09-06
JPH0829109A (en) * 1994-07-12 1996-02-02 Eagle Ind Co Ltd Wear detector
JPH1197997A (en) * 1997-09-17 1999-04-09 Fuji Electric Co Ltd Detecting device
JP2006205781A (en) * 2005-01-25 2006-08-10 Toyota Motor Corp Tire state detecting device
JP2006315858A (en) * 2005-04-13 2006-11-24 Bridgestone Corp Abrasion detection device of conveyer belt
JP2008164377A (en) * 2006-12-27 2008-07-17 Univ Of Fukui Wear gauge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019168382A (en) * 2018-03-26 2019-10-03 株式会社富士通ゼネラル Signal processing device and sensor device

Also Published As

Publication number Publication date
JP5825033B2 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
JP2013088196A (en) Wear detection system and wear detection apparatus
CN104843455B (en) The method of magnetic resistance chain sensor and measurement chain elongation
CN102261446B (en) Transmission element with detection device
US8018237B2 (en) Broken piece detecting sensor
JP6049742B2 (en) Electrostatic coupling type non-contact power feeding device
CN205262321U (en) Wearing and tearing detection device of rail vehicle sphere cartridge
CN101685137A (en) Method and device for monitoring a switching procedure and relay component group
CN102782348A (en) Bearing module having a sensor device
EP3379198B1 (en) Method and system for detecting bend in rotating shaft of magnetic bearing
JP5825033B2 (en) Wear detection apparatus and wear detection method
CN111982193A (en) Self-driven sensor for measuring micro slippage between bearing and bushing
CN203587044U (en) High precision measuring instrument applied to circular arc camber radian detection
WO2016157900A1 (en) Position sensor
CN109774489A (en) One kind two multiplies two and takes two redundancy magnetic floating train suspending sensors and control method
CN105262317B (en) Cam mechanism
CN208653462U (en) Spindle inclination mechanism for testing
Zaitsev et al. Condition Monitoring and Fault Diagnosis Systems of Power Generators with Non-Contact Shaft Runout Electrocapacitive Transducer
CN212409776U (en) Magnetoelectric sensor
CN107703881A (en) A kind of device of automatic Calibration MRF ribbon thickness
CN113202862A (en) Joint bearing
CN105251653A (en) Lever type induction gap measuring mechanism for coating machine
JP2008249387A (en) Fragment detection sensor
JP2013088194A (en) Wear detection device, wear gauge, and wear detection method
CN202188019U (en) Self-lubricating guiding device with compensation function
He et al. A novel wear detection method based on FPC: A case study on the hoisting cage sliding sleeve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150928

R151 Written notification of patent or utility model registration

Ref document number: 5825033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250