JP2013086019A - Seawater desalination method and seawater desalination device - Google Patents

Seawater desalination method and seawater desalination device Download PDF

Info

Publication number
JP2013086019A
JP2013086019A JP2011228765A JP2011228765A JP2013086019A JP 2013086019 A JP2013086019 A JP 2013086019A JP 2011228765 A JP2011228765 A JP 2011228765A JP 2011228765 A JP2011228765 A JP 2011228765A JP 2013086019 A JP2013086019 A JP 2013086019A
Authority
JP
Japan
Prior art keywords
water
seawater
reverse osmosis
osmosis membrane
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011228765A
Other languages
Japanese (ja)
Other versions
JP4933679B1 (en
Inventor
Masahiko Miura
雅彦 三浦
Mitsushige Shimada
光重 島田
Hiroshi Maruno
紘史 丸野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2011228765A priority Critical patent/JP4933679B1/en
Application granted granted Critical
Publication of JP4933679B1 publication Critical patent/JP4933679B1/en
Priority to PCT/JP2012/075900 priority patent/WO2013058125A1/en
Publication of JP2013086019A publication Critical patent/JP2013086019A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/08Specific process operations in the concentrate stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/06Submerged-type; Immersion type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/022Reject series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/04Elements in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • B01D61/026Reverse osmosis; Hyperfiltration comprising multiple reverse osmosis steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/20Prevention of biofouling
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a seawater desalination method with which bio-fouling can be suppressed while obtaining clarified water using biologically treated water and seawater.SOLUTION: In a seawater desalination method, biologically treated water obtained by biologically treating organic wastewater is filtered by means of a first reverse osmosis membrane device to obtain concentrated water, the concentrated water is mixed with seawater as dilution water to obtain mixed water, and the mixed water is filtered by means of a second reverse osmosis membrane device. In the seawater desalination method, a first step and a second step are alternately carried out. In the first step, first concentrated water is obtained by filtering biologically treated water by means of the first reverse osmosis membrane device, first mixed water is obtained by mixing the first concentrated water with seawater, and the first mixed water is filtered by means of the second reverse osmosis membrane device. In the second step, second concentrated water is obtained by filtering biologically treated water by means of the second reverse osmosis membrane device, second mixed water is obtained by mixing the second concentrated water with seawater, and the second mixed water is filtered by means of the first reverse osmosis membrane device.

Description

本発明は、海水淡水化方法および海水淡水化装置に関し、例えば、逆浸透膜(RO膜)を有する逆浸透膜装置によるろ過処理によって海水を淡水化する海水淡水化方法および海水淡水化装置に関する。   The present invention relates to a seawater desalination method and a seawater desalination apparatus, for example, a seawater desalination method and a seawater desalination apparatus that desalinate seawater by filtration using a reverse osmosis membrane device having a reverse osmosis membrane (RO membrane).

近年、地球温暖化等により雨が局所的に若しくは短時間に降ってしまい水資源が地理的若しくは時間的に偏在してしまうことや、林業衰退や森林伐採等により山間部の保水力が低下してしまうこと等により、水資源を安定的に確保することが難しいという問題がある。   In recent years, rain has fallen locally or in a short time due to global warming, etc., and water resources are unevenly distributed geographically or temporally, and the water retention capacity of mountainous areas has declined due to forestry decline or deforestation. As a result, there is a problem that it is difficult to stably secure water resources.

水資源を安定的に確保すべく、例えば、臨海地域では、逆浸透膜装置によるろ過処理によって海水から浄化水たる淡水を得る海水淡水化方法及び海水淡水化装置が提案されている(例えば、特許文献1)。   In order to secure water resources stably, for example, in seaside areas, seawater desalination methods and seawater desalination apparatuses that obtain fresh water as purified water from seawater by filtration using a reverse osmosis membrane device have been proposed (for example, patents). Reference 1).

しかし、上記特許文献1に記載の海水淡水化方法及び海水淡水化装置では、海水を逆浸透膜装置でろ過処理するのに海水をポンプ等で加圧して該逆浸透膜装置に圧送する必要があり、海水の塩濃度が高いほど海水を該逆浸透膜装置に圧送するために多大なエネルギー(動力)が必要となるという問題がある。   However, in the seawater desalination method and seawater desalination apparatus described in Patent Document 1, it is necessary to pressurize seawater with a pump or the like and feed it to the reverse osmosis membrane apparatus in order to filter the seawater with the reverse osmosis membrane apparatus. There is a problem that the higher the salt concentration of seawater, the more energy (power) is required to pump seawater to the reverse osmosis membrane device.

そこで、有機物を含有する廃水(以下、「有機性廃水」とも言う。)が生物処理槽内で生物処理されて得られる生物処理水を第1逆浸透膜装置でろ過処理して第1濃縮水及び浄化水たる第1透過水を得、該第1濃縮水を希釈水として海水に混合して混合水を得、第2逆浸透膜装置で該混合水をろ過処理して浄化水たる第2透過水(淡水)を得る海水淡水化方法及び海水淡水化装置が提案されている(例えば、特許文献2)。
前記第1逆浸透膜装置で得られる第1濃縮水は、海水より塩濃度が低いことから、該第1濃縮水を希釈水として海水と混合することで得られる混合水も、海水より塩濃度が低い。よって、所定の量の浄化水たる淡水を得るべく逆浸透膜装置に混合水を圧送するのに必要なエネルギーは、逆浸透膜装置に海水を圧送するのに必要なエネルギーに比して小さいため、斯かる海水淡水化方法及び海水淡水化装置によれば、得られる浄化水の単位量当たりにおける圧送に必要なエネルギーを抑制することができるという利点がある。
また、斯かる海水淡水化方法及び海水淡水化装置によれば、生物処理水を前記第1逆浸透膜装置でろ過処理することにより、第1逆浸透膜装置から得られる第1透過水を浄化水として得ることができるという利点もある。
Accordingly, the biologically treated water obtained by biologically treating the wastewater containing organic matter (hereinafter also referred to as “organic wastewater”) in the biological treatment tank is filtered by the first reverse osmosis membrane device to obtain the first concentrated water. And the first permeated water as purified water, mixed with seawater using the first concentrated water as dilution water to obtain mixed water, and the mixed water is filtered through a second reverse osmosis membrane device to obtain purified water. A seawater desalination method and a seawater desalination apparatus for obtaining permeated water (freshwater) have been proposed (for example, Patent Document 2).
Since the first concentrated water obtained by the first reverse osmosis membrane device has a salt concentration lower than seawater, the mixed water obtained by mixing the first concentrated water with seawater as dilution water also has a salt concentration from seawater. Is low. Therefore, the energy required to pump the mixed water to the reverse osmosis membrane device to obtain a predetermined amount of fresh water as purified water is smaller than the energy required to pump seawater to the reverse osmosis membrane device. Such a seawater desalination method and seawater desalination apparatus have the advantage that energy required for pumping per unit amount of purified water to be obtained can be suppressed.
Moreover, according to the seawater desalination method and seawater desalination apparatus, the first permeated water obtained from the first reverse osmosis membrane device is purified by filtering the biologically treated water with the first reverse osmosis membrane device. There is also an advantage that it can be obtained as water.

特開2008−55317号公報JP 2008-55317 A 特開2010−149100号公報JP 2010-149100 A

しかしながら、前記生物処理水には、生物(細菌、原生動物、後生動物等)と、該生物による分解がされずに残った残留有機物と、該生物が分泌する分泌物とが含まれているため、上記特許文献2の海水淡水化方法及び海水淡水化装置では、前記生物、前記残留有機物、及び前記分泌物が第1逆浸透膜装置のRO膜(以下、「第1RO膜」ともいう。)に付着し堆積して、該第1RO膜の詰まり(「ファウリング」ともいい、特に生物由来の「ファウリング」を「バイオファウリング」ともいう。)が生じる場合がある。また、生物処理水は、通常、生物処理槽から第1逆浸透膜装置に移送される途中で生物処理水貯留槽に一旦貯留されるが、該生物処理水貯留槽に生物処理水が貯留されている際に、空気等を介して生物処理水に微生物が混入し、その結果、この微生物によってもバイオファウリングが生じる場合もある。そして、該RO膜に付着した生物が分泌物を分泌し増殖して、バイオファウリングが形成される場合がある。そして、該第1RO膜に付着した生物が分泌物を分泌して増殖し続ける結果、バイオファウリングが進行する場合がある。
バイオファウリングは、前記第1RO膜の膜面を通過する際の水の抵抗(流路抵抗)を増加させる要因となる。従って、前記第1RO膜でバイオファウリングが進行した状態において、バイオファウリングが生じる前と同じ流束で浄化水を得るには、生物処理水を前記第1RO膜に送水するための圧力を増加させる必要があり、その結果、多大なエネルギー(動力)が必要となる。さらには、該第1逆浸透膜装置の第1RO膜エレメントに多大な流路抵抗が生じた状態で第1逆浸透膜装置に生物処理水を送ると、該第1RO膜エレメントに負荷がかかり、該第1RO膜エレメントの第1RO膜が損傷するおそれがある。また、前記第1RO膜でバイオファウリングが進行した状態において、バイオファウリングが生じる前と同じ圧力で生物処理水を第1逆浸透膜装置に供給すると、得られる浄化水たる透過水の流束が小さくなるという問題がある。
斯かる問題を解消するには、前記第1RO膜を洗浄したり、バイオファウリングを抑制することが考えられるが、洗浄のために使用する薬品(アルカリ、酸、酸化剤、還元剤等)やバイオファウリング抑制剤(塩素系化合物等)の分のコストがかかり、また、洗浄等のために第1逆浸透膜装置を停止することとなって所望の量の浄化水を得ることができなくなるという問題がある。また、前記第1逆浸透膜装置を停止することで、海水を希釈するための第1濃縮水を得ることができなくなるため、海水から第2逆浸透膜装置を用いてエネルギー効率良く浄化水たる第2透過水を得ることができないという問題がある。
However, the biologically treated water contains organisms (bacteria, protozoa, metazoans, etc.), residual organic matter that remains without being decomposed by the organism, and secretions secreted by the organism. In the seawater desalination method and seawater desalination apparatus of Patent Document 2, the organism, the residual organic matter, and the secretions are RO membranes of a first reverse osmosis membrane device (hereinafter also referred to as “first RO membrane”). The first RO membrane may be clogged (also referred to as “fouling”, in particular, “fouling” derived from organisms is also referred to as “biofouling”). In addition, the biologically treated water is usually temporarily stored in the biologically treated water storage tank while being transferred from the biologically treated tank to the first reverse osmosis membrane device, and the biologically treated water is stored in the biologically treated water reservoir. In this case, microorganisms are mixed into the biologically treated water through air or the like, and as a result, biofouling may occur due to the microorganisms. In some cases, the organism attached to the RO membrane secretes and proliferates secretions to form biofouling. Biofouling may progress as a result of organisms attached to the first RO membrane secreting secretions and continuing to grow.
Biofouling is a factor that increases the resistance of water (flow path resistance) when passing through the membrane surface of the first RO membrane. Therefore, in a state where biofouling has progressed in the first RO membrane, in order to obtain purified water with the same flux as before biofouling occurs, the pressure for feeding biologically treated water to the first RO membrane is increased. As a result, a great deal of energy (power) is required. Furthermore, when biological treatment water is sent to the first reverse osmosis membrane device in a state where a large flow resistance is generated in the first RO membrane element of the first reverse osmosis membrane device, a load is applied to the first RO membrane element, The first RO membrane of the first RO membrane element may be damaged. In addition, in a state where biofouling has progressed in the first RO membrane, when biologically treated water is supplied to the first reverse osmosis membrane device at the same pressure as before biofouling occurs, the flux of permeate as purified water obtained is obtained. There is a problem that becomes smaller.
In order to solve such a problem, it is conceivable to wash the first RO membrane or suppress biofouling. However, chemicals used for washing (alkali, acid, oxidizing agent, reducing agent, etc.) The cost of biofouling inhibitors (chlorine compounds, etc.) is high, and the first reverse osmosis membrane device is stopped for cleaning or the like, so that a desired amount of purified water cannot be obtained. There is a problem. Moreover, since it becomes impossible to obtain the 1st concentrated water for diluting seawater by stopping the said 1st reverse osmosis membrane apparatus, it is purified water efficiently from seawater using a 2nd reverse osmosis membrane apparatus. There is a problem that the second permeated water cannot be obtained.

本発明は、上記問題点に鑑み、生物処理水及び海水を用いて浄化水を得つつ、バイオファウリングを抑制し得る海水淡水化方法及び海水淡水化装置を提供することを課題とする。   This invention makes it a subject to provide the seawater desalination method and seawater desalination apparatus which can suppress biofouling, obtaining purified water using biologically treated water and seawater in view of the said problem.

本発明は、有機性廃水が生物処理されて得られる生物処理水を第1逆浸透膜装置でろ過処理して濃縮水を得、該濃縮水を希釈水として海水に混合して混合水を得、該混合水を第2逆浸透膜装置でろ過処理する海水淡水化方法であって、
生物処理水を前記第1逆浸透膜装置でろ過処理して第1濃縮水を得、該第1濃縮水及び海水を混合して第1混合水を得、前記第2逆浸透膜装置で該第1混合水をろ過処理する第1工程と、前記第2逆浸透膜装置で生物処理水をろ過処理して第2濃縮水を得、該第2濃縮水及び海水を混合して第2混合水を得、前記第1逆浸透膜装置で該第2混合水をろ過処理する第2工程とを交互に実施することを特徴とする海水淡水化方法にある。
In the present invention, biological treated water obtained by biological treatment of organic wastewater is filtered with a first reverse osmosis membrane device to obtain concentrated water, and the concentrated water is diluted with seawater to obtain mixed water. , A seawater desalination method of filtering the mixed water with a second reverse osmosis membrane device,
Biologically treated water is filtered through the first reverse osmosis membrane device to obtain a first concentrated water, the first concentrated water and seawater are mixed to obtain a first mixed water, and the second reverse osmosis membrane device is used to A first step of filtering the first mixed water and a biologically treated water by the second reverse osmosis membrane device to obtain a second concentrated water, and then mixing the second concentrated water and seawater to perform the second mixing In the seawater desalination method, water is obtained, and the second step of filtering the second mixed water with the first reverse osmosis membrane device is alternately performed.

斯かる海水淡水化方法によれば、前記第1工程では前記生物処理水に含まれていた生物等が前記第1逆浸透膜装置の第1RO膜に付着し得るが、前記第1工程後に前記第2工程を実施することにより、海水を含んでいる第2混合水が前記第1逆浸透膜装置でろ過処理されるので、前記第1RO膜に付着した生物が第2混合水中の塩等により生育し難くなり、前記第1RO膜のバイオファウリングを抑制することができるという利点がある。
また、斯かる海水淡水化方法によれば、前記第1RO膜のみならず、該第2逆浸透膜装置の逆浸透膜(以下、「第2RO膜」ともいう。)に対しても同様な利点がある。即ち、前記第2工程では前記生物等が前記第2逆浸透膜装置の第2RO膜に付着し得るが、前記第2工程後に前記第1工程を実施することにより、海水を含んでいる第1混合水が前記第2逆浸透膜装置でろ過処理されるので、前記第2RO膜に付着した生物が第1混合水中の塩等により生育し難くなり、前記第2RO膜のバイオファウリングを抑制することができるという利点がある。
さらに、斯かる海水淡水化方法によれば、海水が含有されている混合水と、生物処理水とを逆浸透膜装置でろ過処理することにより、浄化水たる透過水を得ることができる。
即ち、斯かる海水淡水化方法によれば、生物処理水及び海水を用いて浄化水を得つつ、バイオファウリングを抑制し得る。
According to such a seawater desalination method, organisms and the like contained in the biologically treated water in the first step can adhere to the first RO membrane of the first reverse osmosis membrane device, but after the first step, the By performing the second step, the second mixed water containing seawater is filtered by the first reverse osmosis membrane device, so that the organism attached to the first RO membrane is caused by salt or the like in the second mixed water. It is difficult to grow, and there is an advantage that biofouling of the first RO membrane can be suppressed.
In addition, according to such a seawater desalination method, not only the first RO membrane but also the reverse osmosis membrane of the second reverse osmosis membrane device (hereinafter also referred to as “second RO membrane”) has the same advantage. There is. That is, in the second step, the organism or the like may adhere to the second RO membrane of the second reverse osmosis membrane device, but the first step that includes seawater is performed by performing the first step after the second step. Since the mixed water is filtered by the second reverse osmosis membrane device, the organism attached to the second RO membrane becomes difficult to grow due to salt or the like in the first mixed water, thereby suppressing biofouling of the second RO membrane. There is an advantage that you can.
Furthermore, according to such seawater desalination method, permeated water as purified water can be obtained by filtering the mixed water containing seawater and the biologically treated water with a reverse osmosis membrane device.
That is, according to the seawater desalination method, biofouling can be suppressed while obtaining purified water using biologically treated water and seawater.

また、本発明は、有機性廃水が生物処理されて得られる生物処理水をろ過処理して濃縮水を得る第1逆浸透膜装置が備えられてなり、該濃縮水が希釈水として海水に混合されて混合水が得られるように構成されてなり、更に、該混合水をろ過処理する第2逆浸透膜装置が備えられてなる海水淡水化装置であって、
生物処理水を前記第1逆浸透膜装置でろ過処理して第1濃縮水を得、該第1濃縮水及び海水を混合して第1混合水を得、前記第2逆浸透膜装置で該第1混合水をろ過処理する第1工程と、前記第2逆浸透膜装置で生物処理水をろ過処理して第2濃縮水を得、該第2濃縮水及び海水を混合して第2混合水を得、前記第1逆浸透膜装置で該第2混合水をろ過処理する第2工程とを交互に実施しうるように構成されていることを特徴とする海水淡水化装置にある。
In addition, the present invention includes a first reverse osmosis membrane device that obtains concentrated water by filtering biologically treated water obtained by biologically treating organic wastewater, and the concentrated water is mixed with seawater as dilution water. A seawater desalination apparatus comprising a second reverse osmosis membrane apparatus configured to filter the mixed water.
Biologically treated water is filtered through the first reverse osmosis membrane device to obtain a first concentrated water, the first concentrated water and seawater are mixed to obtain a first mixed water, and the second reverse osmosis membrane device is used to A first step of filtering the first mixed water and a biologically treated water by the second reverse osmosis membrane device to obtain a second concentrated water, and then mixing the second concentrated water and seawater to perform the second mixing The seawater desalination apparatus is configured so that water can be obtained and the second step of filtering the second mixed water with the first reverse osmosis membrane apparatus can be alternately performed.

以上のように、本発明によれば、生物処理水及び海水を用いて浄化水を得つつ、バイオファウリングを抑制し得る海水淡水化方法及び海水淡水化装置を提供することができる。   As described above, according to the present invention, it is possible to provide a seawater desalination method and a seawater desalination apparatus capable of suppressing biofouling while obtaining purified water using biologically treated water and seawater.

本発明の一実施形態における海水淡水化装置の概略図である。It is the schematic of the seawater desalination apparatus in one Embodiment of this invention. 同実施形態の一状態を示す概略図である。It is a schematic diagram showing one state of the embodiment. 同実施形態の一状態を示す概略図である。It is a schematic diagram showing one state of the embodiment. 本発明の実施の形態における海水淡水化装置の利点を説明するための図である。It is a figure for demonstrating the advantage of the seawater desalination apparatus in embodiment of this invention. 本発明の他の実施形態における海水淡水化装置の概略図である。It is the schematic of the seawater desalination apparatus in other embodiment of this invention.

以下、本発明の実施の形態について、図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

まず、本実施形態に係る海水淡水化装置について説明する。   First, the seawater desalination apparatus according to this embodiment will be described.

図1は、本実施形態の海水淡水化装置の概略図である。
図1に示すように、本実施形態の海水淡水化装置10は、有機性廃水Bを生物処理して生物処理水を得る生物処理槽11と、精密ろ過膜(MF膜)及び限外ろ過膜(UF膜)の少なくとも何れかを有し且つ生物処理水をろ過処理により除濁して第1除濁処理水を得る第1除濁装置12と、第1除濁処理水を加圧する第1加圧部13と、加圧された第1除濁処理水を生物処理水としてろ過処理して浄化水Cたる第1透過水及び第1濃縮水を得る第1逆浸透膜装置14と、精密ろ過膜(MF膜)及び限外ろ過膜(UF膜)の少なくとも何れかを有し且つ海水Aをろ過処理により除濁して第2除濁処理水を得る第2除濁装置15と、海水Aとしての第2除濁処理水及び第1濃縮水を混合して第1混合水を得る混合部16と、第1混合水を加圧する第2加圧部17と、加圧された第1混合水をろ過処理する第2逆浸透膜装置18とを備えている。
FIG. 1 is a schematic diagram of a seawater desalination apparatus according to the present embodiment.
As shown in FIG. 1, a seawater desalination apparatus 10 according to this embodiment includes a biological treatment tank 11 that biologically treats organic wastewater B to obtain biologically treated water, a microfiltration membrane (MF membrane), and an ultrafiltration membrane. A first turbidizer 12 having at least one of (UF membrane) and turbidizing biologically treated water by filtration to obtain a first turbidized treated water, and a first pressure for pressurizing the first turbidized treated water A pressure unit 13, a first reverse osmosis membrane device 14 for obtaining a first permeated water and a first concentrated water as purified water C by filtering the pressurized first turbidity-treated water as biologically treated water, and microfiltration A second turbidity device 15 having at least one of a membrane (MF membrane) and an ultrafiltration membrane (UF membrane) and turbidizing seawater A by filtration to obtain second turbidized treated water; The second turbidity-treated water and the first concentrated water are mixed to obtain a first mixed water, and a first pressure is applied to the first mixed water. It includes a pressurizing section 17, and a second reverse osmosis unit 18 for filtering processing of the first mixed water pressurized.

前記海水Aは、塩を含む水であり、例えば、塩濃度が1.0質量%以上8.0質量%以下の水であり、より具体的には、塩濃度が例えば2.5質量%以上6.0質量%以下である。
本明細書において、海水Aは、海に存在する水に限定されず、塩濃度が1.0質量%以上の水であれば、湖(塩湖、汽水湖)の水、沼水、池水等の陸に存在する水も含む。
The seawater A is water containing salt, for example, water having a salt concentration of 1.0% by mass or more and 8.0% by mass or less. More specifically, the salt concentration is 2.5% by mass or more, for example. It is 6.0 mass% or less.
In this specification, the seawater A is not limited to the water which exists in the sea, If it is water whose salt concentration is 1.0 mass% or more, the water of a lake (salt lake, brackish lake), swamp water, pond water, etc. Including water existing on the land.

前記有機性廃水Bは、有機物を含む廃水であり、例えば、有機物濃度の指標としてのBOD(生物化学的酸素要求量)が2000mg/L以下の廃水であり、より具体的には、100〜2000mg/Lの廃水である。また、有機性廃水Bは、海水よりも塩濃度が低い水である。有機性廃水Bは、例えば、海水Aの塩濃度に対する有機性廃水Bの塩濃度の比が0.1以下のもの、より具体的には、海水Aの塩濃度に対する有機性廃水Bの塩濃度の比が0.01以下のものである。
前記有機性廃水Bとしては、下水(生活廃水、雨水が下水道に流れた水等)、工業廃水(食品工場、化学工場、電子産業工場、パルプ工場等の工場から排出される廃水)等が挙げられる。
The organic waste water B is waste water containing organic matter, for example, waste water having a BOD (biochemical oxygen demand) of 2000 mg / L or less as an indicator of organic matter concentration, and more specifically, 100 to 2000 mg. / L wastewater. The organic waste water B is water having a lower salt concentration than seawater. The organic wastewater B has, for example, a ratio of the salt concentration of the organic wastewater B to the salt concentration of the seawater A of 0.1 or less, more specifically, the salt concentration of the organic wastewater B with respect to the salt concentration of the seawater A. The ratio is 0.01 or less.
Examples of the organic waste water B include sewage (domestic waste water, rain water flowing into the sewer, etc.), industrial waste water (waste water discharged from factories such as food factories, chemical factories, electronics industry factories, and pulp factories). It is done.

前記生物処理は、細菌、原生動物、後生動物等の生物種によって水に含まれる有機物を分解する処理である。前記生物処理としては、例えば、活性汚泥を用いた曝気処理等を挙げることができる。   The biological treatment is a treatment for decomposing organic substances contained in water by biological species such as bacteria, protozoa, and metazoans. Examples of the biological treatment include aeration treatment using activated sludge.

本明細書において、除濁は、逆浸透膜装置でろ過処理する前に、逆浸透膜装置で分離するよりも粗い不純物(例えば、固形物質等)を除去することを意味し、例えば、逆浸透膜ろ過よりも粗いろ過をすることや沈降分離をすることなどを意味する。   In this specification, turbidity means removing coarse impurities (for example, a solid substance etc.) rather than separating with a reverse osmosis membrane device before filtering with a reverse osmosis membrane device. It means that the filtration is coarser than the membrane filtration or the sedimentation is performed.

前記第1除濁装置12は、MF膜及びUF膜の少なくとも何れか1つを有するろ過膜を備えている。該ろ過膜は、前記生物処理槽11の液面下に浸漬膜として設置されている。   The first turbidity removal device 12 includes a filtration membrane having at least one of an MF membrane and a UF membrane. The filtration membrane is installed as an immersion membrane under the liquid surface of the biological treatment tank 11.

前記加圧部13、17としては、例えばポンプ等が挙げられる。   Examples of the pressurizing units 13 and 17 include a pump.

前記逆浸透膜装置14、18は、RO膜と、該RO膜を収容する圧力容器とを備えている。本明細書におけるRO膜は、ナノろ過膜(NF膜)を含む概念である。   The reverse osmosis membrane devices 14 and 18 include an RO membrane and a pressure vessel that accommodates the RO membrane. The RO membrane in this specification is a concept including a nanofiltration membrane (NF membrane).

前記第2除濁装置15は、MF膜及びUF膜の少なくとも何れか1つを有するろ過膜と、このろ過膜を収容する圧力容器とを備えている。   The second turbidity removal device 15 includes a filtration membrane having at least one of an MF membrane and a UF membrane, and a pressure vessel that accommodates the filtration membrane.

また、本実施形態の海水淡水化装置10は、図2に示すように、有機性廃水Bを生物処理槽11で生物処理して生物処理水を得、生物処理水を第1除濁装置12で除濁して第1除濁処理水を得、第1除濁処理水を第1加圧部13で加圧し、加圧された第1除濁処理水を第1逆浸透膜装置14でろ過処理して浄化水Cたる第1透過水及び第1濃縮水を得、海水Aを第2除濁装置15で除濁して第2除濁処理水を得、第2除濁処理水及び第1濃縮水を混合部16で混合して第1混合水を得、第1混合水を第2加圧部17で加圧し、加圧された第1混合水を第2逆浸透膜装置18でろ過処理して淡水たる第3透過水及び第3濃縮水Dを得る第1工程を実施しうるように構成されている。
また、本実施形態の海水淡水化装置10は、前記第1工程の実施時に、有機性廃水Bが生物処理槽11に移送され、第1除濁処理水が第1逆浸透膜装置14に移送され、第1透過水が浄化水Cとして浄化水貯留槽(図示せず)に移送され、第1濃縮水が混合部16に移送され、海水Aが第2除濁装置15に移送され、第2除濁処理水が混合部16に移送され、第1混合水が第2逆浸透膜装置18に移送され、淡水たる第3透過水が浄化水Eとして浄化水貯留槽(図示せず)に移送され、第3濃縮水Dが濃縮水貯留槽(図示せず)に移送されるように構成されている。
さらに、本実施形態の海水淡水化装置10は、複数の経路を備えており、例えば、第1除濁処理水を第1逆浸透膜装置14に移送する第1移送径路20aと、第1濃縮水を混合部16に移送する第2移送径路20bと、第1混合水を第2逆浸透膜装置18に移送する第3移送径路20cと、第3濃縮水Dを濃縮水貯留槽(図示せず)に移送する第4移送径路20dとを備えている。
In addition, as shown in FIG. 2, the seawater desalination apparatus 10 according to the present embodiment biologically treats the organic wastewater B in the biological treatment tank 11 to obtain biologically treated water. To obtain the first turbidized treated water, pressurize the first turbidized treated water with the first pressurizing unit 13, and filter the pressurized first turbidized treated water with the first reverse osmosis membrane device 14. The first permeated water and the first concentrated water as the purified water C are obtained by treatment, and the seawater A is turbidized by the second turbidity removing device 15 to obtain the second turbidized treated water. Concentrated water is mixed by the mixing unit 16 to obtain first mixed water, the first mixed water is pressurized by the second pressurizing unit 17, and the pressurized first mixed water is filtered by the second reverse osmosis membrane device 18. It is comprised so that the 1st process of processing and obtaining the 3rd permeated water and the 3rd concentrated water D which are fresh water can be implemented.
In the seawater desalination apparatus 10 of the present embodiment, the organic waste water B is transferred to the biological treatment tank 11 and the first turbidity-treated water is transferred to the first reverse osmosis membrane apparatus 14 when the first step is performed. The first permeated water is transferred to the purified water storage tank (not shown) as the purified water C, the first concentrated water is transferred to the mixing unit 16, the seawater A is transferred to the second turbidizer 15, 2 The turbidity-treated water is transferred to the mixing unit 16, the first mixed water is transferred to the second reverse osmosis membrane device 18, and the third permeated water as fresh water is used as purified water E in a purified water storage tank (not shown). The third concentrated water D is transferred and is transferred to a concentrated water storage tank (not shown).
Furthermore, the seawater desalination apparatus 10 according to the present embodiment includes a plurality of paths. For example, a first transfer path 20a for transferring the first turbidity-treated water to the first reverse osmosis membrane apparatus 14, and a first concentration. A second transfer path 20b for transferring water to the mixing unit 16, a third transfer path 20c for transferring the first mixed water to the second reverse osmosis membrane device 18, and a third concentrated water D for the concentrated water storage tank (not shown). A fourth transfer path 20d for transferring to the second transfer path 20d.

さらに、本実施形態の海水淡水化装置10は、図3に示すように、有機性廃水Bを生物処理槽11で生物処理して生物処理水を得、生物処理水を第1除濁装置12で除濁して第1除濁処理水を得、第1除濁処理水を第1加圧部13で加圧し、加圧された第1除濁処理水を第2逆浸透膜装置18でろ過処理して第2透過水及び第2濃縮水を得、海水Aを前記第2除濁装置15で除濁して第2除濁処理水を得、第2除濁処理水及び第2濃縮水を混合部16で混合して第2混合水を得、第2混合水を第2加圧部17で加圧し、加圧された第2混合水を前記第1逆浸透膜装置14でろ過処理して第4透過水及び第4濃縮水Fを得る第2工程を実施しうるように構成されている。
また、本実施形態の海水淡水化装置10は、前記第2工程の実施時に、有機性廃水Bが生物処理槽11に移送され、第1除濁処理水が第2逆浸透膜装置18に移送され、第2透過水が浄化水Eとして浄化水貯留槽(図示せず)に移送され、第2濃縮水が混合部16に移送され、海水Aが第2除濁装置15に移送され、第2除濁処理水が混合部16に移送され、第2混合水が第1逆浸透膜装置14に移送され、淡水たる第4透過水が浄化水Cとして浄化水貯留槽(図示せず)に移送され、第4濃縮水Fが濃縮水貯留槽(図示せず)に移送されるように構成されている。
さらに、本実施形態の海水淡水化装置10は、上述の経路の他に、例えば、第1除濁処理水を第2逆浸透膜装置18に移送する第5移送径路20eと、第3濃縮水を混合部16に移送する第6移送径路20fと、第2混合水を第1逆浸透膜装置14に移送する第7移送径路20gと、第4濃縮水Fを濃縮水貯留槽(図示せず)に移送する第8移送径路20hとを備えている。
Furthermore, as shown in FIG. 3, the seawater desalination apparatus 10 according to the present embodiment biologically treats the organic wastewater B in the biological treatment tank 11 to obtain biologically treated water. To obtain the first turbidity-treated water, pressurize the first turbidity-treated water with the first pressurizing unit 13, and filter the pressurized first turbidity-treated water with the second reverse osmosis membrane device 18. The second permeated water and the second concentrated water are obtained by treatment, and the seawater A is turbidized by the second turbidizer 15 to obtain the second turbidized treated water, and the second turbidized treated water and the second concentrated water are obtained. The second mixed water is obtained by mixing in the mixing unit 16, the second mixed water is pressurized by the second pressurizing unit 17, and the pressurized second mixed water is filtered by the first reverse osmosis membrane device 14. Thus, the second step of obtaining the fourth permeated water and the fourth concentrated water F can be performed.
In the seawater desalination apparatus 10 of the present embodiment, the organic waste water B is transferred to the biological treatment tank 11 and the first turbidity-treated water is transferred to the second reverse osmosis membrane apparatus 18 when the second step is performed. The second permeated water is transferred to the purified water storage tank (not shown) as the purified water E, the second concentrated water is transferred to the mixing unit 16, the seawater A is transferred to the second turbidizer 15, 2 The turbidity-treated water is transferred to the mixing unit 16, the second mixed water is transferred to the first reverse osmosis membrane device 14, and the fourth permeated water, which is fresh water, is used as purified water C in a purified water storage tank (not shown). The fourth concentrated water F is transferred and is transferred to a concentrated water storage tank (not shown).
Furthermore, the seawater desalination apparatus 10 of the present embodiment has, for example, a fifth transfer path 20e for transferring the first turbidity-treated water to the second reverse osmosis membrane device 18 and the third concentrated water, in addition to the above-described paths. A sixth transfer path 20f for transferring the second mixed water to the first reverse osmosis membrane device 14, and a fourth concentrated water F for the concentrated water storage tank (not shown). And an eighth transfer path 20h.

さらに、本実施形態の海水淡水化装置10は、各移送径路に介装されたバルブを備えている。具体的には、本実施形態の海水淡水化装置10は、前記バルブとして、前記第1移送経路20a、前記第2移送経路20b、前記第3移送経路20c、前記第4移送経路20d、前記第5移送経路20e、前記第6移送経路20f、前記第7移送経路20g、及び前記第8移送経路20hにそれぞれ介装された第1バルブ19a、第2バルブ19b、第3バルブ19c、第4バルブ19d、第5バルブ19e、第6バルブ19f、第7バルブ19g、及び第8バルブ19hを備えている。   Furthermore, the seawater desalination apparatus 10 of the present embodiment includes a valve interposed in each transfer path. Specifically, the seawater desalination apparatus 10 of the present embodiment uses the first transfer path 20a, the second transfer path 20b, the third transfer path 20c, the fourth transfer path 20d, and the second valve as the valves. A first valve 19a, a second valve 19b, a third valve 19c, and a fourth valve interposed in the fifth transfer path 20e, the sixth transfer path 20f, the seventh transfer path 20g, and the eighth transfer path 20h, respectively. 19d, a fifth valve 19e, a sixth valve 19f, a seventh valve 19g, and an eighth valve 19h.

また、本実施形態の海水淡水化装置10は、各バルブの開閉操作によって流路を決定するバルブ機構を備えている。また、本実施形態の海水淡水化装置10は、前記バルブ機構により、前記第1〜4バルブが開状態とされ、前記第5〜8バルブが閉状態とされることで、前記第1工程が実施されるように構成されている。さらに、本実施形態の海水淡水化装置10は、前記バルブ機構により、前記第1〜4バルブが閉状態とされ、前記第5〜8バルブが開状態とされることで、前記第2工程が実施されるように構成されている。
このように、本実施形態の海水淡水化装置10は、前記バルブ機構によって各バルブを開閉するように構成されていることから、前記第1工程と前記第2工程とを交互に実施することができる。
Moreover, the seawater desalination apparatus 10 of this embodiment is provided with the valve mechanism which determines a flow path by opening / closing operation of each valve. Moreover, the seawater desalination apparatus 10 of this embodiment is the said 1st process because the said 1st-4 valve is made into an open state by the said valve mechanism, and the said 5th-8th valve is made into a closed state. It is configured to be implemented. Furthermore, in the seawater desalination apparatus 10 of the present embodiment, the second step is performed by the valve mechanism in which the first to fourth valves are closed and the fifth to eighth valves are opened. It is configured to be implemented.
Thus, since the seawater desalination apparatus 10 of this embodiment is comprised so that each valve may be opened and closed by the said valve mechanism, it can implement the said 1st process and the said 2nd process alternately. it can.

前記混合部16で得られる混合水の塩濃度は、前記生物処理水に非好塩性生物が含まれている場合には、0.2M(0.2mol/L)を超えることが好ましい。また、該塩濃度は、前記生物処理水に非好塩性生物及び低度好塩性生物が含まれている場合には、0.5Mを超えることがより好ましい。非好塩性生物の生育を十分に抑制する塩濃度は0.2Mであり、非好塩性生物及び低度好塩性生物の生育を十分に抑制する塩濃度は0.5Mであるからである。
また、前記混合水の塩濃度は、0.8M以下が好ましく、0.6M以下がより好ましい。
The salt concentration of the mixed water obtained in the mixing unit 16 preferably exceeds 0.2M (0.2 mol / L) when non-halophilic organisms are contained in the biologically treated water. In addition, when the biologically treated water contains non-halophilic organisms and low-halophilic organisms, the salt concentration is more preferably more than 0.5M. The salt concentration that sufficiently suppresses the growth of non-halophilic organisms is 0.2M, and the salt concentration that sufficiently suppresses the growth of non-halophilic organisms and low-halogenated organisms is 0.5M. is there.
Further, the salt concentration of the mixed water is preferably 0.8M or less, and more preferably 0.6M or less.

以下に、図4を参照して、前記混合水の塩濃度が上記範囲であることが好ましい理由について詳しく説明する。   Hereinafter, the reason why the salt concentration of the mixed water is preferably in the above range will be described in detail with reference to FIG.

図4に示すように、一の逆浸透膜装置に供給する水(以下、「供給水」ともいう。)における海水の体積比率(海水混合比)が低いほど、供給水の塩濃度(供給水塩濃度)が低くなる。このため、供給水を加圧するエネルギーが海水のみからなる場合に比べて小さいので、得られる浄化水たる淡水の量当たりにおける、海水を淡水化するのに必要なエネルギー量を抑制できる。このように、要するエネルギーを低減するためには、海水混合比が小さいことが好ましい。   As shown in FIG. 4, the lower the volume ratio (seawater mixing ratio) of seawater in water supplied to one reverse osmosis membrane device (hereinafter also referred to as “feedwater”), the lower the salt concentration of the feedwater (feedwater) Salt concentration). For this reason, since the energy which pressurizes supply water is small compared with the case where it consists only of seawater, the amount of energy required in order to desalinate seawater per quantity of the freshwater which is the purified water obtained can be suppressed. Thus, in order to reduce the required energy, it is preferable that the seawater mixing ratio is small.

しかし、図4において、海水混合比が30%以下の場合、即ち、供給水の塩濃度が0.2M以下の場合には、非好塩性の雰囲気であるので、非好塩性生物が生育可能である。海水混合比が30%を超えて80%以下の場合、即ち、供給水の塩濃度が0.2Mを超えて0.5M以下の場合には、低度好塩性の雰囲気であるので、低度好塩性生物が生育可能である。
ここで、供給水中に存在する生物について説明する。生物を耐塩性で分類すると、高度好塩性生物と、中度好塩性生物と、低度好塩性生物と、非好塩性生物とに分かれる。高度好塩性生物は、至適増殖NaCl濃度が2.5Mを超える生物である。中度好塩性生物は、至適増殖NaCl濃度が0.5Mを超えて2.5M以下であり、様々な含塩試料から分離される細菌が該当する。低度好塩性生物は、至適増殖NaCl濃度が0.2Mを超えて0.5M以下であり、例えば、海洋性の高等生物や細菌が該当する。非好塩性生物は、至適増殖NaCl濃度が0Mを超えて0.2M以下であり、多くの高等生物や土壌細菌が該当する。
However, in FIG. 4, when the seawater mixing ratio is 30% or less, that is, when the salt concentration of the feed water is 0.2 M or less, the atmosphere is non-halophilic, and thus non-halophilic organisms grow. Is possible. When the seawater mixing ratio is more than 30% and 80% or less, that is, when the salt concentration of the feed water is more than 0.2M and 0.5M or less, the atmosphere is low in halophilicity. A moderately halophilic organism can grow.
Here, the living thing which exists in supply water is demonstrated. When organisms are classified by salt tolerance, they are divided into highly halophilic organisms, moderately halophilic organisms, lowly halophilic organisms, and non-halophilic organisms. Highly halophilic organisms are organisms with optimal growth NaCl concentrations above 2.5M. The moderately halophilic organisms include bacteria that have an optimal growth NaCl concentration of more than 0.5M and not more than 2.5M, and are separated from various salt-containing samples. The low-degree halophilic organism has an optimal growth NaCl concentration of more than 0.2M and 0.5M or less, and examples include marine higher organisms and bacteria. Non-halophilic organisms have an optimal growth NaCl concentration of more than 0 M and not more than 0.2 M, and many higher organisms and soil bacteria are applicable.

仮に、海水の塩濃度が3.5質量%である場合、NaCl(MW:モル質量=58.44)換算で0.6Mになる。また、生物処理水の塩濃度が0.024質量%である場合、NaCl換算で0.004Mとなり、第1除濁装置12及び一の逆浸透膜装置によるろ過処理をして得られる濃縮水の塩濃度は0.02M程度である。
図4に示すように、海水混合比が0%の場合、即ち、供給水が生物処理水由来の濃縮水のみ(濃縮水100%)の場合、供給水の塩濃度は0.02Mである。海水混合比が20%の場合、即ち、供給水が海水20%で濃縮水80%の場合、供給水の塩濃度は0.12Mである。海水混合比が40%の場合、即ち、供給水が海水40%で濃縮水60%の場合、供給水の塩濃度は0.24Mである。海水混合比が60%の場合、即ち、供給水が海水60%で濃縮水40%の場合、供給水の塩濃度は0.36Mである。海水混合比が80%の場合、即ち、供給水が海水80%で濃縮水20%の場合、供給水の塩濃度は0.50Mである。海水混合比が100%の場合、即ち、供給水が海水のみ(海水100%)の場合、供給水の塩濃度は0.60Mである。
If the salt concentration of seawater is 3.5% by mass, it becomes 0.6M in terms of NaCl (MW: molar mass = 58.44). Moreover, when the salt concentration of biologically treated water is 0.024% by mass, it becomes 0.004M in terms of NaCl, and is concentrated water obtained by filtration using the first turbidity removal device 12 and one reverse osmosis membrane device. The salt concentration is about 0.02M.
As shown in FIG. 4, when the seawater mixing ratio is 0%, that is, when the supply water is only concentrated water derived from biologically treated water (concentrated water 100%), the salt concentration of the supply water is 0.02M. When the seawater mixing ratio is 20%, that is, when the supply water is 20% seawater and 80% concentrated water, the salt concentration of the supply water is 0.12M. When the seawater mixing ratio is 40%, that is, when the supply water is 40% seawater and 60% concentrated water, the salt concentration of the supply water is 0.24M. When the seawater mixing ratio is 60%, that is, when the supply water is 60% seawater and 40% concentrated water, the salt concentration of the supply water is 0.36M. When the seawater mixing ratio is 80%, that is, when the supply water is 80% seawater and 20% concentrated water, the salt concentration of the supply water is 0.50M. When the seawater mixing ratio is 100%, that is, when the supply water is only seawater (seawater 100%), the salt concentration of the supply water is 0.60M.

生物の生育は、至適増殖NaCl濃度の範囲外で十分に抑制され、特に至適増殖NaCl濃度よりも高くなると効果的に抑制され、生物が死滅される場合もある。このため、図4に示すように、供給水の海水混合比が30%以下である場合には、供給水の塩濃度は0.2M以下であるので、非好塩性生物は生育可能である。また、供給水の海水混合比30%を超え80%以下である場合には、供給水の塩濃度は0.2Mを超え0.5M以下であるので、低度好塩性生物は生育可能である。しかし、供給水の塩濃度が0.5Mを超えるように海水の比率を高めると、非好塩性生物及び低度好塩性生物の生育が十分に抑制される。また、生物処理水には非好塩性生物及び低度好塩性生物が相対的に多く含まれている。よって、一の逆浸透膜装置で生物処理水をろ過処理することで該一の逆浸透膜装置のRO膜に非好塩性生物及び低度好塩性生物が付着した後に、塩濃度が0.5Mを超える混合水を該一の逆浸透膜装置でろ過処理することにより、該一の逆浸透膜装置に付着した非好塩性生物及び低度好塩性生物の生育を十分に抑制できる。
従って、前記混合水の塩濃度が上記好ましい範囲となることにより、海水淡水化に要するエネルギーを低減しつつ、バイオファウリングを十分に抑制することができる。
The growth of the organism is sufficiently suppressed outside the range of the optimal growth NaCl concentration, and particularly when the concentration is higher than the optimal growth NaCl concentration, the growth is effectively suppressed and the organism may be killed. For this reason, as shown in FIG. 4, when the seawater mixing ratio of the feed water is 30% or less, the salt concentration of the feed water is 0.2 M or less, so that non-halophilic organisms can grow. . In addition, when the seawater mixing ratio of the feed water is more than 30% and 80% or less, the salt concentration of the feed water is more than 0.2M and less than 0.5M, so that low-halophilic organisms can grow. is there. However, if the ratio of the seawater is increased so that the salt concentration of the feed water exceeds 0.5M, the growth of non-halophilic organisms and low-degree halophilic organisms is sufficiently suppressed. The biologically treated water contains a relatively large amount of non-halophilic organisms and low-degree halophilic organisms. Therefore, after the biologically treated water is filtered by one reverse osmosis membrane device, the salt concentration is 0 after the non-halophilic organism and the low halophilic organism adhere to the RO membrane of the one reverse osmosis membrane device. By filtering mixed water exceeding 5M with the one reverse osmosis membrane device, it is possible to sufficiently suppress the growth of non-halophilic and low-halophilic organisms attached to the one reverse osmosis membrane device. .
Therefore, when the salt concentration of the mixed water falls within the above preferable range, biofouling can be sufficiently suppressed while reducing the energy required for seawater desalination.

本実施形態の海水淡水化方法は、本実施形態の海水淡水化装置を用いて、前記第1工程と前記第2工程とを交互に実施する方法である。   The seawater desalination method of the present embodiment is a method of alternately performing the first step and the second step using the seawater desalination apparatus of the present embodiment.

尚、本実施形態の海水淡水化方法及び海水淡水化装置は、上記構成を有するものであるが、本発明の海水淡水化方法及び海水淡水化装置は、上記構成に限定されず、適宜設計変更可能である。   The seawater desalination method and seawater desalination apparatus according to the present embodiment have the above-described configuration, but the seawater desalination method and seawater desalination apparatus according to the present invention are not limited to the above-described configuration, and may be appropriately changed in design. Is possible.

例えば、本実施形態の海水淡水化装置では、前記第1除濁装置12のろ過膜が、前記生物処理槽11の液面下に浸漬膜として設置されているが、本発明の海水淡水化装置では、前記第1除濁装置12のろ過膜が、図5に示すように、槽外に設置されるタイプのものであってもよい。このような態様では、前記第1除濁装置12が、前記ろ過膜を収容する収容容器を備えてもよい。   For example, in the seawater desalination apparatus of the present embodiment, the filtration membrane of the first turbidity removal apparatus 12 is installed as a submerged membrane below the liquid surface of the biological treatment tank 11, but the seawater desalination apparatus of the present invention. Then, the filter membrane of the first turbidity removal device 12 may be of a type installed outside the tank as shown in FIG. In such an embodiment, the first turbidity removal device 12 may include a storage container that stores the filtration membrane.

また、本実施形態の海水淡水化装置では、前記第1除濁装置12が、前記ろ過膜を備えているが、本発明の海水淡水化装置では、前記第1除濁装置12が、前記ろ過膜の代わりに、砂ろ過器を有する砂ろ過手段、及び被処理水を沈殿分離する沈殿分離槽の少なくとも何れかを備えてもよい。また、本発明の海水淡水化装置では、前記第1除濁装置12が、前記ろ過膜を備え、更に、前記砂ろ過手段及び沈殿分離槽の少なくとも何れかを備えてもよい。なお、砂ろ過器は固形物質等の不純物によって詰まりやすいことから、前記第1除濁装置12は、前記砂ろ過手段を備える場合には、更に沈殿分離槽を備え且つ生物処理水を沈殿分離槽で沈殿分離して上澄水を得、該上澄水を前記砂ろ過手段でろ過処理するように構成されていることが好ましい。   Moreover, in the seawater desalination apparatus of this embodiment, although the said 1st turbidity apparatus 12 is equipped with the said filtration membrane, in the seawater desalination apparatus of this invention, the said 1st turbidity removal apparatus 12 is the said filtration. Instead of the membrane, at least one of a sand filtration unit having a sand filter and a precipitation separation tank for separating the water to be treated may be provided. Moreover, in the seawater desalination apparatus of the present invention, the first turbidity removal device 12 may include the filtration membrane, and may further include at least one of the sand filtration means and a precipitation separation tank. Since the sand filter is likely to be clogged with impurities such as solid substances, the first turbidizer 12 further includes a sedimentation separation tank and a biologically treated water in the precipitation separation tank when the sand filtration means is provided. It is preferable that the supernatant is obtained by precipitation separation in step (b), and the supernatant is filtered by the sand filtering means.

さらに、本実施形態の海水淡水化装置では、前記第2除濁装置15が、前記ろ過膜を備えているが、本発明の海水淡水化装置では、前記第2除濁装置15が、前記ろ過膜の代わりに、砂ろ過器を有する砂ろ過手段、及び被処理水を沈殿分離する沈殿分離槽の少なくとも何れかを備えてもよい。また、本発明の海水淡水化装置では、前記第2除濁装置15が、前記ろ過膜を備え、更に、前記砂ろ過手段及び沈殿分離槽の少なくとも何れかを備えてもよい。なお、砂ろ過器は固形物質等の不純物によって詰まりやすいことから、前記第2除濁装置15は、前記砂ろ過手段を備える場合には、更に沈殿分離槽を備え且つ海水を沈殿分離槽で沈殿分離して上澄水を得、該上澄水を前記砂ろ過手段でろ過処理するように構成されていることが好ましい。   Furthermore, in the seawater desalination apparatus of the present embodiment, the second turbidity removal device 15 includes the filtration membrane. However, in the seawater desalination apparatus of the present invention, the second turbidity reduction device 15 includes the filtration. Instead of the membrane, at least one of a sand filtration unit having a sand filter and a precipitation separation tank for separating the water to be treated may be provided. Moreover, in the seawater desalination apparatus of the present invention, the second turbidity removal device 15 may include the filtration membrane, and may further include at least one of the sand filtration means and the precipitation separation tank. In addition, since the sand filter is easily clogged with impurities such as solid substances, the second turbidizer 15 further includes a sedimentation separation tank when the sand filtration means is provided, and the seawater is precipitated in the precipitation separation tank. It is preferable that the supernatant is obtained by separation and the supernatant is filtered by the sand filtering means.

10:海水淡水化装置、11:生物処理槽、12:第1除濁装置、13:第1加圧部、14:第1逆浸透膜装置、15:第2除濁装置、16:混合部、17:第2加圧部、18:第2逆浸透膜装置、A:海水、B:有機性廃水、C:浄化水、D:濃縮水、E:浄化水、F:濃縮水   DESCRIPTION OF SYMBOLS 10: Seawater desalination apparatus, 11: Biological treatment tank, 12: 1st turbidity removal apparatus, 13: 1st pressurization part, 14: 1st reverse osmosis membrane apparatus, 15: 2nd turbidity reduction apparatus, 16: Mixing part 17: 2nd pressurization part, 18: 2nd reverse osmosis membrane apparatus, A: Seawater, B: Organic waste water, C: Purified water, D: Concentrated water, E: Purified water, F: Concentrated water

Claims (2)

有機性廃水が生物処理されて得られる生物処理水を第1逆浸透膜装置でろ過処理して濃縮水を得、該濃縮水を希釈水として海水に混合して混合水を得、該混合水を第2逆浸透膜装置でろ過処理する海水淡水化方法であって、
生物処理水を前記第1逆浸透膜装置でろ過処理して第1濃縮水を得、該第1濃縮水及び海水を混合して第1混合水を得、前記第2逆浸透膜装置で該第1混合水をろ過処理する第1工程と、前記第2逆浸透膜装置で生物処理水をろ過処理して第2濃縮水を得、該第2濃縮水及び海水を混合して第2混合水を得、前記第1逆浸透膜装置で該第2混合水をろ過処理する第2工程とを交互に実施することを特徴とする海水淡水化方法。
Biologically treated water obtained by biologically treating organic wastewater is filtered through a first reverse osmosis membrane device to obtain concentrated water, and the concentrated water is mixed with seawater as dilution water to obtain mixed water. Is a seawater desalination method in which a second reverse osmosis membrane device is filtered,
Biologically treated water is filtered through the first reverse osmosis membrane device to obtain a first concentrated water, the first concentrated water and seawater are mixed to obtain a first mixed water, and the second reverse osmosis membrane device is used to A first step of filtering the first mixed water and a biologically treated water by the second reverse osmosis membrane device to obtain a second concentrated water, and then mixing the second concentrated water and seawater to perform the second mixing A seawater desalination method characterized by alternately performing a second step of obtaining water and filtering the second mixed water with the first reverse osmosis membrane device.
有機性廃水が生物処理されて得られる生物処理水をろ過処理して濃縮水を得る第1逆浸透膜装置が備えられてなり、該濃縮水が希釈水として海水に混合されて混合水が得られるように構成されてなり、更に、該混合水をろ過処理する第2逆浸透膜装置が備えられてなる海水淡水化装置であって、
生物処理水を前記第1逆浸透膜装置でろ過処理して第1濃縮水を得、該第1濃縮水及び海水を混合して第1混合水を得、前記第2逆浸透膜装置で該第1混合水をろ過処理する第1工程と、前記第2逆浸透膜装置で生物処理水をろ過処理して第2濃縮水を得、該第2濃縮水及び海水を混合して第2混合水を得、前記第1逆浸透膜装置で該第2混合水をろ過処理する第2工程とを交互に実施しうるように構成されていることを特徴とする海水淡水化装置。
A first reverse osmosis membrane device is provided to filter the biologically treated water obtained by biologically treating organic wastewater to obtain concentrated water, and the concentrated water is mixed with seawater as dilution water to obtain mixed water. And a seawater desalination apparatus provided with a second reverse osmosis membrane device for filtering the mixed water,
Biologically treated water is filtered through the first reverse osmosis membrane device to obtain a first concentrated water, the first concentrated water and seawater are mixed to obtain a first mixed water, and the second reverse osmosis membrane device is used to A first step of filtering the first mixed water and a biologically treated water by the second reverse osmosis membrane device to obtain a second concentrated water, and then mixing the second concentrated water and seawater to perform the second mixing A seawater desalination apparatus configured to alternately perform a second step of obtaining water and filtering the second mixed water with the first reverse osmosis membrane apparatus.
JP2011228765A 2011-10-18 2011-10-18 Seawater desalination method and seawater desalination apparatus Expired - Fee Related JP4933679B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011228765A JP4933679B1 (en) 2011-10-18 2011-10-18 Seawater desalination method and seawater desalination apparatus
PCT/JP2012/075900 WO2013058125A1 (en) 2011-10-18 2012-10-05 Seawater desalination method, and seawater desalination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011228765A JP4933679B1 (en) 2011-10-18 2011-10-18 Seawater desalination method and seawater desalination apparatus

Publications (2)

Publication Number Publication Date
JP4933679B1 JP4933679B1 (en) 2012-05-16
JP2013086019A true JP2013086019A (en) 2013-05-13

Family

ID=46395284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011228765A Expired - Fee Related JP4933679B1 (en) 2011-10-18 2011-10-18 Seawater desalination method and seawater desalination apparatus

Country Status (2)

Country Link
JP (1) JP4933679B1 (en)
WO (1) WO2013058125A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109516594A (en) * 2018-12-03 2019-03-26 安徽华塑股份有限公司 Reverse osmosis concentrated water recycling system
JP2020151623A (en) * 2019-03-18 2020-09-24 栗田工業株式会社 Water treatment system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6194887B2 (en) * 2013-03-22 2017-09-13 東レ株式会社 Fresh water production method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4481345B1 (en) * 2008-11-28 2010-06-16 株式会社神鋼環境ソリューション Seawater desalination method and seawater desalination apparatus
JP4499834B1 (en) * 2009-02-14 2010-07-07 株式会社神鋼環境ソリューション Fresh water generating apparatus and fresh water generating method
JP4499835B1 (en) * 2009-02-14 2010-07-07 株式会社神鋼環境ソリューション Fresh water generating apparatus and fresh water generating method
JP2010240635A (en) * 2009-03-15 2010-10-28 Chikyu Kankyo Hidemitsu:Kk Method of desalting mixed water of wastewater and seawater by compound fermentation method
JP2011041907A (en) * 2009-08-21 2011-03-03 Toray Ind Inc Water treatment system
JP2011104504A (en) * 2009-11-17 2011-06-02 Toray Ind Inc Washing method of water treatment facility
JP5762041B2 (en) * 2011-02-17 2015-08-12 株式会社日立製作所 Combined desalination system
JP4973822B1 (en) * 2012-02-22 2012-07-11 株式会社日立プラントテクノロジー Seawater desalination system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109516594A (en) * 2018-12-03 2019-03-26 安徽华塑股份有限公司 Reverse osmosis concentrated water recycling system
JP2020151623A (en) * 2019-03-18 2020-09-24 栗田工業株式会社 Water treatment system
JP7120095B2 (en) 2019-03-18 2022-08-17 栗田工業株式会社 water treatment system

Also Published As

Publication number Publication date
JP4933679B1 (en) 2012-05-16
WO2013058125A1 (en) 2013-04-25

Similar Documents

Publication Publication Date Title
JP5804228B1 (en) Water treatment method
NL2018508B1 (en) Method for purifying water as well as a suitable device.
TW201121902A (en) Method and apparatus for generating fresh water, and method and apparatus for desalinating sea water
JP6194887B2 (en) Fresh water production method
AU2009231909A1 (en) Environmentally friendly hybrid microbiological control technologies for cooling towers
JP4649529B1 (en) Membrane treatment equipment
WO2011155281A1 (en) Freshwater-generating device, and freshwater-generating method
Hög et al. The use of integrated flotation and ceramic membrane filtration for surface water treatment with high loads of suspended and dissolved organic matter
JP4933679B1 (en) Seawater desalination method and seawater desalination apparatus
JP5526093B2 (en) Seawater desalination method and seawater desalination apparatus
JP6589627B2 (en) Water treatment system, water treatment method and water treatment method management method
JP5250684B2 (en) Seawater desalination method and seawater desalination apparatus
Sartor et al. Demonstration of a new hybrid process for the decentralised drinking and service water production from surface water in Thailand
Guilbaud et al. Comparison of Seawater and Freshwater Ultrafltration on Semi-Industrial Scale: Ballast Water Treatment Application
JP2010207805A (en) Fresh water generator and fresh water generating method
JP5999087B2 (en) Water treatment apparatus and water treatment method
JP2011056411A (en) System and method for desalination of water to be treated
WO2012057176A1 (en) Water-treatment method and desalinization method
JP5232906B2 (en) Purified water generating method and purified water generating apparatus
WO2011155282A1 (en) Fresh water-generating device and fresh water-generating method
WO2013061057A1 (en) Water treatment methods and systems
Rao et al. Review on an integrated pre-treatment system to reduce membrane accelerated biofouling during red tide occurrences in Oman
JP2010184225A (en) Method and apparatus for desalinating seawater
Nagappan Waste stream reclamation for food manufacturing operations using membrane filtration
WO2017183130A1 (en) Filter device cleaning method, filtration equipment, and desalination plant

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120210

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120216

R150 Certificate of patent or registration of utility model

Ref document number: 4933679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees