JP2008107151A - Broken piece detecting sensor - Google Patents

Broken piece detecting sensor Download PDF

Info

Publication number
JP2008107151A
JP2008107151A JP2006288757A JP2006288757A JP2008107151A JP 2008107151 A JP2008107151 A JP 2008107151A JP 2006288757 A JP2006288757 A JP 2006288757A JP 2006288757 A JP2006288757 A JP 2006288757A JP 2008107151 A JP2008107151 A JP 2008107151A
Authority
JP
Japan
Prior art keywords
electrodes
electrode
debris
capacitance
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006288757A
Other languages
Japanese (ja)
Inventor
Toru Takahashi
亨 高橋
Tomoumi Ishikawa
智海 石河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006288757A priority Critical patent/JP2008107151A/en
Priority to US12/311,312 priority patent/US8018237B2/en
Priority to EP07805818A priority patent/EP2071364B1/en
Priority to PCT/JP2007/000963 priority patent/WO2008038407A1/en
Publication of JP2008107151A publication Critical patent/JP2008107151A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a broken pieces detecting sensor capable of stably detecting the existence, size or accumulation quantity of broken pieces mixed in a fluid independently of the quantity of the mixed broken pieces. <P>SOLUTION: This broken pieces detecting sensor, which detects broken pieces mixed in a fluid, comprises: three electrodes (5A, 5B, 7): an electrode shifting mechanism 9 for sandwiching the broken pieces between two electrodes with shifting at least one electrode 7 of the three electrodes: a measuring/determining means 17. The measuring/determining means 7 detects one of existence, size and quantity of accumulation by measuring the gap between the two sandwiching electrodes. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、潤滑油などの流体中に混入した破片を検出する破片検出センサに関する。   The present invention relates to a debris detection sensor that detects debris mixed in a fluid such as lubricating oil.

従来、自動車や航空機、ヘリコプタ等の潤滑油中に、エンジンやトランスミッション、軸受等の摩耗や破損によって生じた金属破片あるいは金属粉が混入していることを検出する装置として、メタルチェックセンサあるいはオイルチェックセンサあるいはデブリスセンサなどと呼ばれる金属片検出装置が提案されている(特許文献1〜5)。
このような金属片検出装置は、エンジンやギアボックス、軸受等の各種装置の健全性を検査する手段として使用され、検査対象の装置の各部位における劣化の情報をこれらの部位に破壊的な故障が生じる前に得ることができる。
特開昭55−052943号公報 特開昭61−253455号公報 特開2000−321248号公報 特許2703502号公報 特許2865857号公報
Conventionally, a metal check sensor or an oil check is used as a device for detecting that metal debris or powder generated by wear or damage of engines, transmissions, bearings, etc. is mixed in lubricating oil for automobiles, aircraft, helicopters, etc. Metal piece detection devices called sensors or debris sensors have been proposed (Patent Documents 1 to 5).
Such metal piece detection devices are used as means for inspecting the soundness of various devices such as engines, gearboxes, bearings, etc., and information on deterioration in each part of the device to be inspected is a destructive failure in these parts. Can be obtained before it occurs.
Japanese Unexamined Patent Publication No. 55-052943 JP-A-61-253455 JP 2000-32248 A Japanese Patent No. 2703502 Japanese Patent No. 2865857

現在、特に航空機用ジェットエンジンにおいて、その小型化と高速化が求められている。従来より、航空機用ジェットエンジンの主軸用軸受では、その転動体に金属材料が用いられてきたが、現状の転動体材料では更なる高速化が困難な状況にある。高速化に耐えうるためには、軸受の転動体を窒化珪素(Si3N4 )等を原材料とするセラミック玉やセラミックころとする必要がある。また、ジェットエンジン用軸受にセラミック玉やセラミックころを適用した場合、大きく性能が向上し、ひいてはジェットエンジンの効率が向上し、環境負荷を軽減できる可能性がある。
一方、従来の金属片検出装置では、金属材料あるいは磁性材料あるいは導電性材料の破片のみ検出が可能であり、非金属、非磁性、非導電性を特徴とするセラミック材の検出は不可能であった。したがって、例えばセラミック製の転動体を使用した軸受の場合には、破壊的な故障が生じる前に、金属片検出装置を用いて劣化や損傷に関する情報を得ることができない。そのため、現状ではこの様な構成の軸受は、用途が限定された航空機にしか使用されていない。
At present, there is a demand for miniaturization and high speed particularly in aircraft jet engines. Conventionally, in bearings for main shafts of aircraft jet engines, metal materials have been used for the rolling elements. However, it is difficult to achieve higher speeds with the current rolling element materials. In order to withstand high speed, the rolling elements of the bearing need to be ceramic balls or rollers made of silicon nitride (Si3N4) or the like. In addition, when ceramic balls or ceramic rollers are applied to the jet engine bearing, the performance is greatly improved, and consequently the efficiency of the jet engine is improved, which may reduce the environmental load.
On the other hand, conventional metal piece detection devices can detect only metal, magnetic or conductive material fragments, and cannot detect ceramic materials characterized by non-metal, non-magnetic and non-conductivity. It was. Therefore, for example, in the case of a bearing using a ceramic rolling element, it is not possible to obtain information on deterioration or damage using the metal piece detection device before a destructive failure occurs. Therefore, at present, the bearing having such a configuration is used only for aircraft having limited applications.

そこで、このような課題を解決する破片検出センサとして、2つの対面する平板を設け、これら2つの平板のうち少なくとも1つの平板を平板移動機構で対面方向に動かすことで流体中に混入する破片を前記2つの平板間に挟み込むようにし、この状態での2つの平板間のギャップ変動を静電容量の変化やインダクタンス変化などとして検出するギャップセンサを設け、そのギャップセンサの測定値から前記破片の有無や大きさ、あるいは蓄積量を検出する構成のものが考えられる。   Therefore, as a debris detection sensor that solves such a problem, two facing flat plates are provided, and at least one of these two flat plates is moved in the facing direction by a flat plate moving mechanism to detect debris mixed in the fluid. A gap sensor is provided so as to be sandwiched between the two flat plates, and a gap change between the two flat plates in this state is detected as a change in capacitance, a change in inductance, or the like. A configuration that detects the size, the size, or the accumulated amount is conceivable.

しかし、この構成では、検査対象の潤滑油などの流体を前記2つの平板間に流して流体中の破片を2つの平板で挟む場合に、流体中に検出対象の破片がごく僅かしか存在しないと、破片が挟み込まれる確率が低くなってしまうので、できるだけ検出領域を大きくして検出確率を高める必要がある。   However, in this configuration, when a fluid such as lubricating oil to be inspected is flowed between the two flat plates and the fragments in the fluid are sandwiched between the two flat plates, there are only a few fragments to be detected in the fluid. Since the probability that the debris is caught becomes low, it is necessary to enlarge the detection region as much as possible to increase the detection probability.

この発明の目的は、流体中に混入する破片の有無または大きさまたは蓄積量を、混入する破片の量に左右されずに安定良く検出できる破片検出センサを提供することである。   An object of the present invention is to provide a debris detection sensor that can stably detect the presence, size, or accumulation amount of debris mixed in a fluid irrespective of the amount of debris mixed.

この発明の破片検出センサは、流体中に混入する破片を検出する破片検出センサであって、3つの電極を備え、これら3つの電極のうち少なくとも1つの電極を動かすことによっていずれか2つの電極間に前記破片を挟み込ませる電極移動機構と、挟み込んだ2つの電極のギャップを測定することで、前記破片の有無、大きさ、および蓄積量のいずれかを検出する測定・判定手段を設けたものである。
この構成によると、3つの電極のうち少なくとも1つの電極を電極移動機構で動かすことによって、いずれか2つの電極間に破片を挟み込み、挟み込んだ2つの電極のギャップを測定・判定手段で測定することで、破片の有無、大きさ、および蓄積量のいずれかを検出するものとしているので、2つの電極間に破片が挟み込まれる確率が高くなり、流体中に混入する破片の有無または大きさまたは蓄積量を、混入する破片の量に左右されずに安定良く検出できる。
また、上記破片検出センサを自動車,航空機,ヘリコプタ等に組み込んだ場合、潤滑油中に混入した破片の状態をモニターすることができるため、故障の前兆あるいは故障の診断を行い、運転の停止や部品交換が必要なことを知らせることができ、安全性が向上する。また、機械部品の寿命や経年変化を予測できるため、部品の無駄な交換や遅れた交換がなくなり、経済性が向上する。
The fragment detection sensor according to the present invention is a fragment detection sensor that detects a fragment mixed in a fluid, and includes three electrodes. By moving at least one of the three electrodes, any one of the two electrodes is moved. An electrode moving mechanism for sandwiching the debris on the surface, and a measurement / determination means for detecting any of the presence / absence, size, and accumulation amount of the debris by measuring a gap between two sandwiched electrodes. is there.
According to this configuration, by moving at least one of the three electrodes by the electrode moving mechanism, the debris is sandwiched between any two electrodes, and the gap between the two sandwiched electrodes is measured by the measurement / judgment means. Therefore, it is assumed that the presence / absence, size, and accumulation amount of debris is detected, so that the probability of debris being sandwiched between the two electrodes increases, and the presence / absence / size / accumulation of debris mixed in the fluid The amount can be detected stably without being influenced by the amount of debris to be mixed.
In addition, when the above debris detection sensor is incorporated in an automobile, aircraft, helicopter, etc., it is possible to monitor the state of debris mixed in the lubricating oil. It is possible to inform that replacement is necessary, and safety is improved. In addition, since the life and aging of machine parts can be predicted, there is no need for unnecessary or delayed replacement of parts, thereby improving economy.

この発明において、3つの電極のうち、上側2つの電極の間、および下側2つの電極の間に、それぞれギャップを測定するギャップ測定手段を設け、前記電極移動機構は、上側2つの電極間および下側2つの電極間に破片を挟み込むように、中央の電極を上下動作させるものであっても良い。この構成の場合、中央の電極の1回のストロークの両端でそれぞれ検出動作を行えることになり、検出動作の効率も高めることができる。   In the present invention, among the three electrodes, gap measuring means for measuring a gap is provided between the upper two electrodes and between the lower two electrodes, respectively, and the electrode moving mechanism is provided between the upper two electrodes and The center electrode may be moved up and down so that the debris is sandwiched between the two lower electrodes. In this configuration, the detection operation can be performed at both ends of one stroke of the center electrode, and the efficiency of the detection operation can be improved.

この発明において、中央の電極を動作させる電極移動機構が、前記流体を流す流路の外部に設置され、この電極移動機構は、固定側の2つの電極のうちのいずれか一方の電極に設けた孔を貫通した貫通体を介して可動電極を動かすものであっても良い。この構成の場合、3つの電極をコンパクトに配置できる。   In this invention, an electrode moving mechanism for operating the central electrode is installed outside the flow path for flowing the fluid, and this electrode moving mechanism is provided on one of the two electrodes on the fixed side. You may move a movable electrode through the penetration body which penetrated the hole. In the case of this configuration, the three electrodes can be arranged in a compact manner.

この発明において、前記測定・判定手段は、破片を挟み込んだ2つの電極間の静電容量を測定する静電容量測定手段と、この静電容量測定手段の出力から前記2つの電極間のギャップの大きさを推定する判定手段とで構成されるものであっても良い。   In the present invention, the measurement / judgment means includes a capacitance measurement means for measuring a capacitance between two electrodes sandwiching a debris, and a gap between the two electrodes from an output of the capacitance measurement means. It may be configured by a determination unit that estimates the size.

この発明において、前記測定・判定手段は、前記破片を挟み込んだ2つの電極間のギャップを測定する変位センサを有し、前記静電容量測定手段の出力と前記変位センサの出力とから、前記2つの電極間に挟まれた破片の導電性と非導電性の判別をする導電性・非導電性判別部を有するものとしても良い。この構成の場合、検出した破片が金属材料等の導電性材料であるか、樹脂・セラミック材料のような非導電性材料であるかを識別することができる。   In the present invention, the measurement / judgment means has a displacement sensor for measuring a gap between two electrodes sandwiching the debris. From the output of the capacitance measurement means and the output of the displacement sensor, the 2 It is good also as what has the electroconductive / nonelectroconductive discrimination | determination part which discriminate | determines the electroconductivity and nonelectroconductive of the fragment pinched | interposed between two electrodes. In the case of this configuration, it is possible to identify whether the detected debris is a conductive material such as a metal material or a non-conductive material such as a resin / ceramic material.

この発明の破片検出センサは、流体中に混入する破片を検出する破片検出センサであって、3つの電極を備え、これら3つの電極のうち少なくとも1つの電極を動かすことによっていずれか2つの電極間に前記破片を挟み込ませる電極移動機構と、挟み込んだ2つの電極のギャップを測定することで、前記破片の有無、大きさ、および蓄積量のいずれかを検出する測定・判定手段を設けたため、流体中に混入する破片の有無または大きさまたは蓄積量を、混入する破片の量に左右されずに安定良く検出できる。   The fragment detection sensor according to the present invention is a fragment detection sensor that detects a fragment mixed in a fluid, and includes three electrodes. By moving at least one of the three electrodes, any one of the two electrodes is moved. Since there is provided an electrode moving mechanism for sandwiching the debris in the body and a measurement / determination means for detecting the presence / absence, size, and accumulation amount of the debris by measuring the gap between the two sandwiched electrodes. The presence / absence, size, or accumulated amount of debris mixed therein can be detected stably without being influenced by the amount of debris mixed therein.

この発明の第1の実施形態を図1ないし図5と共に説明する。図1は、この実施形態の破片検出センサの概略構成図を示す。この破片検出センサは、検査対象である流体中に混入する破片を検出するセンサであって、3つの電極5A,5B,7と、これら3つの電極5A,5B,7のうち少なくとも1つの電極を動かすことによっていずれか2つの電極間に破片13(図4)を挟み込ませる電極移動機構9と、挟み込んだ2つの電極のギャップを測定することで、前記破片13の有無、大きさ、および蓄積量のいずれかを検出する測定・判定手段17とを備える。この破片検出センサの場合、潤滑油が検査対象の流体とされる。   A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a schematic configuration diagram of a fragment detection sensor of this embodiment. This debris detection sensor is a sensor for detecting debris mixed in the fluid to be inspected, and includes three electrodes 5A, 5B, 7 and at least one of these three electrodes 5A, 5B, 7. By measuring the gap between the two electrodes sandwiched by the electrode moving mechanism 9 that sandwiches the fragment 13 (FIG. 4) between any two electrodes by moving, the presence / absence, size, and accumulation amount of the fragment 13 are measured. And a measurement / determination means 17 for detecting any of the above. In the case of this debris detection sensor, lubricating oil is the fluid to be inspected.

前記3つの電極5A,5B,7と電極移動機構9はセンサユニット1に組み込まれる。このセンサユニット1はベース部材4を有し、そのベース部材4には検査対象である潤滑油を流す油路4aが貫通して設けられている。油路4aの一端には給油配管2が接続され、油路4aの他端には排油配管3が接続されている。この場合、潤滑油は、給油配管2の油路2aからベース部材4の油路4aを経由し、排油配管3の油路3aに流れる。例えば、給油配管2はエンジンやギアボックス、軸受等で使用された潤滑油が収集される配管に接続され、排油配管3はオイルタンクへの配管に接続される。   The three electrodes 5A, 5B, and 7 and the electrode moving mechanism 9 are incorporated in the sensor unit 1. This sensor unit 1 has a base member 4, and an oil passage 4 a through which lubricating oil to be inspected flows is provided through the base member 4. The oil supply pipe 2 is connected to one end of the oil path 4a, and the oil drain pipe 3 is connected to the other end of the oil path 4a. In this case, the lubricating oil flows from the oil path 2 a of the oil supply pipe 2 through the oil path 4 a of the base member 4 to the oil path 3 a of the oil discharge pipe 3. For example, the oil supply pipe 2 is connected to a pipe for collecting lubricating oil used in an engine, a gear box, a bearing, and the like, and the oil drain pipe 3 is connected to a pipe to an oil tank.

3つの電極5A,5B,7はいずれも導電性材料からなり、前記ベース部材4の油路4aの途中において、その油路4aの貫通方向と直交する方向に互いに平行となるように並べて配置される。そのうち1つの電極5Aは平板状とされた固定電極であって、絶縁材料からなる電極固定部材6Aを介してベース部材4に電気的に絶縁された状態で固定されている。この固定電極5Aは、その表面が油路4a内に臨む向きとなるようにベース部材4の下側に配置される。もう1つの電極5Bも平板状とされた固定電極であって、絶縁材料からなる別の電極固定部材6Bを介してベース部材4に電気的に絶縁された状態で固定されている。この固定電極5Bは、その表面が油路4a内に臨み前記下側の固定電極5Aと対面する向きとなるようにベース部材4の上側に配置される。残る1つの電極7は、平板状の電極基体7aと、この電極基体7aの片面から垂直に延びて前記固定電極5Bおよび電極固定部材6Bに設けられた孔19を貫通する貫通体7bとからなる断面T字状の可動電極であって、その貫通体7bの後端が電極移動機構9の可動軸9aに連結され、可動軸9aと一体に進退自在とされる。この可動電極7は、その電極基体7aが前記油路4aにおける前記両固定電極5A,5B間の中央部に位置して電極基体7aの各片面が両固定電極5A,5Bにそれぞれ対面するように配置される。なお、上側の固定電極5Bを貫通する可動電極7の貫通体7bは、固定電極5Bに対して電気的に絶縁状態が保たれている。貫通体7bだけを絶縁材料とすることにより、固定電極5Bとの間が電気的絶縁状態となるようにしても良い。   The three electrodes 5A, 5B, and 7 are all made of a conductive material, and are arranged side by side in the middle of the oil passage 4a of the base member 4 so as to be parallel to each other in a direction perpendicular to the penetration direction of the oil passage 4a. The One of the electrodes 5A is a fixed electrode having a flat plate shape, and is fixed in an electrically insulated state to the base member 4 via an electrode fixing member 6A made of an insulating material. The fixed electrode 5A is disposed on the lower side of the base member 4 so that the surface thereof faces the oil passage 4a. The other electrode 5B is also a flat fixed electrode, and is fixed in an electrically insulated state to the base member 4 via another electrode fixing member 6B made of an insulating material. The fixed electrode 5B is disposed on the upper side of the base member 4 so that the surface thereof faces the oil passage 4a and faces the lower fixed electrode 5A. The remaining one electrode 7 includes a plate-like electrode base 7a and a penetrating body 7b extending vertically from one surface of the electrode base 7a and penetrating through the holes 19 provided in the fixed electrode 5B and the electrode fixing member 6B. It is a movable electrode having a T-shaped cross section, and the rear end of the penetrating body 7b is connected to the movable shaft 9a of the electrode moving mechanism 9, so that it can advance and retreat integrally with the movable shaft 9a. The movable electrode 7 has an electrode base 7a positioned at the center between the fixed electrodes 5A and 5B in the oil passage 4a so that each side of the electrode base 7a faces the fixed electrodes 5A and 5B. Be placed. The penetrating body 7b of the movable electrode 7 penetrating the upper fixed electrode 5B is electrically insulated from the fixed electrode 5B. By using only the penetrating body 7b as an insulating material, the fixed electrode 5B may be electrically insulated.

電極移動機構9はプッシュプルソレノイド等からなる直動アクチュエータであって、その可動軸9aが前記ベース部材4の油路4aの貫通方向と直交する方向に進退自在となるように、アクチュエータ固定部材10を介してベース部材4に固定されている。電極移動機構9の可動軸9aの先端部には、絶縁材料からなる電極固定部材8を介して、前記可動電極7の貫通体7bが電気的に絶縁された状態で固定されている。ここでは電極移動機構9としてプッシュプルソレノイドからなる直動アクチュエータを使用した例を示しているが、直線動作を行えるものであれば、その種類は問わない。例えば、電動モータとボールネジを組み合わせたものでも良いし、空圧や油圧を使用したものでも良い。直動アクチュエータを用いた場合は、回転駆動源を用いる場合と異なり、回転を直線運動に変換する機構が不要で、破片検出センサを簡素でコンパクトな構成とできる。
電極移動機構9を動作させると、その可動軸9aに電極固定部材8を介して連結された可動電極7が進退して、両固定電極5A,5Bに近づいたり、離れたりする。
The electrode moving mechanism 9 is a linear motion actuator composed of a push-pull solenoid or the like, and an actuator fixing member 10 so that the movable shaft 9a can advance and retreat in a direction orthogonal to the penetrating direction of the oil passage 4a of the base member 4. It is being fixed to the base member 4 via. The penetrating body 7b of the movable electrode 7 is fixed to the tip of the movable shaft 9a of the electrode moving mechanism 9 through an electrode fixing member 8 made of an insulating material in an electrically insulated state. Here, an example is shown in which a linear actuator consisting of a push-pull solenoid is used as the electrode moving mechanism 9, but any type can be used as long as it can perform a linear motion. For example, a combination of an electric motor and a ball screw may be used, or an air pressure or hydraulic pressure may be used. When a linear motion actuator is used, unlike the case of using a rotational drive source, a mechanism for converting rotation into linear motion is unnecessary, and the fragment detection sensor can be configured to be simple and compact.
When the electrode moving mechanism 9 is operated, the movable electrode 7 connected to the movable shaft 9a via the electrode fixing member 8 advances and retreats, and approaches or separates from both the fixed electrodes 5A and 5B.

電極移動機構9の可動軸9aは、その後端部に固定されたばね受け部材11とアクチュエータ固定部材10との間に介在させた圧縮ばね12により、進出方向に付勢される。
図1は、電極移動機構9に電源を投入して可動軸9aの進出を規制する第1のモードに設定した状態を示し、このとき可動軸9aは圧縮ばね12を圧縮させて若干後退しており、可動電極7は両固定電極5A,5Bから共に離れた中央位置にある。一方、電極移動機構9に電源を投入していない状態では、圧縮ばね12が復元する力によって、可動電極7は図2のように下側の固定電極5Aに接触する位置まで進出する。可動電極7と固定電極5Aとが接触した状態で、可動電極7には圧縮ばね12による予圧が与えられているので、可動電極7と固定電極5とは一定の圧力で接触した状態となる。図3は、電極移動機構9に電源を投入して、可動軸9aを図1の第1のモードの状態よりも上側に後退させる第2のモードに設定した状態を示し、このとき可動電極7は上側の固定電極5Bに接触する位置まで後退する。
The movable shaft 9a of the electrode moving mechanism 9 is urged in the advancing direction by a compression spring 12 interposed between the spring receiving member 11 fixed to the rear end portion and the actuator fixing member 10.
FIG. 1 shows a state in which the electrode moving mechanism 9 is turned on to set the first mode in which the advance of the movable shaft 9a is restricted. At this time, the movable shaft 9a is slightly retracted by compressing the compression spring 12. The movable electrode 7 is at a central position away from both the fixed electrodes 5A and 5B. On the other hand, in a state where the electrode moving mechanism 9 is not turned on, the movable electrode 7 advances to a position in contact with the lower fixed electrode 5A as shown in FIG. Since the movable electrode 7 and the fixed electrode 5A are in contact with each other and the preload is applied to the movable electrode 7 by the compression spring 12, the movable electrode 7 and the fixed electrode 5 are in contact with each other at a constant pressure. FIG. 3 shows a state in which the electrode moving mechanism 9 is turned on, and the movable shaft 9a is set to the second mode in which the movable shaft 9a is retracted upward from the state of the first mode in FIG. Retracts to a position in contact with the upper fixed electrode 5B.

測定・判定手段17は、静電容量測定手段14と変位センサ16と判定手段15とでなる。静電容量測定手段14は、可動電極7と各固定電極5A,5Bとの間の静電容量を測定する手段であり、静電容量測定手段14の入力端子14a,14bがそれぞれ可動電極7と固定電極5A,5Bに接続される。変位センサ16は、可動電極7と各固定電極5A,5Bとの間のギャップを測定するギャップセンサであり、例えば下側の固定電極5Aに埋め込んだ状態で設けられる。この場合、変位センサ16は、直接的には可動電極7と下側の固定電極5Aの間のギャップを測定することになるが、両固定電極5A,5B間の距離および可動電極7の電極基体7aの厚みが一定であることより、可動電極7と下側の固定電極5Aの間のギャップ測定値から可動電極7と上側の固定電極5Bの間のギャップも自動的に算出される。   The measurement / determination unit 17 includes a capacitance measurement unit 14, a displacement sensor 16, and a determination unit 15. The capacitance measuring means 14 is a means for measuring the capacitance between the movable electrode 7 and each of the fixed electrodes 5A and 5B. The input terminals 14a and 14b of the capacitance measuring means 14 are respectively connected to the movable electrode 7 and the movable electrode 7. Connected to the fixed electrodes 5A and 5B. The displacement sensor 16 is a gap sensor that measures a gap between the movable electrode 7 and each of the fixed electrodes 5A and 5B. For example, the displacement sensor 16 is provided in a state of being embedded in the lower fixed electrode 5A. In this case, the displacement sensor 16 directly measures the gap between the movable electrode 7 and the lower fixed electrode 5A. However, the distance between the fixed electrodes 5A and 5B and the electrode base of the movable electrode 7 are measured. Since the thickness of 7a is constant, the gap between the movable electrode 7 and the upper fixed electrode 5B is also automatically calculated from the measured gap between the movable electrode 7 and the lower fixed electrode 5A.

ここでは、変位センサ16として例えば渦電流式のものが用いられるが、磁気式,光学式等の他の方式のものを用いても良い。判定手段15は、静電容量測定手段14の測定値と変位センサ16の測定値とから潤滑油中の破片13の有無、破片13の材質、大きさ、または蓄積量を推定する手段であり、例えば測定値と判定結果の関係を定めたテーブルまたは演算式の判定規則を有し、その判定規則と測定値とを比較して判定結果を出力する。判定手段15は、その機能の一部として検出された破片13が導電性材料であるか非導電性材料であるかを判別する導電性・非導電性判別部18を有する。   Here, for example, an eddy current type is used as the displacement sensor 16, but other types such as a magnetic type and an optical type may be used. The determination means 15 is a means for estimating the presence / absence of the debris 13 in the lubricating oil, the material, size, or accumulation amount of the debris 13 from the measurement value of the capacitance measurement means 14 and the measurement value of the displacement sensor 16. For example, it has a table or an arithmetic expression determination rule that defines the relationship between the measurement value and the determination result, compares the determination rule with the measurement value, and outputs the determination result. The determination unit 15 includes a conductive / nonconductive determination unit 18 that determines whether the debris 13 detected as part of the function is a conductive material or a nonconductive material.

次に、この破片検出センサを用いて、エンジン,ギアボックス,軸受等の装置の摩耗や破損によって生じた各種材料からなる破片が混入している潤滑油から、その破片を検出する動作を説明する。
上記したように、電極移動機構9に電源を投入して例えば第2のモードに設定すると、図3のように可動軸9aが後退して、その可動軸9aに電極固定部材8を介して設置された可動電極7が下側の固定電極5Aから離れ、可動電極7は上側の固定電極5Bに接触する位置となる。
Next, the operation for detecting the fragments from the lubricating oil mixed with the fragments made of various materials caused by wear or damage of the engine, gear box, bearing or the like using this fragment detection sensor will be described. .
As described above, when the electrode moving mechanism 9 is turned on and set to the second mode, for example, the movable shaft 9a moves backward as shown in FIG. 3 and is installed on the movable shaft 9a via the electrode fixing member 8. The moved movable electrode 7 is separated from the lower fixed electrode 5A, and the movable electrode 7 comes into contact with the upper fixed electrode 5B.

次に、検査対象の流体として、エンジン,ギアボックス,軸受等に使用されている潤滑油を給油配管2の油路2aからベース部材4の油路4a内を経由して排油配管3の油路3aに流す。このとき、ベース部材4の油路4aを流れる潤滑油中に、エンジンやギアボックス、軸受等の摩耗や破損によって生じた破片13が混入していると、その破片13は可動電極7と下側の固定電極5Aとの間を流れる。
この状態のもとに、電極移動機構9への電源の投入を停止すると、圧縮ばね12の復元力により、可動軸9aと一体に可動電極7が下側の固定電極5Aに接近する方向に進出して、図4のように可動電極7と下側の固定電極5Aとの間に破片13が挟み込まれる。これにより、可動電極7と固定電極5Aとの間には、破片13の厚み分だけギャップdが生じる。このギャップdを変位センサ16が測定する。同時に、このギャップdにより、2つの電極5A,7間には静電容量Cが形成される。
Next, as the fluid to be inspected, the lubricating oil used in the engine, gear box, bearing, etc. is passed through the oil passage 2a of the oil supply piping 2 through the oil passage 4a of the base member 4, and the oil in the drainage piping 3 Flow on path 3a. At this time, if debris 13 caused by wear or breakage of the engine, gearbox, bearing, or the like is mixed in the lubricating oil flowing through the oil passage 4a of the base member 4, the debris 13 is moved from the movable electrode 7 to the lower side. Between the fixed electrode 5A.
Under this state, when the power supply to the electrode moving mechanism 9 is stopped, the movable electrode 7 moves in the direction of approaching the lower fixed electrode 5A integrally with the movable shaft 9a by the restoring force of the compression spring 12. As shown in FIG. 4, the debris 13 is sandwiched between the movable electrode 7 and the lower fixed electrode 5A. As a result, a gap d is generated between the movable electrode 7 and the fixed electrode 5 </ b> A by the thickness of the debris 13. The displacement sensor 16 measures the gap d. At the same time, a capacitance C is formed between the two electrodes 5A and 7 by the gap d.

ところで、一般的に、平行平板間の静電容量Cは
C=εoεrS/d ……(1)
となることが知られている。すなわち、静電容量C[F]は、真空中の誘電率εo(8.854 ×10-12 [F/m])と潤滑油の誘電率εr と平行平板の面積S[m2 ]とを掛け合わせたものを、平行平板間のギャップd[m]で割った値となる。潤滑油の誘電率εr は一定であり、平行平板の面積Sが一定であると、静電容量Cの値は平行平板間のギャップdに依存する。
そこで、2つの電極5A,7間の静電容量Cを前記静電容量測定手段14で測定することにより、変位センサ16による測定とは別の方法で電極5A,7間のギャップdの値を検出でき、その値によっても破片13の大きさや蓄積量を推定することができる。
By the way, in general, the capacitance C between parallel plates is C = εoεrS / d (1)
It is known that That is, the capacitance C [F] is obtained by multiplying the dielectric constant εo (8.854 × 10 −12 [F / m]) in vacuum by the dielectric constant εr of the lubricating oil and the area S [m 2 ] of the parallel plate. The value obtained by dividing the above by the gap d [m] between the parallel plates. When the dielectric constant εr of the lubricating oil is constant and the area S of the parallel plate is constant, the value of the capacitance C depends on the gap d between the parallel plates.
Therefore, by measuring the capacitance C between the two electrodes 5A and 7 by the capacitance measuring means 14, the value of the gap d between the electrodes 5A and 7 can be determined by a method different from the measurement by the displacement sensor 16. It can be detected, and the size and accumulation amount of the fragments 13 can also be estimated based on the value.

ここで、挟み込まれた破片13が導電性材料であると2つの電極5A,7間は短絡状態となるので、静電容量Cの測定から求められるギャップd2は、ゼロもしくは非常に小さな値となる。これに対して、変位センサ16によって得られるギャップd1は、静電容量測定手段14の測定値から推定されるギャップd2とは異なった値となる。このように、2 つの測定結果の違いを検出して、検出された破片13が導電性であるか非導電性であるかを判別することが可能となる。すなわち、判定手段15の導電性・非導電性判別部18は検出された破片13が導電性材料か非導電性材料かを判断する機能を有し、
d1≫d2 ……(2)
となる場合には、検出された破片13が導電性のものであると判断する。また、2 つの値d1,d2が互いに近い値であって、かつゼロギャップでない場合、つまり
d1≒d2(≠0) ……(3)
となる場合には、検出された破片13が非導電性のものであると判断する。また、判定手段15は、破片13の大きさを、変位センサ16の検出値d1で代表して出力する。
Here, when the sandwiched debris 13 is made of a conductive material, the two electrodes 5A and 7 are short-circuited, and therefore the gap d2 obtained from the measurement of the capacitance C is zero or a very small value. . On the other hand, the gap d1 obtained by the displacement sensor 16 is a value different from the gap d2 estimated from the measured value of the capacitance measuring means 14. In this way, it is possible to detect the difference between the two measurement results and determine whether the detected debris 13 is conductive or non-conductive. That is, the conductive / nonconductive determination unit 18 of the determination unit 15 has a function of determining whether the detected debris 13 is a conductive material or a nonconductive material,
d1 >> d2 (2)
In such a case, it is determined that the detected debris 13 is conductive. Further, when the two values d1 and d2 are close to each other and are not zero gaps, that is, d1≈d2 (≠ 0) (3)
In such a case, it is determined that the detected debris 13 is non-conductive. The determination means 15 outputs the size of the fragment 13 as a representative value detected by the displacement sensor 16.

一方、2つの電極5A,7間に破片13がない場合にも、2つの電極5A,7間は短絡状態となるので、静電容量Cの測定から求められるギャップd2は、ゼロもしくは非常に小さな値となる。この場合、変位センサ16によって得られるギャップd1もゼロギャップとなるので、これらの結果から判定手段15は破片13が無いと判断する。   On the other hand, even if there is no debris 13 between the two electrodes 5A and 7, the two electrodes 5A and 7 are short-circuited, so the gap d2 obtained from the measurement of the capacitance C is zero or very small. Value. In this case, since the gap d1 obtained by the displacement sensor 16 is also a zero gap, the determination means 15 determines that there is no debris 13 from these results.

次に、図4の状態から、電極移動機構9に電源を投入して第2のモードに設定すると、図5のように可動軸9aが第1のモードよりもさらに後退して、可動電極7と上側の固定電極5Bとの間に破片13が挟み込まれる。これにより、可動電極7と上側の固定電極5Bとの間には、破片13の厚み分だけギャップdが生じる。このギャップdを変位センサ16が測定する。この場合、変位センサ16は、下側の固定電極5Aと可動電極7の間のギャップ測定値を基にして、可動電極7と上側の固定電極5Bの間のギャップを間接的に測定することになる。同時に、このギャップdにより、2つの電極5B,7間には静電容量Cが形成される。ここでも、可動電極7と下側の固定電極5Aとの間に破片13が挟まれる場合と同様にして、破片13の有無、大きさ、蓄積量が検出され、さらには検出された破片13が導電性か非導電性かが判断される。   Next, when the electrode moving mechanism 9 is turned on and set in the second mode from the state of FIG. 4, the movable shaft 9a is further retracted from the first mode as shown in FIG. And a debris 13 are sandwiched between the upper fixed electrode 5B and the upper fixed electrode 5B. As a result, a gap d is generated between the movable electrode 7 and the upper fixed electrode 5B by the thickness of the debris 13. The displacement sensor 16 measures the gap d. In this case, the displacement sensor 16 indirectly measures the gap between the movable electrode 7 and the upper fixed electrode 5B based on the gap measurement value between the lower fixed electrode 5A and the movable electrode 7. Become. At the same time, a capacitance C is formed between the two electrodes 5B and 7 by the gap d. Here, in the same manner as when the debris 13 is sandwiched between the movable electrode 7 and the lower fixed electrode 5A, the presence / absence, size, and accumulation amount of the debris 13 are detected, and the detected debris 13 It is determined whether it is conductive or non-conductive.

図6は、図1の破片検出センサにおける測定・判定手段17の構成要素である静電容量測定手段14の一構成例を示す。この静電容量測定手段14は、直列接続した発振器20と電流測定手段21とでなり、発振器20から可動電極7と固定電極5A,5Bに交流電流を流し、電極5A,7間および電極5B,7間の静電容量Cをインピーダンスに換算して電流測定手段21で測定する。この場合、測定したインピーダンスから静電容量Cを求めることもできる。その他の構成は図1の場合と同様である。   FIG. 6 shows a configuration example of the capacitance measuring means 14 which is a component of the measuring / determining means 17 in the fragment detection sensor of FIG. The capacitance measuring means 14 includes an oscillator 20 and a current measuring means 21 connected in series, and an alternating current is passed from the oscillator 20 to the movable electrode 7 and the fixed electrodes 5A and 5B, and between the electrodes 5A and 7 and the electrodes 5B and 5B. The capacitance C between 7 is converted into impedance and measured by the current measuring means 21. In this case, the capacitance C can also be obtained from the measured impedance. Other configurations are the same as those in FIG.

図7は、図1の破片検出センサにおける測定・判定手段17の構成要素である静電容量測定手段14の他の構成例を示す。この静電容量測定手段14は、OPアンプ32で構成した発振器30と、この発振器30の発振周波数から静電容量を推定する周波数対応容量推定手段31とでなり、測定した発振器30の周波数から電極5A,7間および電極5B,7間の静電容量Cを推定する。この場合の発振器30はリラクセーションオシレータ(relaxation oscillator )と呼ばれ、OPアンプ32に抵抗33Ra ,33Rb ,33Rt 、およびコンデンサ33Ct を接続して構成される。抵抗33Ra ,33Rb ,33Rt の抵抗値をRa ,Rb ,Rt 、コンデンサ33Ct の静電容量をCt とすると、発振周波数fは、およそ、
f=1/(2Rt Ct ) ……(4)
となることが知られている。ここでは、前記発振器30のコンデンサ33Ct が前記電極5A,7間および電極5B,7間の静電容量Cに置き換えられることで、その静電容量Cが推定される。
FIG. 7 shows another configuration example of the capacitance measuring means 14 which is a constituent element of the measuring / determining means 17 in the fragment detection sensor of FIG. The capacitance measuring means 14 includes an oscillator 30 constituted by an OP amplifier 32 and a frequency corresponding capacity estimating means 31 for estimating the capacitance from the oscillation frequency of the oscillator 30. The capacitance C between 5A and 7 and between the electrodes 5B and 7 is estimated. The oscillator 30 in this case is called a relaxation oscillator and is configured by connecting resistors 33Ra, 33Rb, 33Rt and a capacitor 33Ct to an OP amplifier 32. If the resistance values of the resistors 33Ra, 33Rb, 33Rt are Ra, Rb, Rt, and the capacitance of the capacitor 33Ct is Ct, the oscillation frequency f is approximately
f = 1 / (2Rt Ct) (4)
It is known that Here, the capacitance C is estimated by replacing the capacitor 33Ct of the oscillator 30 with the capacitance C between the electrodes 5A and 7 and between the electrodes 5B and 7.

図8は、図1の破片検出センサにおける測定・判定手段17の構成要素である静電容量測定手段14のさらに他の構成例を示す。この静電容量測定手段14は、充放電手段40と、その充電および放電の繰り返しにおける過度現象によって生じる充放電時間より静電容量を推定する充放電時間対応静電容量推定手段41とでなる。充放電手段40は、充電抵抗42と充電スイッチ43の直列回路部を被測定静電容量Ct に直列接続すると共に、放電スイッチ44と放電抵抗45の直列回路部を被測定静電容量Ct に並列接続した回路である。充放電時間対応静電容量推定手段41は、充放電手段40での充放電電圧を監視する電圧測定手段46と、この電圧測定手段46が監視する電圧が規定電圧になるまでの時間を測定することにより、被測定静電容量Ct を推定する判断手段47とでなる。   FIG. 8 shows still another configuration example of the capacitance measuring unit 14 which is a component of the measuring / determining unit 17 in the fragment detection sensor of FIG. The capacitance measuring unit 14 includes a charging / discharging unit 40 and a charge / discharge time-corresponding capacitance estimating unit 41 that estimates a capacitance from a charging / discharging time caused by an excessive phenomenon in charging and discharging. The charging / discharging means 40 connects the series circuit portion of the charging resistor 42 and the charging switch 43 in series with the measured capacitance Ct, and parallels the series circuit portion of the discharging switch 44 and the discharging resistor 45 with the measured capacitance Ct. It is a connected circuit. The charge / discharge time-corresponding capacitance estimation means 41 measures the voltage measurement means 46 for monitoring the charge / discharge voltage in the charge / discharge means 40 and the time until the voltage monitored by the voltage measurement means 46 reaches a specified voltage. Thus, the judgment means 47 for estimating the capacitance Ct to be measured is formed.

この場合、例えば、充電スイッチ43をオンにして充電を開始し、被測定静電容量Ct の充電電圧を電圧測定手段46で監視して、その充電電圧が規定電圧になるまでの充電時間を判断手段47で測定することにより、被測定静電容量Ct を推定できる。または、予め所定電圧まで充電させた被測定静電容量Ct に対して、放電スイッチ44をオンにして放電を開始し、被測定静電容量Ct の放電電圧を電圧測定手段46で監視して、その放電電圧が規定電圧になるまでの放電時間を判断手段47で測定することにより、被測定静電容量Ct を推定できる。ここでは、前記被測定静電容量Ct が電極5A,7間および電極5B,7間の静電容量Cに置き換えられることで、その静電容量Cが推定される。   In this case, for example, the charging switch 43 is turned on to start charging, the charging voltage of the capacitance Ct to be measured is monitored by the voltage measuring means 46, and the charging time until the charging voltage reaches the specified voltage is determined. By measuring by means 47, the measured capacitance Ct can be estimated. Alternatively, with respect to the measured capacitance Ct that has been charged to a predetermined voltage in advance, the discharge switch 44 is turned on to start discharging, and the discharge voltage of the measured capacitance Ct is monitored by the voltage measuring means 46. By measuring the discharge time until the discharge voltage reaches the specified voltage by the judging means 47, the measured capacitance Ct can be estimated. Here, the capacitance Ct to be measured is replaced with the capacitance C between the electrodes 5A and 7 and between the electrodes 5B and 7 so that the capacitance C is estimated.

このように、この実施形態の破片検出センサでは、3つの電極5A,5B,7のうち少なくとも1つの電極(可動電極)7を電極移動機構9で動かすことによって、いずれか2つの電極間(下側の固定電極5Aと可動電極7との間、および上側の固定電極5Bと可動電極7との間)に破片13を挟み込み、挟み込んだ2つの電極のギャップを測定・判定手段17で測定することで、破片13の有無、大きさ、および蓄積量のいずれかを検出するものとしているので、2つの電極間に破片13が挟み込まれる確率が高くなり、潤滑油中に混入する破片13の有無または大きさまたは蓄積量を、混入する破片13の量に左右されずに安定良く検出できる。
また、上記破片検出センサを自動車,航空機,ヘリコプタ等に組み込んだ場合、潤滑油中に混入した破片の状態をモニターすることができるため、故障の前兆あるいは故障の診断を行い、運転の停止や部品交換が必要なことを知らせることができ、安全性が向上する。また、機械部品の寿命や経年変化を予測できるため、部品の無駄な交換や遅れた交換がなくなり、経済性が向上する。
As described above, in the debris detection sensor of this embodiment, at least one electrode (movable electrode) 7 among the three electrodes 5A, 5B, 7 is moved by the electrode moving mechanism 9, so that any two electrodes (lower The debris 13 is sandwiched between the fixed electrode 5A on the side and the movable electrode 7 and between the fixed electrode 5B on the upper side and the movable electrode 7), and the gap between the two sandwiched electrodes is measured by the measurement / determination means 17 Therefore, since the presence or absence, the size, and the accumulation amount of the debris 13 is detected, the probability that the debris 13 is sandwiched between the two electrodes increases, and the presence or absence of the debris 13 mixed in the lubricating oil or The size or accumulated amount can be detected stably without being influenced by the amount of mixed pieces 13.
In addition, when the above debris detection sensor is incorporated in an automobile, aircraft, helicopter, etc., it is possible to monitor the state of debris mixed in the lubricating oil. It is possible to inform that replacement is necessary, and safety is improved. In addition, since the life and aging of machine parts can be predicted, there is no need for unnecessary or delayed replacement of parts, thereby improving economy.

また、この実施形態では、3つの電極5A,5B,7のうち、上側2つの電極(固定電極5Bと可動電極7)の間、および下側2つの電極(可動電極7と固定電極5A)の間に、それぞれギャップを測定するギャップ測定手段(変位センサ16と静電容量測定手段14)を設け、電極移動機構(直動アクチュエータ)9は、上側2つの電極5B,7間および下側2つの電極7,5A間に破片13を挟み込むように、中央の電極(可動電極)7を上下動作させるものとしているので、中央の電極(可動電極)7の1回のストロークの両端でそれぞれ検出動作を行えることになり、検出動作の効率も高めることができる。   In this embodiment, of the three electrodes 5A, 5B, 7, the upper two electrodes (the fixed electrode 5B and the movable electrode 7) and the lower two electrodes (the movable electrode 7 and the fixed electrode 5A) Gap measuring means (displacement sensor 16 and capacitance measuring means 14) for measuring the gap are provided between them, and an electrode moving mechanism (linear actuator) 9 is provided between the upper two electrodes 5B and 7 and the lower two electrodes. Since the central electrode (movable electrode) 7 is moved up and down so that the debris 13 is sandwiched between the electrodes 7 and 5A, the detection operation is performed at both ends of one stroke of the central electrode (movable electrode) 7. As a result, the efficiency of the detection operation can be increased.

また、この実施形態では、中央の電極(可動電極)7を動作させる電極移動機構(直動アクチュエータ)9を、検査対象の流体(潤滑油)を流す流路(油路)4aの外部に設置し、2つの固定電極5A,5Bのうち一方の固定電極5Bに設けた孔19を貫通する貫通体7bを介して可動電極7を動かすものとしているので、3つの電極5A,5B,7をコンパクトに配置できる。   In this embodiment, an electrode moving mechanism (linear motion actuator) 9 for operating the central electrode (movable electrode) 7 is installed outside the flow path (oil path) 4a through which the fluid to be inspected (lubricating oil) flows. In addition, since the movable electrode 7 is moved through the through body 7b penetrating the hole 19 provided in one of the two fixed electrodes 5A and 5B, the three electrodes 5A, 5B and 7 are compact. Can be placed.

さらに、この実施形態では、固定電極5Aと可動電極7の間、および固定電極5Bと可動電極7の間の静電容量を静電容量測定手段14で測定すると共に、これら各2つの電極間のギャップを変位センサ16で測定し、これら二種類のセンサ14,16の出力から破片13の導電性と非導電性の判別をする導電性・非導電性判別部18を有するものとしているので、検出した破片13が金属材料等の導電性材料であるか、樹脂・セラミック材料のような非導電性材料であるかを識別することができる。   Further, in this embodiment, the capacitance between the fixed electrode 5A and the movable electrode 7 and between the fixed electrode 5B and the movable electrode 7 is measured by the capacitance measuring means 14, and between these two electrodes. The gap is measured by the displacement sensor 16 and has a conductive / nonconductive determination unit 18 for determining the conductivity and nonconductive of the fragments 13 from the outputs of these two types of sensors 14 and 16. It is possible to identify whether the broken piece 13 is a conductive material such as a metal material or a non-conductive material such as a resin / ceramic material.

なお、前記2つの電極5,7の間のギャップを測定する手段としては、前記実施形態のように、静電容量測定手段14と変位センサ16を併用する場合に限らず、静電容量測定手段14だけを用いても良いし、変位センサ16だけを用いても良い。また、静電容量測定手段14だけを用いる場合、各2つの電極における少なくともいずれか一方の電極対向面に絶縁材料のコーティング層を設けるものとすれば、2つの電極間に挟み込まれる破片13が導電性材料からなる場合であっても2つの電極間が短絡しないので、破片13が導電性材料であるか非導電性材料であるかを問わず2つの電極間の静電容量を正しく測定でき、破片13の有無、大きさ、蓄積量を正確に検出できる。   The means for measuring the gap between the two electrodes 5 and 7 is not limited to the case where the capacitance measuring means 14 and the displacement sensor 16 are used together as in the embodiment, but the capacitance measuring means. Only 14 may be used, or only the displacement sensor 16 may be used. When only the capacitance measuring means 14 is used, if a coating layer made of an insulating material is provided on at least one of the two electrodes facing each other, the debris 13 sandwiched between the two electrodes is electrically conductive. Since even if it consists of a conductive material, between two electrodes does not short-circuit, regardless of whether the debris 13 is a conductive material or a non-conductive material, the capacitance between the two electrodes can be measured correctly, Presence / absence, size, and accumulation amount of the fragments 13 can be accurately detected.

図9は、この発明の破片検出センサの他の実施形態を示す。この実施形態では、図1に示す実施形態における変位センサ16を、アクチュエータ固定部材10における可動軸9aの後端と対向する位置に設けたものである。   FIG. 9 shows another embodiment of the fragment detection sensor of the present invention. In this embodiment, the displacement sensor 16 in the embodiment shown in FIG. 1 is provided at a position facing the rear end of the movable shaft 9 a in the actuator fixing member 10.

この実施形態の場合、変位センサ16は、可動軸9aの変位量を測定することになるが、可動電極7は電極固定部材8を介して可動軸9aに連結されているため、可動軸9aの変位量から、固定電極5Aと可動電極7の間のギャップd、および固定電極5Bと可動電極7の間のギャップdを検出することができる。   In the case of this embodiment, the displacement sensor 16 measures the amount of displacement of the movable shaft 9a. However, since the movable electrode 7 is connected to the movable shaft 9a via the electrode fixing member 8, the displacement of the movable shaft 9a. From the amount of displacement, the gap d between the fixed electrode 5A and the movable electrode 7 and the gap d between the fixed electrode 5B and the movable electrode 7 can be detected.

図10は、この発明の破片検出センサのさらに他の実施形態を示す。この実施形態では、図1に示す実施形態において、判定手段15の次段に記録手段50を追加して、潤滑油中に混入した破片13の状態をリアルタイムでモニターできるようにしたものである。記録された数値の変化履歴により潤滑油の状態を推測し、ゴミや破片の増加傾向などの情報を出力することができる。静電容量測定手段14は、図6〜図8に示したいずれの構成のものを使用しても良い。   FIG. 10 shows still another embodiment of the fragment detection sensor of the present invention. In this embodiment, in the embodiment shown in FIG. 1, a recording means 50 is added to the next stage of the judging means 15 so that the state of the debris 13 mixed in the lubricating oil can be monitored in real time. It is possible to estimate the state of the lubricating oil from the recorded change history of numerical values and output information such as an increasing tendency of dust and debris. The capacitance measuring means 14 may use any configuration shown in FIGS.

この発明の第1の実施形態に係る破片検出センサの電源投入時の第1モードでの状態を示す概略構成図である。It is a schematic block diagram which shows the state in the 1st mode at the time of power activation of the fragment detection sensor which concerns on 1st Embodiment of this invention. 同破片検出センサの電源投入停止時の概略構成図である。It is a schematic block diagram at the time of the power supply stop of the same fragment detection sensor. 同破片検出センサの電源投入時の第2モードでの状態を示す概略構成図である。It is a schematic block diagram which shows the state in the 2nd mode at the time of power activation of the fragment detection sensor. 同破片検出センサの検出動作の説明図である。It is explanatory drawing of the detection operation of the same fragment detection sensor. 同破片検出センサの検出動作の他の説明図である。It is another explanatory view of the detection operation of the fragment detection sensor. 同破片検出センサにおける静電容量測定手段として一構成例を用いた場合の検出動作の説明図である。It is explanatory drawing of the detection operation at the time of using one structural example as an electrostatic capacitance measurement means in the fragment detection sensor. 同破片検出センサにおける静電容量測定手段の他の構成例を示す回路図である。It is a circuit diagram which shows the other structural example of the electrostatic capacitance measurement means in the same fragment detection sensor. 同破片検出センサにおける静電容量測定手段のさらに他の構成例を示す回路図である。It is a circuit diagram which shows the further another structural example of the electrostatic capacitance measurement means in the fragment detection sensor. この発明の他の実施形態に係る破片検出センサの検出動作の説明図である。It is explanatory drawing of the detection operation | movement of the fragment detection sensor which concerns on other embodiment of this invention. この発明のさらに他の実施形態に係る破片検出センサの検出動作の説明図である。It is explanatory drawing of the detection operation | movement of the fragment detection sensor which concerns on further another embodiment of this invention.

符号の説明Explanation of symbols

4a…油路
5A,5B…固定電極
7…可動電極
7b…貫通体
9…電極移動機構
13…破片
14…静電容量測定手段
15…判定手段
16…変位センサ
17…測定・判定手段
18…導電性・非導電性判別部
19…孔
4a ... oil passages 5A, 5B ... fixed electrode 7 ... movable electrode 7b ... penetrating body 9 ... electrode moving mechanism 13 ... fragment 14 ... capacitance measuring means 15 ... judging means 16 ... displacement sensor 17 ... measuring / judging means 18 ... conductive -Conductivity / non-conductivity discrimination part 19 ... hole

Claims (5)

流体中に混入する破片を検出する破片検出センサであって、3つの電極を備え、これら3つの電極のうち少なくとも1つの電極を動かすことによっていずれか2つの電極間に前記破片を挟み込ませる電極移動機構と、挟み込んだ2つの電極のギャップを測定することで、前記破片の有無、大きさ、および蓄積量のいずれかを検出する測定・判定手段を設けた破片検出センサ。   A debris detection sensor for detecting debris mixed in a fluid, comprising three electrodes, and moving at least one of these three electrodes to sandwich the debris between any two electrodes A fragment detection sensor provided with a mechanism and measurement / determination means for detecting any of the presence / absence, size, and accumulation amount of the fragment by measuring a gap between two sandwiched electrodes. 請求項1において、3つの電極のうち、上側2つの電極の間、および下側2つの電極の間に、それぞれギャップを測定するギャップ測定手段を設け、前記電極移動機構は、上側2つの電極間および下側2つの電極間に破片を挟み込むように、中央の電極を上下動作させるものである破片検出センサ。   2. The gap measuring means for measuring a gap is provided between the upper two electrodes and the lower two electrodes of the three electrodes, respectively, and the electrode moving mechanism is provided between the upper two electrodes. And a fragment detection sensor for moving the center electrode up and down so that the fragment is sandwiched between the two lower electrodes. 請求項2において、中央の電極を動作させる電極移動機構が、前記流体を流す流路の外部に設置され、この電極移動機構は、固定側の2つの電極のうちのいずれか一方の電極に設けた孔を貫通した貫通体を介して可動電極を動かすものである破片検出センサ。   The electrode movement mechanism for operating the center electrode is installed outside the flow path for flowing the fluid, and the electrode movement mechanism is provided on one of the two electrodes on the fixed side. A debris detection sensor for moving a movable electrode through a penetrating body penetrating a hole. 請求項1において、前記測定・判定手段は、破片を挟み込んだ2つの電極間の静電容量を測定する静電容量測定手段と、この静電容量測定手段の出力から前記2つの電極間のギャップの大きさを推定する判定手段とで構成される破片検出センサ。   2. The measurement / judgment means according to claim 1, wherein the measurement / judgment means includes a capacitance measurement means for measuring a capacitance between two electrodes sandwiching a debris, and a gap between the two electrodes from an output of the capacitance measurement means. A debris detection sensor comprising determination means for estimating the size of the debris. 請求項4において、前記測定・判定手段は、前記破片を挟み込んだ2つの電極間のギャップを測定する変位センサを有し、前記静電容量測定手段の出力と前記変位センサの出力とから、前記2つの電極間に挟まれた破片の導電性と非導電性の判別をする導電性・非導電性判別部を有するものとした破片検出センサ。
5. The measurement / judgment means according to claim 4, further comprising a displacement sensor that measures a gap between two electrodes sandwiching the debris, and from the output of the capacitance measurement means and the output of the displacement sensor, A debris detection sensor having a conductive / non-conductive discriminating portion for discriminating between conductivity and non-conductive of a fragment sandwiched between two electrodes.
JP2006288757A 2006-09-26 2006-10-24 Broken piece detecting sensor Pending JP2008107151A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006288757A JP2008107151A (en) 2006-10-24 2006-10-24 Broken piece detecting sensor
US12/311,312 US8018237B2 (en) 2006-09-26 2007-09-05 Broken piece detecting sensor
EP07805818A EP2071364B1 (en) 2006-09-26 2007-09-05 Broken piece detecting sensor
PCT/JP2007/000963 WO2008038407A1 (en) 2006-09-26 2007-09-05 Broken piece detecting sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006288757A JP2008107151A (en) 2006-10-24 2006-10-24 Broken piece detecting sensor

Publications (1)

Publication Number Publication Date
JP2008107151A true JP2008107151A (en) 2008-05-08

Family

ID=39440623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006288757A Pending JP2008107151A (en) 2006-09-26 2006-10-24 Broken piece detecting sensor

Country Status (1)

Country Link
JP (1) JP2008107151A (en)

Similar Documents

Publication Publication Date Title
WO2008038407A1 (en) Broken piece detecting sensor
FI121720B (en) Bearing arrangement, method of detecting wear on a bearing surface of a bearing arrangement and use of a bearing arrangement
US20090223083A1 (en) Bearing including sensor and drying drum including same
DK2513501T3 (en) Bearing module with sensor device
FI124329B (en) Method and apparatus for monitoring the lubricant content of elevator ropes
JP2008241651A (en) Fragment detection sensor
JP2008107147A (en) Fragment detection sensor
JP2008107150A (en) Broken piece detecting sensor
JP2016200597A (en) Sensor, driver component with sensor, driver with driver component, and method for determination
US9933018B2 (en) Bearing with condition monitoring sensor
JP2008249387A (en) Fragment detection sensor
JP2008107151A (en) Broken piece detecting sensor
JP4889424B2 (en) Debris detection sensor
JP2008107149A (en) Broken piece detecting sensor
DE102017210783A1 (en) bearings
JP4716965B2 (en) Debris detection sensor
JP4889441B2 (en) Debris detection sensor
US9874494B2 (en) Sensor for wear measurement of a bearing
JPWO2008093652A1 (en) Lubrication state detection device and lubrication state detection method
JP2008082742A (en) Fragment detection sensor
US20180045606A1 (en) Belt and pulley systems and methods of detecting belt damage
TWI359237B (en) Lubricant sensor apparatus for ball screw
JP2008107152A (en) Broken piece detecting sensor
CN110462946B (en) Brush for an electric machine and method for determining the wear of the brush
Manyala et al. On-line lubricants health condition monitoring in gearbox application