JP2013084986A - 有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
JP2013084986A
JP2013084986A JP2013002727A JP2013002727A JP2013084986A JP 2013084986 A JP2013084986 A JP 2013084986A JP 2013002727 A JP2013002727 A JP 2013002727A JP 2013002727 A JP2013002727 A JP 2013002727A JP 2013084986 A JP2013084986 A JP 2013084986A
Authority
JP
Japan
Prior art keywords
light emitting
light
emitting material
color rendering
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013002727A
Other languages
English (en)
Inventor
Hiroya Tsuji
博也 辻
Masaru Obara
賢 小原
Nobuhiro Ide
伸弘 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2013002727A priority Critical patent/JP2013084986A/ja
Publication of JP2013084986A publication Critical patent/JP2013084986A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

【課題】照明用光源として重要である高演色性化を図ることができ、特に平均演色評価数Raと赤色の特殊演色評価数R9が高く、高効率、長寿命な高演色・高性能白色有機エレクトロルミネッセンス素子を提供する。
【解決手段】陽極と、460nm以下に極大発光波長を有する青色発光材料がドープされた有機材料と、460〜540nmの間に極大発光波長を有する第一緑色発光材料がドープされた有機材料と、540〜610nmの間に極大発光波長を有する第二緑色発光材料がドープされた有機材料と、610nm以上に極大発光波長を有する赤色発光材料がドープされた有機材料と、陰極とを備えて形成される。(前記第二緑色発光材料の発光強度)/(前記赤色発光材料の発光強度)が0.66以下である。2500〜3500Kの色温度範囲で発光する。
【選択図】図1

Description

本発明は、有機エレクトロルミネッセンス素子に関するものである。
有機エレクトロルミネッセンス素子は、面発光が可能であること、発光物質の選択により任意の色調での発光が可能であること等の理由により、照明用の次世代光源として注目を集め、精力的に実用化を目指した開発が行われている。中でも、無機LED照明の課題の一つとされる高演色性化技術に関して特に盛んに研究開発が行われており、様々なデバイス設計技術開発による高演色性化手法が提案されている。しかしながら、従来の主照明、すなわち蛍光灯と比較し十分な高演色性を実現するためにはまだ課題が残るのが現状である。
特開2009−224274号公報(特許文献1)では、450〜470nmの波長域に極大発光波長を有する青領域発光層と、550〜570nmの波長域に極大発光波長を有する黄領域発光層と、600〜620nmの波長域に極大発光波長を有する赤領域発光層とを積層することにより高演色性を実現する手法が提案されている。このように発光波長領域を適切に選択した3層の発光層を積層することにより、平均演色評価数(Ra)が80以上と高い演色性を実現可能ではあるが、一般的な蛍光灯のRaは80から90であり、従来の光源と比較して十分な高演色性を実現する手法としては課題が残る。また、無機LED照明の課題であり、一般照明として重要である赤色の特殊演色評価数R9の向上手法に関しては言及されていない。
また、特開2007−189002号公報(特許文献2)では、発光極大波長の異なる2種の青色発光材料を用い、短波側青色発光材料の発光ピークが430〜465nmにあり、かつ長波側青色発光材料の発光ピークが465〜485nmにあり、短波側青色発光材料に蛍光発光材料、長波側青色発光材料に燐光発光材料を用いることにより高演色性を実現する手法が提案されている。しかしながら、465〜485nmに発光ピークを有する燐光発光材料は同じ波長領域に発光ピークを有する蛍光発光材料と比較し、寿命特性に課題があり、また、このような短波長青色発光材料を高効率に発光させるためには、周辺材料に三重項エネルギー準位の大きな材料を用いる必要があり、デバイス構造に制限が生じる。また、照明用途の光源の演色性評価手法として重要な指標である演色評価数に関して言及されておらず、高演色性化の手法が明確にされていない。
また、特開2006−287154号公報(特許文献3)では、440〜480nm、510〜540nm、600〜640nmの各々の領域に発光極大波長を有し、該発光極大波長間の極小発光強度を隣接する波長領域にある極大発光強度の50%以上とすることで高演色性を実現する手法が提案されている。しかしながら、実際には発光極大波長間の極小発光強度が隣接する波長領域にある極大発光強度の50%以上であっても、Raが低い場合や、逆に発光極大波長間の極小発光強度が隣接する波長領域にある極大発光強度の50%以下であってもRaが90を超える高演色性化が可能であり、高演色性化手法としては課題が残る。また、照明用途の光源の演色性評価手法として重要な指標である演色評価数に関して言及されておらず、この点においても、高演色化の手法が明確にされているとは言い難い。
また、国際公開第2008/120611号(特許文献4)では発光層が3層以下の層数で構成され,且つ,前記発光層の全体に含まれる発光材料が発光極大波長の各々異なる少なくとも4種類の発光材料を用いることで高演色性を実現する手法が提案されている。発光極大波長の異なる4種類の発光材料を用いることでRaが70を超える高演色性化が可能であるが、上述の通り、一般的な蛍光灯のRaは80から90であり、従来の光源と比較して十分な高演色性を実現する手法としては課題が残る。
特開2009−224274号公報 特開2007−189002号公報 特開2006−287154号公報 国際公開第2008/120611号
本発明は上記の点に鑑みてなされたものであり、照明用光源として重要である高演色性化を図ることができ、特に平均演色評価数Raと赤色の特殊演色評価数R9が高く、高効率、長寿命な高演色・高性能白色有機エレクトロルミネッセンス素子を提供することを目的とするものである。
本発明に係る有機エレクトロルミネッセンス素子は、陽極と、460nm以下に極大発光波長を有する青色発光材料がドープされた有機材料と、460〜540nmの間に極大発光波長を有する第一緑色発光材料がドープされた有機材料と、540〜610nmの間に極大発光波長を有する第二緑色発光材料がドープされた有機材料と、610nm以上に極大発光波長を有する赤色発光材料がドープされた有機材料と、陰極とを備えて形成され、(前記第二緑色発光材料の発光強度)/(前記赤色発光材料の発光強度)が0.66以下であり、2500〜3500Kの色温度範囲で発光することを特徴とするものである。
前記有機エレクトロルミネッセンス素子において、(前記青色発光材料の発光強度)/(前記赤色発光材料の発光強度)が0.20以上であることが好ましい。
前記有機エレクトロルミネッセンス素子において、前記第一緑色発光材料及び前記第二緑色発光材料のうち少なくとも一方の発光スペクトルの半値幅が60nm以上であることが好ましい。
前記有機エレクトロルミネッセンス素子において、前記第一緑色発光材料の前記極大発光波長と前記第二緑色発光材料の前記極大発光波長との差が35nm以上であることが好ましい。
前記有機エレクトロルミネッセンス素子において、前記青色発光材料及び前記第一緑色発光材料が蛍光発光材料であり、前記第二緑色発光材料及び前記赤色発光材料がリン光発光材料であることが好ましい。
前記有機エレクトロルミネッセンス素子において、前記青色発光材料がドープされた有機材料及び前記第一緑色発光材料がドープされた有機材料を含む蛍光発光ユニットと、前記第二緑色発光材料がドープされた有機材料及び前記赤色発光材料がドープされた有機材料を含むリン光発光ユニットとが中間層を介して積層されていることが好ましい。
前記有機エレクトロルミネッセンス素子において、前記蛍光発光ユニットが前記陽極の側に配置され、前記リン光発光ユニットが前記陰極の側に配置されて形成されていることが好ましい。
本発明によれば、照明用光源として重要である高演色性化を図ることができ、特に平均演色評価数Raと赤色の特殊演色評価数R9が高く、高効率、長寿命な高演色・高性能白色有機エレクトロルミネッセンス素子を得ることができるものである。
有機エレクトロルミネッセンス素子の層構造の概略を示す断面図である。 有機エレクトロルミネッセンス素子の青色発光スペクトルの極大発光波長と平均演色評価数Raとの関係を示すグラフである。 (a)は(青色発光層の発光強度)/(赤色発光層の発光強度)と平均演色評価数Raとの関係を示すグラフであり、(b)は(青色発光層の発光強度)/(赤色発光層の発光強度)と特殊演色評価数R9(赤)との関係を示すグラフである。 (a)は(第二緑色発光層の発光強度)/(赤色発光層の発光強度)と平均演色評価数Raとの関係を示すグラフであり、(b)は(第二緑色発光層の発光強度)/(赤色発光層の発光強度)と特殊演色評価数R9(赤)との関係を示すグラフである。
以下、本発明の実施の形態を説明する。
本発明に係る有機エレクトロルミネッセンス素子の構造の一例を図1に示す。この有機エレクトロルミネッセンス素子は、基板10の表面に透明電極1を形成し、その上に第一ホール輸送層11、青色発光層2、第一緑色発光層3、第一電子輸送層12、中間層9、第二ホール輸送層13、赤色発光層4、第二緑色発光層5、第二電子輸送層14、反射電極6をこの順に備えて形成されている。さらに基板10の透明電極1と反対側の面に光取出層15が形成されている。以下、本構造を例として説明するが、この構造はあくまでも一例であり、本発明の趣旨に反しない限り、本構造に限定されるものではない。
基板10は光透過性を有することが好ましい。基板10は無色透明であっても、多少着色されていてもよい。基板10は磨りガラス状であってもよい。基板10の材質としては、ソーダライムガラス、無アルカリガラスなどの透明ガラス;ポリエステル樹脂、ポリオレフィン樹脂、ポリアミド樹脂、エポキシ樹脂、フッ素系樹脂等のプラスチックなどが挙げられる。基板10の形状はフィルム状でも板状でもよい。
透明電極1は陽極として機能する。有機エレクトロルミネッセンス素子における陽極は、発光層中にホールを注入するための電極である。透明電極1を形成するための材料としては、例えば、ITO(インジウム−スズ酸化物)、SnO、ZnO、IZO(インジウム−亜鉛酸化物)等の金属酸化物等が用いられる。透明電極1は、これらの材料を用いて、真空蒸着法、スパッタリング法、塗布等の適宜の方法により形成され得る。透明電極1の好ましい厚みは透明電極1を構成する材料によって異なるが、500nm以下、好ましくは10〜200nmの範囲で設定されるのがよい。
第一ホール輸送層11及び第二ホール輸送層13を構成する材料(ホール輸送性材料)は、ホール輸送性を有する化合物の群から適宜選定されるが、電子供与性を有し、また電子供与によりラジカルカチオン化した際にも安定である化合物であることが好ましい。ホール輸送性材料としては、例えば、ポリアニリン、4,4’−ビス[N−(ナフチル)−N−フェニル−アミノ]ビフェニル(α−NPD)、N,N’−ビス(3−メチルフェニル)−(1,1’−ビフェニル)−4,4’−ジアミン(TPD)、2−TNATA、4,4’,4”−トリス(N−(3−メチルフェニル)N−フェニルアミノ)トリフェニルアミン(MTDATA)、4,4’−N,N’−ジカルバゾールビフェニル(CBP)、スピロ−NPD、スピロ−TPD、スピロ−TAD、TNBなどを代表例とする、トリアリールアミン系化合物、カルバゾール基を含むアミン化合物、フルオレン誘導体を含むアミン化合物、スターバーストアミン類(m−MTDATA)、TDATA系材料として1−TMATA、2−TNATA、p−PMTDATA、TFATAなどが挙げられるが、これらに限定されるものではなく、一般に知られる任意のホール輸送材料が使用される。第一ホール輸送層11及び第二ホール輸送層13は蒸着法などの適宜の方法で形成され得る。
第一電子輸送層12及び第二電子輸送層14を形成するための材料(電子輸送性材料)は、電子を輸送する能力を有し、反射電極6からの電子の注入を受け得ると共に発光層に対して優れた電子注入効果を発揮し、さらに第一電子輸送層12及び第二電子輸送層14へのホールの移動を阻害し、かつ薄膜形成能力の優れた化合物であることが好ましい。電子輸送性材料として、Alq3、オキサジアゾール誘導体、スターバーストオキサジアゾール、トリアゾール誘導体、フェニルキノキサリン誘導体、シロール誘導体などが挙げられる。電子輸送性材料の具体例として、フルオレン、バソフェナントロリン、バソクプロイン、アントラキノジメタン、ジフェノキノン、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、アントラキノジメタン、4,4’−N,N’−ジカルバゾールビフェニル(CBP)等やそれらの化合物、金属錯体化合物、含窒素五員環誘導体などが挙げられる。金属錯体化合物としては、具体的には、トリス(8−ヒドロキシキノリナート)アルミニウム、トリ(2−メチル−8−ヒドロキシキノリナート)アルミニウム、トリス(8−ヒドロキシキノリナート)ガリウム、ビス(10−ヒドロキシベンゾ[h]キノリナート)ベリリウム、ビス(10−ヒドロキシベンゾ[h]キノリナート)亜鉛、ビス(2−メチル−8−キノリナート)(o−クレゾラート)ガリウム、ビス(2−メチル−8−キノリナート)(1−ナフトラート)アルミニウム、ビス(2−メチル−8−キノリナート)−4−フェニルフェノラート等が挙げられるが、これらに限定されない。含窒素五員環誘導体としては、オキサゾール、チアゾール、オキサジアゾール、チアジアゾール、トリアゾール誘導体などが好ましく、具体的には、2,5−ビス(1−フェニル)−1,3,4−オキサゾール、2,5−ビス(1−フェニル)−1,3,4−チアゾール、2,5−ビス(1−フェニル)−1,3,4−オキサジアゾール、2−(4’−tert−ブチルフェニル)−5−(4”−ビフェニル)1,3,4−オキサジアゾール、2,5−ビス(1−ナフチル)−1,3,4−オキサジアゾール、1,4−ビス[2−(5−フェニルチアジアゾリル)]ベンゼン、2,5−ビス(1−ナフチル)−1,3,4−トリアゾール、3−(4−ビフェニルイル)−4−フェニル−5−(4−t−ブチルフェニル)−1,2,4−トリアゾール等が挙げられるが、これらに限定されない。電子輸送性材料として、ポリマー有機エレクトロルミネッセンス素子に使用されるポリマー材料も挙げられる。このポリマー材料として、ポリパラフェニレン及びその誘導体、フルオレン及びその誘導体等が挙げられる。第一電子輸送層12及び第二電子輸送層14の厚みに特に制限はないが、例えば、10〜300nmの範囲に形成される。第一電子輸送層12及び第二電子輸送層14は蒸着法などの適宜の方法で形成され得る。
反射電極6は陰極として機能する。有機エレクトロルミネッセンス素子における陰極は、発光層中に電子を注入するための電極である。反射電極6は、仕事関数の小さい金属、合金、電気伝導性化合物、これらの混合物などの材料から形成されることが好ましい。反射電極6を形成するための材料としては、例えば、Al、Ag、MgAgなどが挙げられる。Al/Al混合物などからも反射電極6が形成され得る。反射電極6は、これらの材料を用いて、真空蒸着法、スパッタリング法等の適宜の方法により形成され得る。反射電極6の好ましい厚みは反射電極6を構成する材料によって異なるが、500nm以下、好ましくは20〜200nmの範囲で設定されるのがよい。
光取出層15は、光拡散性向上のために基板10の透明電極1と反対側の面に光散乱性フィルムやマイクロレンズフィルムを積層して形成することができる。
そして、本発明に係る有機エレクトロルミネッセンス素子においては、以下に説明するように、特定の発光領域に極大発光波長を有する発光材料を用い、かつ、発光強度比を制御することにより、高演色性化を実現することができる。
各発光層(青色発光層2、第一緑色発光層3、赤色発光層4、第二緑色発光層5)は、発光材料(ドーパント)がドープされた有機材料(ホスト材料)から形成され得る。
ホスト材料としては、電子輸送性の材料、ホール輸送性の材料、電子輸送性とホール輸送性とを併せ持つ材料の、いずれも使用され得る。ホスト材料として電子輸送性の材料とホール輸送性の材料とが併用されてもよい。
青色発光層2に含有される青色発光材料としては、460nm以下(下限は430nm程度)に極大発光波長を有するものであれば特に限定されるものではなく、任意の蛍光発光材料、任意のリン光発光材料を用いることができる。ただ、460nm以下に極大発光波長を有する青色リン光発光材料は、発光材料のみならずその周辺材料の耐久性に課題があるので、高演色性かつ寿命特性に優れる有機エレクトロルミネッセンス素子の実現には、青色発光材料としては蛍光発光材料を選定することがより有効である。この蛍光発光材料は比較的短波長でも高効率、長寿命が実現されている。
青色発光層2を構成するホスト材料としては、TBADN(2−t−ブチル−9,10−ジ(2−ナフチル)アントラセン)、ADN、BDAFなどが挙げられる。青色発光材料の濃度は1〜30質量%の範囲であることが好ましい。
図2は、赤色発光材料であるPqIr(acac)及び緑色発光材料であるIr(ppy)を用い、青色発光材料であるTBP(1−tert−ブチル−ペリレン)の発光スペクトルを445nmから470nmまでシフトさせたときの平均演色評価数Raの計算結果を示す。図2から明らかなように、高演色性の実現には青色発光スペクトルの短波長化が重要であり、特に平均演色評価数Raが90を超えるような高演色性(電球型蛍光灯の平均演色評価数Raは84)の実現には460nm以下の短波長青色発光が有効であることが分かる。同様に、530nmに極大発光波長を有するTPAと、566nmに極大発光波長を有するBtIr(acac)と、629nmに極大発光波長を有するIr(piq)とを用い、青色発光材料としてBCzVBiを用いた4波長白色デバイス(後述の実施例1の有機エレクトロルミネッセンス素子)の検討においても、青色発光スペクトルの短波長化に伴い、演色性は向上し、極大発光波長が460nm以下の領域で平均演色評価数Raが90を超える高演色性化が可能であることを確認した。演色性はスペクトル形状によるものであり、上記は一例であるが、一般的な発光スペクトルを有する発光材料(スペクトルの半値幅が40nmから80nm程度)を用いた場合には、極大発光波長が演色性に大きく影響し、青色発光材料の極大発光波長の短波長化が高演色性化に有効であるといえる。
第一緑色発光層3に含有される第一緑色発光材料としては、460〜540nmの間に極大発光波長を有するものであれば特に限定されるものではなく、任意の蛍光発光材料、任意のリン光発光材料を用いることができる。第一緑色発光材料を用いることで、第一緑色発光材料の発光スペクトルが、青色発光材料及び第二緑色発光材料の発光スペクトル間をカバーすることが可能となり、より高演色性化が可能となる。また、比較的短波長発光である緑色リン光発光材料は、発光材料のみならずその周辺材料の耐久性に課題があるので、第一緑色発光材料についても青色発光材料と同様に、高演色性かつ寿命特性に優れる有機エレクトロルミネッセンス素子の実現には、第一緑色発光材料としては蛍光発光材料を選定することがより有効である。この蛍光発光材料は比較的短波長でも高効率、長寿命が実現されている。
第一緑色発光層3を構成するホスト材料としては、Alq3(トリス(8−オキソキノリン)アルミニウム(III))、ADN、BDAFなどが挙げられる。第一緑色発光材料の濃度は1〜20質量%の範囲であることが好ましい。
第二緑色発光層5に含有される第二緑色発光材料としては、540〜610nmの間に極大発光波長を有するものであれば特に限定されるものではなく、第一緑色発光材料と同様に、任意の蛍光発光材料、任意のリン光発光材料を用いることができる。第二緑色発光材料を用いることで、第二緑色発光材料の発光スペクトルが、第一緑色発光材料及び赤色発光材料の発光スペクトル間をカバーすることが可能となり、より高演色性化が可能となる。また、比較的長波長であるこの波長領域で発光するリン光発光材料は、すでに長寿命化、高効率化が実現されている。また、リン光発光材料は比較的長波長発光材料であるため、周辺材料についても、青色発光材料や短波長緑色発光材料を用いたデバイスの高効率化に必要であるが、耐久性に優れた材料が少ない三重項エネルギー準位の高い材料が特に必要なく、この点からも、第二緑色発光材料としてはリン光発光材料を選定することがより有効である。このリン光発光材料は、上述のように比較的長波長では高効率、長寿命が実現されているので、有機エレクトロルミネッセンス素子の高演色性化かつ高効率、長寿命化が可能となる。
第二緑色発光層5を構成するホスト材料としては、CBP(4,4’−N,N’−ジカルバゾールビフェニル)、CzTT、TCTA、mCP、CDBPなどが挙げられる。第二緑色発光材料の濃度は1〜40質量%の範囲であることが好ましい。
第一緑色発光材料及び第二緑色発光材料の発光スペクトルの半値幅は、特に限定されるものではないが、第一緑色発光材料及び第二緑色発光材料のうち少なくとも一方の発光スペクトルの半値幅が60nm以上であることが好ましく、70nm以上(上限は120nm程度)であることがより好ましい。発光スペクトルの半値幅が60nm以上と大きな緑色発光材料を用いることにより、短波長青色発光スペクトルと長波長赤色発光スペクトルとの間の広い波長領域を適切にカバーすることが可能となり、高演色性化に有効である。もちろん第一緑色発光材料及び第二緑色発光材料の両方の発光スペクトルの半値幅が60nm以上であれば、より高演色性化に有効である。
第一緑色発光材料の極大発光波長と第二緑色発光材料の極大発光波長との差は特に限定されるものではないが、35nm以上であることが好ましく、40nm以上(上限は100nm程度)であることがより好ましい。極大発光波長の差が35nm以上である緑色発光材料を用いることで、それぞれの緑色発光スペクトルのカバーする波長領域を分離することが可能となり、より高演色性化が可能となる。
赤色発光層4に含有される赤色発光材料としては、610nm以上(上限は640nm程度)に極大発光波長を有するものであれば特に限定されるものではなく、任意の蛍光発光材料、任意のリン光発光材料を用いることができる。第二緑色発光材料と同様の理由で、高演色性かつ高効率、長寿命な有機エレクトロルミネッセンス素子の実現には、赤色発光材料としてはリン光発光材料を選定することがより有効である。このリン光発光材料は比較的長波長では高効率、長寿命が実現されている。
また、図3は(青色発光層2の発光強度)/(赤色発光層4の発光強度)と平均演色評価数Ra及び特殊演色評価数R9(赤)との関係を示す。図3から明らかなように、高演色性の実現には(青色発光層2の発光強度)/(赤色発光層4の発光強度)を大きくすることが重要である。特に平均演色評価数Raが90を超えるような高演色性(電球型蛍光灯の平均演色評価数Raは84)の実現には、(青色発光層2の発光強度)/(赤色発光層4の発光強度)が0.20以上であることが有効であることが分かる。なお、上限は特に限定されるものではないが0.70程度である。また、図4は(第二緑色発光層5の発光強度)/(赤色発光層4の発光強度)と平均演色評価数Ra及び特殊演色評価数R9(赤)との関係を示す。図4から明らかなように、高演色性の実現には(第二緑色発光層5の発光強度)/(赤色発光層4の発光強度)を小さくすることが重要である。平均演色評価数Raが90を超え、特殊演色評価数R9(赤)が30を超える(電球型蛍光灯の特殊演色評価数R9は約25)高演色性化には、(第二緑色発光層5の発光強度)/(赤色発光層4の発光強度)が0.66以下であることが有効であることが分かる。なお、下限は特に限定されるものではないが0.30程度である。演色性はスペクトル形状によるものであり、上記は一例であるが、一般的な発光スペクトルを有する発光材料(スペクトルの半値幅が40nmから80nm程度)を用いた場合には、このように(青色発光層2の発光強度)/(赤色発光層4の発光強度)と(第二緑色発光層5の発光強度)/(赤色発光層4の発光強度)との関係が演色性に大きく影響する。そこで、本発明では(第二緑色発光層5の発光強度)/(赤色発光層4の発光強度)が0.66以下であり、かつ、(青色発光層2の発光強度)/(赤色発光層4の発光強度)が0.20以上であるとして、高演色性化を図ったものである。
赤色発光層4を構成するホスト材料としては、CBP(4,4’−N,N’−ジカルバゾールビフェニル)、CzTT、TCTA、mCP、CDBPなどが挙げられる。赤色発光材料の濃度は1〜40質量%の範囲であることが好ましい。
各発光層(青色発光層2、第一緑色発光層3、赤色発光層4、第二緑色発光層5)は、真空蒸着、転写等の乾式プロセスや、スピンコート、スプレーコート、ダイコート、グラビア印刷等の湿式プロセスなど、適宜の手法により形成され得る。なお、各発光層の発光強度は、例えば、各発光層の膜厚を増減させることによって調整することができる。
本発明に係る有機エレクトロルミネッセンス素子は、上記の条件を満たし、2500〜3500Kの色温度範囲で発光するものであれば特に限定されるものではないが、図1に示すように蛍光発光ユニット7とリン光発光ユニット8とが中間層9を介して積層されてマルチユニット構造を形成していることが好ましい。蛍光発光ユニット7は、青色発光層2及び第一緑色発光層3を積層して含むものであり、青色発光層2及び第一緑色発光層3は共に蛍光発光材料を含有する。リン光発光ユニット8は、第二緑色発光層5及び赤色発光層4を積層して含むものであり、第二緑色発光層5及び赤色発光層4は共にリン光発光材料を含有する。なお、色温度範囲が2500K未満である場合又は3500Kを超える場合には、照明用途に要求される白色領域での発光と高演色性(高Ra、高R9)とを同時に実現することが困難となる。
中間層9は、二つの発光ユニットを電気的に直列接続する機能を果たす。中間層9は透明性が高く、かつ熱的・電気的に安定性が高いことが好ましい。中間層9は、例えば等電位面を形成する層、電荷発生層などから形成され得る。等電位面を形成する層もしくは電荷発生層の材料としては、例えばAg、Au、Al等の金属薄膜;酸化バナジウム、酸化モリブデン、酸化レニウム、酸化タングステン等の金属酸化物;ITO、IZO、AZO、GZO、ATO、SnO等の透明導電膜;いわゆるn型半導体とp型半導体との積層体;金属薄膜もしくは透明導電膜と、n型半導体及びp型半導体のうちの一方又は双方との積層体;n型半導体とp型半導体の混合物;n型半導体とp型半導体とのうちの一方又は双方と金属との混合物などが挙げられる。前記n型半導体やp型半導体としては、特に制限されることなく必要に応じて選定されたものが使用される。n型半導体やp型半導体は、無機材料、有機材料のうちいずれであってもよい。n型半導体やp型半導体は、有機材料と金属との混合物;有機材料と金属酸化物との組み合わせ;有機材料と有機系アクセプタ/ドナー材料や無機系アクセプタ/ドナー材料との組み合わせ等であってもよい。中間層9は、BCP:Li、ITO、NPD:MoO、Liq:Alなどからも形成され得る。BCPは2,9−ジメチル−4,7−ジフェニル−1,10−フェナンスロリンを示す。例えば、中間層9は、BCP:Liからなる第1層を陽極側に、ITOからなる第2層を陰極側に配置した二層構成のものにすることができる。中間層9がAlq3/LiO/HAT−CN6、Alq3/LiO、Alq3/LiO/Alq3/HAT−CN6などの層構造を有していることも好ましい。
蛍光発光ユニット7の高性能化に必要な材料と、リン光発光ユニット8の高性能化に必要な材料とでは要求されるイオン化ポテンシャルや電子親和力、三重項エネルギー準位などの材料物性値が異なるため、蛍光発光ユニット7とリン光発光ユニット8とを中間層9で分離することで、それぞれのユニットごとに材料選定が可能になり、高効率、長寿命化に有効である。また、比較的短波長領域に発光スペクトルを有する蛍光発光ユニット7と、比較的長波長領域に発光スペクトルを有するリン光発光ユニット8とを中間層9で分離して配置可能なマルチユニット構造を用いることにより、光学設計が容易になり、高演色性化、かつ、高効率、長寿命、高輝度、色度の視野角依存性低減などが可能になる。
また、図1に示すように、蛍光発光ユニット7が透明電極1の側に配置され、リン光発光ユニット8が反射電極6の側に配置されて形成されていることが、高効率化、色度の角度依存性の抑制の点から好ましい。反射電極6の側の発光ユニットは、透明電極1の側の発光ユニットと比較し、干渉の影響によるロスが小さく、反射電極6の側の発光ユニットの光取出し効率は、透明電極1の側の発光ユニットの光取出し効率と比較して高くなる傾向にある。そのため、内部量子効率の高いリン光発光ユニット8を光取出し効率の比較的高い反射電極6の側に配置することで、より高性能化、高演色性化かつ高効率化が可能となる。
上記のように、本発明に係る有機エレクトロルミネッセンス素子は、(第二緑色発光層5の発光強度)/(赤色発光層4の発光強度)が0.66以下となり、かつ、(青色発光層2の発光強度)/(赤色発光層4の発光強度)が0.20以上となるように、異なる4つの極大発光波長を有する発光材料を適切に組み合わせることにより、2500〜3500Kの色温度範囲の白色発光が得られ、さらに高演色性化を図ることができるものである。
以下、本発明を実施例によって具体的に説明する。
(実施例1)
図1に示すようなマルチユニット構造が形成された有機エレクトロルミネッセンス素子を製造した。具体的には、基板10(ガラス基板)上にITOを厚み130nmに成膜することで透明電極1を形成した。さらに透明電極1の上に第一ホール輸送層11、青色発光層2(青色発光材料として蛍光発光材料であるBCzVBiを含有する)、第一緑色発光層3(第一緑色発光材料として蛍光発光材料であるTPAを含有する)、第一電子輸送層4を蒸着法により5nm〜60nmの厚みに順次形成した。青色発光層2及び第一緑色発光層3により蛍光発光ユニット7が形成されている。次に、Alq3/LiO/Alq3/HAT−CN6の層構造を有する中間層9を層厚15nmで積層した。次に、第二ホール輸送層13、赤色発光層4(赤色発光材料としてリン光発光材料であるIr(piq)を含有する)、第二緑色発光層5(第二緑色発光材料としてリン光発光材料であるBtIr(acac)を含有する)、第二電子輸送層14を各層が最大50nmの膜厚で順次形成した。赤色発光層4及び第二緑色発光層5によりリン光発光ユニット8が形成されている。続いて、Al膜からなる反射電極6を順次形成した。なお、基板10の透明電極1と反対側の面に光散乱性フィルムを積層して光取出層15を形成した。
そして、青色発光層2の膜厚を20nm、第一緑色発光層3の膜厚を20nm、第二緑色発光層5の膜厚を10nm、赤色発光層4の膜厚を30nmとすることで各発光色の発光強度を調整した。
上記のようにして得られた有機エレクトロルミネッセンス素子の(青色発光層2の発光強度)/(赤色発光層4の発光強度)、(第二緑色発光層5の発光強度)/(赤色発光層4の発光強度)、平均演色評価数Ra、特殊演色評価数R9(赤)を表1に示す。表1から明らかなように、実施例1の有機エレクトロルミネッセンス素子は、平均演色評価数Ra及び特殊演色評価数R9(赤)が共に非常に高い値であることが確認された。
(実施例2)
青色発光層2の膜厚を10nm、第一緑色発光層3の膜厚を30nmとしたこと以外は、実施例1と同様に有機エレクトロルミネッセンス素子を製造した。
上記のようにして得られた有機エレクトロルミネッセンス素子は、(青色発光層2の発光強度)/(赤色発光層4の発光強度)が0.20未満であるため、平均演色評価数Ra及び特殊演色評価数R9(赤)は共に低いが、特に特殊演色評価数R9(赤)が低い値であることが確認された。
(比較例1)
第二緑色発光層5の膜厚を15nm、赤色発光層4の膜厚を25nmとしたこと以外は、実施例1と同様に有機エレクトロルミネッセンス素子を製造した。
上記のようにして得られた有機エレクトロルミネッセンス素子は、(第二緑色発光層5の発光強度)/(赤色発光層4の発光強度)が0.66を超えているため、平均演色評価数Ra及び特殊演色評価数R9(赤)は共に低いが、特に特殊演色評価数R9(赤)が低い値であることが確認された。
Figure 2013084986
1 透明電極
2 青色発光層
3 第一緑色発光層
4 赤色発光層
5 第二緑色発光層
6 反射電極
7 蛍光発光ユニット
8 リン光発光ユニット
9 中間層

Claims (7)

  1. 陽極と、460nm以下に極大発光波長を有する青色発光材料がドープされた有機材料と、460〜540nmの間に極大発光波長を有する第一緑色発光材料がドープされた有機材料と、540〜610nmの間に極大発光波長を有する第二緑色発光材料がドープされた有機材料と、610nm以上に極大発光波長を有する赤色発光材料がドープされた有機材料と、陰極とを備えて形成され、(前記第二緑色発光材料の発光強度)/(前記赤色発光材料の発光強度)が0.66以下であり、2500〜3500Kの色温度範囲で発光することを特徴とする有機エレクトロルミネッセンス素子。
  2. (前記青色発光材料の発光強度)/(前記赤色発光材料の発光強度)が0.20以上であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
  3. 前記第一緑色発光材料及び前記第二緑色発光材料のうち少なくとも一方の発光スペクトルの半値幅が60nm以上であることを特徴とする請求項1又は2に記載の有機エレクトロルミネッセンス素子。
  4. 前記第一緑色発光材料の前記極大発光波長と前記第二緑色発光材料の前記極大発光波長との差が35nm以上であることを特徴とする請求項1乃至3のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  5. 前記青色発光材料及び前記第一緑色発光材料が蛍光発光材料であり、前記第二緑色発光材料及び前記赤色発光材料がリン光発光材料であることを特徴とする請求項1乃至4のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  6. 前記青色発光材料がドープされた有機材料及び前記第一緑色発光材料がドープされた有機材料を含む蛍光発光ユニットと、前記第二緑色発光材料がドープされた有機材料及び前記赤色発光材料がドープされた有機材料を含むリン光発光ユニットとが中間層を介して積層されていることを特徴とする請求項5に記載の有機エレクトロルミネッセンス素子。
  7. 前記蛍光発光ユニットが前記陽極の側に配置され、前記リン光発光ユニットが前記陰極の側に配置されて形成されていることを特徴とする請求項6に記載の有機エレクトロルミネッセンス素子。
JP2013002727A 2013-01-10 2013-01-10 有機エレクトロルミネッセンス素子 Pending JP2013084986A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013002727A JP2013084986A (ja) 2013-01-10 2013-01-10 有機エレクトロルミネッセンス素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013002727A JP2013084986A (ja) 2013-01-10 2013-01-10 有機エレクトロルミネッセンス素子

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011066565A Division JP5180338B2 (ja) 2011-03-24 2011-03-24 有機エレクトロルミネッセンス素子

Publications (1)

Publication Number Publication Date
JP2013084986A true JP2013084986A (ja) 2013-05-09

Family

ID=48529780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013002727A Pending JP2013084986A (ja) 2013-01-10 2013-01-10 有機エレクトロルミネッセンス素子

Country Status (1)

Country Link
JP (1) JP2013084986A (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008110968A (ja) * 2006-10-06 2008-05-15 Semiconductor Energy Lab Co Ltd キノキサリン誘導体、およびキノキサリン誘導体を用いた発光素子、発光装置
WO2009008357A1 (ja) * 2007-07-07 2009-01-15 Idemitsu Kosan Co., Ltd. 有機el素子
JP2009076450A (ja) * 2007-08-31 2009-04-09 Semiconductor Energy Lab Co Ltd 発光素子、発光装置および電子機器
JP2009093981A (ja) * 2007-10-11 2009-04-30 Seiko Epson Corp 有機エレクトロルミネッセンス装置及び電子機器
WO2010001830A1 (ja) * 2008-07-01 2010-01-07 コニカミノルタホールディングス株式会社 白色発光有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2012204094A (ja) * 2011-03-24 2012-10-22 Panasonic Corp 有機エレクトロルミネッセンス素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008110968A (ja) * 2006-10-06 2008-05-15 Semiconductor Energy Lab Co Ltd キノキサリン誘導体、およびキノキサリン誘導体を用いた発光素子、発光装置
WO2009008357A1 (ja) * 2007-07-07 2009-01-15 Idemitsu Kosan Co., Ltd. 有機el素子
JP2009076450A (ja) * 2007-08-31 2009-04-09 Semiconductor Energy Lab Co Ltd 発光素子、発光装置および電子機器
JP2009093981A (ja) * 2007-10-11 2009-04-30 Seiko Epson Corp 有機エレクトロルミネッセンス装置及び電子機器
WO2010001830A1 (ja) * 2008-07-01 2010-01-07 コニカミノルタホールディングス株式会社 白色発光有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2012204094A (ja) * 2011-03-24 2012-10-22 Panasonic Corp 有機エレクトロルミネッセンス素子

Similar Documents

Publication Publication Date Title
JP5182901B2 (ja) 有機エレクトロルミネッセンス素子
WO2012128081A1 (ja) 有機エレクトロルミネッセンス素子
US8441004B2 (en) Radiation emitting device and method for the production thereof
JP5167381B2 (ja) 有機エレクトロルミネッセンス素子
US20090001875A1 (en) Organic light-emitting device incorporating multifunctional osmium complexes
WO2013039914A1 (en) Efficient organic light-emitting diodes and fabrication of the same
WO2014010223A1 (ja) 有機エレクトロルミネッセンス素子
JP5167380B2 (ja) 有機エレクトロルミネッセンス素子
KR100721947B1 (ko) 다수의 발광층을 구비하는 유기 전계 발광 소자
JP2014225415A (ja) 有機エレクトロルミネッセンス素子
JP5180338B2 (ja) 有機エレクトロルミネッセンス素子
JP5662991B2 (ja) 有機エレクトロルミネッセンス素子
JP2014022099A (ja) 有機エレクトロルミネッセンス素子
JP2014022100A (ja) 有機エレクトロルミネッセンス素子
JP5870304B2 (ja) 有機エレクトロルミネッセンス素子
JP5879526B2 (ja) 有機エレクトロルミネッセンス素子
JP7337655B2 (ja) 白色発光有機elパネル
JP2013084986A (ja) 有機エレクトロルミネッセンス素子
JP2013069702A (ja) 有機エレクトロルミネッセンス素子
WO2012132853A1 (ja) 有機エレクトロルミネッセンス素子
JP6078701B1 (ja) 白色発光有機elパネル及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140318

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150908