JP2010184225A - Method and apparatus for desalinating seawater - Google Patents

Method and apparatus for desalinating seawater Download PDF

Info

Publication number
JP2010184225A
JP2010184225A JP2009031861A JP2009031861A JP2010184225A JP 2010184225 A JP2010184225 A JP 2010184225A JP 2009031861 A JP2009031861 A JP 2009031861A JP 2009031861 A JP2009031861 A JP 2009031861A JP 2010184225 A JP2010184225 A JP 2010184225A
Authority
JP
Japan
Prior art keywords
water
seawater
reverse osmosis
osmosis membrane
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009031861A
Other languages
Japanese (ja)
Other versions
JP4518435B1 (en
Inventor
Mitsushige Shimada
光重 島田
Kazutaka Takada
一貴 高田
Yutaka Ito
裕 伊藤
Masanobu Noshita
昌伸 野下
Noboru Miyaoka
昇 宮岡
Kenji Takesaka
憲治 竹坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009031861A priority Critical patent/JP4518435B1/en
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to ES09829124T priority patent/ES2440929T3/en
Priority to EP20120179652 priority patent/EP2537810B1/en
Priority to KR1020107027103A priority patent/KR101022745B1/en
Priority to CN2012100113617A priority patent/CN102583648A/en
Priority to EP20120179649 priority patent/EP2537809A3/en
Priority to ES12179652.8T priority patent/ES2536493T3/en
Priority to EP20120179647 priority patent/EP2537808A3/en
Priority to KR1020117018991A priority patent/KR101127017B1/en
Priority to KR1020107027102A priority patent/KR101024565B1/en
Priority to CN2012100109842A priority patent/CN102557196B/en
Priority to US12/990,099 priority patent/US8070953B2/en
Priority to CN2009801154841A priority patent/CN102015546B/en
Priority to SG201101784-5A priority patent/SG170104A1/en
Priority to SG201101787-8A priority patent/SG170106A1/en
Priority to KR1020107024365A priority patent/KR101072952B1/en
Priority to SG201101785-2A priority patent/SG170105A1/en
Priority to AU2009320741A priority patent/AU2009320741B2/en
Priority to KR1020107027101A priority patent/KR101017310B1/en
Priority to SG201101783-7A priority patent/SG170103A1/en
Priority to EP20090829124 priority patent/EP2351711B1/en
Priority to PCT/JP2009/069932 priority patent/WO2010061879A1/en
Priority to KR1020117004032A priority patent/KR20110076872A/en
Priority to CN2012100113566A priority patent/CN102583803B/en
Priority to TW100105692A priority patent/TWI345998B/en
Priority to TW100105682A priority patent/TWI348994B/en
Priority to TW98140699A priority patent/TWI344941B/en
Priority to TW100105691A priority patent/TWI348458B/en
Priority to TW100105681A priority patent/TW201121900A/en
Application granted granted Critical
Publication of JP4518435B1 publication Critical patent/JP4518435B1/en
Publication of JP2010184225A publication Critical patent/JP2010184225A/en
Priority to IL208665A priority patent/IL208665A/en
Priority to US13/033,735 priority patent/US8070954B2/en
Priority to US13/033,646 priority patent/US8062527B2/en
Priority to US13/037,609 priority patent/US8070955B2/en
Priority to US13/037,661 priority patent/US8083948B2/en
Priority to IL215410A priority patent/IL215410A/en
Priority to IL215412A priority patent/IL215412A/en
Priority to IL215413A priority patent/IL215413A0/en
Priority to IL21541111A priority patent/IL215411A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for desalinating seawater capable of efficiently obtaining purified water such as freshwater while utilizing an inorganic effluent. <P>SOLUTION: The method for desalinating seawater, which desalinates seawater by filtration processing using a reverse osmosis membrane device, comprises a mixing process for mixing precipitation-processed water which is supernatant water obtained by precipitating to separate the inorganic effluent as diluent water with the seawater, and a mixed water processing process for filtrating the mixed water obtained by the mixing process by feeding it to the reverse osmosis membrane device. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、海水淡水化方法および海水淡水化装置に関し、例えば、逆浸透膜装置を用いたろ過によって海水を淡水化する海水淡水化方法および海水淡水化装置に関する。   The present invention relates to a seawater desalination method and a seawater desalination apparatus, for example, a seawater desalination method and a seawater desalination apparatus that desalinate seawater by filtration using a reverse osmosis membrane device.

近年、地球温暖化等により雨が局所的に若しくは短時間に降ってしまい水資源が地理的若しくは時間的に偏在してしまうことや、林業衰退や森林伐採等により山間部の保水力が低下しまうこと等により、水資源を安定的に確保することが難しいという問題がある。   In recent years, rain has fallen locally or in a short period of time due to global warming, etc., and water resources are unevenly distributed geographically or temporally, and the water retention capacity of mountainous areas has declined due to forestry decline or deforestation, etc. Therefore, there is a problem that it is difficult to stably secure water resources.

水資源を安定的に確保すべく、例えば、臨海地域では、逆浸透膜装置を用いたろ過処理によって海水を淡水化する海水淡水化方法が提案されている(例えば、特許文献1)。   In order to secure water resources stably, for example, in seaside areas, seawater desalination methods for desalinating seawater by filtration using a reverse osmosis membrane device have been proposed (for example, Patent Document 1).

特開2008−55317号公報JP 2008-55317 A

しかしながら、従来の海水淡水化方法では、海水を逆浸透膜装置でろ過処理するのに海水を加圧してポンプ等で逆浸透膜装置に圧送する必要があり、海水の塩濃度が高いほど多大なエネルギーが必要となってしまうという問題がある。   However, in the conventional seawater desalination method, it is necessary to pressurize seawater and pump it to the reverse osmosis membrane device with a pump or the like in order to filter the seawater with the reverse osmosis membrane device. There is a problem that energy is required.

ところで、上記の海水とは別に、例えば鉄鋼等の金属製造工場等の廃水に代表される金属等の無機物を含有する廃水(以下、「無機性廃水」ともいう。)は、通常、pH調整等の前処理を施し固形化させたのち、沈殿分離されている。しかるに、この無機性廃水を沈殿分離して得られる上澄水たる沈殿処理水は、現状では、海洋や河川に放出されてしまい、有効利用されていない水が多量に存在するという問題がある。   By the way, apart from the seawater described above, for example, wastewater containing inorganic substances such as metals typified by wastewater from a metal manufacturing plant such as steel (hereinafter also referred to as “inorganic wastewater”) is usually pH adjusted, etc. After the pretreatment of (1) and solidifying, the precipitate is separated. However, the sediment-treated water, which is the supernatant water obtained by precipitating and separating this inorganic wastewater, is currently released into the ocean and rivers, and there is a problem that there is a large amount of water that is not effectively used.

本発明は、上記問題点に鑑み、無機性廃水を活用しつつ、淡水等の浄化水を効率良く得ることができる海水淡水化方法および海水淡水化装置を提供することを課題とする。   This invention makes it a subject to provide the seawater desalination method and seawater desalination apparatus which can obtain purified water, such as freshwater, efficiently, utilizing inorganic wastewater in view of the said problem.

本発明は、逆浸透膜装置を用いたろ過処理によって海水を淡水化する海水淡水化方法であって、
無機性廃水を沈殿分離して得られる上澄水たる沈殿処理水を希釈水として海水に混合する混合工程と、該混合工程により得られた混合水を前記逆浸透膜装置に供給してろ過処理する混合水処理工程とを実施して海水を淡水化することを特徴とする海水淡水化方法にある。
The present invention is a seawater desalination method for desalinating seawater by filtration using a reverse osmosis membrane device,
A mixing step in which precipitation treated water, which is supernatant water obtained by precipitation separation of inorganic waste water, is mixed with seawater as dilution water, and the mixed water obtained in the mixing step is supplied to the reverse osmosis membrane device for filtration. It is in the seawater desalination method characterized by implementing a mixed water treatment process and desalinating seawater.

斯かる海水淡水化方法によれば、海水よりも塩濃度が低い沈殿処理水を希釈水として海水に混合することにより得られた混合水を前記逆浸透膜装置に供給してろ過処理することにより、該逆浸透膜装置に混合水を圧送するための圧力を海水を圧送する場合に比して抑制することができるため、得られる淡水の単位量当たりにおける圧送に必要なエネルギー量を抑制できる。また、該逆浸透膜装置に供給される混合水たる供給水の塩濃度が小さくなるため、処理水回収率を高くでき、得られる淡水の単位量当たりにおける圧送に必要なエネルギー量を抑制できる。さらに、逆浸透膜装置の膜の透過流束(フラックス)を大きくすることができ、ろ過水量を増加させることができる。さらに、膜への負荷(海水中の塩による化学的負荷、及び圧力による物理的負荷)も抑制することができ、該膜の寿命を延ばし得る。また、沈殿処理水を有効に活用することができる。   According to such a seawater desalination method, by supplying the reverse osmosis membrane device with the mixed water obtained by mixing the precipitation-treated water having a salt concentration lower than that of seawater with the seawater as dilution water, and filtering the mixed water. Since the pressure for pumping the mixed water to the reverse osmosis membrane device can be suppressed as compared with the case of pumping seawater, the amount of energy required for pumping per unit amount of the obtained fresh water can be suppressed. Moreover, since the salt concentration of the supply water which is the mixed water supplied to this reverse osmosis membrane device becomes small, the recovery rate of treated water can be increased, and the amount of energy required for pumping per unit amount of the obtained fresh water can be suppressed. Furthermore, the permeation flux (flux) of the membrane of the reverse osmosis membrane device can be increased, and the amount of filtered water can be increased. Furthermore, the load on the membrane (chemical load due to salt in seawater and physical load due to pressure) can be suppressed, and the life of the membrane can be extended. Moreover, precipitation treated water can be used effectively.

また、本発明に係る海水淡水化方法においては、好ましくは、無機性廃水を沈殿分離して沈殿処理水を得、更に、砂ろ過手段、精密ろ過膜及び限外ろ過膜の少なくとも何れかを有する除濁装置を用いてろ過処理し透過水を得、該透過水を逆浸透膜装置を用いたろ過処理により透過水たる浄化水と濃縮水とを得る廃水処理工程を実施し、前記混合工程では、前記濃縮水たる沈殿処理水を前記希釈水として用いる。   In the seawater desalination method according to the present invention, preferably, the inorganic wastewater is precipitated and separated to obtain treated water, and further includes at least one of sand filtration means, a microfiltration membrane, and an ultrafiltration membrane. Filtration treatment using a turbidity device to obtain permeated water, and carrying out a wastewater treatment step for obtaining purified water and concentrated water as permeated water by filtration treatment using a reverse osmosis membrane device, in the mixing step The precipitated treated water as the concentrated water is used as the dilution water.

斯かる海水淡水化方法によれば、前記廃水処理工程において浄化水を回収することができ、より一層効率良く浄化水を回収し得るという利点がある。   According to such a seawater desalination method, the purified water can be recovered in the wastewater treatment step, and there is an advantage that the purified water can be recovered more efficiently.

さらに、本発明に係る海水淡水化方法においては、好ましくは、前記混合水処理工程で逆浸透膜装置を用いてろ過処理する前に砂ろ過手段、精密ろ過膜及び限外ろ過膜の少なくとも何れかを有する除濁装置を用いて混合水をろ過処理する。   Furthermore, in the seawater desalination method according to the present invention, preferably, at least one of sand filtration means, a microfiltration membrane, and an ultrafiltration membrane before filtration using a reverse osmosis membrane device in the mixed water treatment step. The mixed water is filtered using a turbidity removing device having

斯かる海水淡水化方法によれば、混合水処理工程で用いる逆浸透膜装置の膜面に無機性固形物質が付着してしまうのを抑制することができ、より一層効率よく淡水を得るという利点がある。また、より一層純度の高い淡水を得ることができるという利点もある。   According to such a seawater desalination method, it is possible to prevent inorganic solid substances from adhering to the membrane surface of the reverse osmosis membrane device used in the mixed water treatment step, and to obtain fresh water more efficiently. There is. There is also an advantage that fresh water with higher purity can be obtained.

また、本発明に係る海水淡水化方法においては、好ましくは、前記混合工程で海水と希釈水との混合体積比を海水1に対して希釈水0.1以上とする。   In the seawater desalination method according to the present invention, preferably, the mixing volume ratio of seawater and dilution water is set to 0.1 or more with respect to seawater 1 in the mixing step.

斯かる海水淡水化方法によれば、得られる淡水の量当たりにおける、海水を淡水化するのに必要なエネルギー量を確実に抑制できるとともに、混合工程や混合水処理工程に用いられる機器の腐食を抑制できるという利点がある。   According to such a seawater desalination method, the amount of energy necessary for desalinating seawater per amount of freshwater obtained can be surely suppressed, and corrosion of equipment used in the mixing step and the mixed water treatment step can be prevented. There is an advantage that it can be suppressed.

さらに、本発明に係る海水淡水化方法においては、好ましくは、除濁装置を用いて海水をろ過処理し、前記混合工程では、該ろ過処理された海水と希釈水とを混合する。   Furthermore, in the seawater desalination method according to the present invention, preferably, seawater is filtered using a turbidity removing device, and the filtered seawater and diluted water are mixed in the mixing step.

斯かる海水淡水化方法によれば、より一層純度の高い淡水を得ることができるという利点がある。また、希釈水としての沈殿処理水がろ過処理された場合には該希釈水に含まれる固形物質濃度が小さくなり、また、希釈水に混合される海水に含まれる固形物質濃度が抑制されているので、より一層効率良く淡水を得ることができるという利点がある。   According to such a seawater desalination method, there is an advantage that fresh water with higher purity can be obtained. In addition, when precipitation-treated water as dilution water is filtered, the solid substance concentration contained in the dilution water is reduced, and the solid substance concentration contained in seawater mixed with the dilution water is suppressed. Therefore, there is an advantage that fresh water can be obtained more efficiently.

また、本発明は、逆浸透膜装置を用いたろ過処理によって海水を淡水化するように構成されてなる海水淡水化装置であって、
無機性廃水を沈殿分離して得られる上澄水たる沈殿処理水を希釈水として海水に混合し、該混合により得られた混合水を前記逆浸透膜装置に供給してろ過処理する混合水処理部を備えてなることを特徴とする海水淡水化装置にある。
The present invention is a seawater desalination apparatus configured to desalinate seawater by filtration using a reverse osmosis membrane apparatus,
A mixed water treatment unit that mixes precipitation treated water, which is a supernatant water obtained by precipitation separation of inorganic wastewater, into seawater as dilution water, and supplies the mixed water obtained by the mixing to the reverse osmosis membrane device and performs filtration. It is in the seawater desalination apparatus characterized by comprising.

さらに、本発明は、逆浸透膜装置を用いたろ過処理によって海水を淡水化する海水淡水化方法であって、
無機性廃水を希釈水として海水に混合する混合工程と、該混合工程により得られた混合水を前記逆浸透膜装置に供給してろ過処理する混合水処理工程とを実施して海水を淡水化することを特徴とする海水淡水化方法にある。
Furthermore, the present invention is a seawater desalination method for desalinating seawater by filtration using a reverse osmosis membrane device,
Seawater is desalinated by performing a mixing step of mixing inorganic wastewater with dilution water into seawater and a mixed water treatment step of supplying the mixed water obtained by the mixing step to the reverse osmosis membrane device and filtering the mixture. There is a seawater desalination method characterized by:

斯かる海水淡水化方法によれば、海水よりも塩濃度が低い無機性廃水を希釈水として海水に混合することにより得られた混合水を前記逆浸透膜装置に供給してろ過処理することにより、該逆浸透膜装置に混合水を圧送するための圧力を海水を圧送する場合に比して抑制することができるため、得られる淡水の単位量当たりにおける圧送に必要なエネルギー量を抑制できる。また、該逆浸透膜装置に供給される混合水たる供給水の塩濃度が小さくなるため、処理水回収率を高くでき、得られる淡水の単位量当たりにおける圧送に必要なエネルギー量を抑制できる。さらに、逆浸透膜装置の膜の透過流束(フラックス)を大きくすることができ、ろ過水量を増加させることができる。さらに、膜への負荷(海水中の塩による化学的負荷、及び圧力による物理的負荷)も抑制することができ、該膜の寿命を延ばし得る。   According to such seawater desalination method, by supplying mixed water obtained by mixing inorganic wastewater having a lower salt concentration than seawater as dilution water into seawater, supplying the reverse osmosis membrane device to the filtration treatment, Since the pressure for pumping the mixed water to the reverse osmosis membrane device can be suppressed as compared with the case of pumping seawater, the amount of energy required for pumping per unit amount of the obtained fresh water can be suppressed. Moreover, since the salt concentration of the supply water which is the mixed water supplied to this reverse osmosis membrane device becomes small, the recovery rate of treated water can be increased, and the amount of energy required for pumping per unit amount of the obtained fresh water can be suppressed. Furthermore, the permeation flux (flux) of the membrane of the reverse osmosis membrane device can be increased, and the amount of filtered water can be increased. Furthermore, the load on the membrane (chemical load due to salt in seawater and physical load due to pressure) can be suppressed, and the life of the membrane can be extended.

また、本発明は、逆浸透膜装置を用いたろ過処理によって海水を淡水化するように構成されてなる海水淡水化装置であって、
無機性廃水を希釈水として海水に混合し、該混合により得られた混合水を前記逆浸透膜装置に供給してろ過処理する混合水処理部を備えてなることを特徴とする海水淡水化装置にある。
The present invention is a seawater desalination apparatus configured to desalinate seawater by filtration using a reverse osmosis membrane apparatus,
A seawater desalination apparatus comprising: a mixed water treatment unit that mixes inorganic wastewater with dilution water as seawater, and supplies the mixed water obtained by the mixing to the reverse osmosis membrane apparatus and performs filtration. It is in.

以上のように、本発明によれば、無機性廃水を活用しつつ、淡水等の浄化水を効率良く得ることができる。   As described above, according to the present invention, purified water such as fresh water can be efficiently obtained while utilizing inorganic wastewater.

一実施形態に係る海水淡水化装置の概略ブロック図。1 is a schematic block diagram of a seawater desalination apparatus according to an embodiment. 他実施形態に係る海水淡水化装置の概略ブロック図。The schematic block diagram of the seawater desalination apparatus which concerns on other embodiment. 他実施形態に係る海水淡水化装置の概略ブロック図。The schematic block diagram of the seawater desalination apparatus which concerns on other embodiment. 他実施形態に係る海水淡水化装置の概略ブロック図。The schematic block diagram of the seawater desalination apparatus which concerns on other embodiment. 試験例1に係る海水淡水化装置の概略ブロック図。1 is a schematic block diagram of a seawater desalination apparatus according to Test Example 1. FIG. 試験例1の結果。Results of Test Example 1. 実施例1に係る海水淡水化装置の概略ブロック図。1 is a schematic block diagram of a seawater desalination apparatus according to Embodiment 1. FIG. 比較例1に係る海水淡水化装置の概略ブロック図。The schematic block diagram of the seawater desalination apparatus which concerns on the comparative example 1. FIG.

以下、本発明の実施の形態について、図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

先ず、本実施形態に係る海水淡水化装置について説明する。   First, the seawater desalination apparatus according to the present embodiment will be described.

図1は、本実施形態の海水淡水化装置の概略ブロック図である。
本実施形態の海水淡水化装置1は、図1に示すように、無機性廃水Bを沈殿分離(「沈殿処理」ともいう。)して上澄水たる沈殿処理水と固形物質を多く含む濃縮水Dとを得る沈殿処理部3と、該沈殿処理部3より得られる上澄水たる沈殿処理水を希釈水として海水Aに混合し該混合により得られた混合水を逆浸透膜装置23に供給してろ過処理し透過水たる淡水Cと濃縮水Dとを得る混合水処理部2とを備えてなる。
また、本実施形態の海水淡水化装置1は、海水Aを混合水処理部2に、無機性廃水Bを沈殿処理部3に、沈殿処理水を混合水処理部2に、前記濃縮水Dを濃縮水貯留槽(図示せず)に移送するように構成されてなる。
さらに、本実施形態の海水淡水化装置1は、前記透過水たる淡水Cを回収するように構成されてなる。
FIG. 1 is a schematic block diagram of the seawater desalination apparatus of the present embodiment.
As shown in FIG. 1, the seawater desalination apparatus 1 according to the present embodiment is a concentrated water containing a large amount of precipitated solids and solid substances obtained by precipitation separation (also referred to as “precipitation treatment”) of the inorganic wastewater B and supernatant. The precipitation treatment unit 3 to obtain D and the precipitation treatment water, which is the supernatant water obtained from the precipitation treatment unit 3, is mixed with seawater A as dilution water, and the mixed water obtained by the mixing is supplied to the reverse osmosis membrane device 23. And a mixed water treatment unit 2 that obtains fresh water C and concentrated water D, which are filtered and permeated.
Moreover, the seawater desalination apparatus 1 of this embodiment is the seawater A in the mixed water treatment part 2, the inorganic waste water B in the precipitation treatment part 3, the precipitation treated water in the mixed water treatment part 2, and the concentrated water D. It is configured to be transferred to a concentrated water storage tank (not shown).
Furthermore, the seawater desalination apparatus 1 of the present embodiment is configured to collect the fresh water C as the permeate.

海水Aは、塩を含む水であり、例えば、塩濃度が1.0〜8.0質量%程度の水であり、より具体的には、塩濃度が2.5〜6.0質量%である。
本明細書において、海水Aは、海に存在する水に限定されず、塩濃度が1.0質量%以上の水であれば、湖(塩湖、汽水湖)の水、沼水、池水等の陸に存在する水も含む。
Seawater A is water containing salt, for example, water having a salt concentration of about 1.0 to 8.0% by mass, and more specifically, a salt concentration of 2.5 to 6.0% by mass. is there.
In this specification, the seawater A is not limited to the water which exists in the sea, If it is water whose salt concentration is 1.0 mass% or more, the water of a lake (salt lake, brackish lake), swamp water, pond water, etc. Including water existing on the land.

無機性廃水Bは、無機物が含まれ且つ有機物濃度が低い廃水で、例えば、BOD(生物化学的酸素要求量)が50mg/L以下の廃水であり、好ましくは、10mg/L以下の廃水である。
また、無機性廃水Bは、海水よりも塩濃度が低い水である。無機性廃水Bは、例えば、海水Aの塩濃度に対する無機性廃水Bの塩濃度の比が0.1以下のもの、より具体的には、海水Aの塩濃度に対する無機性廃水Bの塩濃度の比が0.01以下のものである。
無機性廃水Bとしては、工業廃水(鉄鋼工場、化学工場、電子産業工場等の工場から排出される廃水)等が挙げられる。
The inorganic wastewater B is a wastewater containing an inorganic substance and having a low organic matter concentration, for example, a wastewater having a BOD (biochemical oxygen demand) of 50 mg / L or less, preferably a wastewater having a concentration of 10 mg / L or less. .
The inorganic waste water B is water having a lower salt concentration than seawater. The inorganic wastewater B is, for example, one having a ratio of the salt concentration of the inorganic wastewater B to the salt concentration of the seawater A of 0.1 or less, more specifically, the salt concentration of the inorganic wastewater B with respect to the salt concentration of the seawater A The ratio is 0.01 or less.
Examples of the inorganic waste water B include industrial waste water (waste water discharged from factories such as steel factories, chemical factories, and electronics industry factories).

混合水処理部2は、沈殿処理部3より得られる沈殿処理水を希釈水として海水Aに混合して混合水を得るように構成されてなる。
また、混合水処理部2は、精密ろ過膜(MF膜)及び限外ろ過膜(UF膜)の少なくとも何れかを有し且つ前記混合水をろ過処理により除濁して第1透過水及び第1濃縮水を得る第1除濁装置22と、第1透過水たる混合水をろ過処理して第2透過水たる淡水C及び第2濃縮水を得る第1逆浸透膜装置23とを備えてなる。
また、混合水処理部2は、沈殿処理部3より得られる沈殿処理水を希釈水として海水に混合し該混合により得られた混合水を第1除濁装置22に移送して第1除濁装置22によりろ過処理し第1透過水及び第1濃縮水を得、第1濃縮水を濃縮水貯留槽(図示せず)に移送し、第1透過水たる混合水を第1逆浸透膜装置23に移送して第1逆浸透膜装置23によりろ過処理し第2透過水たる淡水C及び第2濃縮水を得るように構成されてなる。
尚、本明細書に於いて、除濁とは逆浸透膜ろ過よりも粗いろ過、即ち、逆浸透膜装置でろ過処理する前に実施され、逆浸透膜で分離するよりも粗い不純物(例えば、固形物質等)を除去することを意味する。
The mixed water treatment unit 2 is configured to obtain the mixed water by mixing the precipitation treated water obtained from the precipitation treatment unit 3 with the seawater A as dilution water.
Further, the mixed water treatment unit 2 has at least one of a microfiltration membrane (MF membrane) and an ultrafiltration membrane (UF membrane), and turbidizes the mixed water by a filtration treatment so that the first permeate and the first A first turbidity device 22 for obtaining concentrated water, and a first reverse osmosis membrane device 23 for obtaining fresh water C as second permeated water and second concentrated water by filtering the mixed water as the first permeated water. .
Further, the mixed water treatment unit 2 mixes the precipitation treated water obtained from the precipitation treatment unit 3 with the seawater as dilution water, and transfers the mixed water obtained by the mixing to the first turbidity removal device 22 for the first turbidity removal. The first permeated water and the first concentrated water are obtained by filtration with the device 22, the first concentrated water is transferred to a concentrated water storage tank (not shown), and the mixed water as the first permeated water is used as the first reverse osmosis membrane device. It is comprised so that it may transfer to 23 and may be filtered with the 1st reverse osmosis membrane apparatus 23, and the fresh water C and 2nd concentrated water which may be 2nd permeated water may be obtained.
In the present specification, turbidity is filtration that is coarser than reverse osmosis membrane filtration, i.e., performed before filtration with a reverse osmosis membrane device, and impurities that are coarser than those separated by a reverse osmosis membrane (e.g., Means removal of solid substances and the like).

本実施形態における海水淡水化装置1は、第2透過水たる淡水Cを回収するように構成されてなる。   The seawater desalination apparatus 1 in the present embodiment is configured to collect fresh water C that is second permeated water.

第1逆浸透膜装置23は、圧力容器に逆浸透膜(RO膜)が収容されたタイプのものである。   The first reverse osmosis membrane device 23 is of a type in which a reverse osmosis membrane (RO membrane) is accommodated in a pressure vessel.

混合水処理部2は、第1透過水を加圧して第1逆浸透膜装置23に圧送する第1ポンプ24を備え、第1透過水を第1ポンプ24を介して第1逆浸透膜装置23に圧送することにより第1逆浸透膜装置23から第2濃縮水を圧送するように構成されてなる。   The mixed water treatment unit 2 includes a first pump 24 that pressurizes the first permeate and pumps it to the first reverse osmosis membrane device 23, and the first reverse osmosis membrane device via the first pump 24. The second concentrated water is pumped from the first reverse osmosis membrane device 23 by being pumped to 23.

混合水処理部2は、スケール防止剤(RO膜に生じ得るスケールを抑制し得る薬剤)が含有されるスケール防止薬液を第1逆浸透膜装置23のRO膜に供給する第1スケール防止薬液供給手段(図示せず)が備えられてなる。
前記スケール防止剤としては、例えば、カルボン酸重合物、カルボン酸重合物配合品、ホスホン酸塩等が挙げられる。
The mixed water treatment unit 2 supplies a scale preventive chemical solution containing a scale preventive agent (a drug capable of suppressing scale that can occur in the RO membrane) to the RO membrane of the first reverse osmosis membrane device 23. Means (not shown) are provided.
Examples of the scale inhibitor include carboxylic acid polymers, carboxylic acid polymer blends, and phosphonates.

また、混合水処理部2は、膜洗浄剤(膜に付着され得る付着物の原因物質を溶解し得る薬剤)が含有される膜洗浄薬液を第1逆浸透膜装置23のRO膜に供給する第1膜洗浄薬液供給手段(図示せず)が備えられてなる。
前記膜洗浄剤は、特に限定されるものではないが、該膜洗浄剤としては、例えば、酸、アルカリ、酸化剤、キレート剤、界面活性剤等が挙げられる。酸としては、例えば、有機酸(クエン酸、シュウ酸等)、無機酸(塩酸、硫酸、硝酸等)が挙げられる。アルカリとしては、例えば、水酸化ナトリウム等が挙げられる。酸化剤としては、例えば、過酸化水素、次亜塩素酸ナトリウム等が挙げられる。
また、該膜洗浄薬液としては、2種以上の膜洗浄剤が混合された混合液(例えば、水酸化ナトリウムと界面活性剤とが混合されたもの)も用いることができる。
Further, the mixed water treatment unit 2 supplies a membrane cleaning chemical solution containing a membrane cleaning agent (a drug capable of dissolving the causative substance of the deposit that can be attached to the membrane) to the RO membrane of the first reverse osmosis membrane device 23. First membrane cleaning chemical supply means (not shown) is provided.
The film cleaning agent is not particularly limited, and examples of the film cleaning agent include acids, alkalis, oxidizing agents, chelating agents, and surfactants. Examples of the acid include organic acids (citric acid, oxalic acid, etc.) and inorganic acids (hydrochloric acid, sulfuric acid, nitric acid, etc.). Examples of the alkali include sodium hydroxide. Examples of the oxidizing agent include hydrogen peroxide and sodium hypochlorite.
Further, as the membrane cleaning chemical solution, a mixed solution in which two or more types of membrane cleaning agents are mixed (for example, a mixture of sodium hydroxide and a surfactant) can be used.

混合水処理部2は、第1逆浸透膜装置23から圧送された第2濃縮水の圧力で動力を得る水力タービン25を備え、第1逆浸透膜装置23から圧送された第2濃縮水を水力タービンに移送し第2濃縮水の圧力で水力タービン25を駆動して動力を得るように構成されてなる。   The mixed water treatment unit 2 includes a hydraulic turbine 25 that obtains power with the pressure of the second concentrated water pumped from the first reverse osmosis membrane device 23, and the second concentrated water pumped from the first reverse osmosis membrane device 23 It is configured to be transferred to the hydro turbine and drive the hydro turbine 25 with the pressure of the second concentrated water to obtain power.

本実施形態の海水淡水化装置1は、水力タービン25を駆動するのに用いられた第2濃縮水を濃縮水貯留槽(図示せず)に移送するように構成されてなる。   The seawater desalination apparatus 1 of this embodiment is configured to transfer the second concentrated water used to drive the hydro turbine 25 to a concentrated water storage tank (not shown).

第1除濁装置22は、槽外に設置されるタイプのものである。   The first turbidity removal device 22 is of a type installed outside the tank.

混合水処理部2は、前記膜洗浄薬液を第1除濁装置22の膜に供給する第2膜洗浄薬液供給手段(図示せず)が備えられてなる。   The mixed water treatment unit 2 is provided with second membrane cleaning chemical solution supply means (not shown) for supplying the membrane cleaning chemical solution to the membrane of the first turbidity removal device 22.

沈殿処理部3は、無機性廃水Bを沈殿分離して上澄水たる沈殿処理水と濃縮水Dとを得る沈殿分離槽31と、精密ろ過膜(MF膜)及び限外ろ過膜(UF膜)の少なくとも何れかを有し且つ沈殿分離槽31で得られた沈殿処理水をろ過処理して第3透過水及び第3濃縮水を得る第2除濁装置32と、第3透過水たる沈殿処理水をろ過処理して第4透過水たる浄化水E及び第4濃縮水たる沈殿処理水を得る第2逆浸透膜装置33とを備えてなる。   The precipitation treatment unit 3 is a precipitation separation tank 31 for precipitating and separating the inorganic waste water B to obtain a precipitate treated water and a concentrated water D, and a microfiltration membrane (MF membrane) and an ultrafiltration membrane (UF membrane). A second turbidity device 32 for obtaining a third permeated water and a third concentrated water by filtering the precipitated treated water obtained in the sedimentation separation tank 31, and a precipitation treatment as a third permeated water And a second reverse osmosis membrane device 33 that obtains purified water E as the fourth permeated water and precipitation treated water as the fourth concentrated water by filtering the water.

本実施形態の海水淡水化装置1は、必要に応じて、沈殿分離槽31に凝集剤を添加する凝集剤添加手段を備え、該凝集剤により無機性廃水Bが凝集沈殿分離されるように成されてなる。   The seawater desalination apparatus 1 according to this embodiment includes a flocculant addition means for adding a flocculant to the precipitation separation tank 31 as necessary, and the inorganic wastewater B is coagulated and separated by the flocculant. Being done.

第2除濁装置32は、沈殿分離槽31外に設置されるタイプのものである。   The second turbidity removal device 32 is of a type installed outside the precipitation separation tank 31.

沈殿処理部3は、前記膜洗浄薬液を第2除濁装置32の膜に供給する第4膜洗浄薬液供給手段(図示せず)が備えられてなる。   The precipitation processing unit 3 is provided with a fourth membrane cleaning chemical supply means (not shown) for supplying the membrane cleaning chemical to the membrane of the second turbidity device 32.

本実施形態の海水淡水化装置1は、無機性廃水Bを沈殿分離槽31に移送するように構成されてなる。   The seawater desalination apparatus 1 according to the present embodiment is configured to transfer the inorganic waste water B to the precipitation separation tank 31.

沈殿処理部3は、該移送された無機性廃水Bを沈殿分離槽31により沈殿分離して上澄水たる沈殿処理水と濃縮水Dとを得、且つ沈殿処理水を第2除濁装置32に移送し、且つ該濃縮水を濃縮水貯留槽(図示せず)に移送し、且つ該沈殿処理水を第2除濁装置32を用いたろ過処理により第3透過水と第3濃縮水とを得、且つ第3透過水を第2逆浸透膜装置33に移送し、且つ第3透過水を第2逆浸透膜装置33を用いたろ過処理により第4透過水たる浄化水Eと第4濃縮水たる沈殿処理水とを得るように構成されてなる。   The sedimentation processing unit 3 precipitates and separates the transferred inorganic waste water B by the sedimentation separation tank 31 to obtain the sedimentation water and concentrated water D that are the supernatant water, and the sedimentation water is supplied to the second turbidity removal device 32. And the concentrated water is transferred to a concentrated water storage tank (not shown), and the precipitated treated water is filtered through the second turbidizer 32 to obtain the third permeated water and the third concentrated water. The third permeated water is transferred to the second reverse osmosis membrane device 33, and the third permeated water is filtered using the second reverse osmosis membrane device 33, and the purified water E and the fourth concentrated water are the fourth permeated water. It is comprised so that the precipitation treated water which is a water may be obtained.

本実施形態の海水淡水化装置1は、第4濃縮水たる沈殿処理水を希釈水として混合水処理部2に移送し、第4透過水を浄化水Eとして回収するように構成されてなる。   The seawater desalination apparatus 1 according to the present embodiment is configured to transfer precipitation treated water as fourth concentrated water to the mixed water treatment unit 2 as dilution water, and collect the fourth permeated water as purified water E.

第2逆浸透膜装置33は、圧力容器に逆浸透膜が収容されたタイプのものである。
尚、本実施形態の該第2逆浸透膜装置33のRO膜には、ナノろ過膜(NF膜)も含まれる。
The second reverse osmosis membrane device 33 is of a type in which a reverse osmosis membrane is accommodated in a pressure vessel.
The RO membrane of the second reverse osmosis membrane device 33 of the present embodiment includes a nanofiltration membrane (NF membrane).

沈殿処理部3は、第3透過水を第2ポンプ34を介して加圧してから第2逆浸透膜装置33に供給するように構成されてなる。   The sedimentation processing unit 3 is configured to pressurize the third permeated water through the second pump 34 and then supply the third permeated water to the second reverse osmosis membrane device 33.

沈殿処理部3は、前記スケール防止薬液を第2逆浸透膜装置33のRO膜に供給する第2スケール防止薬液供給手段(図示せず)を備えてなる。   The sedimentation processing unit 3 includes a second scale preventive chemical supply unit (not shown) that supplies the scale preventive chemical to the RO membrane of the second reverse osmosis membrane device 33.

また、沈殿処理部3は、前記膜洗浄薬液を第2逆浸透膜装置33のRO膜に供給する第3膜洗浄薬液供給手段(図示せず)が備えられてなる。   The precipitation processing unit 3 is provided with third membrane cleaning chemical supply means (not shown) for supplying the membrane cleaning chemical to the RO membrane of the second reverse osmosis membrane device 33.

本実施形態の海水淡水化装置1は、第2濃縮水の塩の濃度と第3透過水の塩の濃度との差を利用して発電する濃度差発電部5を備えてなる。   The seawater desalination apparatus 1 according to the present embodiment includes a concentration difference power generation unit 5 that generates power using the difference between the salt concentration of the second concentrated water and the salt concentration of the third permeated water.

濃度差発電部5は、槽51と、槽51内を2つに区画する半透膜54とを備えてなる。
また、濃度差発電部5は、第3透過水を収容する第3透過水収容部52と第2濃縮水を収容する第2濃縮水収容部53とを備えてなる。
The concentration difference power generation unit 5 includes a tank 51 and a semipermeable membrane 54 that divides the tank 51 into two.
The concentration difference power generation unit 5 includes a third permeated water storage unit 52 that stores the third permeated water and a second concentrated water storage unit 53 that stores the second concentrated water.

第3透過水収容部52と第2濃縮水収容部53とは、槽51内が半透膜54により2つに区画されることにより形成されてなる。   The third permeated water storage portion 52 and the second concentrated water storage portion 53 are formed by dividing the inside of the tank 51 into two by a semipermeable membrane 54.

本実施形態の海水淡水化装置1は、第3透過水の一部を第3透過水収容部52に、第2濃縮水を濃縮水貯留槽(図示せず)する前に第2濃縮水収容部53に移送するように構成されてなる。   The seawater desalination apparatus 1 of the present embodiment accommodates a portion of the third permeated water in the third permeated water accommodating portion 52 and the second concentrated water before the second concentrated water is stored in a concentrated water storage tank (not shown). It is configured to be transferred to the unit 53.

濃度差発電部5は、第2濃縮水の塩の濃度と第3透過水の塩の濃度との差により、第2濃縮水の水分のみが半透膜54を介して第3透過水収容部52に移送されて第3透過水収容部52の水面が高まることによる水面の高低差を利用して発電するように構成されてなる。   The concentration difference power generation unit 5 is configured such that only the water of the second concentrated water passes through the semipermeable membrane 54 due to the difference between the salt concentration of the second concentrated water and the salt concentration of the third permeated water. It is comprised so that it may transfer to 52 and it may generate electric power using the height difference of the water surface by the water surface of the 3rd permeated water storage part 52 rising.

また、本実施形態の海水淡水化装置1は、濃度差発電部5で用いられた第2濃縮水及び半透膜54を介して移送された第3透過水の水分を濃縮水Dとして濃縮水貯留槽(図示せず)に移送し、濃度差発電部5で用いられ且つ第3透過水収容部52に留まった第3透過水を工業用水Fとして回収するように構成されてなる。
尚、濃度差発電部5は、第3透過水に代えて、浄化水Eあるいは淡水Cを用いて発電するように構成されてもよい。即ち、濃度差発電部5は、第3透過水収容部52の代わりに、浄化水Eを収容する浄化水収容部あるいは淡水Cを収容する淡水収容部を備えてもよい。この場合、本実施形態の海水淡水化装置1は、浄化水Eあるいは淡水Cを濃度差発電部5に移送するように構成されてなる。
In addition, the seawater desalination apparatus 1 of the present embodiment uses the second concentrated water used in the concentration difference power generation unit 5 and the third permeated water transferred through the semipermeable membrane 54 as the concentrated water D to concentrate water. The third permeated water that is transferred to a storage tank (not shown) and used in the concentration difference power generation unit 5 and stays in the third permeated water storage unit 52 is collected as industrial water F.
The concentration difference power generation unit 5 may be configured to generate power using purified water E or fresh water C instead of the third permeated water. That is, the concentration difference power generation unit 5 may include a purified water storage unit that stores the purified water E or a fresh water storage unit that stores the fresh water C, instead of the third permeated water storage unit 52. In this case, the seawater desalination apparatus 1 of the present embodiment is configured to transfer purified water E or fresh water C to the concentration difference power generation unit 5.

次に、本実施形態の海水淡水化方法について説明する。
本実施形態の海水淡水化方法は、無機性廃水を沈殿分離して得られる上澄水たる沈殿処理水を希釈水として海水に混合する混合工程と、該混合工程により得られた混合水を逆浸透膜装置に供給してろ過処理する混合水処理工程とを実施して海水を淡水化する方法である。
Next, the seawater desalination method of this embodiment will be described.
The seawater desalination method of the present embodiment includes a mixing step of mixing precipitated wastewater, which is supernatant water obtained by precipitation separation of inorganic wastewater, into seawater as dilution water, and reverse osmosis of the mixed water obtained by the mixing step This is a method for desalinating seawater by performing a mixed water treatment step of supplying a membrane device to a filtration treatment.

詳しくは、本実施形態の海水淡水化方法は、無機性廃水を沈殿分離槽31内で沈殿分離して上澄水たる沈殿処理水を得、更に、該沈殿処理水を第2除濁装置32を用いてろ過処理し第3透過水及び第3濃縮水を得、そして、第3透過水たる沈殿処理水を第2逆浸透膜装置33を用いたろ過処理により第4透過水と第4濃縮水たる沈殿処理水とを得る廃水処理工程と、第4濃縮水たる沈殿処理水を前記希釈水として海水Aに混合する混合工程と、該混合工程により得られた混合水を第1除濁装置22を用いてろ過処理し第1透過水及び第1濃縮水を得、そして、第1透過水たる混合水を第1逆浸透膜装置23を用いたろ過処理により第2透過水と第2濃縮水とを得る混合水処理工程とを実施して海水を淡水化する方法である。   Specifically, in the seawater desalination method of the present embodiment, the inorganic wastewater is precipitated and separated in the precipitation separation tank 31 to obtain the precipitated treated water which is the supernatant water. The third permeated water and the third concentrated water are obtained by filtration treatment, and the fourth permeated water and the fourth concentrated water are obtained by filtering the precipitated treated water, which is the third permeated water, using the second reverse osmosis membrane device 33. A waste water treatment step for obtaining a precipitating water, a mixing step for mixing the precipitating water as a fourth concentrated water into the seawater A as the dilution water, and a first turbidizer 22 for the mixed water obtained by the mixing step. The first permeated water and the first concentrated water are obtained by filtration using the water, and the mixed water as the first permeated water is filtered through the first reverse osmosis membrane device 23 to obtain the second permeated water and the second concentrated water. And a mixed water treatment step to obtain seawater.

混合工程では、希釈効果を明確にさせるために、海水Aと希釈水との混合体積比を、好ましくは、海水1に対して希釈水0.1以上とし、より好ましくは、海水1に対して希釈水1以上とする。   In the mixing step, in order to clarify the dilution effect, the mixing volume ratio of the seawater A and the dilution water is preferably 0.1 or more with respect to the seawater 1, and more preferably with respect to the seawater 1. The dilution water is 1 or more.

本実施形態の海水淡水化方法は、海水Aと希釈水との混合体積比を海水1に対して希釈水0.1以上とすることにより、塩濃度を下げることができ、得られる淡水の単位量当たりにおける、海水を淡水化するのに必要なエネルギー量を確実に抑制できるとともに、混合工程や混合水処理工程に用いられる機器の腐食を抑制できるという利点がある。   In the seawater desalination method of the present embodiment, the salt concentration can be lowered by setting the mixing volume ratio of seawater A and dilution water to 0.1 or more dilution water with respect to seawater 1, and the unit of fresh water to be obtained There is an advantage that the amount of energy required for desalinating seawater per unit volume can be reliably suppressed, and corrosion of equipment used in the mixing step or the mixed water treatment step can be suppressed.

また、本実施形態の海水淡水化方法は、混合水の塩濃度を3.0質量%以下にすることが好ましく、1.8質量%以下にすることがより好ましい。また、本実施形態の海水淡水化方法は、希釈水の塩濃度を、希釈水で希釈される海水Aの塩濃度の1/3以下にすることが好ましく、希釈水で希釈される海水Aの塩濃度の1/10以下にすることがより好ましい。本実施形態の海水淡水化方法は、希釈水の塩濃度を、希釈水で希釈される海水Aの濃度の1/3以下にすることにより、より一層純度の高い純度の高い淡水を得ることができるという利点がある。   In the seawater desalination method of the present embodiment, the salt concentration of the mixed water is preferably 3.0% by mass or less, and more preferably 1.8% by mass or less. In the seawater desalination method of the present embodiment, the salt concentration of the dilution water is preferably set to 1/3 or less of the salt concentration of the seawater A diluted with the dilution water. More preferably, the salt concentration is 1/10 or less. In the seawater desalination method of the present embodiment, it is possible to obtain fresh water with even higher purity by making the salt concentration of dilution water 1/3 or less of the concentration of seawater A diluted with dilution water. There is an advantage that you can.

本実施形態の海水淡水化装置、及び本実施形態の海水淡水化方法は、上記のように構成されているので、以下の利点を有するものである。   Since the seawater desalination apparatus of this embodiment and the seawater desalination method of this embodiment are configured as described above, they have the following advantages.

即ち、本実施形態の海水淡水化方法は、海水よりも塩濃度が低い沈殿処理水を希釈水として海水に混合する混合工程と該混合工程により得られた混合水を第1逆浸透膜装置23に供給してろ過処理する混合水処理工程とを実施して海水を淡水化することにより、第1逆浸透膜装置23に混合水を圧送するための圧力を海水を圧送する場合に比して抑制することができるため、得られる淡水の単位量当たりにおける圧送に必要なエネルギー量を抑制できる。また、逆浸透膜装置の膜の透過流束(フラックス)を大きくすることができ、ろ過水量を増加させることができる。また、第1逆浸透膜装置23の膜への負荷(海水中の塩による化学的負荷、及び圧力による物理的負荷)も抑制することができ、該膜の寿命を延ばし得る。また、沈殿処理水を有効に活用することができる。   That is, in the seawater desalination method of the present embodiment, the first reverse osmosis membrane device 23 mixes the precipitated treated water having a lower salt concentration than seawater with the seawater as dilution water and the mixed water obtained by the mixing process. Compared with the case where the pressure for feeding the mixed water to the first reverse osmosis membrane device 23 is pumped by performing the mixed water treatment step of supplying the water to the water and filtering the seawater to make the seawater desalinated. Since it can suppress, the energy amount required for the pumping per unit amount of the obtained fresh water can be suppressed. Moreover, the permeation | transmission flux (flux) of the film | membrane of a reverse osmosis membrane apparatus can be enlarged, and the amount of filtrate water can be increased. Moreover, the load on the membrane of the first reverse osmosis membrane device 23 (chemical load due to salt in seawater and physical load due to pressure) can be suppressed, and the lifetime of the membrane can be extended. Moreover, precipitation treated water can be used effectively.

また、本実施形態の海水淡水化方法は、混合水処理工程で第1逆浸透膜装置23を用いてろ過処理する前に第1除濁装置22を用いて混合水をろ過処理することにより、第1逆浸透膜装置23の膜面に無機性固形物質や塩が付着してしまうのを抑制することができ、より一層効率よく淡水を得るという利点がある。また、より一層純度の高い淡水を得ることができるという利点もある。   In addition, the seawater desalination method of the present embodiment, by filtering the mixed water using the first turbidity device 22 before filtering using the first reverse osmosis membrane device 23 in the mixed water treatment step, There is an advantage that it is possible to prevent the inorganic solid substance or salt from adhering to the membrane surface of the first reverse osmosis membrane device 23 and to obtain fresh water more efficiently. There is also an advantage that fresh water with higher purity can be obtained.

また、本実施形態の海水淡水化方法は、無機性廃水を沈殿分離槽31内で沈殿分離して上澄水たる沈殿処理水を得、更に、該沈殿処理水を第2除濁装置32を用いてろ過処理し第3透過水と第3濃縮水とを得、そして、第3透過水を第2逆浸透膜装置33を用いたろ過処理により第4透過水と第4濃縮水とを得る廃水処理工程を実施することにより、前記廃水処理工程において浄化水Eを回収することができ、より一層効率よく良く浄化水を回収し得るという利点がある。   Further, in the seawater desalination method of the present embodiment, the inorganic wastewater is precipitated and separated in the precipitation separation tank 31 to obtain a precipitated treated water which is a supernatant water, and further the second treated turbidizer 32 is used to remove the precipitated treated water. The third permeated water and the third concentrated water are filtered to obtain the fourth permeated water and the fourth concentrated water by filtering the third permeated water using the second reverse osmosis membrane device 33. By performing the treatment step, the purified water E can be recovered in the wastewater treatment step, and there is an advantage that the purified water can be recovered more efficiently and efficiently.

また、本実施形態の海水淡水化装置1は、第1透過水を第1ポンプ24を介して加圧してから第1逆浸透膜装置23に供給して第2濃縮水を得、第2濃縮水の圧力で水力タービン25を駆動して動力を得るように構成されてなることにより、エネルギーを得ることができるという利点がある。また、この得られたエネルギーを海水や無機性廃水から浄化水を得る工程で利用すれば、より一層効率よく浄化水を回収し得るという利点もある。   Moreover, the seawater desalination apparatus 1 of this embodiment pressurizes the 1st permeated water via the 1st pump 24, Then, it supplies to the 1st reverse osmosis membrane apparatus 23, obtains 2nd concentrated water, 2nd concentration There is an advantage that energy can be obtained by being configured to obtain power by driving the hydraulic turbine 25 with water pressure. Moreover, if this obtained energy is utilized in the process of obtaining purified water from seawater or inorganic wastewater, there is an advantage that the purified water can be recovered more efficiently.

また、本実施形態の海水淡水化装置1は、混合水よりも塩濃度が高い第2濃縮水の塩の濃度と第3透過水の塩の濃度との差を利用して発電する濃度差発電部5を備えてなることにより、エネルギーを得ることができるという利点がある。また、この得られたエネルギーを海水や無機性廃水から浄化水を得る工程で利用すれば、より一層効率よく浄化水を回収し得るという利点もある。   In addition, the seawater desalination apparatus 1 according to the present embodiment uses the difference between the salt concentration of the second concentrated water having a higher salt concentration than the mixed water and the salt concentration of the third permeated water to generate power. By providing the part 5, there is an advantage that energy can be obtained. Moreover, if this obtained energy is utilized in the process of obtaining purified water from seawater or inorganic wastewater, there is an advantage that the purified water can be recovered more efficiently.

さらに、本実施形態の海水淡水化装置1は、第1スケール防止薬液供給手段および第2スケール防止薬液供給手段を備えてなることにより、第1逆浸透膜装置23の逆浸透膜および第2逆浸透膜装置33の逆浸透膜に生じ得るスケールが抑制され得るため、より一層効率よく浄化水を回収し得るという利点がある。   Furthermore, the seawater desalination apparatus 1 according to the present embodiment includes the first scale preventing chemical solution supplying means and the second scale preventing chemical solution supplying means, whereby the reverse osmosis membrane and the second reverse osmosis membrane of the first reverse osmosis membrane device 23 are provided. Since the scale that can occur in the reverse osmosis membrane of the osmosis membrane device 33 can be suppressed, there is an advantage that the purified water can be recovered more efficiently.

尚、本実施形態の海水淡水化装置、及び本実施形態の海水淡水化方法は、上記の利点を有するものであるが、本発明の海水淡水化装置、及び本発明の海水淡水化方法は、上記構成に限定されず、適宜設計変更可能である。   The seawater desalination apparatus of the present embodiment and the seawater desalination method of the present embodiment have the above-mentioned advantages, but the seawater desalination apparatus of the present invention and the seawater desalination method of the present invention are It is not limited to the said structure, A design change is possible suitably.

例えば、本実施形態の海水淡水化装置は、第1スケール防止薬液供給手段および第2スケール防止薬液供給手段を備えてなるが、第1スケール防止薬液供給手段を備えずに第2スケール防止薬液供給手段のみを備え、該第2スケール防止薬液供給手段によって第2逆浸透膜装置33に供給されたスケール防止薬液が第4濃縮水として第2逆浸透膜装置33から排出され、該スケール防止薬液が第1逆浸透膜装置23に供給されるように構成されてもよい。
本実施形態の海水淡水化装置は、このように構成されてなることにより、前記スケール防止剤が逆浸透膜を透過し難いため、第2逆浸透膜装置33で使用されたスケール防止薬液を第1逆浸透膜装置23でも利用でき、また、スケール防止薬液を供給するための動力も抑制することができるため、より一層効率良く浄化水を回収し得るという利点がある。
また、この場合には、本発明の海水淡水化装置は、第4濃縮水として第2逆浸透膜装置33から排出されたスケール防止薬液が、第1除濁装置22を介して第1逆浸透膜装置23に供給されるように構成されてもよく、該スケール防止薬液が、第1除濁装置22を介さずに直接第1逆浸透膜装置23に供給されるように構成されてもよい。特に、本発明の海水淡水化装置は、該スケール防止薬液が、第1除濁装置22を介さずに直接第1逆浸透膜装置23に供給されるように構成されてなることにより、該スケール防止薬液が、第1除濁装置22で希釈されてしまうことが抑制され、第1逆浸透膜装置23にスケール防止薬液が効率良く供給されるため、より一層効率良く浄化水を回収し得るという利点がある。
For example, the seawater desalination apparatus according to the present embodiment includes a first scale preventive chemical supply unit and a second scale preventive chemical supply unit, but does not include the first scale preventive chemical supply unit and supplies the second scale preventive chemical supply. The scale prevention chemical solution supplied to the second reverse osmosis membrane device 33 by the second scale prevention chemical solution supply means is discharged from the second reverse osmosis membrane device 33 as the fourth concentrated water, and the scale prevention chemical solution is provided. The first reverse osmosis membrane device 23 may be configured to be supplied.
Since the seawater desalination apparatus according to the present embodiment is configured in this manner, the scale inhibitor is difficult to permeate the reverse osmosis membrane. Therefore, the scale preventive chemical used in the second reverse osmosis membrane device 33 is the first. 1 The reverse osmosis membrane device 23 can be used, and the power for supplying the scale-preventing chemical solution can be suppressed. Therefore, there is an advantage that the purified water can be recovered more efficiently.
Moreover, in this case, the seawater desalination apparatus of the present invention allows the scale-preventing chemical solution discharged from the second reverse osmosis membrane device 33 as the fourth concentrated water to pass through the first reverse osmosis device 22 to the first reverse osmosis device. It may be configured to be supplied to the membrane device 23, and the scale prevention chemical solution may be configured to be supplied directly to the first reverse osmosis membrane device 23 without going through the first turbidity removal device 22. . In particular, the seawater desalination apparatus of the present invention is configured such that the scale-preventing chemical solution is directly supplied to the first reverse osmosis membrane device 23 without going through the first turbidity-eliminating device 22. Since the anti-chemical solution is suppressed from being diluted by the first turbidity removing device 22 and the scale-preventing chemical solution is efficiently supplied to the first reverse osmosis membrane device 23, the purified water can be recovered more efficiently. There are advantages.

また、本実施形態の海水淡水化方法では、混合水処理工程において、第1逆浸透膜装置23を用いてろ過処理する前に、第1除濁装置22を用いて混合水をろ過処理したが、本発明の海水淡水化方法では、第1除濁装置22によるろ過処理を行わない態様であってもよい。
このような態様の場合、本発明の海水淡水化方法は、好ましくは、図2に示すように、海水と希釈水としての第4濃縮水たる沈殿処理水とを混合する前に、精密ろ過膜(MF膜)及び限外ろ過膜(UF膜)の少なくとも何れかを有する第3除濁装置10を用いて海水をろ過処理して第5透過水と第5濃縮水を得、第5透過水たる海水と希釈水とを混合して混合水を生成する。
また、本発明の海水淡水化方法は、第1濃縮水と同様な濃縮水として第5濃縮水を扱うことができる。
In the seawater desalination method of the present embodiment, the mixed water is filtered using the first turbidity removal device 22 before being filtered using the first reverse osmosis membrane device 23 in the mixed water treatment step. In the seawater desalination method of the present invention, a mode in which the filtration treatment by the first turbidity removal device 22 is not performed may be employed.
In the case of such an embodiment, the seawater desalination method of the present invention is preferably a microfiltration membrane before mixing the seawater and the precipitated treated water as the fourth concentrated water as dilution water, as shown in FIG. The fifth permeated water and the fifth concentrated water are obtained by filtering the seawater using the third turbidizer 10 having at least one of (MF membrane) and ultrafiltration membrane (UF membrane). Mixed seawater and dilution water are mixed to produce mixed water.
Moreover, the seawater desalination method of the present invention can handle the fifth concentrated water as the concentrated water similar to the first concentrated water.

さらに、本実施形態の海水淡水化方法では、廃水処理工程において、第2逆浸透膜装置33を用いて第2除濁装置32から得た第3透過水をろ過処理したが、第2逆浸透膜装置33による第3透過水のろ過処理を行わない態様であってもよい。
このような態様の場合、本発明の海水淡水化方法は、好ましくは、図3に示すように、海水と希釈水としての第3透過水たる沈殿処理水とを混合する前に、精密ろ過膜(MF膜)及び限外ろ過膜(UF膜)の少なくとも何れかを有する第3除濁装置10を用いて海水をろ過処理し、該第3除濁装置10を用いてろ過処理された海水と希釈水としての第3透過水たる沈殿処理水とを混合して混合水を生成する。また、図4に示すように、沈殿処理水を第2除濁装置32でろ過処理せずに希釈水とし、海水と希釈水としての沈殿処理水とを混合して混合水を生成し、混合水を第3除濁装置10を用いてろ過処理してもよい。
Furthermore, in the seawater desalination method of the present embodiment, in the wastewater treatment step, the third permeate obtained from the second turbidizer 32 is filtered using the second reverse osmosis membrane device 33, but the second reverse osmosis is performed. The aspect which does not perform the filtration process of the 3rd permeated water by the membrane apparatus 33 may be sufficient.
In the case of such an embodiment, the seawater desalination method of the present invention is preferably a microfiltration membrane before mixing the seawater and the precipitated treated water as the third permeate as dilution water, as shown in FIG. (MF membrane) and seawater filtered using the third turbidizer 10 having at least one of an ultrafiltration membrane (UF membrane), and the seawater filtered using the third turbidizer 10 Mixed water is generated by mixing with the precipitating water as the third permeated water as the dilution water. Further, as shown in FIG. 4, the precipitated water is not subjected to filtration with the second turbidizer 32 to be diluted water, and seawater and the precipitated water as diluted water are mixed to generate mixed water, and mixed. The water may be filtered using the third turbidizer 10.

また、本実施形態に於いて、第1除濁装置22は、第1除濁装置22に移送される混合水が精密ろ過膜(MF膜)及び限外ろ過膜(UF膜)の少なくとも何れか一方によりろ過処理されるように構成されてなるが、砂ろ過器を有する砂ろ過手段により該混合水がろ過処理されるように構成されてもよい。本実施形態は、このように構成されてなることにより、低動力で多量の水の濁質を除去できるという利点がある。
また、第1除濁装置22は、砂ろ過が行われる態様の場合、砂ろ過が1段で行われるように構成されてもよく、砂ろ過が2段以上で行われるように構成されてもよい。
尚、砂ろ過の段とは、砂ろ過器が直列に接続された台数を意味する。
また、第1除濁装置22は、砂ろ過が行われる態様の場合、砂ろ過されたろ過処理された混合水が、更に、精密ろ過膜(MF膜)及び限外ろ過膜(UF膜)の少なくとも何れか一方によりろ過処理されるように構成されてもよい。
尚、第1除濁装置22が砂ろ過である場合は、砂ろ過層を洗浄するための洗浄手段(図示せず)が備えられてなる。
Further, in the present embodiment, the first turbidity device 22 is such that the mixed water transferred to the first turbidity device 22 is at least one of a microfiltration membrane (MF membrane) and an ultrafiltration membrane (UF membrane). Although it is comprised so that it may be filtered by one side, you may comprise so that this mixed water may be filtered by the sand filtration means which has a sand filter. This embodiment has an advantage that a large amount of water turbidity can be removed with low power by being configured as described above.
Moreover, in the aspect in which sand filtration is performed, the first turbidity removal device 22 may be configured such that sand filtration is performed in one stage, or may be configured so that sand filtration is performed in two or more stages. Good.
The sand filtration stage means the number of sand filters connected in series.
Moreover, in the case where the first turbidity removal device 22 is a mode in which sand filtration is performed, the mixed water that has been subjected to the sand filtration is further processed by a microfiltration membrane (MF membrane) and an ultrafiltration membrane (UF membrane). It may be configured to be filtered by at least one of them.
In addition, when the 1st turbidity removal apparatus 22 is sand filtration, the washing | cleaning means (not shown) for wash | cleaning a sand filtration layer is provided.

また、本実施形態に於いて、第2除濁装置32は、第2除濁装置32に移送される沈殿処理水が精密ろ過膜(MF膜)及び限外ろ過膜(UF膜)の少なくとも何れか一方によりろ過処理されるように構成されてなるが、該沈殿処理水が砂ろ過手段によりろ過処理されるように構成されてもよい。
また、第2除濁装置32は、砂ろ過が行われる態様の場合、砂ろ過が1段で行われるように構成されてもよく、砂ろ過が2段以上で行われるように構成されてもよい。
また、第2除濁装置32は、砂ろ過が行われる態様の場合、砂ろ過されたろ過処理された沈殿処理水が、更に、精密ろ過膜(MF膜)及び限外ろ過膜(UF膜)の少なくとも何れか一方によりろ過処理されるように構成されてもよい。
尚、第2除濁装置23が砂ろ過である場合は、砂ろ過層を洗浄するための洗浄手段(図示せず)が備えられてなる。
Further, in the present embodiment, the second turbidity removal device 32 is configured such that the precipitated treated water transferred to the second turbidity removal device 32 is at least one of a microfiltration membrane (MF membrane) and an ultrafiltration membrane (UF membrane). Although it is configured so as to be filtered by either of them, the precipitated treated water may be configured to be filtered by sand filtering means.
Moreover, in the aspect in which sand filtration is performed, the second turbidizer 32 may be configured such that sand filtration is performed in one stage, or may be configured so that sand filtration is performed in two or more stages. Good.
In addition, in the case where the second turbidizer 32 is an embodiment in which sand filtration is performed, the sand-filtered and precipitated water treated by filtration is further processed into a microfiltration membrane (MF membrane) and an ultrafiltration membrane (UF membrane). It may be configured to be filtered by at least one of the above.
In addition, when the 2nd turbidity removal apparatus 23 is sand filtration, the washing | cleaning means (not shown) for wash | cleaning a sand filtration layer is provided.

また、本実施形態が第3除濁装置10を備える態様の場合、本実施形態において、第3除濁装置10は、第3除濁装置10に移送される海水が精密ろ過膜(MF膜)及び限外ろ過膜(UF膜)の少なくとも何れか一方によりろ過処理されるように構成されてなるが、該海水が砂ろ過手段によりろ過処理されるように構成されてもよい。
また、第3除濁装置10は、砂ろ過が行われる態様の場合、砂ろ過が1段で行われるように構成されてもよく、砂ろ過が2段以上で行われるように構成されてもよい。
また、第3除濁装置10は、砂ろ過が行われる態様の場合、砂ろ過されたろ過処理された海水が、更に、精密ろ過膜(MF膜)及び限外ろ過膜(UF膜)の少なくとも何れか一方によりろ過処理されるように構成されてもよい。
尚、第3除濁装置10が砂ろ過である場合は、砂ろ過層を洗浄するための洗浄手段(図示せず)が備えられてなる。
Moreover, in the case where this embodiment is provided with the third turbidity removal device 10, in this embodiment, the third turbidity removal device 10 is such that seawater transferred to the third turbidity removal device 10 is a microfiltration membrane (MF membrane). And it is comprised so that it may be filtered with at least any one of an ultrafiltration membrane (UF membrane), However, You may comprise so that this seawater may be filtered with a sand filtration means.
Moreover, in the aspect in which sand filtration is performed, the third turbidizer 10 may be configured so that sand filtration is performed in one stage, or may be configured so that sand filtration is performed in two or more stages. Good.
Further, in the case where the third turbidizer 10 is a mode in which sand filtration is performed, the sand-filtered seawater that has been subjected to the sand filtration further includes at least a microfiltration membrane (MF membrane) and an ultrafiltration membrane (UF membrane). It may be configured to be filtered by either one.
In addition, when the 3rd turbidity removal apparatus 10 is sand filtration, the washing | cleaning means (not shown) for wash | cleaning a sand filtration layer is provided.

さらに、本実施形態では、自然エネルギー(波力、潮力、風力、太陽光、地熱等)を利用して発電し、本実施形態の海水淡水化装置のポンプ等の駆動電力として自然エネルギーから得られる電力を利用してもよい。本実施形態は、自然エネルギーから得られる動力を利用することにより、CO2等の環境に影響を与え得るガスを抑制したり、化石燃料の枯渇を抑制したり、原子力事故等のリスクを避けることができるという利点がある。 Furthermore, in the present embodiment, power is generated using natural energy (wave power, tidal power, wind power, sunlight, geothermal heat, etc.) and obtained from the natural energy as drive power for the pump of the seawater desalination apparatus of the present embodiment. May be used. In this embodiment, by using power obtained from natural energy, gas that can affect the environment such as CO 2 is suppressed, depletion of fossil fuels is suppressed, and risks such as nuclear accidents are avoided. There is an advantage that can be.

また、本実施形態の海水淡水化装置は、混合水処理部2に水力タービン25を備えてなるが、水力タービン25の代わりに、第1逆浸透膜装置23から圧送された第2濃縮水の圧力を、直接(電気を介さず)混合水が第1逆浸透膜装置23に移送されるための圧力に変換する圧力変換装置(圧力回収装置)を備えてもよい。
本実施形態の海水淡水化装置は、前記圧力変換装置を備える場合、第1逆浸透膜装置23から圧送された第2濃縮水が前記圧力変換装置に移送され、該圧力変換装置で用いられた第2濃縮水が濃縮水貯留槽に移送されるように構成されてなる。また、本実施形態の海水淡水化装置は、混合水が第1ポンプ24を介する前に前記圧力変換装置に移送され、該圧力変換装置で圧力が得られた混合水が第1ポンプ24を介して第1逆浸透膜装置23に移送されるように構成されてなる。
本実施形態の海水淡水化装置は、このように構成されてなることにより、第1ポンプ24の動力を抑制することができるという利点がある。
Moreover, although the seawater desalination apparatus of this embodiment is equipped with the hydraulic turbine 25 in the mixed water processing part 2, it replaces with the hydraulic turbine 25, and the 2nd concentrated water pumped from the 1st reverse osmosis membrane apparatus 23 is used. You may provide the pressure converter (pressure collection | recovery apparatus) which converts a pressure into the pressure for transferring mixed water directly (not via electricity) to the 1st reverse osmosis membrane apparatus 23. FIG.
When the seawater desalination apparatus of this embodiment includes the pressure conversion device, the second concentrated water pumped from the first reverse osmosis membrane device 23 is transferred to the pressure conversion device and used in the pressure conversion device. The second concentrated water is configured to be transferred to the concentrated water storage tank. In the seawater desalination apparatus of the present embodiment, the mixed water is transferred to the pressure conversion device before passing through the first pump 24, and the mixed water whose pressure is obtained by the pressure conversion device passes through the first pump 24. The first reverse osmosis membrane device 23 is configured to be transferred.
The seawater desalination apparatus of this embodiment has the advantage that the power of the 1st pump 24 can be suppressed by being comprised in this way.

さらに、本実施形態では、無機性廃水Bを沈殿分離槽31に移送する前に、アルカリ(例えば、水酸化ナトリウム等)若しくは酸(例えば、硝酸、硫酸、塩酸等)により無機性廃水BのpHを中性付近(例えば、pH4〜10)に調整してもよい。また、無機性廃水Bを沈殿分離槽31に移送する前に、酸化剤(例えば、過酸化水素、次亜塩素酸ナトリウム等)若しくは還元剤(例えば、重亜硫酸ナトリウム、チオ硫酸ナトリウム等)により無機性廃水Bを酸化処理若しくは還元処理してもよい。   Furthermore, in this embodiment, before transferring the inorganic wastewater B to the precipitation separation tank 31, the pH of the inorganic wastewater B with an alkali (for example, sodium hydroxide) or an acid (for example, nitric acid, sulfuric acid, hydrochloric acid, etc.). May be adjusted to near neutral (for example, pH 4 to 10). Further, before the inorganic waste water B is transferred to the precipitation separation tank 31, it is inorganic with an oxidizing agent (for example, hydrogen peroxide, sodium hypochlorite, etc.) or a reducing agent (for example, sodium bisulfite, sodium thiosulfate, etc.). The waste water B may be oxidized or reduced.

また、本実施形態では、沈殿処理水を希釈水として海水に混合するが、沈殿処理されていない無機性廃水を希釈水として海水に混合してもよい。本実施形態では、沈殿処理されていない無機性廃水を希釈水とする場合、該無機性廃水を海水に混合する前に、無機性廃水BのpHを中性付近(例えば、pH4〜10)に調整してもよい。また、該無機性廃水を海水に混合する前に、無機性廃水Bを酸化処理、又は還元処理してもよい。   Moreover, in this embodiment, although precipitation process water is mixed with seawater as dilution water, you may mix the inorganic waste water which has not been precipitation-processed with seawater as dilution water. In the present embodiment, when inorganic wastewater that has not been subjected to precipitation treatment is used as dilution water, the pH of the inorganic wastewater B is set to around neutral (for example, pH 4 to 10) before the inorganic wastewater is mixed with seawater. You may adjust. Moreover, before mixing this inorganic wastewater with seawater, you may oxidize or reduce the inorganic wastewater B.

次に、実施例および比較例を挙げて本発明についてさらに具体的に説明する。   Next, the present invention will be described more specifically with reference to examples and comparative examples.

(試験例1)
図5に示すように、無機性廃水としての鉄鋼廃水たる希釈水Gと海水Aとを表1の量で混合し、該混合により得られた混合水を第1逆浸透膜装置23にポンプ24を介して供給してろ過処理し透過水たる淡水Cと濃縮水Dとを得た。ろ過処理時における第1ポンプ24から第1逆浸透膜装置23への混合水の供給圧力(MPa)、第1ポンプ24の消費電力(W)、透過水たる淡水C及び濃縮水Dの量(L)を試算した。これらの試算結果を表1、図6に示す。
尚、表1における単位動力比とは、無機性廃水で希釈していない海水Aをろ過処理するのに消費した透過水量当たりの電力を100とした時における各混合水の透過水量当たりの電力の比を示す。また、混合水の塩濃度の単位である%は質量%を意味する。
(Test Example 1)
As shown in FIG. 5, dilution water G, which is steel wastewater as inorganic wastewater, and seawater A are mixed in the amounts shown in Table 1, and the mixed water obtained by the mixing is pumped to the first reverse osmosis membrane device 23. And fresh water C and concentrated water D as permeated water were obtained by filtration. Supply pressure (MPa) of mixed water from the first pump 24 to the first reverse osmosis membrane device 23 during the filtration treatment, power consumption (W) of the first pump 24, the amount of fresh water C and concentrated water D (permeated water) L) was estimated. These trial calculation results are shown in Table 1 and FIG.
The unit power ratio in Table 1 is the power per permeated water amount of each mixed water when the power per permeated water consumed to filter the seawater A not diluted with inorganic wastewater is 100. Indicates the ratio. Moreover,% which is a unit of salt concentration of mixed water means mass%.

Figure 2010184225
Figure 2010184225

表1や図6に示すように、海水を希釈水で希釈するほど、単位動力比を小さくすることができることが分かる。また、海水1に対して希釈水0.1以上にすることで、消費電力の低減の効果があることが分かる。   As shown in Table 1 and FIG. 6, it can be seen that the unit power ratio can be reduced as the seawater is diluted with the dilution water. Moreover, it turns out that there exists an effect of the reduction of power consumption by making dilution water 0.1 or more with respect to the seawater 1. FIG.

(試験例2)
実施例1
実施例1では、図7に示す海水淡水化装置を用い以下のようにして鉄鋼廃水を凝集沈殿して得られた上澄水たる沈殿処理水を用いて海水A(塩濃度:3.5質量%)を淡水化した。
まず、100,000トン/dで無機性廃水Bとしての鉄鋼廃水を沈殿処理部3に移送し、該鉄鋼廃水を沈殿処理部3の沈殿分離槽31内で沈殿分離して上澄水たる沈殿処理水を生成し、該沈殿処理水を精密ろ過膜を有する第2除濁装置32に移送しろ過処理して透過水を得、該透過水を第2ポンプ34を介して第2逆浸透膜装置33に移送して第2逆浸透膜装置33を用いて透過水たる浄化水E及び濃縮水たる沈殿処理水を得た。浄化水Eは、70,000トン/dで得られ、該濃縮水たる沈殿処理水は、30,000トン/dで得られた。
次ぎに、該浄化水Eを回収し、該濃縮水たる沈殿処理水を希釈水として混合水処理部2に移送した。
そして、30,000トン/dで海水Aを混合水処理部2に移送し、前記濃縮水たる沈殿処理水を希釈水として海水Aに混合して混合水(塩濃度:1.93質量%)を得、該混合水を第1ポンプ24を介してを第1逆浸透膜装置23に移送して第1逆浸透膜装置23を用いて透過水たる淡水C及び濃縮水Dを得た。該淡水Cたる浄化水は、34,800トン/dで得られ、該濃縮水Dは、25,200トン/dで得られた。
従って、浄化水(淡水Cも含む)は、104,800トン/dで得られた。
(Test Example 2)
Example 1
In Example 1, seawater A (salt concentration: 3.5% by mass) was obtained using precipitation-treated water that is a supernatant obtained by coagulating and precipitating steel wastewater as follows using the seawater desalination apparatus shown in FIG. ) Was desalinated.
First, the steel wastewater as the inorganic wastewater B is transferred to the precipitation treatment unit 3 at 100,000 ton / d, and the steel wastewater is precipitated and separated in the precipitation separation tank 31 of the precipitation treatment unit 3 to be the supernatant water. Water is generated, the precipitated treated water is transferred to a second turbidity removing device 32 having a microfiltration membrane and filtered to obtain permeated water, and the permeated water is passed through a second pump 34 to the second reverse osmosis membrane device. Then, the second reverse osmosis membrane device 33 was used to obtain purified water E as permeate and precipitation-treated water as concentrated water. The purified water E was obtained at 70,000 tons / d, and the precipitated treated water as the concentrated water was obtained at 30,000 tons / d.
Next, the purified water E was recovered, and the precipitated treated water as the concentrated water was transferred to the mixed water treatment unit 2 as dilution water.
Then, the seawater A is transferred to the mixed water treatment unit 2 at 30,000 tons / d, and the mixed treated water (salt concentration: 1.93% by mass) is mixed with the seawater A using the precipitated treated water as the concentrated water as dilution water. The mixed water was transferred to the first reverse osmosis membrane device 23 via the first pump 24, and fresh water C and concentrated water D as permeated water were obtained using the first reverse osmosis membrane device 23. The purified water as the fresh water C was obtained at 34,800 tons / d, and the concentrated water D was obtained at 25,200 tons / d.
Accordingly, purified water (including fresh water C) was obtained at 104,800 tons / d.

比較例1
比較例2では、図8に示す海水淡水化装置を用い以下のようにして海水A(塩濃度:3.5質量%)を淡水化した。
まず、100,000トン/dで無機性廃水Bとしての鉄鋼廃水を沈殿分離槽7に移送し、該下水を沈殿分離槽7内で沈殿分離して上澄水たる沈殿処理水Hを生成した。この沈殿処理水Hは放流した。
そして、250,000トン/dで海水Aを第1ポンプ8を介してを逆浸透膜装置9に移送して逆浸透膜装置9を用いて透過水たる淡水I及び濃縮水Jを得た。該淡水Iたる浄化水は、100,000トン/dで得られ、該濃縮水は、150,000トン/dで得られた。
Comparative Example 1
In Comparative Example 2, seawater A (salt concentration: 3.5 mass%) was desalinated as follows using the seawater desalination apparatus shown in FIG.
First, steel wastewater as inorganic wastewater B was transferred to the sedimentation separation tank 7 at 100,000 ton / d, and the sewage was precipitated and separated in the precipitation separation tank 7 to produce precipitation treated water H which was supernatant water. This precipitation treated water H was discharged.
Then, seawater A was transferred to the reverse osmosis membrane device 9 through the first pump 8 at 250,000 tons / d, and fresh water I and concentrated water J as permeated water were obtained using the reverse osmosis membrane device 9. The purified water as the fresh water I was obtained at 100,000 ton / d, and the concentrated water was obtained at 150,000 ton / d.

実施例1及び比較例1の海水淡水化方法で消費した電力(消費電力)、得られた浄化水の量等の結果を表2に示す。
尚、得られた浄化水の量は、淡水の量も含めた量である。合計消費電力は、第1ポンプ及び第2ポンプを駆動するのに消費された電力とした(比較例1では、第2ポンプを使用していないため第1ポンプを駆動するのに消費された電力のみとした)。年間消費電力量は、年間の稼働時間を330×24時間として算出した。年間CO2排出量は、CO2排出原単位量を0.41kg−CO2/kWhとして算出した。
Table 2 shows the results of the power consumed by the seawater desalination methods of Example 1 and Comparative Example 1 (power consumption), the amount of purified water obtained, and the like.
The amount of purified water obtained is the amount including the amount of fresh water. The total power consumption is the power consumed to drive the first pump and the second pump (in Comparative Example 1, since the second pump is not used, the power consumed to drive the first pump) Only). The annual power consumption was calculated by setting the annual operation time as 330 × 24 hours. The annual CO 2 emission amount was calculated assuming that the CO 2 emission basic unit amount was 0.41 kg-CO 2 / kWh.

Figure 2010184225
Figure 2010184225

本発明の範囲内である実施例1の海水淡水化方法によって得られた浄化水の量と、海水を希釈せずに淡水化した比較例1の海水淡水化方法によって得られた浄化水の量とは略同程度であるにも関わらず、実施例1の合計消費電力は、比較例1のものに比してかなり低い値を示した。また、実施例1の年間のCO2排出量も、比較例1のものに比してかなり低い値を示した。 The amount of purified water obtained by the seawater desalination method of Example 1 within the scope of the present invention and the amount of purified water obtained by the seawater desalination method of Comparative Example 1 in which seawater was desalinated without dilution. However, the total power consumption of Example 1 was considerably lower than that of Comparative Example 1. In addition, the annual CO 2 emission amount of Example 1 was considerably lower than that of Comparative Example 1.

1:海水淡水化装置、2:混合水処理部、3:沈殿処理部、4:メタン発酵部、5:濃度差発電部、7:沈殿分離槽、8:第1ポンプ、9:逆浸透膜装置、10:第3除濁装置、22:第1除濁装置、23:第1逆浸透膜装置、24、第1ポンプ、25:水力タービン、31:沈殿分離槽、32:第2除濁装置、33:第2逆浸透膜装置、34:第2ポンプ、A:海水、B:無機性廃水、C:淡水、D:濃縮水、E:浄化水、F:工業用水、G:希釈水、H:沈殿処理水、I:淡水、J:濃縮水   DESCRIPTION OF SYMBOLS 1: Seawater desalination apparatus, 2: Mixed water processing part, 3: Precipitation processing part, 4: Methane fermentation part, 5: Concentration power generation part, 7: Precipitation separation tank, 8: 1st pump, 9: Reverse osmosis membrane Devices: 10: third turbidity removal device, 22: first turbidity removal device, 23: first reverse osmosis membrane device, 24, first pump, 25: hydraulic turbine, 31: sedimentation tank, 32: second turbidity removal Device, 33: second reverse osmosis membrane device, 34: second pump, A: seawater, B: inorganic waste water, C: fresh water, D: concentrated water, E: purified water, F: industrial water, G: diluted water , H: Precipitated water, I: Fresh water, J: Concentrated water

また、本発明に係る海水淡水化方法においては、無機性廃水を沈殿分離して沈殿処理水を得、更に、砂ろ過手段、精密ろ過膜及び限外ろ過膜の少なくとも何れかを有する除濁装置を用いてろ過処理し透過水を得、該透過水を逆浸透膜装置を用いたろ過処理により透過水たる浄化水と濃縮水とを得る廃水処理工程を実施し、前記混合工程では、前記濃縮水たる沈殿処理水を前記希釈水として用いる。
In the desalination process according to the present invention, a non-machine wastewater precipitated separated to obtain the precipitate treated water, further clarification with sand filtration means, at least one of microfiltration membranes and ultrafiltration membranes Filtration treatment using an apparatus to obtain permeated water, the waste water treatment step of obtaining the permeate purified water and concentrated water by filtration treatment using a reverse osmosis membrane device, the mixing step, Precipitation water as concentrated water is used as the dilution water.

また、本発明は、逆浸透膜装置を用いたろ過処理によって海水を淡水化するように構成されてなる海水淡水化装置であって、
無機性廃水を沈殿分離して沈殿処理水を得、更に、砂ろ過手段、精密ろ過膜及び限外ろ過膜の少なくとも何れかを有する除濁装置を用いてろ過処理し透過水を得、該透過水を逆浸透膜装置を用いたろ過処理により透過水たる浄化水と濃縮水とを得る沈殿処理部と、該濃縮水たる沈殿処理水を希釈水として海水に混合し、該混合により得られた混合水を前記逆浸透膜装置に供給してろ過処理する混合水処理部を備えてなることを特徴とする海水淡水化装置にある。
The present invention is a seawater desalination apparatus configured to desalinate seawater by filtration using a reverse osmosis membrane apparatus,
Precipitated treated water is obtained by precipitating and separating the inorganic waste water, and further, filtered using a turbidity device having at least one of sand filtration means, microfiltration membrane and ultrafiltration membrane to obtain permeated water, A precipitation treatment unit for obtaining purified water and concentrated water as permeated water by filtration using a reverse osmosis membrane device , and mixing the precipitated treated water as the concentrated water with seawater as dilution water, obtained by the mixing It exists in the seawater desalination apparatus characterized by including the mixed water processing part which supplies mixed water to the said reverse osmosis membrane apparatus, and filters.

Claims (8)

逆浸透膜装置を用いたろ過処理によって海水を淡水化する海水淡水化方法であって、
無機性廃水を沈殿分離して得られる上澄水たる沈殿処理水を希釈水として海水に混合する混合工程と、該混合工程により得られた混合水を前記逆浸透膜装置に供給してろ過処理する混合水処理工程とを実施して海水を淡水化することを特徴とする海水淡水化方法。
A seawater desalination method for desalinating seawater by filtration using a reverse osmosis membrane device,
A mixing step in which precipitation treated water, which is supernatant water obtained by precipitation separation of inorganic waste water, is mixed with seawater as dilution water, and the mixed water obtained in the mixing step is supplied to the reverse osmosis membrane device for filtration. A seawater desalination method, wherein the seawater is desalinated by performing a mixed water treatment step.
無機性廃水を沈殿分離して沈殿処理水を得、更に、砂ろ過手段、精密ろ過膜及び限外ろ過膜の少なくとも何れかを有する除濁装置を用いてろ過処理し透過水を得、該透過水を逆浸透膜装置を用いたろ過処理により透過水たる浄化水と濃縮水とを得る廃水処理工程を実施し、前記混合工程では、前記濃縮水たる沈殿処理水を前記希釈水として用いる請求項1記載の海水淡水化方法。   Precipitated treated water is obtained by precipitation separation of inorganic wastewater, and further, filtered using a turbidity device having at least one of sand filtration means, microfiltration membrane and ultrafiltration membrane to obtain permeated water, A wastewater treatment step of obtaining purified water and concentrated water as permeated water by filtration using a reverse osmosis membrane device is performed, and in the mixing step, precipitation treated water as the concentrated water is used as the dilution water. The seawater desalination method according to 1. 前記混合水処理工程では、逆浸透膜装置を用いてろ過処理する前に、砂ろ過手段、精密ろ過膜及び限外ろ過膜の少なくとも何れかを有する除濁装置を用いて混合水をろ過処理する請求項1又は2記載の海水淡水化方法。   In the mixed water treatment step, before the filtration treatment is performed using the reverse osmosis membrane device, the mixed water is filtered using a turbidity device having at least one of sand filtration means, a microfiltration membrane, and an ultrafiltration membrane. The seawater desalination method according to claim 1 or 2. 前記混合工程では、海水と希釈水との混合体積比を海水1に対して希釈水0.1以上とする請求項1〜3の何れかに記載の海水淡水化方法。   The seawater desalination method according to any one of claims 1 to 3, wherein in the mixing step, the mixing volume ratio of seawater and dilution water is 0.1 or more with respect to seawater 1. 除濁装置を用いて海水をろ過処理し、前記混合工程では、該ろ過処理された海水と希釈水と混合する請求項1又は2記載の海水淡水化方法。   The seawater desalination method according to claim 1 or 2, wherein seawater is filtered using a turbidity removing device, and the filtered seawater and dilution water are mixed in the mixing step. 逆浸透膜装置を用いたろ過処理によって海水を淡水化するように構成されてなる海水淡水化装置であって、
無機性廃水を沈殿分離して得られる上澄水たる沈殿処理水を希釈水として海水に混合し、該混合により得られた混合水を前記逆浸透膜装置に供給してろ過処理する混合水処理部を備えてなることを特徴とする海水淡水化装置。
A seawater desalination apparatus configured to desalinate seawater by filtration using a reverse osmosis membrane apparatus,
A mixed water treatment unit that mixes precipitation treated water, which is a supernatant water obtained by precipitation separation of inorganic wastewater, into seawater as dilution water, and supplies the mixed water obtained by the mixing to the reverse osmosis membrane device and performs filtration. A seawater desalination apparatus comprising:
逆浸透膜装置を用いたろ過処理によって海水を淡水化する海水淡水化方法であって、
無機性廃水を希釈水として海水に混合する混合工程と、該混合工程により得られた混合水を前記逆浸透膜装置に供給してろ過処理する混合水処理工程とを実施して海水を淡水化することを特徴とする海水淡水化方法。
A seawater desalination method for desalinating seawater by filtration using a reverse osmosis membrane device,
Seawater is desalinated by performing a mixing step of mixing inorganic wastewater with dilution water into seawater and a mixed water treatment step of supplying the mixed water obtained by the mixing step to the reverse osmosis membrane device and filtering the mixture. A method for desalinating seawater.
逆浸透膜装置を用いたろ過処理によって海水を淡水化するように構成されてなる海水淡水化装置であって、
無機性廃水を希釈水として海水に混合し、該混合により得られた混合水を前記逆浸透膜装置に供給してろ過処理する混合水処理部を備えてなることを特徴とする海水淡水化装置。
A seawater desalination apparatus configured to desalinate seawater by filtration using a reverse osmosis membrane apparatus,
A seawater desalination apparatus comprising: a mixed water treatment unit that mixes inorganic wastewater with dilution water as seawater, and supplies the mixed water obtained by the mixing to the reverse osmosis membrane apparatus and performs filtration. .
JP2009031861A 2008-11-28 2009-02-13 Seawater desalination method and seawater desalination apparatus Expired - Fee Related JP4518435B1 (en)

Priority Applications (38)

Application Number Priority Date Filing Date Title
JP2009031861A JP4518435B1 (en) 2009-02-13 2009-02-13 Seawater desalination method and seawater desalination apparatus
KR1020117004032A KR20110076872A (en) 2008-11-28 2009-11-26 Fresh water production method, fresh water production apparatus, method for desalinating sea water into fresh water, and apparatus for desalinating sea water into fresh water
CN2012100113566A CN102583803B (en) 2008-11-28 2009-11-26 Method and apparatus for generating fresh water, and method and apparatus for desalinating sea water
CN2012100113617A CN102583648A (en) 2008-11-28 2009-11-26 Fresh water production method, fresh water production apparatus, method for desalinating sea water into fresh water, and apparatus for desalinating sea water into fresh water
EP20120179649 EP2537809A3 (en) 2008-11-28 2009-11-26 Method and apparatus for generating fresh water, and method and apparatus for desalinating sea water
ES12179652.8T ES2536493T3 (en) 2008-11-28 2009-11-26 Freshwater generation procedure and seawater desalination procedure
EP20120179647 EP2537808A3 (en) 2008-11-28 2009-11-26 Method and apparatus for generating fresh water, and method and apparatus for desalinating sea water
EP20120179652 EP2537810B1 (en) 2008-11-28 2009-11-26 Method for generating fresh water and method for desalinating sea water
KR1020107027102A KR101024565B1 (en) 2008-11-28 2009-11-26 Fresh water production method and fresh water production apparatus
CN2012100109842A CN102557196B (en) 2008-11-28 2009-11-26 Method and apparatus for generating fresh water, and method and apparatus for desalinating sea water
US12/990,099 US8070953B2 (en) 2008-11-28 2009-11-26 Method for desalinating sea water
CN2009801154841A CN102015546B (en) 2008-11-28 2009-11-26 Fresh water production method, fresh water production apparatus, method for desalinating sea water into fresh water, and apparatus for desalinating sea water into fresh water
PCT/JP2009/069932 WO2010061879A1 (en) 2008-11-28 2009-11-26 Fresh water production method, fresh water production apparatus, method for desalinating sea water into fresh water, and apparatus for desalinating sea water into fresh water
SG201101787-8A SG170106A1 (en) 2008-11-28 2009-11-26 Method and apparatus for generating fresh water, and method and apparatus for desalinating sea water
KR1020107024365A KR101072952B1 (en) 2008-11-28 2009-11-26 Method for desalinating sea water into fresh water, and apparatus for desalinating sea water into fresh water
SG201101785-2A SG170105A1 (en) 2008-11-28 2009-11-26 Method and apparatus for generating fresh water, and method and apparatus for desalinating sea water
AU2009320741A AU2009320741B2 (en) 2008-11-28 2009-11-26 Generation of fresh water
KR1020107027101A KR101017310B1 (en) 2008-11-28 2009-11-26 Fresh water production apparatus, and fresh water production method
SG201101783-7A SG170103A1 (en) 2008-11-28 2009-11-26 Method and apparatus for generating fresh water, and method and apparatus for desalinating sea water
EP20090829124 EP2351711B1 (en) 2008-11-28 2009-11-26 Fresh water production method, fresh water production apparatus, method for desalinating sea water into fresh water, and apparatus for desalinating sea water into fresh water
ES09829124T ES2440929T3 (en) 2008-11-28 2009-11-26 Freshwater production procedure, freshwater production apparatus, procedure for desalination of freshwater seawater, and apparatus for desalination of freshwater marine water
KR1020117018991A KR101127017B1 (en) 2008-11-28 2009-11-26 Method for desalinating sea water into fresh water, and apparatus for desalinating sea water into fresh water
KR1020107027103A KR101022745B1 (en) 2008-11-28 2009-11-26 Method for desalinating sea water into fresh water and apparatus for desalinating sea water into fresh water
SG201101784-5A SG170104A1 (en) 2008-11-28 2009-11-26 Method and apparatus for generating fresh water, and method and apparatus for desalinating sea water
TW100105692A TWI345998B (en) 2008-11-28 2009-11-27 Method and apparatus for generating fresh water, and method and apparatus for desalinating sea water
TW100105682A TWI348994B (en) 2008-11-28 2009-11-27 Method and apparatus for generating fresh water, and method and apparatus for desalinating sea water
TW98140699A TWI344941B (en) 2008-11-28 2009-11-27 Method and apparatus for desalinating sea water
TW100105691A TWI348458B (en) 2008-11-28 2009-11-27 Method and apparatus for desalinating sea water
TW100105681A TW201121900A (en) 2008-11-28 2009-11-27 Method and apparatus for generating fresh water, and method and apparatus for desalinating sea water
IL208665A IL208665A (en) 2008-11-28 2010-10-12 Method and apparatus for desalinating sea water
US13/033,646 US8062527B2 (en) 2008-11-28 2011-02-24 Method and apparatus for desalinating sea water
US13/033,735 US8070954B2 (en) 2008-11-28 2011-02-24 Method and apparatus for desalinating sea water
US13/037,661 US8083948B2 (en) 2008-11-28 2011-03-01 Method and apparatus for generating fresh water
US13/037,609 US8070955B2 (en) 2008-11-28 2011-03-01 Method and apparatus for generating fresh water
IL215410A IL215410A (en) 2008-11-28 2011-09-27 Apparatus and method for generating fresh water
IL215412A IL215412A (en) 2008-11-28 2011-09-27 Method and apparatus for desalinating sea water
IL215413A IL215413A0 (en) 2008-11-28 2011-09-27 Method and apparatus for desalinating sea water
IL21541111A IL215411A (en) 2008-11-28 2011-09-27 Method and apparatus for generating fresh water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009031861A JP4518435B1 (en) 2009-02-13 2009-02-13 Seawater desalination method and seawater desalination apparatus

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2010021546A Division JP5119280B2 (en) 2010-02-02 2010-02-02 Seawater desalination method and seawater desalination apparatus
JP2010086874A Division JP2010188344A (en) 2010-04-05 2010-04-05 Method and apparatus of desalinating seawater

Publications (2)

Publication Number Publication Date
JP4518435B1 JP4518435B1 (en) 2010-08-04
JP2010184225A true JP2010184225A (en) 2010-08-26

Family

ID=42709017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009031861A Expired - Fee Related JP4518435B1 (en) 2008-11-28 2009-02-13 Seawater desalination method and seawater desalination apparatus

Country Status (1)

Country Link
JP (1) JP4518435B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5691519B2 (en) * 2009-08-21 2015-04-01 東レ株式会社 Fresh water generation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7102706B2 (en) 2017-10-30 2022-07-20 東洋紡株式会社 Seawater desalination method and seawater desalination system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214794A (en) * 1988-06-30 1990-01-18 Japan Organo Co Ltd Treatment of waste liquid after regeneraton of ion exchange apparatus
JPH11253761A (en) * 1998-01-09 1999-09-21 Nitto Denko Corp Solution separation device
JP2004081903A (en) * 2002-08-23 2004-03-18 Hitachi Zosen Corp Desalination method
JP2005279540A (en) * 2004-03-30 2005-10-13 Toray Eng Co Ltd Desalination system
JP2005342664A (en) * 2004-06-04 2005-12-15 Kochi Prefecture Method for producing mineral water
WO2006057249A1 (en) * 2004-11-24 2006-06-01 Hitachi Zosen Corporation Seawater desalination apparatus using reverse osmotic membrane method
JP2009106832A (en) * 2007-10-29 2009-05-21 Kobelco Eco-Solutions Co Ltd Water treatment method and water treatment apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214794A (en) * 1988-06-30 1990-01-18 Japan Organo Co Ltd Treatment of waste liquid after regeneraton of ion exchange apparatus
JPH11253761A (en) * 1998-01-09 1999-09-21 Nitto Denko Corp Solution separation device
JP2004081903A (en) * 2002-08-23 2004-03-18 Hitachi Zosen Corp Desalination method
JP2005279540A (en) * 2004-03-30 2005-10-13 Toray Eng Co Ltd Desalination system
JP2005342664A (en) * 2004-06-04 2005-12-15 Kochi Prefecture Method for producing mineral water
WO2006057249A1 (en) * 2004-11-24 2006-06-01 Hitachi Zosen Corporation Seawater desalination apparatus using reverse osmotic membrane method
JP2009106832A (en) * 2007-10-29 2009-05-21 Kobelco Eco-Solutions Co Ltd Water treatment method and water treatment apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5691519B2 (en) * 2009-08-21 2015-04-01 東レ株式会社 Fresh water generation method
US9309138B2 (en) 2009-08-21 2016-04-12 Toray Industries, Inc. Fresh water production method

Also Published As

Publication number Publication date
JP4518435B1 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
JP4481345B1 (en) Seawater desalination method and seawater desalination apparatus
EP2351711B1 (en) Fresh water production method, fresh water production apparatus, method for desalinating sea water into fresh water, and apparatus for desalinating sea water into fresh water
JP2010188344A (en) Method and apparatus of desalinating seawater
WO2011155281A1 (en) Freshwater-generating device, and freshwater-generating method
JP4499835B1 (en) Fresh water generating apparatus and fresh water generating method
JP4518435B1 (en) Seawater desalination method and seawater desalination apparatus
JP5119280B2 (en) Seawater desalination method and seawater desalination apparatus
WO2011155282A1 (en) Fresh water-generating device and fresh water-generating method
AU2011253905B2 (en) Generation of fresh water
JP4539321B2 (en) Water purification system
JP5232906B2 (en) Purified water generating method and purified water generating apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4518435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees