JP5004219B2 - Oil film dielectric breakdown evaluation system - Google Patents

Oil film dielectric breakdown evaluation system Download PDF

Info

Publication number
JP5004219B2
JP5004219B2 JP2007080634A JP2007080634A JP5004219B2 JP 5004219 B2 JP5004219 B2 JP 5004219B2 JP 2007080634 A JP2007080634 A JP 2007080634A JP 2007080634 A JP2007080634 A JP 2007080634A JP 5004219 B2 JP5004219 B2 JP 5004219B2
Authority
JP
Japan
Prior art keywords
film
oil
oil film
dielectric breakdown
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007080634A
Other languages
Japanese (ja)
Other versions
JP2008241383A (en
Inventor
賢治 砂原
もと宏 兼田
宏志 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Yaskawa Electric Corp
Original Assignee
Kyushu Institute of Technology NUC
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC, Yaskawa Electric Corp filed Critical Kyushu Institute of Technology NUC
Priority to JP2007080634A priority Critical patent/JP5004219B2/en
Publication of JP2008241383A publication Critical patent/JP2008241383A/en
Application granted granted Critical
Publication of JP5004219B2 publication Critical patent/JP5004219B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Relating To Insulation (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

本発明は、インバータ駆動モータや鉄道主軸の軸受などで発生する軸受電食の現象解明に用いる装置に関する。   The present invention relates to an apparatus used for elucidating a phenomenon of bearing electric corrosion that occurs in an inverter drive motor, a bearing of a railway main shaft, and the like.

従来の油膜絶縁破壊評価装置の例として、つぎのような動的な試験装置と静的な試験装置がある(例えば、非特許文献1参照)。
まず、第1の従来例として動的な油膜絶縁破壊評価装置の例を図9に示す。図において、20はボール、21、22、23は内輪、24はオイルタンク、25は直流電源、26はばね、27はねじである。この装置は、内輪21と内輪22が所定の間隔を設けて平行に配置され、この間にボール20が装着され、さらにこのボール20の上に内輪23が載置された構成になっている。そして、内輪21と内輪22間に直流電源25の出力端子が接続されている。
本装置の動作はつぎのようになる。ボール20と内輪間にオイルタンク24から油を滴下する。ねじ27を調整し内輪とボール20間に負荷を与える。内輪21を図示しないモータにより回転させ、ボール20を転がす。その結果、内輪22、23が回転する。ボール20と内輪21、22、23の間に油膜が形成される。この油膜の厚さは内輪21の回転速度により可変でき、その油膜厚さはEHL理論(弾性流体潤滑理論)で計算して求める。内輪21、22に電圧を印加して、電圧計V1とV2の値を比べ、油膜が絶縁破壊しているかを判定する。油膜が絶縁破壊していないと、内輪21、22間の抵抗は10MΩ以上なので、V2=V1になる。油膜が絶縁破壊すると、内輪21、22間の抵抗は数ΩになるのでV1≒0になる。したがって、このV1の値により油膜の絶縁破壊を判定できる。
つぎに、第2の従来例として静的な油膜絶縁破壊評価装置の例を図10に示す。図において、28はディスク、29はアクチュエータ、30は位置センサである。この装置は、ディスク28の1個とボール20の1個で構成し、ディスク28とボール20間に油滴を滴下し、アクチュエータ29により負荷を与える。ディスク28とボール20との距離を接触した状態からサブミクロンレベルで離すことで軸受内部の油膜を模擬する。この距離は位置センサ30で実測する。ここに直流電源25から電圧を印加して、V1の値により油膜の絶縁破壊を判定する。
このように、従来の油膜絶縁破壊評価装置は、油膜を隔てた2面間に電圧を印加し、絶縁破壊を評価するものである。
兼田他、電食の防止対策、(社)日本トライボロジー学会トライボロジー会議予稿集(東京 1999−5)、133
Examples of conventional oil film dielectric breakdown evaluation apparatuses include the following dynamic test apparatus and static test apparatus (for example, see Non-Patent Document 1).
First, FIG. 9 shows an example of a dynamic oil film dielectric breakdown evaluation apparatus as a first conventional example. In the figure, 20 is a ball, 21, 22 and 23 are inner rings, 24 is an oil tank, 25 is a DC power source, 26 is a spring, and 27 is a screw. In this device, an inner ring 21 and an inner ring 22 are arranged in parallel at a predetermined interval, a ball 20 is mounted between them, and an inner ring 23 is placed on the ball 20. An output terminal of a DC power supply 25 is connected between the inner ring 21 and the inner ring 22.
The operation of this device is as follows. Oil is dropped from the oil tank 24 between the ball 20 and the inner ring. The screw 27 is adjusted to apply a load between the inner ring and the ball 20. The inner ring 21 is rotated by a motor (not shown) to roll the ball 20. As a result, the inner rings 22 and 23 rotate. An oil film is formed between the ball 20 and the inner rings 21, 22, 23. The thickness of the oil film can be varied depending on the rotation speed of the inner ring 21, and the oil film thickness is calculated by EHL theory (elastohydrodynamic lubrication theory). A voltage is applied to the inner rings 21 and 22, and the values of the voltmeters V1 and V2 are compared to determine whether the oil film has a dielectric breakdown. If the oil film does not break down, the resistance between the inner rings 21 and 22 is 10 MΩ or more, so V2 = V1. When the oil film breaks down, the resistance between the inner rings 21 and 22 becomes several Ω, so that V1≈0. Therefore, the breakdown of the oil film can be determined from the value of V1.
Next, FIG. 10 shows an example of a static oil film dielectric breakdown evaluation apparatus as a second conventional example. In the figure, 28 is a disk, 29 is an actuator, and 30 is a position sensor. This apparatus is composed of one disk 28 and one ball 20, and an oil droplet is dropped between the disk 28 and the ball 20, and a load is applied by an actuator 29. The oil film inside the bearing is simulated by separating the distance between the disk 28 and the ball 20 from the contacted state at a submicron level. This distance is actually measured by the position sensor 30. A voltage is applied from the DC power supply 25 here, and the dielectric breakdown of the oil film is determined by the value of V1.
Thus, the conventional oil film dielectric breakdown evaluation apparatus applies a voltage between the two surfaces separating the oil film to evaluate the dielectric breakdown.
Kaneda et al., Electric Corrosion Prevention Measures, Tribology Conference Proceedings (Tokyo 1999-5), 133

ところが、従来の絶縁破壊評価装置についてはつぎの問題がある。
[第1の従来例]
(1)本装置は、油膜厚さの計算値が定量値と言えない。油膜厚さの計算には油の粘度の値が必要であり、素性の分かった油であれば油の粘度を高い精度で推定できるが、使用後の油や、混合された油の場合は粘度が不明であり、粘度計測から実施しなくてはいけないからである。
(2)仮に粘度が分かり計算できたとしても、接触域は0.1mm程度と比較的大きく、その接触域で油膜厚さが厚いところと薄いところがあり、放電がどの部分で起こっているのか分からないので、計算により油膜厚さを算出してもあまり意味が無い。
(3)また、表面粗さの変化を考慮できない。2面には表面粗さがあり、放電は油膜厚さだけではなく、表面粗さとの比で決まると思われるが、表面粗さは試験時間の経過と共に試料の表面は粗くなる。表面粗さの変化までは計算できない。
(4)さらに、金属接触と放電を混同する。油膜厚さが表面粗さ程度に薄い場合、電圧変化(電流でも同じ)からは金属接触と放電の区別が出来ない。
[第2の従来例]
(1)本装置は、静的な状態で2面を近づけるだけなので、油には荷重がかからず、油の物性が実軸受の場合と大きく異なる。静的な状態で近づけるだけだと油は粘性流体のままの状態である。小さくても荷重を加えると、面圧で言えば1GPa程度の高面圧が生じ油は粘弾性体や弾塑性固体になる。こうなると粘性流体のときと比べ、体積弾性係数が1桁ほど異なる。実際に絶縁破壊電圧を測定すると、実機モータとは2桁違う値となる。
本発明はこのような問題点に鑑みてなされたものであり、油膜厚さが実測できると共に、表面粗さの変化も見逃すことなく、金属接触と放電を混同せずに、油の物性を実軸受と同じ状態で、油膜の絶縁破壊を評価することができる油膜絶縁破壊評価装置を提供することを目的とする。
However, the conventional dielectric breakdown evaluation apparatus has the following problems.
[First Conventional Example]
(1) In this apparatus, the calculated value of the oil film thickness cannot be said to be a quantitative value. Calculation of the oil film thickness requires the value of the viscosity of the oil, and if it is an oil with known characteristics, the viscosity of the oil can be estimated with high accuracy, but in the case of oil after use or mixed oil, the viscosity This is because it is unknown and must be carried out from viscosity measurement.
(2) Even if the viscosity can be understood and calculated, the contact area is relatively large at about 0.1 mm 2, and there are places where the oil film thickness is thick and thin in that contact area, and where the discharge occurs Since it is not known, it does not make much sense to calculate the oil film thickness by calculation.
(3) Moreover, the change of surface roughness cannot be considered. The two surfaces have surface roughness, and the discharge is determined not only by the oil film thickness but also by the ratio to the surface roughness, but the surface roughness becomes rougher as the test time elapses. It cannot be calculated until the surface roughness changes.
(4) Furthermore, metal contact and discharge are confused. When the oil film thickness is as thin as the surface roughness, it is not possible to distinguish between metal contact and discharge from the voltage change (same for current).
[Second Conventional Example]
(1) Since this device only brings the two surfaces closer in a static state, no load is applied to the oil, and the physical properties of the oil are significantly different from those of the actual bearing. The oil remains in a viscous fluid state when it is brought close to it in a static state. If a load is applied even if it is small, a high surface pressure of about 1 GPa is generated in terms of surface pressure, and the oil becomes a viscoelastic body or an elastoplastic solid. In this case, the bulk modulus differs by an order of magnitude compared to the viscous fluid. When the breakdown voltage is actually measured, the actual motor is two orders of magnitude different.
The present invention has been made in view of such problems. The oil film thickness can be measured, the change in surface roughness is not overlooked, and the physical properties of the oil are realized without confusion between metal contact and discharge. An object of the present invention is to provide an oil film dielectric breakdown evaluation apparatus capable of evaluating the dielectric breakdown of an oil film in the same state as a bearing.

上記課題を解決するため、本発明の一の観点によれば、油膜を挟んだ2つの物体間に電圧を印加して油膜の絶縁破壊を調べる油膜絶縁破壊評価装置であって、前記一方の物体を透明体とし、かつ、前記他方の物体との接触面側に可視光を透過する電極を備え、前記電極は、光干渉により油膜厚さを測定する金属膜とした油膜絶縁破壊評価装置が適用される。
また、前記電極を透明導電膜としてもよい。
また、前記電極を金属膜と透明導電膜とを少なくとも1層ずつ積層してもよい。
また、前記電極を前記透明体の表面から金属膜、透明膜、金属膜の順に積層し、光干渉により接触応力を測定するようにしてもよい。
また、前記電極を前記透明体の表面に、金属膜と透明導電膜とを積層した第1積層膜の領域と、透明な膜が金属膜で挟まれて積層された第2積層膜の領域とを有してもよい。
In order to solve the above-described problem, according to one aspect of the present invention, there is provided an oil film dielectric breakdown evaluation apparatus for examining a dielectric breakdown of an oil film by applying a voltage between two objects sandwiching an oil film, wherein the one object And an electrode that transmits visible light on the contact surface side with the other object, and the electrode is applied to an oil film dielectric breakdown evaluation device that is a metal film that measures the oil film thickness by optical interference. Is done.
In addition, the previous SL electrode may be used as the transparent conductive film.
Also, the pre-Symbol electrode and a metal film and a transparent conductive film may be laminated by at least one layer.
The metal film pre Symbol electrode from the surface of the transparent body, a transparent film, are laminated in this order of the metal film, it may be measured contact stress by optical interference.
Also, the pre-Symbol electrodes on a surface of the transparent body, regions of the second multilayer film and the region of the first multilayer film by laminating a metal film and a transparent conductive film, a transparent film is stacked sandwiched by metal film it may have a door.

発明によると、可視光を透過または一部反射する電極を用いているので、荷重をかけた状態で接触面の油膜厚さを光干渉法で実測しながら電圧・電流波形が記録でき、表面粗さの変化を見逃すことがない。
また、電極に透明導電膜を用いているので、抵抗値が低く十分な電流が流れ、放電が明瞭な発光現象として観察でき、金属接触と放電を混同せずに油膜の絶縁破壊を評価することができる。
また、透明導電膜を用いているので、発光現象が観察でき、金属膜により光干渉に必要な反射が得られ膜厚測定が確実になる。
また、金属膜と透明膜を積層しているので、ガラスディスクとボールの接触応力による透明膜の弾性変形量を、金属膜同士で生じる光干渉で実測できる。すなわち、油の物性に大きく影響する接触部の応力をモニタしながら油膜の絶縁破壊を評価できる。
また、2つの異なる積層膜の領域を設けたので、膜厚と接触部の応力を測定しながら油膜の絶縁破壊を1試験中に一緒に評価でき、特にグリースの油膜のように潤滑特性が時間の変化と共に変わる材料を評価する際、本発明は効果が大きい。

According to the present invention, since an electrode that transmits or partially reflects visible light is used, the voltage / current waveform can be recorded while measuring the oil film thickness of the contact surface with a light interference method under a load. Never miss a change in roughness.
In addition, since a transparent conductive film is used for the electrode, a sufficient current flows with a low resistance value, and the discharge can be observed as a clear light emission phenomenon, and the dielectric breakdown of the oil film should be evaluated without confusion between metal contact and discharge. Can do.
Further, since the transparent conductive film is used, the light emission phenomenon can be observed, and the reflection necessary for optical interference is obtained by the metal film, and the film thickness measurement is ensured.
Further, since the metal film and the transparent film are laminated, the elastic deformation amount of the transparent film due to the contact stress between the glass disk and the ball can be measured by optical interference generated between the metal films. That is, the dielectric breakdown of the oil film can be evaluated while monitoring the stress at the contact portion that greatly affects the physical properties of the oil.
In addition, since two different laminated film areas are provided, the dielectric breakdown of the oil film can be evaluated together during one test while measuring the film thickness and stress at the contact area. The present invention has a great effect in evaluating a material that changes with the change of.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の油膜絶縁破壊評価装置を示す断面図である。図において、1はガラスディスク、2は膜電極、3は油、4はボールである。なお、5は支持部材、6はシャフト、7は固定ねじ、8は絶縁物、9はばね、11は電源、12はブラシ、13は光源、14はプリズム、15は高速度カメラである。
ガラスディスク1の下面には可視光を透過する膜電極2を被覆している。図2はガラスディスク1と膜電極2としての金属膜2aを模式的に示した拡大模式図である。
ガラスディスク1の下面には、評価する油3を薄く塗りつけている。油には粘性があるので、評価試験の間はガラスディスク1よりたれ落ちない。ボール4を下方のばね9でガラスディスク1に押しつけ、シャフト6でガラスディスク1と繋がったプーリ10を図示しないモータで回転させると、ボール4も供回りして自転する。その結果、ボール4とガラスディスク1の間にサブミクロンの油膜が形成される。上部より 高速度カメラ15で観察すると0.1mm程度の円形で、ボール4とガラスディスク1が接触していることが分かる。油膜の厚さは光干渉法で測定できる。絶縁破壊の状況は、シャフトとボール間にブラシを介して印加した電圧V1または回路に流れる電流A1の測定で判定できる。なお、ガラスディスクは廉価であるが縦弾性係数が鋼と比べ低いので、高価ではあるが縦弾性係数が鋼とほぼ等しいサファイアディスクを使い、軸受内部の応力状態と厳密に等価にすることを狙う場合もある。
本発明が従来技術と異なる本質的な部分は、電極に透明体を使い、接触面を観察できるようにしているところである。
FIG. 1 is a sectional view showing an oil film dielectric breakdown evaluation apparatus according to the present invention. In the figure, 1 is a glass disk, 2 is a membrane electrode, 3 is oil, and 4 is a ball. 5 is a support member, 6 is a shaft, 7 is a fixing screw, 8 is an insulator, 9 is a spring, 11 is a power source, 12 is a brush, 13 is a light source, 14 is a prism, and 15 is a high-speed camera.
The lower surface of the glass disk 1 is covered with a membrane electrode 2 that transmits visible light. FIG. 2 is an enlarged schematic view schematically showing the glass disk 1 and the metal film 2 a as the membrane electrode 2.
A thin oil 3 to be evaluated is applied to the lower surface of the glass disk 1. Since oil is viscous, it does not sag from the glass disk 1 during the evaluation test. When the ball 4 is pressed against the glass disk 1 by the lower spring 9 and the pulley 10 connected to the glass disk 1 by the shaft 6 is rotated by a motor (not shown), the ball 4 also rotates and rotates. As a result, a submicron oil film is formed between the ball 4 and the glass disk 1. When observed with the high-speed camera 15 from above, it can be seen that the ball 4 and the glass disk 1 are in contact with each other in a circular shape of about 0.1 mm 2 . The thickness of the oil film can be measured by optical interferometry. The state of dielectric breakdown can be determined by measuring the voltage V1 applied via a brush between the shaft and the ball or the current A1 flowing through the circuit. Although the glass disk is inexpensive, its longitudinal elastic modulus is lower than that of steel, so it uses a sapphire disk that is expensive but has the same longitudinal elastic modulus as steel, and aims to be exactly equivalent to the stress state inside the bearing. In some cases.
The essential part of the present invention that differs from the prior art is that a transparent body is used for the electrodes so that the contact surface can be observed.

本発明の実施例1について図1、2を用いて説明する。本実施例では、膜電極2として、厚さ7nmのクロムの金属膜2aを用いた。この膜厚によると可視光の透過率はおよそ40%、反射率はおよそ20%である。ボール4は直径25.4mm、材質SUJ2の軸受用鋼球である。ガラスディスク1は板厚11mm、直径180mm、材質BK−7ガラスの円板である。油3は、昭和シェル石油製アルバニア#2(基油:鉱油、増ちょう剤:Liせっけん)というグリースを用いた。
つぎに本実施例の動作について述べる。
先ず、ばね9の変位を調整して40Nの力でボール4をガラスディスク1に押し当て、ボール4が250rpmで自転するようにガラスディスク1を回転させた。このとき、油3には実軸受相当の0.5GPaの面圧が負荷されている。上部より高速度カメラ15で撮影した画像を図3に示す。図中の矢印の先端部の領域が油膜の最も薄い部分である。測定分解能をあげるために、光源13は、555nm(緑色)と630nm(赤色)の波長の異なる単色光を2色重ねた2色光源を用いている。油膜厚さは、色により測定している。このため、実際の油膜厚さと色との関係をあらかじめ分かっている隙間を用いて検定した関係データを用いている。この図では矢印の先端のところが最小の油膜厚さで、約0.5μmである。
本発明の装置の特徴は、光干渉法で膜厚が実測できることである。試験時間の経過に伴い表面が粗くなっていくが、この装置を用いると油膜厚さが干渉縞により実測できるので、表面粗さの変化を見逃すことがない。
A first embodiment of the present invention will be described with reference to FIGS. In this example, a chromium metal film 2 a having a thickness of 7 nm was used as the membrane electrode 2. According to this film thickness, the visible light transmittance is about 40% and the reflectance is about 20%. The ball 4 is a steel ball for bearing having a diameter of 25.4 mm and a material SUJ2. The glass disk 1 is a disk of 11 mm in thickness, 180 mm in diameter, and material BK-7 glass. As the oil 3, grease called Albania # 2 (base oil: mineral oil, thickener: Li soap) manufactured by Showa Shell Sekiyu was used.
Next, the operation of this embodiment will be described.
First, the displacement of the spring 9 was adjusted, the ball 4 was pressed against the glass disk 1 with a force of 40 N, and the glass disk 1 was rotated so that the ball 4 was rotated at 250 rpm. At this time, the surface pressure of 0.5 GPa equivalent to a real bearing is applied to the oil 3. An image taken by the high speed camera 15 from above is shown in FIG. The region at the tip of the arrow in the figure is the thinnest part of the oil film. In order to increase the measurement resolution, the light source 13 uses a two-color light source in which two monochromatic lights having different wavelengths of 555 nm (green) and 630 nm (red) are superimposed. The oil film thickness is measured by color. For this reason, relational data obtained by testing using a gap in which the relation between actual oil film thickness and color is known in advance is used. In this figure, the tip of the arrow is the minimum oil film thickness, which is about 0.5 μm.
The feature of the apparatus of the present invention is that the film thickness can be measured by optical interferometry. Although the surface becomes rough as the test time elapses, if this apparatus is used, the oil film thickness can be actually measured by interference fringes, so that the change in surface roughness is not overlooked.

図4は、本発明の実施例2を示す電極部の拡大模式図である。図において、2bは膜電極2となる透明導電膜である。実施例1と異なる部分は、膜電極2として透明導電膜であるITO(Indium,Tin,Oxide)膜を300nmの厚さで用いている点である。本実施例で用いたITO膜は、実施例1に比べて可視光の透過率が高く、膜厚を厚くでき、抵抗値を下げることが可能である。その結果、放電時の電流値を大きくでき、放電を発光現象として捉えることができる。
なお、本実施例では、透明導電膜としてITOを使用した例を示したが、SnO,ZnO、IZO(Indium,Zinc,Oxide)など透明導電膜であれば同じ効果が得られる。
FIG. 4 is an enlarged schematic view of an electrode portion showing Example 2 of the present invention. In the figure, 2b is a transparent conductive film to be the membrane electrode 2. The difference from Example 1 is that an ITO (Indium, Tin, Oxide) film, which is a transparent conductive film, is used as the film electrode 2 with a thickness of 300 nm. The ITO film used in this embodiment has a higher visible light transmittance than that of the first embodiment, can be thicker, and can have a lower resistance value. As a result, the current value at the time of discharge can be increased, and the discharge can be regarded as a light emission phenomenon.
In the present embodiment, an example in which ITO is used as the transparent conductive film is shown, but the same effect can be obtained if it is a transparent conductive film such as SnO 2 , ZnO, or IZO (Indium, Zinc, Oxide).

図5は、本発明の実施例3を示す電極部の拡大模式図である。実施例2と異なる部分は、ガラスディスク1の表面からクロムを7nm被覆した金属膜2a、ITO膜を300nm被覆した透明導電膜2bの順に設け、金属膜2aにより干渉縞をでき易くした点である。
図6は、本実施例において高速度カメラが捉えた放電による発光である。秒速2000コマの速度で撮影している。図中の矢印の先端部の白点が発光部分である。つまり500nsの間に2箇所で絶縁破壊したことが分かる。そして、膜厚が最も薄いところだけで放電しているわけではないことが分かる。また、金属膜2aを被覆しているので、実施例2に比べて反射率が高く、干渉縞ができ易い。つまり、本実施例の装置では、発光現象の捕捉と干渉縞の判別が同時に可能である。その結果、油膜の絶縁破壊現象の解明がより進む効果がある。
FIG. 5 is an enlarged schematic view of an electrode portion showing Example 3 of the present invention. The difference from Example 2 is that the metal film 2a coated with 7 nm of chromium from the surface of the glass disk 1 and the transparent conductive film 2b coated with 300 nm of ITO film are provided in this order to make interference fringes easier with the metal film 2a. .
FIG. 6 shows light emission by discharge captured by the high-speed camera in this embodiment. Shooting at a speed of 2000 frames per second. The white point at the tip of the arrow in the figure is the light emitting portion. That is, it can be seen that dielectric breakdown occurred at two locations during 500 ns. And it turns out that it is not necessarily discharged only in the place where the film thickness is the thinnest. Moreover, since the metal film 2a is covered, the reflectance is higher than that of the second embodiment, and interference fringes are easily formed. That is, in the apparatus of this embodiment, it is possible to simultaneously capture a light emission phenomenon and discriminate interference fringes. As a result, there is an effect of further elucidating the dielectric breakdown phenomenon of the oil film.

図7は、本発明の実施例4を示す電極部の拡大模式図である。図において、2cは透明膜、2dは金属膜である。本実施例の膜電極2は、ガラスディスク1の下面にクロムを7nm被覆した金属膜2a、SiO2を800nm被覆した透明膜2c、最下面にクロムを300nm被覆した金属膜2dから形成されている。最下面に金属膜2d(300nmのクロム)を被覆しているので光源からの光は油膜に届かない。油を挟んでボール4をガラスディスク1に押し当てると接触応力によりガラスディスク1および電極膜2が弾性変形する。上部からの光は、金属膜2a(7nmのクロムの膜)で一部が反射し、通過した光が金属膜2dで反射する。この光干渉により、二つの膜に挟まれた透明膜の弾性変形量が求まり、接触応力がモニタできる。なお、透明膜の弾性変形量は、干渉縞の色により測定している。このため、干渉縞の色と実際の弾性変形量との関係をあらかじめ分かっている荷重を負荷することで検定した関係データを用いている。   FIG. 7 is an enlarged schematic view of an electrode portion showing Example 4 of the present invention. In the figure, 2c is a transparent film and 2d is a metal film. The membrane electrode 2 of this embodiment is formed of a metal film 2a coated with 7 nm of chromium on the lower surface of the glass disk 1, a transparent film 2c coated with 800 nm of SiO2, and a metal film 2d coated with 300 nm of chromium on the lowermost surface. Since the lowermost surface is coated with the metal film 2d (300 nm of chromium), the light from the light source does not reach the oil film. When the ball 4 is pressed against the glass disk 1 with oil interposed therebetween, the glass disk 1 and the electrode film 2 are elastically deformed by contact stress. A part of the light from the upper part is reflected by the metal film 2a (7 nm chromium film), and the passed light is reflected by the metal film 2d. By this optical interference, the elastic deformation amount of the transparent film sandwiched between the two films can be obtained, and the contact stress can be monitored. Note that the amount of elastic deformation of the transparent film is measured by the color of the interference fringes. For this reason, relational data obtained by applying a load whose relation between the interference fringe color and the actual elastic deformation is known in advance is used.

図8は、本発明の実施例5を示す電極部の拡大模式図で、図8(a)はガラスディスクを下方から見た平面図、(b)は側断面図である。図において、16は第1積層膜、17は第2積層膜である。本実施例は、ガラスディスク1に第1積層膜16と第2積層膜17を半分ずつ被覆している。すなわち、第1積層膜16はガラスディスク1の表面から金属膜2a、透明導電膜2bの順に形成したものであり、第2積層膜17は同じくガラスディスク1の表面から金属膜2a、透明膜2c、金属膜2dの順に形成したものである。
ガラスディスクが1回転する間に、第1積層膜16により油膜厚さの実測と放電の可視化ができ、第2積層膜17により接触応力の実測ができる。このように本発明では、一度に2種類の評価ができるという利便性に加え、特にグリースの油膜のように潤滑特性が試験時間の経過と共に刻々と変わる材料を評価する際、一度に多面的に評価できるので、ガラスディスクを取り替えて2回評価する場合と比べ、本発明で得られたデータは信頼性が高い。
8A and 8B are enlarged schematic views of an electrode portion showing Example 5 of the present invention. FIG. 8A is a plan view of the glass disk as viewed from below, and FIG. 8B is a side sectional view. In the figure, 16 is a first laminated film, and 17 is a second laminated film. In this embodiment, the glass disk 1 is covered with the first laminated film 16 and the second laminated film 17 in half. That is, the first laminated film 16 is formed in the order of the metal film 2a and the transparent conductive film 2b from the surface of the glass disk 1, and the second laminated film 17 is similarly formed of the metal film 2a and the transparent film 2c from the surface of the glass disk 1. The metal film 2d is formed in this order.
During one rotation of the glass disk, the first laminated film 16 can measure the oil film thickness and visualize the discharge, and the second laminated film 17 can measure the contact stress. As described above, in the present invention, in addition to the convenience that two kinds of evaluation can be performed at one time, especially when evaluating a material whose lubricating characteristics change every moment as the test time elapses, such as an oil film of grease, it is multifaceted at a time. Since the evaluation can be performed, the data obtained by the present invention is more reliable than the case where the evaluation is performed twice after replacing the glass disk.

本発明の実施例1を示す油膜絶縁破壊評価装置の側断面図Side sectional view of an oil film dielectric breakdown evaluation apparatus showing Example 1 of the present invention. 図1のガラスディスクと膜電極の拡大模式図Magnified schematic diagram of the glass disk and membrane electrode in FIG. 実施例1において撮影した油膜部の画像Image of oil film taken in Example 1 本発明の実施例2を示すガラスディスクと膜電極の拡大模式図The enlarged schematic diagram of the glass disk and membrane electrode which shows Example 2 of this invention 本発明の実施例3を示すガラスディスクと膜電極の拡大模式図The enlarged schematic diagram of the glass disk and membrane electrode which shows Example 3 of this invention 本発明の実施例3において撮影した油膜部の画像Image of oil film portion taken in Example 3 of the present invention 本発明の実施例4を示すガラスディスクと膜電極の拡大模式図Magnified schematic diagram of glass disk and membrane electrode showing Example 4 of the present invention 本発明の実施例5を示す電極部の拡大模式図で、(a)はガラスディスクを下方から見た平面図、(b)は(a)A−A‘面における側断面図It is the expansion schematic diagram of the electrode part which shows Example 5 of this invention, (a) is the top view which looked at the glass disk from the downward | lower direction, (b) is a sectional side view in the (a) A-A 'surface. 第1の従来例を示す油膜絶縁破壊評価装置の側断面図Side sectional view of an oil film dielectric breakdown evaluation apparatus showing a first conventional example 第2の従来例を示す油膜絶縁破壊評価装置の側断面図Side sectional view of an oil film dielectric breakdown evaluation apparatus showing a second conventional example

符号の説明Explanation of symbols

1 ガラスディスク
2 膜電極
2a 金属膜
2b 透明導電膜
2c 透明膜
2d 金属膜
3 油
4、20 ボール
5 支持部材
6 シャフト
7 固定ねじ
8 絶縁物
9、26 ばね
10 プーリ
11 電源
12 ブラシ
13 光源
14 プリズム
15 高速度カメラ
16 第1積層膜
17 第2積層膜
21、22、23 内輪
24 オイルタンク
25 直流電源
27 ねじ
28 レース
29 アクチュエータ
30 位置センサ
DESCRIPTION OF SYMBOLS 1 Glass disk 2 Membrane electrode 2a Metal film 2b Transparent conductive film 2c Transparent film 2d Metal film 3 Oil 4, 20 Ball 5 Support member 6 Shaft 7 Fixing screw 8 Insulator 9, 26 Spring 10 Pulley 11 Power supply 12 Brush 13 Light source 14 Prism 15 High-speed camera 16 First laminated film 17 Second laminated film 21, 22, 23 Inner ring 24 Oil tank 25 DC power supply 27 Screw 28 Race 29 Actuator 30 Position sensor

Claims (5)

油膜を挟んだ2つの物体間に電圧を印加して油膜の絶縁破壊を調べる油膜絶縁破壊評価装置であって、
前記一方の物体を透明体とし、かつ、前記他方の物体との接触面側に可視光を透過する電極を備え、前記電極は、光干渉により油膜厚さを測定する金属膜としたものであることを特徴とする油膜絶縁破壊評価装置。
An oil film dielectric breakdown evaluation apparatus for examining a dielectric breakdown of an oil film by applying a voltage between two objects sandwiching the oil film,
The one object is a transparent body, and an electrode that transmits visible light is provided on the contact surface side with the other object, and the electrode is a metal film that measures the oil film thickness by light interference. oil film breakdown rating system you wherein a.
前記電極は、透明導電膜であることを特徴とする請求項1記載の油膜絶縁破壊評価装置。 The oil film dielectric breakdown evaluation apparatus according to claim 1 , wherein the electrode is a transparent conductive film. 前記電極は、金属膜と透明導電膜とを少なくとも1層ずつ積層したことを特徴とする請求項1または2記載の油膜絶縁破壊評価装置。   The oil film dielectric breakdown evaluation apparatus according to claim 1, wherein the electrode is formed by laminating at least one layer of a metal film and a transparent conductive film. 前記電極は、前記透明体の表面から金属膜、透明膜、金属膜の順に積層し、光干渉により接触応力を測定するようにしたことを特徴とする請求項1〜3のいずれかに記載の油膜絶縁破壊評価装置。 The electrode, the metal film from the surface of the transparent body, a transparent film, are laminated in this order of the metal film, according to claim 1 to 3, characterized in that so as to measure the contact stress by optical interference according to any one Oil film dielectric breakdown evaluation equipment. 前記電極は、前記透明体の表面に、金属膜と透明導電膜とを積層した第1積層膜と、透明膜が金属膜で挟まれて積層された第2積層膜とを有することを特徴とする請求項1〜4のいずれかに記載の油膜絶縁破壊評価装置。
The electrode has a first laminated film in which a metal film and a transparent conductive film are laminated on a surface of the transparent body, and a second laminated film in which the transparent film is sandwiched between metal films. The oil film dielectric breakdown evaluation apparatus according to any one of claims 1 to 4 .
JP2007080634A 2007-03-27 2007-03-27 Oil film dielectric breakdown evaluation system Expired - Fee Related JP5004219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007080634A JP5004219B2 (en) 2007-03-27 2007-03-27 Oil film dielectric breakdown evaluation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007080634A JP5004219B2 (en) 2007-03-27 2007-03-27 Oil film dielectric breakdown evaluation system

Publications (2)

Publication Number Publication Date
JP2008241383A JP2008241383A (en) 2008-10-09
JP5004219B2 true JP5004219B2 (en) 2012-08-22

Family

ID=39912925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007080634A Expired - Fee Related JP5004219B2 (en) 2007-03-27 2007-03-27 Oil film dielectric breakdown evaluation system

Country Status (1)

Country Link
JP (1) JP5004219B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102564329B (en) * 2011-12-31 2014-04-23 青岛理工大学 Lubricating oil film measuring device with fixed skew or deflection angle for finite long line contact pair
CN103115846B (en) * 2013-01-24 2014-11-26 郑州大学 Visualization test device for flow form of inner and outer oil films of dynamic-pressure and static-pressure floating ring bearing
JP6095108B2 (en) * 2013-02-07 2017-03-15 国立大学法人九州工業大学 Pressure measuring device
CN103264256B (en) * 2013-05-31 2015-09-30 上海宝冶集团有限公司 The replacing options of vertical grinder powder concentrator lower bearing
JP2017044587A (en) * 2015-08-27 2017-03-02 東レエンジニアリング株式会社 Film thickness distribution measurement device
CN105277861A (en) * 2015-11-19 2016-01-27 南车株洲电机有限公司 Method for testing motor bearing dielectric strength
CN105865325B (en) * 2016-04-02 2018-10-23 上海大学 Double interference image frequency microscopes adjustable in pitch
CN109406878B (en) * 2016-11-02 2020-09-08 安徽佳特瑞计量检测科技有限公司 Intelligent detection system for power switch control cabinet circuit
CN106767572A (en) * 2017-01-10 2017-05-31 中国科学院烟台海岸带研究所 A kind of method for observing spilled oil on water surface oil film roughness
JP7288271B2 (en) * 2018-11-29 2023-06-07 国立大学法人埼玉大学 Film thickness distribution measuring device
TWI814325B (en) * 2022-03-31 2023-09-01 國立勤益科技大學 Oil film estimation device of machine tool feeding system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856973B2 (en) * 1978-11-06 1983-12-17 超エル・エス・アイ技術研究組合 Insulating film defect detection device
JPH05164808A (en) * 1991-12-11 1993-06-29 Hitachi Cable Ltd Detecting method for partial discharge from phase-segragated, sealed bus-bar
JPH07333200A (en) * 1994-06-10 1995-12-22 Hitachi Ltd Electrolytic corrosion evaluation test device for bearing
JPH09274940A (en) * 1996-04-08 1997-10-21 Fujikura Ltd Prefabricated connection part of cross linked polyethylene insulated power cable and its manufacture
JPH10199952A (en) * 1997-01-10 1998-07-31 Nippon Steel Corp Method and apparatus for evaluating dielectric strength
JP2000324749A (en) * 1999-05-12 2000-11-24 Yaskawa Electric Corp Motor
JP2001264022A (en) * 2000-03-21 2001-09-26 Nok Corp Instrument and method for measuring liquid film thickness
JP4369690B2 (en) * 2003-06-26 2009-11-25 Ntn株式会社 Insulation performance testing machine for insulated bearings
JP4384947B2 (en) * 2004-07-16 2009-12-16 日本放送協会 Conduction type determination method and apparatus

Also Published As

Publication number Publication date
JP2008241383A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP5004219B2 (en) Oil film dielectric breakdown evaluation system
Gustafsson et al. Measuring lubricant film thickness with image analysis
Johnston et al. The measurement and study of very thin lubricant films in concentrated contacts
JP6729633B2 (en) Diagnosis method of rolling device
US20090063060A1 (en) Methods for detecting oil deterioration and oil level
US9995344B2 (en) Capacitance measurement in a bearing
US20090223083A1 (en) Bearing including sensor and drying drum including same
US20190128866A1 (en) Method for diagnosing rolling device
EP2561330A1 (en) Bearing arrangement, method for detecting wear of a bearing surface in a bearing arrangement and use of a bearing arrangement
Furtmann et al. Evaluation of oil-film thickness along the path of contact in a gear mesh by capacitance measurement
Soliman Machine reliability and condition monitoring: a comprehensive guide to predictive maintenance planning
WO2021059743A1 (en) Sliding member of internal combustion engine including self-detecting material for monitoring sliding member damage
JP2008249387A (en) Fragment detection sensor
JPH1026581A (en) Friction/abrasion testing machine
JP2008107147A (en) Fragment detection sensor
JP2008107150A (en) Broken piece detecting sensor
WO2015146689A1 (en) Bearing component internal defect inspection apparatus and internal defect inspection method
JP4889424B2 (en) Debris detection sensor
JP2007240491A (en) Bearing state inspecting apparatus
JPH07333200A (en) Electrolytic corrosion evaluation test device for bearing
JP2007239779A (en) Bearing state inspection device
Vasilache et al. The control of the lubricant film by the resistive method for scuffing
JP2005054828A (en) Condition detecting device, condition detecting method, condition detecting program, and information recording medium
WO2022250060A1 (en) Bearing device state detecting method, detecting device, and program
JP7364135B1 (en) Condition diagnosis method, condition diagnosis device, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120229

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120517

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees