JP2008249387A - Fragment detection sensor - Google Patents

Fragment detection sensor Download PDF

Info

Publication number
JP2008249387A
JP2008249387A JP2007088417A JP2007088417A JP2008249387A JP 2008249387 A JP2008249387 A JP 2008249387A JP 2007088417 A JP2007088417 A JP 2007088417A JP 2007088417 A JP2007088417 A JP 2007088417A JP 2008249387 A JP2008249387 A JP 2008249387A
Authority
JP
Japan
Prior art keywords
flat plate
detection sensor
capacitance
flat
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007088417A
Other languages
Japanese (ja)
Inventor
Toru Takahashi
亨 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2007088417A priority Critical patent/JP2008249387A/en
Publication of JP2008249387A publication Critical patent/JP2008249387A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fragment detection sensor capable of detecting fragments with high detection probability, even when a trace amount of fragments is intermingled into fluid. <P>SOLUTION: The fragment detection sensor, which is a means for detecting fragments intermingled into fluid, includes a plurality of plates 5 arranged in parallel in the state where a clearance is secured mutually by interposition of a spring 6. The sensor also includes a plate moving mechanism 9 capable of sandwiching fragments between the plurality of plates 5, 5 by moving at least one plate among the plurality of plates 5 in the plate arrangement direction, and a measurement and determination means 14. The measurement and determination means 14 detects existence, the size or the accumulation amount of the fragments by measuring the distance between the plates 5, 5. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、潤滑油などの液体中に混入した破片を検出する破片検出センサに関する。   The present invention relates to a debris detection sensor that detects debris mixed in a liquid such as lubricating oil.

従来、自動車や航空機、ヘリコプタ等の潤滑油中に、エンジンやトランスミッション、軸受等の摩耗や破損によって生じた金属破片あるいは金属紛が混入していることを検出する装置として、メタルチェックセンサあるいはオイルチェックセンサあるいはデブリスセンサなどと呼ばれる金属片検出装置が提案されている(特許文献1〜5)。
このような金属片検出装置は、エンジンやギアボックス、軸受等の各種装置の健全性を検査する手段として使用され、検査対象の装置の各部位における劣化の情報をこれらの部位に破壊的な故障が生じる前に得ることが出来る。
特開昭55−052943号公報 特開昭61−253455号公報 特開2000−321248号公報 特許2703502号公報 特許2865857号公報
Conventionally, a metal check sensor or an oil check has been used as a device for detecting that metal fragments or metal particles generated by wear or damage of engines, transmissions, bearings, etc. are mixed in lubricating oil for automobiles, aircraft, helicopters, etc. Metal piece detection devices called sensors or debris sensors have been proposed (Patent Documents 1 to 5).
Such metal piece detection devices are used as means for inspecting the soundness of various devices such as engines, gearboxes, bearings, etc., and information on deterioration in each part of the device to be inspected is a destructive failure in these parts. Can be obtained before it occurs.
Japanese Unexamined Patent Publication No. 55-052943 JP-A-61-253455 JP 2000-32248 A Japanese Patent No. 2703502 Japanese Patent No. 2865857

現在、特に航空機用ジェットエンジンにおいて、その小型化と高速化が求められている。従来より、航空機用ジェットエンジンの主軸用軸受では、その転動体に金属材料が用いられてきたが、現状の転動体材料では更なる高速化が困難な状況にある。高速化に耐えうるためには、軸受の転動体を窒化珪素(Si3N4 )等を原材料とするセラミック玉やセラミックころとする必要がある。また、ジェットエンジン用軸受にセラミック玉やセラミックころを適用した場合、大きく性能が向上し、ひいてはジェットエンジンの効率が向上し、環境負荷を軽減できる可能性がある。
一方、従来の金属片検出装置では、金属材料あるいは磁性材料あるいは導電性材料の破片のみ検出が可能であり、非金属,非磁性,非導電性を特徴とするセラミック材の検出は不可能であった。したがって、例えばセラミック製の転動体を使用した軸受の場合には、破壊的な故障が生じる前に、金属片検出装置を用いて転動体の劣化や損傷に関する情報を得ることができない。そのため、現状ではこの様な構成の軸受は、用途が限定された航空機にしか使用されていない。
At present, there is a demand for miniaturization and high speed particularly in aircraft jet engines. Conventionally, in bearings for main shafts of aircraft jet engines, metal materials have been used for the rolling elements. However, it is difficult to achieve higher speeds with the current rolling element materials. In order to withstand high speed, the rolling elements of the bearing need to be ceramic balls or rollers made of silicon nitride (Si3N4) or the like. In addition, when ceramic balls or ceramic rollers are applied to the jet engine bearing, the performance is greatly improved, and consequently the efficiency of the jet engine is improved, which may reduce the environmental load.
On the other hand, conventional metal piece detection devices can detect only metal, magnetic material, or conductive material fragments, and cannot detect ceramic materials characterized by non-metal, non-magnetic, and non-conductivity. It was. Therefore, for example, in the case of a bearing using a ceramic rolling element, it is impossible to obtain information on deterioration or damage of the rolling element using the metal piece detection device before a destructive failure occurs. Therefore, at present, the bearing having such a configuration is used only for aircraft having limited applications.

このような課題を解決するものとして、流体中で2つの平板電極を対面させ、これら2つの平板電極のうちの少なくとも1つの平板電極を対面方向に動かすことで、2つの平板電極に破片を挟み込ませ、このときの2つの平板電極間隔の変化を、変位センサや静電容量の変化などによって検出する構成が考えられる。   In order to solve such a problem, two flat plate electrodes face each other in a fluid, and at least one of the two flat plate electrodes is moved in the facing direction, whereby a piece is sandwiched between the two flat plate electrodes. In this case, a configuration in which a change in the distance between the two plate electrodes at this time is detected by a displacement sensor, a change in capacitance, or the like can be considered.

しかし、上記構成の場合、平板電極を1回動作させることで1回の破片検出を行うので、微量な破片を検出する場合には検出確率が低くなるという問題がある。   However, in the case of the above-described configuration, since one piece of detection is performed by operating the plate electrode once, there is a problem that the detection probability is low when detecting a small amount of pieces.

この発明の目的は、流体中に混入した破片が微量であっても、高い検出確率で破片検出が可能な破片検出センサを提供することである。   An object of the present invention is to provide a debris detection sensor capable of detecting debris with a high detection probability even if a small amount of debris is mixed in a fluid.

この発明の破片検出センサは、流体中に混入する破片を検出する手段であって、互いにバネの介在によってすき間を確保した状態で並設された複数の平板と、これら複数の平板のうち少なくとも1つの平板を平板並び方向に動かすことによって、複数の平板間に前記破片を挟み込ませる平板移動機構と、平板間のギャップの距離を測定することで、前記破片の有無、または大きさ、または蓄積量を検出する測定・判定手段とを備えたものである。
この構成によると、互いにバネの介在によってすき間を確保した状態で並設された複数の平板のうち、少なくとも1つの平板を平板並び方向に動かし、測定・判定手段によりり平板間のギャップの距離を測定し、その測定値から破片の有無あるいは大きさや蓄積量を検出するようにしたため、流体中に混入した破片の状態を推定できる。とくに、互いにバネの介在によってすき間を確保した状態で複数の平板を並設し、その1つを平板並び方向に動かして、平板間に破片を挟み込ませるように構成しているので、破片を検出するための平板面積を増大させることができ、流体中に混入する破片が微量であっても1回の検出動作で破片を検出できる確率を高めることができる。
また、上記破片検出センサを自動車,航空機,ヘリコプタ等に組み込んだ場合、潤滑油中に混入した破片の状態をモニターすることができるため、故障の前兆あるいは故障の診断を行い、運転の停止や部品交換が必要なことを知らせることができる。また、検出した情報により、劣化や損傷から破壊的な故障が生じる前にその情報を得ることができる。
The debris detection sensor according to the present invention is a means for detecting debris mixed in the fluid, and includes a plurality of flat plates arranged in parallel with a gap secured by the interposition of springs, and at least one of the plurality of flat plates. By measuring the distance of the gap between the flat plate moving mechanism that sandwiches the pieces between a plurality of flat plates by moving two flat plates in the plate arrangement direction, the presence or absence of the pieces, the size, or the accumulated amount Measuring / determining means for detecting.
According to this configuration, at least one of the plurality of flat plates arranged side by side with springs interposed therebetween is moved in the plate arrangement direction, and the distance between the gap plates is measured by the measuring / judging means. Since the measurement is performed and the presence / absence, size, or accumulation amount of debris is detected from the measured value, the state of the debris mixed in the fluid can be estimated. In particular, a plurality of flat plates are arranged side by side with springs interposed between them, and one of them is moved in the flat plate alignment direction so that the pieces are sandwiched between the flat plates. Therefore, even if a small amount of debris is mixed in the fluid, the probability that the debris can be detected by one detection operation can be increased.
In addition, when the above debris detection sensor is incorporated in an automobile, aircraft, helicopter, etc., it is possible to monitor the state of debris mixed in the lubricating oil. Can inform you that a replacement is necessary. In addition, the detected information can be obtained before a destructive failure occurs due to deterioration or damage.

この発明において、前記測定・判定手段が、前記平板間のギャップの距離を変位センサで測定するものであっても良い。   In this invention, the measurement / determination means may measure the distance of the gap between the flat plates with a displacement sensor.

この発明において、前記各平板が平板電極であって、前記測定・判定手段は、前記平板電極間のギャップの距離を静電容量で測定するものであっても良い。静電容量によると、簡単な構成で精度良く平板間のギャップの距離を測定することができる。   In the present invention, each flat plate may be a flat plate electrode, and the measurement / determination means may measure a gap distance between the flat plate electrodes by a capacitance. According to the capacitance, the gap distance between the flat plates can be accurately measured with a simple configuration.

この発明において、各平板の表面に絶縁被膜が形成されていても良い。このように、平板の表面を絶縁被膜で被覆することにより、平板電極間に導電性の破片が挟み込まれた場合にも、その大きさを検出することが可能になる。また、平板電極の傾きによって、並設される平板電極の間で一部が接触状態になった場合でも、静電容量の変化を検出することができる。   In the present invention, an insulating coating may be formed on the surface of each flat plate. Thus, by covering the surface of the flat plate with the insulating film, even when conductive fragments are sandwiched between the flat plate electrodes, the size can be detected. Further, even when a part of the flat plate electrodes arranged in parallel is brought into a contact state due to the inclination of the flat plate electrodes, a change in capacitance can be detected.

この発明において、平板並び方向の両端に位置する平板電極に電気配線が接続され、前記測定・判定手段は、直列の静電容量を測定してギャップ変化を検出するものであっても良い。   In the present invention, electrical wiring may be connected to the plate electrodes located at both ends in the plate alignment direction, and the measurement / determination means may measure a series capacitance to detect a gap change.

この発明において、平板電極が交互に測定電極になるように電気配線が接続され、前記測定・判定手段は、並列の静電容量を測定してギャップ変化を検出する構成のものであっても良い。   In the present invention, electrical wiring may be connected so that the plate electrodes alternately become measurement electrodes, and the measurement / determination means may be configured to measure a parallel capacitance and detect a gap change. .

この発明において、前記平板移動機構は、電磁式または油圧式または空圧式の直動アクチュエータを駆動源として平板を動かすものであっても良い。直動アクチュエータを用いると、回転駆動源を用いる場合と異なり、回転を直線運動に変換する機構が不要で、破片検出センサを簡素でコンパクトな構成とできる。   In the present invention, the flat plate moving mechanism may move the flat plate using an electromagnetic, hydraulic or pneumatic linear actuator as a drive source. When a linear actuator is used, unlike the case where a rotational drive source is used, a mechanism for converting rotation into linear motion is not required, and the fragment detection sensor can be configured simply and compactly.

この発明の破片検出センサは、流体中に混入する破片を検出する手段であって、互いにバネの介在によってすき間を確保した状態で並設された複数の平板と、これら複数の平板のうち少なくとも1つの平板を平板並び方向に動かすことによって、複数の平板間に前記破片を挟み込ませる平板移動機構と、平板間のギャップの距離を測定することで、前記破片の有無、または大きさ、または蓄積量を検出する測定・判定手段とを設けたため、流体中に混入した破片が微量であっても、高い検出確率で破片検出が可能となる。   The debris detection sensor according to the present invention is a means for detecting debris mixed in the fluid, and includes a plurality of flat plates arranged in parallel with a gap secured by the interposition of springs, and at least one of the plurality of flat plates. By measuring the distance of the gap between the flat plate moving mechanism that sandwiches the pieces between a plurality of flat plates by moving two flat plates in the plate arrangement direction, the presence or absence of the pieces, the size, or the accumulated amount Therefore, even if the amount of fragments mixed in the fluid is very small, it is possible to detect the fragments with a high detection probability.

この発明の一実施形態を図1ないし図4と共に説明する。図1は、この実施形態の破片検出センサの概略構成図を示す。この破片検出センサは、検査対象である流体中に混入する破片を検出する手段であって、図3のように、互いにバネ6の介在によって隙間を確保した状態で上下に重なるように並設された複数の平板5を備える。また、これら複数の平板5のうち少なくとも1つの平板5を平板並び方向に動かすことによって、複数の平板5,5間に破片13(図4)を挟み込ませる平板移動機構9と、平板5,5間のギャップの距離を測定することで、前記破片13の有無、または大きさ、または蓄積量を検出する測定・判定手段17とを備える。この破片検出センサの場合、潤滑油が検査対象の流体とされる。   An embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a schematic configuration diagram of a fragment detection sensor of this embodiment. This fragment detection sensor is means for detecting fragments mixed in the fluid to be inspected, and is arranged side by side so as to overlap each other with a gap secured by the interposition of springs 6 as shown in FIG. A plurality of flat plates 5 are provided. Further, by moving at least one of the plurality of flat plates 5 in the flat plate arrangement direction, a flat plate moving mechanism 9 that sandwiches the fragments 13 (FIG. 4) between the plurality of flat plates 5 and 5, and the flat plates 5 and 5. Measurement / determination means 17 for detecting the presence / absence, size, or accumulation amount of the debris 13 by measuring the gap distance between them. In the case of this debris detection sensor, lubricating oil is the fluid to be inspected.

前記複数の平板5と平板移動機構9はセンサユニット1に組み込まれる。このセンサユニット1は、検査対象である潤滑油を流す油路4aが貫通して設けられたベース部材4を有し、油路4aの一端には給油配管2が接続され、油路4aの他端には排油配管3が接続されている。この場合、潤滑油は、給油配管2の油路2aからベース部材4の油路4aを経由し、排油配管3の油路3aに流れる。例えば、給油配管2はエンジンやギアボックス、軸受等で使用された潤滑油が収集される配管に接続され、排油配管3はオイルタンクへの配管に接続される。   The plurality of flat plates 5 and the flat plate moving mechanism 9 are incorporated in the sensor unit 1. This sensor unit 1 has a base member 4 provided with an oil passage 4a through which lubricating oil to be inspected flows, and an oil supply pipe 2 is connected to one end of the oil passage 4a. An oil drain pipe 3 is connected to the end. In this case, the lubricating oil flows from the oil path 2 a of the oil supply pipe 2 through the oil path 4 a of the base member 4 to the oil path 3 a of the oil discharge pipe 3. For example, the oil supply pipe 2 is connected to a pipe for collecting lubricating oil used in an engine, a gear box, a bearing, and the like, and the oil drain pipe 3 is connected to a pipe to an oil tank.

前記各平板5は、図2(A),(B)に平面図および斜視図で示すように例えば円板状とされ、その上面には3つの凹部5aが周方向に等配して設けられ、これらの各凹部5a内に前記バネ6が固定される。バネ6は例えば板バネからなり、その一部を平板5の上面から突出させた状態で固定される。各平板5のうち最下位置の平板5は、その中央部から上方に突出するガイド軸5b(図1)を有する。また、各平板5のうち最下位置の平板5を除く平板5は、図2のように中央部に前記ガイド軸5bを貫通させるガイド孔5cを有する。最下位置の平板5のガイド軸5bを、他の平板5のガイド孔5cに貫通させて、図1のように垂直上向きの姿勢にすると、互いにバネ6の介在によってすき間を確保した状態で上下に重なるように複数の平板5が並ぶ。   Each of the flat plates 5 has a disk shape, for example, as shown in a plan view and a perspective view in FIGS. 2 (A) and 2 (B), and three concave portions 5a are equally arranged on the upper surface in the circumferential direction. The spring 6 is fixed in each of the recesses 5a. The spring 6 is made of, for example, a leaf spring, and is fixed in a state in which a part thereof protrudes from the upper surface of the flat plate 5. The flat plate 5 at the lowest position among the flat plates 5 has a guide shaft 5b (FIG. 1) protruding upward from the central portion thereof. Moreover, the flat plate 5 except the flat plate 5 of the lowest position among each flat plate 5 has the guide hole 5c which penetrates the said guide shaft 5b in the center part like FIG. When the guide shaft 5b of the lowermost flat plate 5 is passed through the guide hole 5c of the other flat plate 5 so as to have a vertically upward posture as shown in FIG. A plurality of flat plates 5 are arranged so as to overlap each other.

平板移動機構9はプッシュプルソレノイド等からなる直動アクチュエータであって、その可動軸9aが前記ベース部材4の油路4aの貫通方向に直交する方向に進退自在となるように、アクチュエータ固定部材10を介してベース部材4に固定されている。上下に重なるように並設された前記平板5は、その最下位置の平板5のガイド軸5bがベース部材4を貫通して、前記直動アクチュエータ9の可動軸9aの先端部に連結されることで、ベース部材4の油路4a内に配置される。ここでは直動アクチュエータ9としてプッシュプルソレノイドを使用した例を示しているが、直動アクチュエータであれば、その種類は問わない。たとえば、電動モータとボールネジを組み合わせたものでも良いし、空圧や油圧を使用したものでも良い。直動アクチュエータ9を動作させると、その可動軸9aに連結された最下位置の平板5が進退する。   The flat plate moving mechanism 9 is a linear motion actuator composed of a push-pull solenoid or the like, and an actuator fixing member 10 so that the movable shaft 9a can advance and retract in a direction perpendicular to the penetrating direction of the oil passage 4a of the base member 4. It is being fixed to the base member 4 via. The flat plates 5 arranged side by side so as to overlap vertically are connected to the distal end portion of the movable shaft 9a of the linear actuator 9 through the guide shaft 5b of the lowermost flat plate 5 passing through the base member 4. Thus, the base member 4 is disposed in the oil passage 4a. Here, an example in which a push-pull solenoid is used as the linear actuator 9 is shown, but any type of linear actuator can be used. For example, a combination of an electric motor and a ball screw may be used, or an air pressure or hydraulic pressure may be used. When the linear actuator 9 is operated, the lowermost flat plate 5 connected to the movable shaft 9a advances and retreats.

直動アクチュエータ9の可動軸9aは、その後端部に固定されたばね受け部材11とアクチュエータ固定部材10との間に介在させた圧縮ばね12により、進出方向に付勢される。図1は、直動アクチュエータ9に電源を投入した状態を示し、このとき可動軸9aは圧縮ばね12を圧縮させて後退しており、最下位置の平板5は上方に引き上げられた状態にある。この状態では、各平板5,5間に介在するバネ6が圧縮されて凹部5b内に収まり、互いの平板5の表面が接触し合い、最上位置の平板5はベース部材4の内壁面に押し当てられる。この場合、最上位置の平板5のバネ6の強度を最も強く設定しておくと、ガイド軸5bが多少傾いた状態となっても、各平板5,5間で互いに接触状態を保つことができる。
一方、直動アクチュエータ9に電源を投入していない状態では、図3のように、電源投入時に圧縮された圧縮ばね12が復元する力によって、最下位置の平板5が下方に進出する。この状態では、各平板5,5間に介在するバネ6が圧縮から解放されるので、その復元力により各平板5,5間にすき間が確保され、このすき間を潤滑油が通過してゆく。
The movable shaft 9a of the linear actuator 9 is urged in the advancing direction by a compression spring 12 interposed between a spring receiving member 11 fixed to the rear end portion and the actuator fixing member 10. FIG. 1 shows a state in which power is supplied to the linear actuator 9. At this time, the movable shaft 9a is retracted by compressing the compression spring 12, and the lowermost flat plate 5 is pulled upward. . In this state, the spring 6 interposed between the flat plates 5, 5 is compressed and fits in the recess 5 b, the surfaces of the flat plates 5 come into contact with each other, and the uppermost flat plate 5 is pushed against the inner wall surface of the base member 4. Hit. In this case, if the strength of the spring 6 of the uppermost flat plate 5 is set to be the strongest, the flat plates 5 and 5 can be kept in contact with each other even if the guide shaft 5b is slightly inclined. .
On the other hand, in the state where the power is not supplied to the linear actuator 9, the flat plate 5 at the lowest position advances downward due to the restoring force of the compression spring 12 compressed when the power is turned on as shown in FIG. In this state, since the spring 6 interposed between the flat plates 5 and 5 is released from compression, a clearance is secured between the flat plates 5 and 5 by the restoring force, and the lubricating oil passes through the gap.

測定・判定手段14は、変位センサ15と判定手段17とでなる。変位センサ15は、並設された平板5,5間のギャップを測定するギャップセンサであり、例えばベース部材4の油路4aの内壁面における前記平板5と対面する位置に埋め込んだ状態で設けられる。ここでは、変位センサ15として例えば渦電流式のものが用いられるが、磁気式,光学式等の他の方式のものを用いても良い。判定手段17は、変位センサ15の測定値から潤滑油中の破片13(図4)の有無、または大きさ、または蓄積量を推定する手段であり、例えば測定値と判定結果の関係を定めたテーブルまたは演算式の判定規則を有し、その判定規則と測定値とを比較して判定結果を出力する。   The measurement / determination unit 14 includes a displacement sensor 15 and a determination unit 17. The displacement sensor 15 is a gap sensor that measures the gap between the flat plates 5 and 5 arranged side by side. For example, the displacement sensor 15 is embedded in a position facing the flat plate 5 on the inner wall surface of the oil passage 4 a of the base member 4. . Here, for example, an eddy current type is used as the displacement sensor 15, but another type such as a magnetic type or an optical type may be used. The determination means 17 is a means for estimating the presence, size, or accumulation amount of the debris 13 (FIG. 4) in the lubricating oil from the measurement value of the displacement sensor 15, and for example, the relationship between the measurement value and the determination result is defined. It has a determination rule for a table or an arithmetic expression, and compares the determination rule with a measured value and outputs a determination result.

次に、この破片検出センサにより潤滑油中の破片を検出する動作を説明する。
上記したように、直動アクチュエータ9に電源を投入すると、図1のように可動軸9aが後退して、その可動軸9aにガイド軸5bで連結された最下位置の平板5が上位置に引っ張られる。これにより各平板5,5間に介在するバネ6が圧縮して平板5の凹部5a内に収まり、各平板5,5間の表面が接触状態となる。変位センサ15は、このときその設置位置から最下位置の平板5の下面までの距離d0を測定する。
Next, an operation for detecting fragments in the lubricating oil by the fragment detection sensor will be described.
As described above, when the linear actuator 9 is powered on, the movable shaft 9a moves backward as shown in FIG. 1, and the lowermost flat plate 5 connected to the movable shaft 9a by the guide shaft 5b is in the upper position. Be pulled. As a result, the spring 6 interposed between the flat plates 5 and 5 is compressed and fit in the concave portion 5a of the flat plate 5, and the surface between the flat plates 5 and 5 is brought into contact. At this time, the displacement sensor 15 measures a distance d0 from the installation position to the lower surface of the lowermost flat plate 5.

次に、直動アクチュエータ9への電源の投入を停止すると、圧縮ばね12の復元力により可動軸9aと一体に最下位置の平板5が変位センサ15に接近する方向に進出する。これにより、平板5,5間に介在するバネ6が圧縮から解放されて、図3のように各平板5,5間にすき間が生じる。この状態のもとに、検査対象の流体として、エンジン,ギアボックス,軸受等に使用されている潤滑油を給油配管2の油路2aからベース部材4の油路4a内を経由して排油配管3の油路3aに流す。   Next, when the power supply to the linear motion actuator 9 is stopped, the lowermost flat plate 5 advances in a direction approaching the displacement sensor 15 integrally with the movable shaft 9 a by the restoring force of the compression spring 12. Thereby, the spring 6 interposed between the flat plates 5 and 5 is released from compression, and a gap is generated between the flat plates 5 and 5 as shown in FIG. Under this state, as a fluid to be inspected, lubricating oil used in the engine, gearbox, bearing, etc. is drained from the oil passage 2a of the oil supply pipe 2 through the oil passage 4a of the base member 4. It flows in the oil passage 3a of the pipe 3.

次に、直動アクチュエータ9に電源を再投入すると、図1の場合と同様に可動軸9aが後退して、その可動軸9aに連結された最下位置の平板5が上位置に引っ張られる。このとき、図4のように、平板5,5間の一部のすき間に破片13が介在していると、破片13の介在する平板5,5間は非接触の状態に保たれる。このため、変位センサ15の設置位置から最下位置の平板5の下面までの距離dは、図1の場合の距離d0に比べて破片13の介在により保持されるギャップ量だけ短くなる。変位センサ15はこのときの距離dを測定する。すなわち、変位センサ15は、破片13が介在しないときの距離d0と、破片13が介在するときの距離dとを測定することによって、間接的に破片13の介在によるギャップ量を測定している。したがって、これらの値から破片13の有無を判別できる。破片13の有無あるいは大きさや蓄積量の判定は、変位センサ15の測定値に基づき、判定手段17で判定される。   Next, when the power is reapplied to the linear actuator 9, the movable shaft 9a moves backward as in the case of FIG. 1, and the lowermost flat plate 5 connected to the movable shaft 9a is pulled to the upper position. At this time, as shown in FIG. 4, if the fragments 13 are interposed between some of the gaps between the flat plates 5, 5, the flat plates 5, 5 with the fragments 13 are kept in a non-contact state. For this reason, the distance d from the installation position of the displacement sensor 15 to the lower surface of the flat plate 5 at the lowermost position is shorter than the distance d0 in the case of FIG. The displacement sensor 15 measures the distance d at this time. That is, the displacement sensor 15 indirectly measures the gap amount due to the interposition of the debris 13 by measuring the distance d0 when the debris 13 is not present and the distance d when the debris 13 are present. Therefore, the presence or absence of the fragments 13 can be determined from these values. The determination of the presence / absence or size of the debris 13 or the accumulated amount is determined by the determination means 17 based on the measured value of the displacement sensor 15.

このように、この実施形態の破片検出センサでは、互いにバネ6の介在によってすき間を確保した状態で並設された複数の平板5のうち、少なくとも1つの平板5(ここでは最下位置の平板)を平板並び方向に動かし、平板5,5間のギャップの距離を変位センサ15で測定し、この変位センサ15の測定値から破片13の有無あるいは大きさや蓄積量を判定手段17で判定するようにしたため、潤滑油中に混入した破片13の状態を推定できる。とくに、互いにバネ6の介在によってすき間を確保した状態で複数の平板5を並設し、その1つを平板並び方向に動かして、平板5,5間に破片13を挟み込ませるように構成しているので、破片13を検出するための平板面積を増大させることができ、潤滑油中に混入する破片13が微量であっても1回の検出動作で破片13を検出できる確率を高めることができる。
また、上記破片検出センサを自動車,航空機,ヘリコプタ等に組み込んだ場合、潤滑油中に混入した破片の状態をモニターすることができるため、故障の前兆あるいは故障の診断を行い、運転の停止や部品交換が必要なことを知らせることができ、安全性が向上する。また、機械部品の寿命や経年変化を予測できるため、部品の無駄な交換や遅れた交換がなくなり、経済性が向上する。
Thus, in the fragment detection sensor of this embodiment, at least one flat plate 5 (here, the flat plate at the lowest position) among the plurality of flat plates 5 arranged in parallel with a gap secured by the spring 6 interposed therebetween. Are moved in the plate alignment direction, the distance of the gap between the plates 5 and 5 is measured by the displacement sensor 15, and the presence / absence, size, or accumulation amount of the debris 13 is determined by the determination means 17 from the measured value of the displacement sensor 15. Therefore, the state of the fragments 13 mixed in the lubricating oil can be estimated. In particular, a plurality of flat plates 5 are arranged side by side with springs 6 between them, and one of them is moved in the flat plate alignment direction so that the fragments 13 are sandwiched between the flat plates 5 and 5. Therefore, the flat plate area for detecting the fragments 13 can be increased, and the probability that the fragments 13 can be detected by one detection operation can be increased even if the amount of the fragments 13 mixed in the lubricating oil is very small. .
In addition, when the above debris detection sensor is incorporated in an automobile, aircraft, helicopter, etc., it is possible to monitor the state of debris mixed in the lubricating oil. It is possible to inform that replacement is necessary, and safety is improved. In addition, since the life and aging of machine parts can be predicted, there is no need for unnecessary or delayed replacement of parts, thereby improving economy.

図5ないし図12は、この発明の破片検出センサの他の実施形態を示す。この実施形態では、図1ないし図4に示す実施形態において、前記各平板5を平板電極とすると共に、測定・判定手段14を静電容量測定手段16と判定手段17とで構成している。すなわちこの実施形態では、平板電極5,5間のギャップを静電容量で測定するようにしている。静電容量測定手段16には、電気容量計などの計測器を用いることができる。この場合、各平板電極5の表面は絶縁被膜で被覆される。例えば、平板電極5の材料としてアルミニウムを用い、その表面にアルマイト処理を施すことにより絶縁被膜を設ける。このように、平板電極5の表面を絶縁被膜で被覆することにより、平板電極5,5間に導電性の破片13が挟み込まれた場合にも、その大きさを検出することが可能になる。また、平板電極5の傾きによって、並設される平板電極5,5の間で一部が接触状態になった場合でも、静電容量の変化を検出することができる。また、平板電極5,5間に介在させるバネ6として、導電性の材料の使用も可能となる。   5 to 12 show another embodiment of the debris detection sensor of the present invention. In this embodiment, in the embodiment shown in FIGS. 1 to 4, each flat plate 5 is a flat plate electrode, and the measurement / determination means 14 is composed of a capacitance measurement means 16 and a determination means 17. That is, in this embodiment, the gap between the plate electrodes 5 and 5 is measured by electrostatic capacity. A measuring instrument such as a capacitance meter can be used for the capacitance measuring means 16. In this case, the surface of each plate electrode 5 is covered with an insulating coating. For example, aluminum is used as the material of the plate electrode 5 and the surface thereof is alumite treated to provide an insulating coating. Thus, by covering the surface of the flat electrode 5 with the insulating film, even when the conductive debris 13 is sandwiched between the flat electrodes 5 and 5, the size can be detected. Further, even when a part of the flat plate electrodes 5 and 5 are arranged in contact with each other due to the inclination of the flat plate electrode 5, a change in capacitance can be detected. In addition, a conductive material can be used as the spring 6 interposed between the plate electrodes 5 and 5.

また、この実施形態では、最下位置の平板電極5のガイド軸5bと直動アクチュエータ9の可動軸9aとは絶縁部材8を介して連結されている。また、ベース部材4の油路4aの内壁面のうち、最上位置の平板電極5が接触する部位や、最下位置の平板電極5の対面する部位には例えば絶縁部材7A,7Bが配置される。   Further, in this embodiment, the guide shaft 5 b of the flat plate electrode 5 at the lowest position and the movable shaft 9 a of the linear actuator 9 are connected via an insulating member 8. Further, of the inner wall surface of the oil passage 4a of the base member 4, for example, insulating members 7A and 7B are disposed at a portion where the uppermost plate electrode 5 contacts or a portion where the lowermost plate electrode 5 faces. .

静電容量測定手段16は、上下に重ねて並設される複数の平板電極5における最上位置の平板電極5と最下位置の平板電極5の間の静電容量を測定するものであり、静電容量測定手段16の一方の入力端子は最上位置の平板電極5に、他方の入力端子は最下位置の平板電極5にそれぞれ接続され、途中の平板電極5はフローティング状態となる。判定手段17は、静電容量測定手段16の測定値から潤滑剤油中の破片13の状態を推定する。その他の構成は、図1ないし図4に示した先の実施形態の場合と同様である。   The electrostatic capacity measuring means 16 measures the electrostatic capacity between the uppermost plate electrode 5 and the lowermost plate electrode 5 among the plurality of flat plate electrodes 5 arranged in parallel vertically. One input terminal of the capacitance measuring means 16 is connected to the uppermost plate electrode 5, and the other input terminal is connected to the lowermost plate electrode 5. The intermediate plate electrode 5 is in a floating state. The determination unit 17 estimates the state of the debris 13 in the lubricant oil from the measurement value of the capacitance measurement unit 16. Other configurations are the same as those of the previous embodiment shown in FIGS.

前記平板電極5の等価回路を図6に示す。図6(A)は各平板電極5が接触した状態(図1参照)の場合を、図6(B)は一部の平板電極5,5間に破片13が挟み込まれた場合をそれぞれ示している。この等価回路は、図6(A)のように、静電容量測定手段16の両入力端子間に、各平板電極5の絶縁被膜による静電容量Csが直列接続された状態となる。   An equivalent circuit of the plate electrode 5 is shown in FIG. 6A shows the case where the flat plate electrodes 5 are in contact with each other (see FIG. 1), and FIG. 6B shows the case where the fragments 13 are sandwiched between some flat plate electrodes 5 and 5, respectively. Yes. In this equivalent circuit, as shown in FIG. 6A, the capacitance Cs due to the insulating film of each plate electrode 5 is connected in series between both input terminals of the capacitance measuring means 16.

図6(B)のように、一部の平板電極5,5間に破片13が挟み込まれると、その電極間容量がαCs(α<1)となり、全体の静電容量の変化として検出される。すなわち、破片13が挟み込まれない図6(A)の状態では、全体の静電容量Cは、
1/C=1/Cs+1/Cs+…=n/Cs …(1)
となる(nは平板電極5,5間の数)のに対して、破片13が挟み込まれた図6(B)の状態では、
1/C=1/Cs+1/αCs+1/Cs…=(n−1)/Cs+1/αCs …(2)と変化する。図5のように、複数の平板電極5,5間に破片13が介在する場合には、k個の平板電極5,5間に同様の破片13が介在するとして、全体の静電容量Cは、
1/C=(n−k)/Cs+k/αCs …(3)
のように変化することになる。厳密に破片13の大きさと個数を識別するのは難しいが、微量な破片13が混入している場合には、1回の検出動作で1箇所の平板電極5,5間に破片13が挟み込まれる状態が多く、上記(2)式から破片13の概略の大きさを推定することが可能になる。
As shown in FIG. 6B, when the debris 13 is sandwiched between some of the flat plate electrodes 5 and 5, the interelectrode capacitance becomes αCs (α <1), which is detected as a change in the overall capacitance. . That is, in the state of FIG. 6 (A) where the debris 13 is not sandwiched, the overall capacitance C is
1 / C = 1 / Cs + 1 / Cs +... = N / Cs (1)
(Where n is the number between the flat plate electrodes 5 and 5), in the state of FIG. 6B in which the fragments 13 are sandwiched,
1 / C = 1 / Cs + 1 / αCs + 1 / Cs... = (N-1) / Cs + 1 / αCs (2) As shown in FIG. 5, when the fragments 13 are interposed between the plurality of plate electrodes 5, 5, it is assumed that similar fragments 13 are interposed between the k plate electrodes 5, 5. ,
1 / C = (n−k) / Cs + k / αCs (3)
Will change as follows. Although it is difficult to strictly identify the size and number of the pieces 13, when a small amount of pieces 13 are mixed, the pieces 13 are sandwiched between the flat plate electrodes 5 and 5 in one detection operation. There are many states, and the approximate size of the shard 13 can be estimated from the above equation (2).

図7は、図5の実施形態における平板電極5の他の構成例を示す。この構成例では、図7(A)のように上下に重なり状態に並設される平板電極5を、その各バネ6の設置面が下向きとなるように配置し、最上位置の平板電極5にガイド軸5bを一体に設けている。また、ガイド軸5bは上下に突出しており、その下端部が絶縁部材7Bを介してベース部材4の油路4aの内壁面に支持され、上端部が図5のように直動アクチュエータ9の可動軸9aに絶縁部材8を介して連結される。直動アクチュエータ9により、最上位置の平板電極5が押し下げられると、平板電極5,5間のバネ6が圧縮されて、各平板電極5,5間は接触し、最下位置の平板電極5は絶縁部材7Bに押し当てられる。また、直動アクチュエータ9により、最上位置の平板電極5が引き上げられると、図7(A)のようにバネ6の複元力により各平板電極5,5間にすき間が確保される。   FIG. 7 shows another configuration example of the plate electrode 5 in the embodiment of FIG. In this configuration example, as shown in FIG. 7A, the flat plate electrodes 5 that are arranged side by side vertically are arranged so that the installation surfaces of the respective springs 6 face downward, and the flat plate electrode 5 at the uppermost position is arranged. A guide shaft 5b is provided integrally. The guide shaft 5b protrudes up and down, its lower end is supported on the inner wall surface of the oil passage 4a of the base member 4 via the insulating member 7B, and the upper end is movable of the linear actuator 9 as shown in FIG. The shaft 9a is connected via an insulating member 8. When the uppermost plate electrode 5 is pushed down by the linear actuator 9, the spring 6 between the plate electrodes 5 and 5 is compressed, the plate electrodes 5 and 5 are in contact with each other, and the lowermost plate electrode 5 is It is pressed against the insulating member 7B. Further, when the uppermost plate electrode 5 is pulled up by the linear actuator 9, a gap is secured between the plate electrodes 5 and 5 by the double force of the spring 6 as shown in FIG.

この場合にも、各平板電極5の表面は絶縁被膜で被覆され、図7(B)のように最上位置の平板電極5と最下位置の平板電極5とに、静電容量測定手段16の各入力端子が接続される。この接続構成の場合の平板電極5における静電容量の等価回路は、図6の場合と同じものとなる。   Also in this case, the surface of each flat plate electrode 5 is covered with an insulating film, and the electrostatic capacity measuring means 16 is placed on the uppermost flat plate electrode 5 and the lowermost flat plate electrode 5 as shown in FIG. Each input terminal is connected. The equivalent circuit of the capacitance in the plate electrode 5 in this connection configuration is the same as that in the case of FIG.

静電容量測定手段16との接続は、図8のようにしても良い。図8の接続構成は、静電容量測定手段16の一方の入力端子を最上位置の平板電極5から1つ置きの平板電極5にわたって接続するとともに、もう一方の入力端子を残りの平板電極5にわたって接続したものである。この接続構成の場合の平板電極5における静電容量の等価回路は、図9に示すように、静電容量測定手段16の両入力端子間に、各平板電極5の絶縁被膜による静電容量Csが並列接続された状態となる。
この場合に、k個の平板電極5,5間に破片13が挟み込まれると、全体の静電容量Cは、
C=(n−k)Cs+αkCs …(4)
となる。検出容量値の変化量は相対的に小さくなるが、広い検出面積で破片13を捕らえることから、検出確率を高めた検出が可能になる。
The connection with the capacitance measuring means 16 may be as shown in FIG. In the connection configuration of FIG. 8, one input terminal of the capacitance measuring means 16 is connected from the uppermost flat plate electrode 5 to every other flat plate electrode 5, and the other input terminal is extended to the remaining flat plate electrodes 5. Connected. As shown in FIG. 9, the equivalent circuit of the capacitance in the plate electrode 5 in the case of this connection configuration is formed between the input terminals of the capacitance measuring means 16 and the capacitance Cs due to the insulating film of each plate electrode 5. Are connected in parallel.
In this case, when the fragments 13 are sandwiched between the k plate electrodes 5 and 5, the entire capacitance C is
C = (n−k) Cs + αkCs (4)
It becomes. Although the change amount of the detection capacitance value is relatively small, since the debris 13 is captured with a wide detection area, detection with an increased detection probability is possible.

図10は、図5の破片検出センサにおける測定・判定手段14の構成要素である静電容量測定手段16の一構成例を示す。この静電容量測定手段16は、直列接続した発振器20と電流測定手段21とでなり、発振器20から最上位置の平板電極5と最下位置の平板電極5に交流電流を流し、両平板電極5、5間の静電容量Cをインピーダンスに換算して電流測定手段21で測定する。この場合、測定したインピーダンスから静電容量Cを求めることもできる。その他の構成は図5の場合と同様である。   FIG. 10 shows a configuration example of the capacitance measuring means 16 which is a component of the measuring / determining means 14 in the fragment detection sensor of FIG. The capacitance measuring means 16 is composed of an oscillator 20 and a current measuring means 21 connected in series. An alternating current is passed from the oscillator 20 to the uppermost plate electrode 5 and the lowermost plate electrode 5, and both the plate electrodes 5. The capacitance C between 5 is converted into impedance and measured by the current measuring means 21. In this case, the capacitance C can also be obtained from the measured impedance. Other configurations are the same as those in FIG.

図11は、図10の破片検出センサにおける測定・判定手段14の構成要素である静電容量測定手段16の他の構成例を示す。この静電容量測定手段16は、OPアンプ32で構成した発振器30と、この発振器30の発振周波数から静電容量を推定する周波数対応容量推定手段31とでなり、測定した発振器30の周波数から平板電極5,5間の静電容量Cを推定する。この場合の発振器30はリラクセーションオシレータ(relaxation oscillator )と呼ばれ、OPアンプ32に抵抗33Ra ,33Rb ,33Rt 、およびコンデンサ33Ct を接続して構成される。抵抗33Ra ,33Rb ,33Rt の抵抗値をRa ,Rb ,Rt 、コンデンサ33Ct の静電容量をCt とすると、発振周波数fは、およそ、
f=1/(2Rt Ct ) ……(5)
となることが知られている。ここでは、前記発振器30のコンデンサ33Ct が平板電極5,5間の静電容量Cに置き換えられることで、その静電容量Cが推定される。
FIG. 11 shows another configuration example of the capacitance measuring means 16 which is a component of the measuring / determining means 14 in the fragment detection sensor of FIG. The capacitance measuring means 16 includes an oscillator 30 constituted by an OP amplifier 32 and a frequency corresponding capacity estimating means 31 for estimating the capacitance from the oscillation frequency of the oscillator 30. The capacitance C between the electrodes 5 and 5 is estimated. The oscillator 30 in this case is called a relaxation oscillator and is configured by connecting resistors 33Ra, 33Rb, 33Rt and a capacitor 33Ct to an OP amplifier 32. If the resistance values of the resistors 33Ra, 33Rb, 33Rt are Ra, Rb, Rt, and the capacitance of the capacitor 33Ct is Ct, the oscillation frequency f is approximately
f = 1 / (2Rt Ct) (5)
It is known that Here, the capacitance C is estimated by replacing the capacitor 33Ct of the oscillator 30 with the capacitance C between the plate electrodes 5 and 5.

図12は、図5の破片検出センサにおける測定・判定手段14の構成要素である電容量測定手段16のさらに他の構成例を示す。この静電容量測定手段16は、充放電手段40と、その充電および放電の繰り返しにおける過渡現象によって生じる充放電時間より静電容量を推定する充放電時間対応静電容量推定手段41とでなる。充放電手段40は、充電抵抗42と充電スイッチ43の直列回路部を被測定静電容量Ct に直列接続すると共に、放電スイッチ44と放電抵抗45の直列回路部を被測定静電容量Ct に並列接続した回路である。充放電時間対応静電容量推定手段41は、充放電手段40での充放電電圧を監視する電圧測定手段46と、この電圧測定手段46が監視する電圧が規定電圧になるまでの時間を測定することにより、被測定静電容量Ct を推定する判断手段47とでなる。   FIG. 12 shows still another configuration example of the capacitance measuring means 16 which is a constituent element of the measuring / determining means 14 in the fragment detection sensor of FIG. The capacitance measuring unit 16 includes a charging / discharging unit 40 and a charge / discharge time corresponding capacitance estimating unit 41 that estimates a capacitance from a charging / discharging time caused by a transient phenomenon in the repeated charging and discharging. The charging / discharging means 40 connects the series circuit portion of the charging resistor 42 and the charging switch 43 in series with the measured capacitance Ct, and parallels the series circuit portion of the discharging switch 44 and the discharging resistor 45 with the measured capacitance Ct. It is a connected circuit. The charge / discharge time-corresponding capacitance estimation means 41 measures the voltage measurement means 46 for monitoring the charge / discharge voltage in the charge / discharge means 40 and the time until the voltage monitored by the voltage measurement means 46 reaches a specified voltage. Thus, the judgment means 47 for estimating the capacitance Ct to be measured is formed.

この場合、例えば、充電スイッチ43をオンにして充電を開始し、被測定静電容量Ct の充電電圧を電圧測定手段46で監視して、その充電電圧が規定電圧になるまでの充電時間を判断手段47で測定することにより、被測定静電容量Ct を推定できる。または、予め所定電圧まで充電させた被測定静電容量Ct に対して、放電スイッチ44をオンにして放電を開始し、被測定静電容量Ct の放電電圧を電圧測定手段46で監視して、その放電電圧が規定電圧になるまでの放電時間を判断手段47で測定することにより、被測定静電容量Ct を推定できる。ここでは、前記被測定静電容量Ct が平板電極5,5間の静電容量Cに置き換えられることで、その静電容量Cが推定される。   In this case, for example, the charging switch 43 is turned on to start charging, the charging voltage of the capacitance Ct to be measured is monitored by the voltage measuring means 46, and the charging time until the charging voltage reaches the specified voltage is determined. By measuring by means 47, the measured capacitance Ct can be estimated. Alternatively, with respect to the measured capacitance Ct that has been charged to a predetermined voltage in advance, the discharge switch 44 is turned on to start discharging, and the discharge voltage of the measured capacitance Ct is monitored by the voltage measuring means 46. By measuring the discharge time until the discharge voltage reaches the specified voltage by the judging means 47, the measured capacitance Ct can be estimated. Here, the capacitance Ct to be measured is replaced with the capacitance C between the flat plate electrodes 5 and 5, so that the capacitance C is estimated.

図13は、この発明の破片検出センサのさらに他の実施形態を示す。この実施形態は、図5に示す実施形態において、判定手段17の次段に記録手段50を追加して、潤滑油中に混入した破片13の状態をリアルタイムでモニタできるようにしたものである。静電容量測定手段16は、図10〜図12に示したいずれのものを用いても良い。なお、判定手段17は、静電容量測定手段16により測定された静電容量の変動の値が所定の閾値を超えたことで、不具合が発生したと判定するものであっても良い。   FIG. 13 shows still another embodiment of the fragment detection sensor of the present invention. In this embodiment, in the embodiment shown in FIG. 5, a recording means 50 is added to the next stage of the judging means 17 so that the state of the debris 13 mixed in the lubricating oil can be monitored in real time. Any one of the capacitance measuring means 16 shown in FIGS. 10 to 12 may be used. Note that the determination unit 17 may determine that a failure has occurred because the value of the variation in capacitance measured by the capacitance measurement unit 16 exceeds a predetermined threshold.

この発明の第1の実施形態に係る破片検出センサの電源投入時の概略構成図である。It is a schematic block diagram at the time of power activation of the fragment detection sensor which concerns on 1st Embodiment of this invention. (A)は同破片検出センサにおける平板の平面図、(B)は同平板の斜視図である。(A) is a top view of the flat plate in the fragment detection sensor, (B) is a perspective view of the flat plate. 同破片検出センサの電源投入停止時の概略構成図である。It is a schematic block diagram at the time of the power supply stop of the same fragment detection sensor. 同破片検出センサの検出動作の説明図である。It is explanatory drawing of the detection operation of the same fragment detection sensor. この発明の他の実施形態に係る破片検出センサの検出動作の説明図である。It is explanatory drawing of the detection operation | movement of the fragment detection sensor which concerns on other embodiment of this invention. (A)は同破片検出センサにおける平板電極の破片を挟み込まない状態での等価回路、(B)は同平板電極の破片を挟み込んだ状態での等価回路である。(A) is an equivalent circuit in the state in which the fragment | piece of the flat plate electrode in the same fragment detection sensor is not pinched | interposed, (B) is an equivalent circuit in the state which has pinched the fragment | piece of the flat plate electrode. (A)は平板電極の他の構成例の断面図、(B)は同平板電極への静電容量測定手段の接続状態を示す構成図である。(A) is sectional drawing of the other structural example of a flat plate electrode, (B) is a block diagram which shows the connection state of the electrostatic capacitance measurement means to the flat plate electrode. 同平板電極への静電容量測定手段の他の接続状態を示す構成図である。It is a block diagram which shows the other connection state of the electrostatic capacitance measurement means to the same plate electrode. 図8の接続構成例の場合の平板電極の等価回路である。FIG. 9 is an equivalent circuit of a plate electrode in the connection configuration example of FIG. 8. FIG. 図5の破片検出センサにおける静電容量測定手段の他の構成例を示す回路図である。It is a circuit diagram which shows the other structural example of the electrostatic capacitance measurement means in the fragment detection sensor of FIG. 同破片検出センサにおける静電容量測定手段のさらに他の構成例を示す回路図である。It is a circuit diagram which shows the further another structural example of the electrostatic capacitance measurement means in the fragment detection sensor. 同破片検出センサにおける静電容量測定手段のさらに他の構成例を示す回路図である。It is a circuit diagram which shows the further another structural example of the electrostatic capacitance measurement means in the fragment detection sensor. この発明のさらに他の実施形態に係る破片検出センサの検出動作の説明図である。It is explanatory drawing of the detection operation | movement of the fragment detection sensor which concerns on further another embodiment of this invention.

符号の説明Explanation of symbols

5…平板
6…バネ
9…直動アクチュエータ(平板移動機構)
13…破片
14…測定・判定手段
15…変位センサ
16…静電容量測定手段
17…判定手段
5 ... Flat plate 6 ... Spring 9 ... Linear motion actuator (flat plate moving mechanism)
13 ... Fragment 14 ... Measurement / determination means 15 ... Displacement sensor 16 ... Capacitance measurement means 17 ... Determination means

Claims (7)

流体中に混入する破片を検出する手段であって、互いにバネの介在によってすき間を確保した状態で並設された複数の平板と、これら複数の平板のうち少なくとも1つの平板を平板並び方向に動かすことによって、複数の平板間に前記破片を挟み込ませる平板移動機構と、平板間のギャップの距離を測定することで、前記破片の有無、または大きさ、または蓄積量を検出する測定・判定手段とを備えた破片検出センサ。   A means for detecting debris mixed in the fluid, and a plurality of flat plates arranged in parallel with each other with a gap interposed by a spring, and at least one of the plurality of flat plates is moved in the plate arrangement direction. A flat plate moving mechanism for sandwiching the fragments between a plurality of flat plates, and a measuring / determining means for detecting the presence or absence, the size, or the accumulation amount of the fragments by measuring the distance of the gap between the flat plates. A debris detection sensor. 請求項1において、前記測定・判定手段は、前記平板間のギャップの距離を変位センサで測定するものである破片検出センサ。   2. The debris detection sensor according to claim 1, wherein the measurement / determination means measures a gap distance between the flat plates with a displacement sensor. 請求項1において、前記各平板が平板電極であって、前記測定・判定手段は、前記平板電極間のギャップの距離を静電容量で測定するものである破片検出センサ。   2. The fragment detection sensor according to claim 1, wherein each of the flat plates is a flat plate electrode, and the measurement / determination means measures a gap distance between the flat plate electrodes by a capacitance. 請求項3において、各平板の表面に絶縁被膜が形成された破片検出センサ。   4. A debris detection sensor according to claim 3, wherein an insulating film is formed on the surface of each flat plate. 請求項3において、平板並び方向の両端に位置する平板電極に電気配線が接続され、前記測定・判定手段は、直列の静電容量を測定してギャップ変化を検出するものである破片検出センサ。   4. A fragment detection sensor according to claim 3, wherein electrical wiring is connected to the plate electrodes located at both ends of the plate arrangement direction, and the measurement / determination means detects a change in gap by measuring a series capacitance. 請求項3において、平板電極が交互に測定電極になるように電気配線が接続され、前記測定・判定手段は、並列の静電容量を測定してギャップ変化を検出する構成のものである破片検出センサ。   4. Debris detection according to claim 3, wherein electrical wiring is connected so that the plate electrodes alternately become measurement electrodes, and the measurement / judgment means is configured to detect a gap change by measuring parallel capacitance. Sensor. 請求項1ないし請求項6のいずれか1項において、前記平板移動機構は、電磁式または油圧式または空圧式の直動アクチュエータを駆動源として平板を動かすものである破片検出センサ。   7. A fragment detection sensor according to claim 1, wherein the flat plate moving mechanism moves the flat plate using an electromagnetic, hydraulic or pneumatic linear actuator as a drive source.
JP2007088417A 2007-03-29 2007-03-29 Fragment detection sensor Pending JP2008249387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007088417A JP2008249387A (en) 2007-03-29 2007-03-29 Fragment detection sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007088417A JP2008249387A (en) 2007-03-29 2007-03-29 Fragment detection sensor

Publications (1)

Publication Number Publication Date
JP2008249387A true JP2008249387A (en) 2008-10-16

Family

ID=39974532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007088417A Pending JP2008249387A (en) 2007-03-29 2007-03-29 Fragment detection sensor

Country Status (1)

Country Link
JP (1) JP2008249387A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103203327A (en) * 2013-04-15 2013-07-17 机科发展科技股份有限公司 Intelligent gasket thickness and parallel degree detecting and sorting machine
CN103230877A (en) * 2013-04-15 2013-08-07 机科发展科技股份有限公司 Intelligent detection and separation machine of backing ring thickness and parallelism
CN115218769A (en) * 2022-06-22 2022-10-21 湛江通远船舶工程有限公司 Marine diesel engine cylinder cap relative displacement measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103203327A (en) * 2013-04-15 2013-07-17 机科发展科技股份有限公司 Intelligent gasket thickness and parallel degree detecting and sorting machine
CN103230877A (en) * 2013-04-15 2013-08-07 机科发展科技股份有限公司 Intelligent detection and separation machine of backing ring thickness and parallelism
CN115218769A (en) * 2022-06-22 2022-10-21 湛江通远船舶工程有限公司 Marine diesel engine cylinder cap relative displacement measuring device

Similar Documents

Publication Publication Date Title
WO2008038407A1 (en) Broken piece detecting sensor
JP5004219B2 (en) Oil film dielectric breakdown evaluation system
FI121720B (en) Bearing arrangement, method of detecting wear on a bearing surface of a bearing arrangement and use of a bearing arrangement
Schirra et al. Ball bearings as sensors for systematical combination of load and failure monitoring
JP2008249387A (en) Fragment detection sensor
JP2008241651A (en) Fragment detection sensor
JP2008107150A (en) Broken piece detecting sensor
JP2008107147A (en) Fragment detection sensor
Sari et al. Effect of lubricant contamination on friction and wear in an EHL sliding contact
JP4678648B2 (en) Oil film formation defect detection device for swash plate compressor
JP4889424B2 (en) Debris detection sensor
JP4889441B2 (en) Debris detection sensor
JP4716965B2 (en) Debris detection sensor
JP2008107149A (en) Broken piece detecting sensor
JP2008107151A (en) Broken piece detecting sensor
CN112771458A (en) Method for analyzing the state of an electromechanical joining system and electromechanical joining system for carrying out the method
JP2008082742A (en) Fragment detection sensor
Wagner et al. Challenges for health monitoring of electromechanical flight control actuation systems
CN110462946B (en) Brush for an electric machine and method for determining the wear of the brush
JP2007240491A (en) Bearing state inspecting apparatus
CN103026184A (en) Oil level indicator for a screw-type compressor
JP2008107152A (en) Broken piece detecting sensor
JPH1026581A (en) Friction/abrasion testing machine
JP2007239779A (en) Bearing state inspection device
JPH07333200A (en) Electrolytic corrosion evaluation test device for bearing