JP2013084900A - Group iii nitride composite substrate - Google Patents

Group iii nitride composite substrate Download PDF

Info

Publication number
JP2013084900A
JP2013084900A JP2012135772A JP2012135772A JP2013084900A JP 2013084900 A JP2013084900 A JP 2013084900A JP 2012135772 A JP2012135772 A JP 2012135772A JP 2012135772 A JP2012135772 A JP 2012135772A JP 2013084900 A JP2013084900 A JP 2013084900A
Authority
JP
Japan
Prior art keywords
oxide film
group iii
iii nitride
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012135772A
Other languages
Japanese (ja)
Inventor
Kazunari Sato
一成 佐藤
Hiroki Seki
裕紀 関
Akihiro Yago
昭広 八郷
Yoshiyuki Yamamoto
喜之 山本
Hideki Matsubara
秀樹 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012135772A priority Critical patent/JP2013084900A/en
Publication of JP2013084900A publication Critical patent/JP2013084900A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a group III nitride composite substrate having high bond strength between a support substrate and an oxide film and high bond strength between the oxide film and a group III nitride layer.SOLUTION: A group III nitride composite substrate 1 includes a support substrate 10, an oxide film 20, and a group III nitride layer 30a. The support substrate 10 is formed of polycrystalline. The group III nitride layer 30a is formed of group III nitride crystal orientated at least in a C-axis direction. The oxide film 20 is doped with impurities, a concentration of which varies in a thickness direction from a first principal plane 20s on the support substrate 10 side to a second principal plane 20t on the group III nitride layer 30a side in the oxide film 20, and is higher in the first principal plane 20s than in the second principal plane 20t.

Description

本発明は、支持基板と酸化物膜とIII族窒化物層とを含み、これらの接合強度が高いIII族窒化物複合基板に関する。   The present invention relates to a group III nitride composite substrate that includes a support substrate, an oxide film, and a group III nitride layer, and has high bonding strength.

光デバイス、電子デバイスなどの半導体デバイスに用いられる複合基板の作製方法に関して、特開2007−201429号公報(特許文献1)および特開2007−201430号公報(特許文献2)は、支持基板と半導体材料の活性層との間に介在させた少なくとも1つの薄い絶縁層を備える複合基板の作製方法を開示する。   Regarding a method for manufacturing a composite substrate used for a semiconductor device such as an optical device or an electronic device, Japanese Unexamined Patent Application Publication No. 2007-201429 (Patent Document 1) and Japanese Unexamined Patent Application Publication No. 2007-201430 (Patent Document 2) describe a support substrate and a semiconductor. Disclosed is a method for making a composite substrate comprising at least one thin insulating layer interposed between an active layer of material.

特開2007−201429号公報JP 2007-201429 A 特開2007−201430号公報JP 2007-201430 A

特開2007−201429号公報(特許文献1)および特開2007−201430号公報(特許文献2)に開示された方法で作製された複合基板は、半導体材料として用いられるSi(シリコン)、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、SiC(炭化ケイ素)、GaN(窒化ガリウム)、GaAs(ヒ化ガリウム)、InP(リン化インジウム)などと、絶縁層として用いられるSiO2(酸化ケイ素)、Si34(窒化ケイ素)、TiO2(二酸化チタン)、SrTiO3(チタン酸ストロンチウム)などとの間の界面の接合密着性が低いため、半導体材料で形成される支持基板と絶縁層との接着強度および絶縁層と半導体材料で形成される活性層との接合強度が低いという問題点があった。 A composite substrate manufactured by the method disclosed in Japanese Patent Application Laid-Open No. 2007-201429 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2007-201430 (Patent Document 2) is made of Si (silicon), Ge (used as a semiconductor material). Germanium), SiGe (silicon germanium), SiC (silicon carbide), GaN (gallium nitride), GaAs (gallium arsenide), InP (indium phosphide), etc., and SiO 2 (silicon oxide), Si used as an insulating layer 3 N 4 (silicon nitride), TiO 2 (titanium dioxide), SrTiO 3 (strontium titanate), etc., because the adhesion at the interface is low, adhesion between the support substrate formed of a semiconductor material and the insulating layer There is a problem that the strength and the bonding strength between the insulating layer and the active layer formed of a semiconductor material are low.

本発明は、上記の問題点を解決して、支持基板と酸化物膜とIII族窒化物層とを含み、支持基板と酸化物膜との接合強度および酸化物膜とIII族窒化物層との接合強度が高いIII族窒化物複合基板を提供することを目的とする。   The present invention solves the above-described problems and includes a support substrate, an oxide film, and a group III nitride layer, the bonding strength between the support substrate and the oxide film, and the oxide film and the group III nitride layer. An object of the present invention is to provide a group III nitride composite substrate having a high bonding strength.

本発明にかかるIII族窒化物複合基板は、支持基板と、支持基板上に配置されている酸化物膜と、酸化物膜上に配置されているIII族窒化物層と、を含む。ここで、支持基板は多結晶で形成されている。また、III族窒化物層は少なくともc軸方向に配向しているIII族窒化物結晶で形成される。また、酸化物膜は不純物が添加され、不純物の濃度は、酸化物膜において支持基板側の第1主面からIII族窒化物層側の第2主面にかけて膜厚方向で変化し、第1主面における不純物の濃度は第2主面における不純物の濃度よりも高い。   The group III nitride composite substrate according to the present invention includes a support substrate, an oxide film disposed on the support substrate, and a group III nitride layer disposed on the oxide film. Here, the support substrate is formed of polycrystal. The group III nitride layer is formed of group III nitride crystals oriented at least in the c-axis direction. In addition, an impurity is added to the oxide film, and the concentration of the impurity varies in the film thickness direction from the first main surface on the support substrate side to the second main surface on the group III nitride layer side in the oxide film. The concentration of impurities on the main surface is higher than the concentration of impurities on the second main surface.

本発明にかかるIII族窒化物複合基板において、酸化物膜は、第1主面における不純物の濃度を10質量%以下とし、第2主面における不純物の濃度を0.01質量%以上とすることができる。また、酸化物膜の不純物の濃度は、酸化物膜において第1主面から第2主面にかけて膜厚方向で単調に変化させることができる。また、支持基板は、窒化物、酸化物および金属からなる群から選ばれる少なくとも1種類を含むことができる。   In the group III nitride composite substrate according to the present invention, the oxide film has an impurity concentration of 10% by mass or less on the first main surface and an impurity concentration of 0.01% by mass or more on the second main surface. Can do. Further, the concentration of impurities in the oxide film can be monotonously changed in the film thickness direction from the first main surface to the second main surface in the oxide film. The support substrate can include at least one selected from the group consisting of nitrides, oxides, and metals.

本発明によれば、支持基板と酸化物膜とIII族窒化物層とを含み、支持基板と酸化物膜との接合強度および酸化物膜とIII族窒化物層との接合強度が高いIII族窒化物複合基板を提供できる。   According to the present invention, the support substrate, the oxide film, and the group III nitride layer are included, and the bond strength between the support substrate and the oxide film and the bond strength between the oxide film and the group III nitride layer are high. A nitride composite substrate can be provided.

本発明にかかるIII族窒化物複合基板の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the group III nitride composite substrate concerning this invention. 本発明にかかるIII族窒化物複合基板を製造する方法の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the method of manufacturing the group III nitride composite substrate concerning this invention. 酸化物膜と支持基板との接合強度を測定するための積層基板の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the laminated substrate for measuring the joining strength of an oxide film and a support substrate. 酸化物膜とIII族窒化物層との接合強度を測定するための積層基板の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the laminated substrate for measuring the joint strength of an oxide film and a group III nitride layer.

[III族窒化物複合基板]
図1を参照して、本発明の一実施形態であるIII族窒化物複合基板1は、支持基板10と、支持基板10上に配置されている酸化物膜20と、酸化物膜20上に配置されているIII族窒化物層30aと、を含む。ここで、支持基板10は多結晶で形成されている。また、III族窒化物層30aは少なくともc軸方向に配向しているIII族窒化物結晶で形成されている。また、酸化物膜20は不純物が添加され、不純物の濃度は、酸化物膜20において支持基板10側の第1主面20sからIII族窒化物層30a側の第2主面20tにかけて膜厚方向で変化し、第1主面20sにおける不純物の濃度は第2主面20tにおける不純物の濃度よりも高い。
[Group III nitride composite substrate]
Referring to FIG. 1, group III nitride composite substrate 1 according to an embodiment of the present invention includes support substrate 10, oxide film 20 disposed on support substrate 10, and oxide film 20. And a group III nitride layer 30a disposed. Here, the support substrate 10 is formed of polycrystal. The group III nitride layer 30a is formed of a group III nitride crystal oriented at least in the c-axis direction. Further, the oxide film 20 is doped with impurities, and the concentration of the impurities is determined in the film thickness direction from the first main surface 20s on the support substrate 10 side to the second main surface 20t on the group III nitride layer 30a side in the oxide film 20. The concentration of impurities on the first major surface 20s is higher than the concentration of impurities on the second major surface 20t.

本実施形態のIII族窒化物複合基板1は、酸化物膜20における不純物濃度が、支持基板10側の第1主面20sからIII族窒化物層30a側の第2主面20tにかけて膜厚方向で変化し、第1主面20sにおける不純物の濃度が第2主面20tにおける不純物の濃度よりも高いため、支持基板10と酸化物膜20との接合強度および酸化物膜20とIII族窒化物層30aとの接合強度がいずれも高い。   In the group III nitride composite substrate 1 of this embodiment, the impurity concentration in the oxide film 20 is in the film thickness direction from the first main surface 20s on the support substrate 10 side to the second main surface 20t on the group III nitride layer 30a side. Since the impurity concentration in the first main surface 20s is higher than the impurity concentration in the second main surface 20t, the bonding strength between the support substrate 10 and the oxide film 20 and the oxide film 20 and group III nitride are changed. The bonding strength with the layer 30a is high.

(支持基板)
本実施形態のIII族窒化物複合基板1の支持基板10は、III族窒化物複合基板1の全体的なコストを低減する観点から、多結晶で形成されている。ここで、多結晶とは、複数の結晶粒からなる結晶をいい、これらの複数の結晶粒が互いに配向していても配向していなくともよい。また、支持基板10は、多結晶であれば特に制限ないが、低コストである観点から、窒化物、酸化物および金属からなる群から選ばれる少なくとも1種類を含むことが好ましい。
(Support substrate)
From the viewpoint of reducing the overall cost of the group III nitride composite substrate 1, the support substrate 10 of the group III nitride composite substrate 1 of the present embodiment is formed of a polycrystal. Here, the polycrystal means a crystal composed of a plurality of crystal grains, and these crystal grains may or may not be oriented to each other. The support substrate 10 is not particularly limited as long as it is polycrystalline, but it is preferable that the support substrate 10 includes at least one selected from the group consisting of nitrides, oxides, and metals from the viewpoint of low cost.

さらに、III族窒化物複合基板1のIII族窒化物層30a上に半導体層を成長させる際にIII族窒化物層30aなどにクラックが発生するのを抑制するため、支持基板10の熱膨張係数はIII族窒化物層30aの熱膨張係数と同じかまたは近似(両者の熱膨張係数の差が3×10-6-1以下)であることがより好ましい。かかる観点から、支持基板10は、InxAlyGa1-x-yN(0≦x、0≦y、x+y≦1)などのIII族窒化物、ムライト(3Al23・2SiO2〜2Al23・SiO2またはAl613Si2)などのAl23−SiO2系複合酸化物、MgO−SiO2系複合酸化物、MgO−Al23−SiO2系複合酸化物などの酸化物、ならびにMo(モリブデン)、Mo−Cr(モリブデン−クロム)合金などの金属の少なくとも1種類を含むことが好ましく、III族窒化物層を形成するIII族窒化物と同じ化学組成のIII族窒化物、Al23−SiO2系複合酸化物、Moなどの少なくとも1種類を含むことがより好ましい。 Further, when the semiconductor layer is grown on the group III nitride layer 30a of the group III nitride composite substrate 1, the thermal expansion coefficient of the support substrate 10 is suppressed in order to suppress the generation of cracks in the group III nitride layer 30a and the like. Is more preferably the same as or close to the thermal expansion coefficient of the group III nitride layer 30a (the difference between the thermal expansion coefficients is 3 × 10 −6 ° C. −1 or less). From this point of view, the supporting substrate 10, In x Al y Ga 1- xy N (0 ≦ x, 0 ≦ y, x + y ≦ 1) III -nitride such as mullite (3Al 2 O 3 · 2SiO 2 ~2Al 2 Al 2 O 3 —SiO 2 complex oxides such as O 3 · SiO 2 or Al 6 O 13 Si 2 ), MgO—SiO 2 complex oxides, MgO—Al 2 O 3 —SiO 2 complex oxides, etc. And at least one metal such as Mo (molybdenum), Mo-Cr (molybdenum-chromium) alloy, and III having the same chemical composition as the group III nitride forming the group III nitride layer. More preferably, it contains at least one kind of group nitride, Al 2 O 3 —SiO 2 composite oxide, Mo, and the like.

(III族窒化物層)
本実施形態のIII族窒化物複合基板1のIII族窒化物層30aは、III族窒化物層30a上に品質のよい半導体層を成長させる観点から、少なくともc軸方向に配向しているIII族窒化物結晶で形成されている。ここで、III族窒化物結晶は、六方晶系のウルツ鉱型結晶構造を有しており、結晶軸として、同一平面上に互いに120°の角度をなして伸びる(すなわち、互いに3回回転対称の位置にある)a1軸、a2軸およびa3軸と、その平面に対して垂直に伸びるc軸と、を有する。III族窒化物層30aは、上記観点から、c軸方向に加えて、a1軸方向、a2軸方向およびa3軸方向のいずれにも配向している結晶、すなわちIII族窒化物単結晶であることが好ましい。
(Group III nitride layer)
The group III nitride layer 30a of the group III nitride composite substrate 1 of this embodiment is a group III oriented at least in the c-axis direction from the viewpoint of growing a high-quality semiconductor layer on the group III nitride layer 30a. It is formed of a nitride crystal. Here, the group III nitride crystal has a hexagonal wurtzite crystal structure and extends as a crystal axis at an angle of 120 ° to each other on the same plane (that is, three-fold rotational symmetry with each other). The a 1 axis, the a 2 axis and the a 3 axis (at the position of) and the c axis extending perpendicular to the plane. From the above viewpoint, the group III nitride layer 30a is a crystal oriented in any of the a 1 axis direction, the a 2 axis direction, and the a 3 axis direction in addition to the c axis direction, that is, a group III nitride single crystal It is preferable that

また、III族窒化物層30aの熱膨張係数は、III族窒化物層30aの上に半導体層を形成する際にIII族窒化物層30aなどにクラックが発生するのを抑制する観点から、支持基板10の熱膨張係数と同じかまたは近似(両者の熱膨張係数の差が3×10-6-1以下)であるかが好ましい。 Further, the thermal expansion coefficient of the group III nitride layer 30a is supported from the viewpoint of suppressing the generation of cracks in the group III nitride layer 30a and the like when a semiconductor layer is formed on the group III nitride layer 30a. It is preferable that it is the same as or close to the thermal expansion coefficient of the substrate 10 (the difference between the thermal expansion coefficients of both is 3 × 10 −6 ° C. −1 or less).

(酸化物膜)
本実施形態のIII族窒化物複合基板1の酸化物膜20は、不純物が添加されている。ここで、不純物の濃度は、酸化物膜20において支持基板10側の第1主面20sからIII族窒化物層30a側の第2主面20tにかけて膜厚方向で変化し、第1主面20sにおける不純物の濃度は第2主面20tにおける不純物の濃度よりも高い。
(Oxide film)
Impurities are added to the oxide film 20 of the group III nitride composite substrate 1 of the present embodiment. Here, the impurity concentration in the oxide film 20 changes in the film thickness direction from the first main surface 20s on the support substrate 10 side to the second main surface 20t on the group III nitride layer 30a side, and the first main surface 20s. The concentration of impurities at is higher than the concentration of impurities at the second major surface 20t.

後述するように、III族窒化物多結晶で形成されている支持基板10と酸化物膜20との接合強度は、酸化物膜20に不純物が添加されていないときに比べて不純物が添加されその不純物の濃度が高くなる程、高くなる。また、酸化物膜20と少なくともc軸方向に配向しているIII族窒化物結晶(好ましくはIII族窒化物単結晶)で形成されているIII族窒化物層30aとの接合強度は、酸化物膜20に不純物が添加されていないときに比べて不純物が添加されその不純物の濃度が高くなる程、低くなる。   As will be described later, the bonding strength between the support substrate 10 formed of group III nitride polycrystal and the oxide film 20 is higher than that when no impurity is added to the oxide film 20. The higher the impurity concentration, the higher the impurity concentration. Further, the bonding strength between the oxide film 20 and the group III nitride layer 30a formed of a group III nitride crystal (preferably a group III nitride single crystal) oriented at least in the c-axis direction is an oxide. Compared with the case where no impurity is added to the film 20, the impurity is added and the concentration of the impurity is increased, so that it is lowered.

したがって、酸化物膜20において、支持基板10側の第1主面20sからIII族窒化物層30a側の第2主面20tにかけて膜厚方向で不純物の濃度を変化させ、第1主面20sにおける不純物の濃度を第2主面20tにおける不純物の濃度よりも高くすることにより、支持基板10と酸化物膜20との接合強度および酸化物膜20とIII族窒化物層30aとの接合強度がいずれも高いIII族窒化物複合基板1が得られる。また、酸化物膜20は、不純物が添加されることにより、導電性が高くなる。ここで、酸化物膜20における不純物の存在および濃度は、SIMS(2次イオン質量分析)法により測定される。   Therefore, in the oxide film 20, the concentration of impurities is changed in the film thickness direction from the first main surface 20s on the support substrate 10 side to the second main surface 20t on the group III nitride layer 30a side, and the first main surface 20s By making the impurity concentration higher than the impurity concentration on the second main surface 20t, the bonding strength between the support substrate 10 and the oxide film 20 and the bonding strength between the oxide film 20 and the group III nitride layer 30a are increased. Higher Group III nitride composite substrate 1 can be obtained. Further, the conductivity of the oxide film 20 is increased by adding impurities. Here, the presence and concentration of impurities in the oxide film 20 are measured by a SIMS (secondary ion mass spectrometry) method.

さらに、支持基板10と酸化物膜20との接合強度および酸化物膜20とIII族窒化物層30aとの接合強度がいずれも十分に高くする観点から、酸化物膜20は、第1主面20sにおける不純物の濃度が10質量%以下であり、第2主面20tにおける不純物の濃度が0.01質量%以上であることが好ましい。また、酸化物膜20における不純物の濃度を、膜厚方向で最も低いところ(たとえば第2主面20t)においても、0.01質量%以上とすることにより、III族窒化物複合基板1の膜厚方向における導電性が確保される。   Furthermore, from the viewpoint of sufficiently increasing the bonding strength between the support substrate 10 and the oxide film 20 and the bonding strength between the oxide film 20 and the group III nitride layer 30a, the oxide film 20 has the first main surface. The impurity concentration in 20 s is preferably 10% by mass or less, and the impurity concentration in the second main surface 20t is preferably 0.01% by mass or more. Further, by setting the concentration of impurities in oxide film 20 to 0.01% by mass or more even at the lowest position in the film thickness direction (for example, second main surface 20t), film of group III nitride composite substrate 1 is obtained. Conductivity in the thickness direction is ensured.

さらに、光透過性が高い観点から、酸化物膜20の不純物の濃度は、酸化物膜20において第1主面20sから第2主面20tにかけて膜厚方向で単調に変化することが好ましい。ここで、単調に変化するとは、酸化物膜20の膜厚方向の任意の位置x1、x2(x1<x2)における不純物の濃度f(x1)、f(x2)において、f(x1)<f(x2)(単調増加)またはf(x1)>f(x2)(単調減少)であることをいう。 Further, from the viewpoint of high light transmittance, it is preferable that the impurity concentration of the oxide film 20 changes monotonously in the film thickness direction from the first main surface 20s to the second main surface 20t in the oxide film 20. Here, the monotonous change means that the impurity concentrations f (x 1 ) and f (x 2 ) at arbitrary positions x 1 and x 2 (x 1 <x 2 ) in the film thickness direction of the oxide film 20 are: It means that f (x 1 ) <f (x 2 ) (monotonic increase) or f (x 1 )> f (x 2 ) (monotonic decrease).

ここで、酸化物膜20は、支持基板10とIII族窒化物層30aとの間の接合強度を高めるものであれば特に制限はないが、安価に成膜できる観点からSiO2膜などが好ましく挙げられ、その酸化物膜の屈折率がGaNなどのIII族窒化物結晶の屈折率に近く、酸化物膜とIII族窒化物結晶との界面で高い光透過性を有する観点からTiO2膜、SrTiO3膜などが好ましく挙げられ、その酸化物膜を損なうことなく安定した不純物の添加ができる観点から、TiO2膜には不純物としてNb、La、Sb、Mo、Fe、Al、Sn、Pt、I、B、Nなどが添加されることが好ましく、SrTiO3膜には不純物としてLa、Nb、Sb、Mo、Fe、Al、Sn、Pt、I、B、Nなどが添加されることが好ましい。 Here, the oxide film 20 is not particularly limited as long as it increases the bonding strength between the support substrate 10 and the group III nitride layer 30a, but a SiO 2 film or the like is preferable from the viewpoint of being able to form the film at a low cost. TiO 2 film from the viewpoint that the refractive index of the oxide film is close to the refractive index of a group III nitride crystal such as GaN, and has high optical transparency at the interface between the oxide film and the group III nitride crystal, such as SrTiO 3 film is preferably exemplified, Nb from the viewpoint of the addition of a stable impurity without sacrificing the oxide film, as an impurity in the TiO 2 film, La, Sb, Mo, Fe , Al, Sn, Pt, I, B, N, etc. are preferably added, and La, Nb, Sb, Mo, Fe, Al, Sn, Pt, I, B, N, etc. are preferably added as impurities to the SrTiO 3 film. .

[III族窒化物複合基板の製造方法]
図2を参照して、本実施形態のIII族窒化物複合基板1を製造する方法は、特に制限はないが、効率よく製造する観点から、たとえば、以下の方法が、好適に挙げられる。
[Method for producing group III nitride composite substrate]
Referring to FIG. 2, the method for manufacturing group III nitride composite substrate 1 of the present embodiment is not particularly limited, but from the viewpoint of efficiently manufacturing, for example, the following method is preferably exemplified.

すなわち、III族窒化物複合基板1の製造方法は、支持基板10の主面10m上に酸化物膜20aを形成する工程(図2(A))と、III族窒化物基板30の主面30n上に酸化物膜20bを形成し、III族窒化物基板30の主面30nから所定の深さの位置にイオン注入領域30iを形成する工程(図2(B))と、支持基板10に形成された酸化物膜20aとIII族窒化物基板30に形成された酸化物膜20bとを貼り合わせる工程(図2(C))と、III族窒化物基板30をイオン注入領域30iにおいてIII族窒化物層30aと残りのIII族窒化物基板30bとに分離することにより、支持基板10上に酸化物膜20を介在させてIII族窒化物層30aが接合されたIII族窒化物複合基板を形成する工程(図2(D))と、を含む。   That is, the manufacturing method of the group III nitride composite substrate 1 includes the step of forming the oxide film 20a on the main surface 10m of the support substrate 10 (FIG. 2A) and the main surface 30n of the group III nitride substrate 30. An oxide film 20b is formed thereon, and a step (FIG. 2B) of forming an ion implantation region 30i at a predetermined depth from the main surface 30n of the group III nitride substrate 30 is formed on the support substrate 10. A step of bonding the formed oxide film 20a and the oxide film 20b formed on the group III nitride substrate 30 (FIG. 2C), and the group III nitride substrate 30 in the ion implantation region 30i. By separating the material layer 30a and the remaining group III nitride substrate 30b, a group III nitride composite substrate in which the group III nitride layer 30a is bonded to the support substrate 10 with the oxide film 20 interposed therebetween is formed. Step (Fig. 2 ( )) And, including.

(支持基板に酸化物膜を形成する工程)
図2(A)を参照して、支持基板10の主面10m上に酸化物膜20aを形成する工程において、酸化物膜20aを形成する方法は、特に制限はなく、スパッタ法、パルスレーザ堆積法、MBE(分子線成長)法、電子線蒸着法、化学気相成長法などが好適である。また、酸化物膜の形成中に、不純物の添加量を変化させることにより、酸化物膜の膜厚方向において不純物の濃度を変化させることができる。支持基板10としては、半導体層形成の際にコストを低減しクラックの発生を抑制する観点から、III族窒化物多結晶支持基板が用いられ、特に、III族窒化物焼結体が好適に用いられる。また、酸化物膜20aとしては、特に制限はなく、SiO2膜、TiO2膜、SrTiO3膜などが好適に形成される。
(Step of forming an oxide film on the support substrate)
Referring to FIG. 2A, in the step of forming the oxide film 20a on the main surface 10m of the support substrate 10, the method for forming the oxide film 20a is not particularly limited, and a sputtering method, pulse laser deposition is performed. The method, MBE (molecular beam growth) method, electron beam evaporation method, chemical vapor deposition method and the like are suitable. Further, the impurity concentration can be changed in the thickness direction of the oxide film by changing the addition amount of the impurity during the formation of the oxide film. As the support substrate 10, a group III nitride polycrystalline support substrate is used from the viewpoint of reducing the cost and suppressing the occurrence of cracks when forming the semiconductor layer, and in particular, a group III nitride sintered body is preferably used. It is done. The oxide film 20a is not particularly limited, and a SiO 2 film, a TiO 2 film, a SrTiO 3 film, or the like is preferably formed.

(III族窒化物基板に酸化物膜を形成しイオン注入領域を形成する工程)
図2(B)を参照して、III族窒化物基板30の主面30n上に酸化物膜20bを形成し、III族窒化物基板30の主面30nから所定の深さの位置にイオン注入領域30iを形成する工程において、酸化物膜20bを形成する方法は、特に制限はなく、上記の酸化物膜20aを形成する方法と同様である。また、III族窒化物基板30の主面30nから所定の深さの位置にイオン注入領域30iを形成する方法は、III族窒化物基板30の主面30n上に形成された酸化物膜20b側からイオンIを注入することにより行なう。注入するイオンIは、イオン注入されるIII族窒化物層30aの結晶性の低下を抑制する観点から、質量の小さいイオンが好ましく、たとえば水素イオン、ヘリウムイオンなどが好ましい。また、イオンIが注入される所定の深さは、500nm以上1000μm以下が好ましい。
(Process for forming an ion implantation region by forming an oxide film on a group III nitride substrate)
Referring to FIG. 2B, oxide film 20b is formed on main surface 30n of group III nitride substrate 30, and ion implantation is performed at a predetermined depth from main surface 30n of group III nitride substrate 30. In the step of forming the region 30i, the method for forming the oxide film 20b is not particularly limited, and is the same as the method for forming the oxide film 20a. In addition, the method of forming the ion implantation region 30i at a predetermined depth from the main surface 30n of the group III nitride substrate 30 is based on the oxide film 20b side formed on the main surface 30n of the group III nitride substrate 30. Ion I is implanted from The ions I to be implanted are preferably ions with a small mass, for example, hydrogen ions, helium ions, etc., from the viewpoint of suppressing a decrease in crystallinity of the group III nitride layer 30a to be ion implanted. Further, the predetermined depth at which the ions I are implanted is preferably 500 nm or more and 1000 μm or less.

ここで、III族窒化物基板30は、後工程における分離によりIII族窒化物層30aを形成させるものであり、III族窒化物層30aと同様に、少なくともc軸方向に配向しているIII族窒化物結晶(好ましくはIII族窒化物単結晶)で形成されている。かかるIII族窒化物基板を準備する方法は、特に制限はないが、結晶性のよいIII族窒化物基板を得る観点から、HVPE(ハイドライド気相成長)法、MOVPE(有機金属気相成長)法、MBE(分子線成長)法、昇華法などの気相法、フラックス法、高窒素圧溶液法などの液相法などが好適である。   Here, the group III nitride substrate 30 is to form the group III nitride layer 30a by separation in a later step, and like the group III nitride layer 30a, the group III nitride is oriented at least in the c-axis direction. It is formed of a nitride crystal (preferably a group III nitride single crystal). The method for preparing such a group III nitride substrate is not particularly limited, but from the viewpoint of obtaining a group III nitride substrate having good crystallinity, the HVPE (hydride vapor phase epitaxy) method, the MOVPE (organometallic vapor phase epitaxy) method. A vapor phase method such as MBE (molecular beam growth) method and sublimation method, a liquid phase method such as a flux method and a high nitrogen pressure solution method are suitable.

(支持基板とIII族窒化物基板との貼り合わせ工程)
図2(C)を参照して、支持基板10に形成された酸化物膜20aとIII族窒化物基板30に形成された酸化物膜20bとを貼り合わせる工程において、その貼り合わせ方法は、特に制限はなく、貼り合わせ面を洗浄しそのまま貼り合わせた後600℃〜1200℃程度に昇温して接合する直接接合法、貼り合わせ面を洗浄しプラズマやイオンなどで活性させた後に室温(たとえば25℃)〜400℃程度の低温で接合する表面活性化法などが好適である。かかる貼り合わせにより、酸化物膜20aと酸化物膜20bとが接合により一体化して酸化物膜20が形成され、支持基板10とIII族窒化物基板30とが酸化物膜20を介在させて接合される。
(Bonding process of support substrate and group III nitride substrate)
Referring to FIG. 2C, in the step of bonding the oxide film 20a formed on the support substrate 10 and the oxide film 20b formed on the group III nitride substrate 30, the bonding method is particularly There is no limitation, a direct bonding method in which the bonding surface is washed and bonded together, and then heated to about 600 ° C. to 1200 ° C. for bonding, and the bonding surface is cleaned and activated with plasma, ions, or the like at room temperature (for example, A surface activation method for bonding at a low temperature of about 25 ° C. to 400 ° C. is preferable. By the bonding, the oxide film 20a and the oxide film 20b are integrated by bonding to form the oxide film 20, and the support substrate 10 and the group III nitride substrate 30 are bonded with the oxide film 20 interposed therebetween. Is done.

(III族窒化物複合基板の形成工程)
図2(D)を参照して、III族窒化物基板30をイオン注入領域30iにおいてIII族窒化物層30aと残りのIII族窒化物基板30bとに分離することにより、支持基板10上に酸化物膜20を介在させてIII族窒化物層30aが接合されたIII族窒化物複合基板1を形成する工程において、III族窒化物基板30をイオン注入領域30iにおいて分離する方法は、III族窒化物基板30のイオン注入領域30iに何らかのエネルギーを与える方法であれば特に制限はなく、イオン注入領域30iに、応力を加える方法、熱を加える方法、光を照射する方法、および超音波を印加する方法の少なくともいずれかの方法が可能である。
(Group III nitride composite substrate formation process)
Referring to FIG. 2D, the group III nitride substrate 30 is separated into a group III nitride layer 30a and a remaining group III nitride substrate 30b in the ion implantation region 30i, thereby oxidizing the support substrate 10 on the substrate. The method of separating the group III nitride substrate 30 in the ion implantation region 30i in the step of forming the group III nitride composite substrate 1 to which the group III nitride layer 30a is bonded with the material film 20 interposed therebetween is a group III nitridation method. There is no particular limitation as long as it is a method for applying some energy to the ion implantation region 30i of the physical substrate 30, and a method of applying stress, a method of applying heat, a method of irradiating light, and an ultrasonic wave are applied to the ion implantation region 30i. At least one of the methods is possible.

かかるイオン注入領域30iは、注入されたイオンにより脆化しているため、上記エネルギーを受けることにより、III族窒化物基板30は、支持基板10上の酸化物膜20上に貼りあわされたIII族窒化物層30aと、残りのIII族窒化物基板30bと、に容易に分離される。   Since the ion-implanted region 30i is embrittled by the implanted ions, the group III nitride substrate 30 is subjected to the above-described energy, so that the group III nitride substrate 30 bonded to the oxide film 20 on the support substrate 10 is used. The nitride layer 30a and the remaining group III nitride substrate 30b are easily separated.

上記のようにして、支持基板10上の酸化物膜20上にIII族窒化物層30aを形成することにより、支持基板10と、支持基板10上に配置されている酸化物膜20と、酸化物膜20上に配置されているIII族窒化物層30aと、を含むIII族窒化物複合基板1が得られる。   By forming the group III nitride layer 30a on the oxide film 20 on the support substrate 10 as described above, the support substrate 10, the oxide film 20 disposed on the support substrate 10, and the oxidation The group III nitride composite substrate 1 including the group III nitride layer 30a disposed on the material film 20 is obtained.

上記のIII族窒化物複合基板1の製造方法においては、イオン注入法を用いてIII族窒化物層30aを形成する場合を説明したが、支持基板上の酸化物膜に、イオンを注入していないIII族窒化物基板を貼り合わせた後、III族窒化物結晶体をその貼り合わせた主表面から所定の深さの面で分離することにより、III族窒化物層を形成することもできる。この場合、III族窒化物基板を分離する方法として、特に制限はなく、ワイヤーソー、内周刃、外周刃などを用いた切断などの方法を用いることができる。   In the manufacturing method of the group III nitride composite substrate 1 described above, the case where the group III nitride layer 30a is formed using the ion implantation method has been described. However, ions are implanted into the oxide film on the support substrate. It is also possible to form a group III nitride layer by separating a group III nitride crystal from a main surface to which the group III nitride crystal body has been bonded and having a predetermined depth after the group III nitride substrate is bonded. In this case, the method for separating the group III nitride substrate is not particularly limited, and a method such as cutting using a wire saw, an inner peripheral blade, an outer peripheral blade or the like can be used.

(参考例A)
図1を参照して、多結晶(焼結体)で形成される直径2インチ(50.8mm)で厚さ500μmのGaN支持基板(支持基板10)、直径2インチ(50.8mm)で厚さが600nmのTiO2膜(酸化物膜20)および単結晶で形成される直径2インチ(50.8mm)で厚さが300nmのGaN層(III族窒化物層30a)がこの順に接合されたGaN複合基板(III族窒化物複合基板1)について、TiO2膜(酸化物膜20)中のNb(不純物)の濃度と、TiO2膜(酸化物膜20)とGaN支持基板(支持基板10)との接合強度との関係、ならびに、TiO2膜(酸化物膜20)中のNb(不純物)の濃度と、TiO2膜(酸化物膜20)とGaN層(III族窒化物層30a)との接合強度との関係を、以下のようにして調べた。
(Reference Example A)
Referring to FIG. 1, a GaN support substrate (support substrate 10) having a diameter of 2 inches (50.8 mm) and a thickness of 500 μm formed of polycrystal (sintered body), and a thickness of 2 inches (50.8 mm). A TiO 2 film (oxide film 20) having a thickness of 600 nm and a GaN layer (group III nitride layer 30a) having a diameter of 2 inches (50.8 mm) and a thickness of 300 nm formed of a single crystal are joined in this order. for GaN composite substrate (III-nitride composite substrate 1), a TiO 2 film (oxide film 20) and the concentration of Nb (impurities) in, GaN supporting substrate and TiO 2 film (oxide film 20) (supporting substrate 10 ) relationship between the bonding strength between, and the concentration of Nb (impurities) in the TiO 2 film (oxide film 20), a TiO 2 film (oxide film 20) and the GaN layer (III-nitride layer 30a) The relationship with the bonding strength is as follows: It was examined Te.

1.酸化物膜中の不純物の濃度と、酸化物膜と支持基板との接合強度と、の関係
(1)サンプルの作製
図3を参照して、以下のようにして、酸化物膜20と支持基板10との接合強度を測定するためのサンプルを作製した。
1. Relationship between impurity concentration in oxide film and bonding strength between oxide film and supporting substrate (1) Production of sample Referring to FIG. 3, oxide film 20 and supporting substrate are as follows. A sample for measuring the bonding strength with No. 10 was prepared.

まず、HP(ホットプレス)法により形成された多結晶(焼結体)である直径2インチ(50.8mm)で厚さ500μmのGaN支持基板(支持基板10)の主面上に、スパッタ法により厚さ600nmのTiO2膜(酸化物膜20)を形成させることにより、GaN支持基板(支持基板10)の主面上にTiO2膜(酸化物膜20)が形成された積層基板1Sを作製した。ここで、成長させるTiO2膜(酸化物膜)のNb(不純物)の濃度が、0質量%、0.01質量%、0.1質量%、1質量%および10質量%の5種類の積層基板1Sを作製した。 First, a sputtering method is performed on the main surface of a GaN support substrate (support substrate 10) having a diameter of 2 inches (50.8 mm) and a thickness of 500 μm, which is a polycrystal (sintered body) formed by an HP (hot press) method. By forming a TiO 2 film (oxide film 20) having a thickness of 600 nm by the above, a laminated substrate 1S in which the TiO 2 film (oxide film 20) is formed on the main surface of the GaN support substrate (support substrate 10) is formed. Produced. Here, five kinds of stacks in which the concentration of Nb (impurity) of the TiO 2 film (oxide film) to be grown is 0% by mass, 0.01% by mass, 0.1% by mass, 1% by mass, and 10% by mass. A substrate 1S was produced.

次いで、得られた積層基板1Sを12mm×12mmの大きさにチップ化することにより、1種類の積層基板1Sについて9個のサンプルを得た。   Next, nine samples were obtained for one type of laminated substrate 1S by chipping the obtained laminated substrate 1S into a size of 12 mm × 12 mm.

(2)サンプルの接合強度の測定
上記サンプルのGaN支持基板(支持基板)およびTiO2膜(酸化物膜)をそれぞれ引張試験機の治具にエポキシ接着剤を用いて固定し、GaN支持基板(支持基板)とTiO2膜(酸化物膜)とを引張ることにより、GaN支持基板(支持基板)とTiO2膜(酸化物膜)との間の接合強度(9個のサンプルの平均値、以下同じ)を測定した。各種の積層基板1Sのサンプルの接合強度は、TiO2膜(酸化物膜)のNb(不純物)の濃度が0質量%のときの積層基板1Sのサンプルの接合強度を1.00としたときの相対接合強度として算出した。
(2) Measurement of bonding strength of sample The GaN support substrate (support substrate) and TiO 2 film (oxide film) of the above sample were each fixed to a jig of a tensile tester using an epoxy adhesive, and a GaN support substrate ( by supporting substrate) and pulling the TiO 2 film (oxide film), the average value of the bonding strength (nine samples between the GaN supporting substrate (supporting substrate) and TiO 2 film (oxide film), the following The same). The bonding strength of the samples of various laminated substrates 1S is obtained when the bonding strength of the samples of the laminated substrates 1S when the Nb (impurity) concentration of the TiO 2 film (oxide film) is 0% by mass is 1.00. The relative bonding strength was calculated.

上記の引張試験において、上記のいずれの積層基板1Sのいずれのサンプルも、GaN支持基板(支持基板)とTiO2膜(酸化物膜)との界面または界面の近傍で破断した。 In the tensile test, any sample of any one of the laminated substrates 1S was broken at or near the interface between the GaN support substrate (support substrate) and the TiO 2 film (oxide film).

また、各種積層基板1Sの接合強度は、Nb(不純物)の濃度が0質量%のとき1.00、Nb(不純物)の濃度が0.01質量%のとき1.01、Nb(不純物)の濃度が0.1質量%のとき1.02、Nb(不純物)の濃度が1質量%のとき1.40、Nb(不純物)の濃度が10質量%のとき1.10であった。すなわち、Nb(不純物)の濃度が0質量%のときに比べて、Nb(不純物)の濃度が0.01質量%〜10質量%のときは、TiO2膜(酸化物膜)とGaN支持基板(支持基板)との間の接合強度が高くなった。結果を表1にまとめた。 The bonding strength of the various laminated substrates 1S is 1.00 when the concentration of Nb (impurity) is 0% by mass, 1.01 when the concentration of Nb (impurity) is 0.01% by mass, and Nb (impurity). The concentration was 1.02 when the concentration was 0.1% by mass, 1.40 when the concentration of Nb (impurity) was 1% by mass, and 1.10 when the concentration of Nb (impurity) was 10% by mass. That is, when the concentration of Nb (impurity) is 0.01% by mass to 10% by mass compared to when the concentration of Nb (impurity) is 0% by mass, the TiO 2 film (oxide film) and the GaN support substrate The bonding strength with the (support substrate) was increased. The results are summarized in Table 1.

2.酸化物膜中の不純物の濃度と、酸化物膜とIII族窒化物層との接合強度と、の関係
(1)サンプルの作製
図4を参照して、以下のようにして、酸化物膜とIII族窒化物層との接合強度を測定するためのサンプルを作製した。
2. Relationship between impurity concentration in oxide film and bonding strength between oxide film and group III nitride layer (1) Preparation of sample Referring to FIG. A sample for measuring the bonding strength with the group III nitride layer was prepared.

まず、直径2インチ(50.8mm)で厚さ500μmのサファイア支持基板100の主面上に、スパッタ法により厚さ300nmのTiO2膜(酸化物膜20a)を形成した。ここで、成長させるTiO2膜(酸化物膜20a)は、そのNb(不純物)の濃度が、0質量%、0.01質量%、0.1質量%、1質量%および10質量%の5種類とした。 First, a 300 nm thick TiO 2 film (oxide film 20a) was formed by sputtering on the main surface of a sapphire support substrate 100 having a diameter of 2 inches (50.8 mm) and a thickness of 500 μm. Here, the TiO 2 film to be grown (oxide film 20a) has a Nb (impurity) concentration of 5% of 0 mass%, 0.01 mass%, 0.1 mass%, 1 mass%, and 10 mass%. Kind.

次に、HVPE法により形成された単結晶である直径2インチ(50.8mm)で厚さ500μmのGaN基板(III族窒化物基板30)のN原子表面である主面上に、スパッタ法により厚さ300nmのTiO2膜(酸化物膜20b)を形成させた。ここで、成長させるTiO2膜(酸化物膜20b)は、そのNb(不純物)の濃度が、0質量%、0.01質量%、0.1質量%、1質量%および10質量%の5種類とした。 Next, the main surface, which is the N atom surface of a GaN substrate (group III nitride substrate 30) having a diameter of 2 inches (50.8 mm) and a thickness of 500 μm, which is a single crystal formed by HVPE, is sputtered. A TiO 2 film (oxide film 20b) having a thickness of 300 nm was formed. Here, the TiO 2 film to be grown (oxide film 20b) has a Nb (impurity) concentration of 5% of 0 mass%, 0.01 mass%, 0.1 mass%, 1 mass%, and 10 mass%. Kind.

次いで、上記5種類のTiO2膜(酸化物膜20b)が形成されたGaN基板(III族窒化物基板30)のTiO2膜(酸化物膜20b)側から水素イオンを注入して、GaN基板(III族窒化物基板)のN原子表面である主面から300nmの深さの位置にイオン注入領域を形成した。 Next, hydrogen ions are implanted from the TiO 2 film (oxide film 20b) side of the GaN substrate (Group III nitride substrate 30) on which the five types of TiO 2 films (oxide film 20b) are formed, and the GaN substrate is obtained. An ion-implanted region was formed at a depth of 300 nm from the main surface which is the N atom surface of (Group III nitride substrate).

次に、サファイア支持基板100に形成されたTiO2膜(酸化物膜20a)と、イオン注入領域が形成されたGaN基板(III族窒化物基板)に形成されたTiO2膜(酸化物膜20b)とを、貼り合わせた。ここで、貼り合わせるTiO2膜(酸化物膜20aと酸化物膜20b)は、それらに含まれるNb濃度が互いに同じであるもの同士とした。 Next, a TiO 2 film formed on the sapphire support substrate 100 (oxide film 20a), TiO 2 film (oxide film 20b formed on the GaN substrate ion implantation region is formed (III-nitride substrate) ). Here, the TiO 2 films (the oxide film 20a and the oxide film 20b) to be bonded together have the same Nb concentration in them.

次に、上記で貼り合わせた基板を、300℃で2時間熱処理することにより、貼り合わせた基板の接合強度を高めるとともに、GaN基板(III族窒化物基板)をイオン注入領域で分離することにより、サファイア支持基板100上にTiO2膜(酸化物膜20)およびGaN層(III族窒化物層30a)がこの順に接合され、TiO2膜(酸化物膜20)のNb(不純物)濃度が、それぞれ0質量%、0.01質量%、0.1質量%、1質量%および10質量%の5種類である積層基板1Tを作製した。 Next, the bonded substrates are heat-treated at 300 ° C. for 2 hours to increase the bonding strength of the bonded substrates and to separate the GaN substrate (Group III nitride substrate) in the ion implantation region. The TiO 2 film (oxide film 20) and the GaN layer (group III nitride layer 30a) are joined in this order on the sapphire support substrate 100, and the Nb (impurity) concentration of the TiO 2 film (oxide film 20) is 5 types of laminated substrates 1T, each of 0% by mass, 0.01% by mass, 0.1% by mass, 1% by mass and 10% by mass, were produced.

(2)サンプルの接合強度の測定
上記サンプルのサファイア支持基板100およびGaN層(III族窒化物層30a)をそれぞれ引張試験機の治具にエポキシ接着剤を用いて固定し、サファイア支持基板100とGaN層(III族窒化物層30a)とを引張ることにより、GaN層(III族窒化物層30a)とTiO2膜(酸化物膜20)との間の接合強度を測定した。各種の積層基板1Tのサンプルの接合強度は、TiO2膜(酸化物膜)のNb(不純物)の濃度が0質量%のときの積層基板1Tのサンプルの接合強度を1.00としたときの相対接合強度として算出した。
(2) Measurement of bonding strength of sample The sapphire support substrate 100 and the GaN layer (Group III nitride layer 30a) of the above sample are each fixed to a jig of a tensile tester using an epoxy adhesive, and the sapphire support substrate 100 and The bonding strength between the GaN layer (Group III nitride layer 30a) and the TiO 2 film (oxide film 20) was measured by pulling the GaN layer (Group III nitride layer 30a). The bonding strength of the samples of the various laminated substrates 1T is obtained when the bonding strength of the samples of the laminated substrate 1T when the Nb (impurity) concentration of the TiO 2 film (oxide film) is 0% by mass is 1.00. The relative bonding strength was calculated.

上記の引張試験において、上記のいずれの積層基板1Tのいずれのサンプルも、GaN層(III族窒化物層30a)とTiO2膜(酸化物膜20)との界面または界面の近傍で破断した。 In the tensile test, any sample of any one of the multilayer substrates 1T was broken at or near the interface between the GaN layer (Group III nitride layer 30a) and the TiO 2 film (oxide film 20).

また、各種積層基板1Tの接合強度は、Nb(不純物)の濃度が0質量%のとき1.00、Nb(不純物)の濃度が0.01質量%のとき0.78、Nb(不純物)の濃度が0.1質量%のとき0.72、Nb(不純物)の濃度が1質量%のとき0.56、Nb(不純物)の濃度が10質量%のとき0.55であった。すなわち、Nb(不純物)の濃度が0質量%のときに比べて、Nb(不純物)の濃度が0.01質量%から10質量%と高くなる程、TiO2膜(酸化物膜)とGaN層(III族窒化物層)との間の接合強度が低くなった。結果を表1にまとめた。 Further, the bonding strength of the various laminated substrates 1T is 1.00 when the concentration of Nb (impurity) is 0 mass%, 0.78 when the concentration of Nb (impurity) is 0.01 mass%, and Nb (impurity). The concentration was 0.72 when the concentration was 0.1% by mass, 0.56 when the concentration of Nb (impurity) was 1% by mass, and 0.55 when the concentration of Nb (impurity) was 10% by mass. That is, as the Nb (impurity) concentration increases from 0.01% by mass to 10% by mass compared to when the Nb (impurity) concentration is 0% by mass, the TiO 2 film (oxide film) and the GaN layer The bonding strength with the (Group III nitride layer) was low. The results are summarized in Table 1.

Figure 2013084900
Figure 2013084900

図1および表1を参照して、GaN支持基板(支持基板10)、TiO2膜(酸化物膜20)およびGaN層(III族窒化物層30a)がこの順に接合されたGaN複合基板(III族窒化物複合基板1)において、TiO2膜(酸化物膜20)とGaN支持基板(支持基板10)との接合強度を高めるにはTiO2膜(酸化物膜20)のNb(不純物)濃度を高くすることが有効であり(特に、不純物濃度を1質量%程度とするのが好ましく)、TiO2膜(酸化物膜20)とGaN層(III族窒化物層30a)との接合強度を高めるにはTiO2膜(酸化物膜20)のNb(不純物)濃度を低くすることが有効であることがわかった。 Referring to FIG. 1 and Table 1, a GaN composite substrate (III) in which a GaN support substrate (support substrate 10), a TiO 2 film (oxide film 20), and a GaN layer (group III nitride layer 30a) are joined in this order. In the group nitride composite substrate 1), the Nb (impurity) concentration of the TiO 2 film (oxide film 20) is increased in order to increase the bonding strength between the TiO 2 film (oxide film 20) and the GaN support substrate (support substrate 10). Is effective (especially, the impurity concentration is preferably about 1% by mass), and the bonding strength between the TiO 2 film (oxide film 20) and the GaN layer (group III nitride layer 30a) is increased. It has been found that it is effective to lower the Nb (impurity) concentration of the TiO 2 film (oxide film 20) in order to increase it.

(実施例A)
1.支持基板の主面上への酸化物膜の形成
図2(A)を参照して、HP法により形成された多結晶(焼結体)である直径2インチ(50.8mm)で厚さ500μmのGaN支持基板(支持基板10)の主面上に、スパッタ法により厚さ300nmのTiO2膜(酸化物膜20a)を形成させた。ここで、成長させるTiO2膜(酸化物膜20a)は、そのNb(不純物)の濃度を、GaN支持基板(支持基板10)側から膜厚方向に、1質量%から0.5質量%(例A1)、1質量%から0.5質量%(例A2)、10質量%から5質量%(例A3)、1質量%から10質量%(例A4)と単調に変化させて、上記例A1から例A4の4種類とした。
(Example A)
1. Formation of Oxide Film on Main Surface of Support Substrate Referring to FIG. 2 (A), a polycrystal (sintered body) formed by the HP method has a diameter of 2 inches (50.8 mm) and a thickness of 500 μm. A TiO 2 film (oxide film 20a) having a thickness of 300 nm was formed on the main surface of the GaN support substrate (support substrate 10) by sputtering. Here, the TiO 2 film (oxide film 20a) to be grown has a Nb (impurity) concentration of 1% by mass to 0.5% by mass in the film thickness direction from the GaN support substrate (support substrate 10) side. Example A1) 1% to 0.5% by weight (Example A2) 10% to 5% by weight (Example A3) 1% to 10% by weight (Example A4) There were four types from A1 to Example A4.

2.III族窒化物基板の主面上への酸化物膜の形成およびイオン注入領域の形成
図2(B)を参照して、HVPE法により形成された単結晶である直径2インチ(50.8mm)で厚さ500μmのGaN基板(III族窒化物基板30)のN原子表面である主面30n上に、スパッタ法により厚さ300nmのTiO2膜(酸化物膜20b)を形成させた。ここで、成長させるTiO2膜(酸化物膜20b)は、そのNb(不純物)の濃度を、GaN基板(III族窒化物基板30)側から膜厚方向に、0.01質量%から0.5質量%(例A1)、0質量%から0.5質量%(例A2)、0.01質量%から5質量%(例A3)、0.01質量%から10質量%(例A4)と単調に変化させて、上記例A1から例A4の4種類とした。
2. Formation of Oxide Film on Main Surface of Group III Nitride Substrate and Formation of Ion Implanted Region Referring to FIG. 2B, a single crystal formed by HVPE method has a diameter of 2 inches (50.8 mm). Then, a 300 nm thick TiO 2 film (oxide film 20b) was formed on the main surface 30n, which is the N atom surface of the 500 μm thick GaN substrate (group III nitride substrate 30). Here, the TiO 2 film (oxide film 20b) to be grown has a concentration of Nb (impurities) of 0.01% by mass to 0.00% in the film thickness direction from the GaN substrate (group III nitride substrate 30) side. 5 wt% (Example A1), 0 wt% to 0.5 wt% (Example A2), 0.01 wt% to 5 wt% (Example A3), 0.01 wt% to 10 wt% (Example A4) Monotonous changes were made to the four types of Examples A1 to A4.

次いで、上記5種類のTiO2膜(酸化物膜20b)が形成されたGaN基板(III族窒化物基板30)のTiO2膜(酸化物膜20b)側から水素イオンを注入して、GaN基板(III族窒化物基板)のN原子表面である主面から300nmの深さの位置にイオン注入領域を形成した。 Next, hydrogen ions are implanted from the TiO 2 film (oxide film 20b) side of the GaN substrate (Group III nitride substrate 30) on which the five types of TiO 2 films (oxide film 20b) are formed, and the GaN substrate is obtained. An ion-implanted region was formed at a depth of 300 nm from the main surface which is the N atom surface of (Group III nitride substrate).

3.支持基板とIII族窒化物基板との貼り合わせ
図2(C)を参照して、例A1から例A4のそれぞれにおいて、GaN支持基板(支持基板10)に形成されたTiO2膜(酸化物膜20a)と、イオン注入領域が形成されたGaN基板(III族窒化物基板)に形成されたTiO2膜(酸化物膜20b)とを、貼り合わせた。
3. Bonding of Support Substrate and Group III Nitride Substrate With reference to FIG. 2C, in each of Examples A1 to A4, a TiO 2 film (oxide film) formed on the GaN support substrate (support substrate 10) 20a) and a TiO 2 film (oxide film 20b) formed on the GaN substrate (group III nitride substrate) on which the ion implantation region was formed were bonded together.

4.III族窒化物複合基板の形成
図2(D)を参照して、上記で貼り合わせた基板を、300℃で2時間熱処理することにより、貼り合わせた基板の接合強度を高めるとともに、GaN基板(III族窒化物基板)をイオン注入領域で分離することにより、例A1〜例A4について、GaN支持基板(支持基板10)上にTiO2膜(酸化物膜20)およびGaN層(III族窒化物層30a)がこの順に接合されたGaN複合基板(III族窒化物複合基板1)を作製した。
4). Formation of Group III Nitride Composite Substrate Referring to FIG. 2D, the bonded substrate is heat-treated at 300 ° C. for 2 hours to increase the bonding strength of the bonded substrate and to increase the bonding strength of the GaN substrate ( By separating the group III nitride substrate) in the ion implantation region, for example A1 to example A4, a TiO 2 film (oxide film 20) and a GaN layer (group III nitride) on the GaN support substrate (support substrate 10). A GaN composite substrate (Group III nitride composite substrate 1) in which the layers 30a) were joined in this order was produced.

例A1〜例A4のGaN複合基板(III族窒化物複合基板1)は、TiO2膜(酸化物膜20)のNb(不純物)の濃度が、TiO2膜(酸化物膜20)の支持基板10側の第1主面20sからIII族窒化物層30a側の第2主面20tにかけて膜厚方向に、1質量%から0.01質量%まで単調に変化し(例A1)、1質量%から0質量%まで単調に変化し(例A2)、10質量%から0.01質量%まで単調に変化し(例A3)、1質量%から10質量%を経て0.01質量%まで極大値を有するように変化していた(例A4)。 Example GaN composite substrate A1~ Example A4 (III-nitride composite substrate 1), the concentration of Nb (impurities) of the TiO 2 film (oxide film 20), the supporting substrate of the TiO 2 film (oxide film 20) It changes monotonically from 1% by mass to 0.01% by mass in the film thickness direction from the first main surface 20s on the 10 side to the second main surface 20t on the group III nitride layer 30a side (Example A1), 1% by mass. 1% to 0% by mass (Example A2), 10% to 0.01% by mass monotonically (Example A3), 1% to 10% by mass and 0.01% by mass maximum (Example A4).

5.III族窒化物複合基板の物性
上記参考例Aにおける接合強度の値を考慮すると、例A1〜例A4のGaN複合基板(III族窒化物複合基板1)におけるTiO2膜(酸化物膜20)とGaN支持基板(支持基板10)との接合強度およびTiO2膜(酸化物膜20)とGaN層(III族窒化物層30a)との接合強度は、それぞれ、1.40および0.78(例A1)、1.40および1.00(例A2)、1.10および0.78(例A3)、1.40および0.78(例A4)と、いずれも高くなった。結果を表2に示した。
5. Physical Properties of Group III Nitride Composite Substrate Considering the bonding strength value in Reference Example A above, the TiO 2 film (oxide film 20) in GaN composite substrate (Group III nitride composite substrate 1) of Examples A1 to A4 and The bonding strength between the GaN supporting substrate (supporting substrate 10) and the bonding strength between the TiO 2 film (oxide film 20) and the GaN layer (Group III nitride layer 30a) are 1.40 and 0.78 (examples), respectively. A1), 1.40 and 1.00 (Example A2), 1.10 and 0.78 (Example A3), 1.40 and 0.78 (Example A4) were all high. The results are shown in Table 2.

また、例A1〜例A4のGaN複合基板(III族窒化物複合基板1)の膜厚保方向の比抵抗(電気抵抗率)は、ピコアンペアメータにより測定したところ、例A1が2.8×102Ωcm、例A2が8.9×106Ωcm、例A3が6.5×10-1Ωcm、例A4が8.7×101Ωcmあり、例A2以外は高い導電性を示した。結果を表2に示した。例A2のGaN複合基板は、TiO2膜(酸化物膜20)のGaN層(III族窒化物層30a)側の主面におけるNb(不純物)の濃度が0質量%であったため、膜厚方向の導電性が極めて低くなったものと考えられる。また、例A3のGaN複合基板は、比抵抗が最も小さくなった。これは、TiO2膜(酸化物膜20)のNb濃度が10〜0.01質量%でありTiO2膜全体としてのNb濃度が高かったためと考えられる。 Moreover, when the specific resistance (electrical resistivity) in the film thickness maintaining direction of the GaN composite substrates (Group III nitride composite substrate 1) of Examples A1 to A4 was measured by a picoampere meter, Example A1 was 2.8 × 10. 2 Ωcm, Example A2 was 8.9 × 10 6 Ωcm, Example A3 was 6.5 × 10 −1 Ωcm, and Example A4 was 8.7 × 10 1 Ωcm. Except for Example A2, the samples exhibited high conductivity. The results are shown in Table 2. In the GaN composite substrate of Example A2, the Nb (impurity) concentration on the main surface of the TiO 2 film (oxide film 20) on the GaN layer (Group III nitride layer 30a) side was 0% by mass. It is considered that the electrical conductivity of the film was extremely low. Further, the specific resistance of the GaN composite substrate of Example A3 was the smallest. This is presumably because the Nb concentration of the TiO 2 film (oxide film 20) was 10 to 0.01% by mass and the Nb concentration of the entire TiO 2 film was high.

また、例A1〜例A4のGaN複合基板(III族窒化物複合基板1)の膜厚保方向のピーク波長が500nmの光の透過率は、紫外可視光透過率測定装置により測定したところ、例A1が62%、例A2が83%、例A3が46%、例A4が41%であった。結果を表2に示した。例A2のGaN複合基板は、光の透過率が最大であった。これは、TiO2膜(酸化物膜20)のNb濃度が1〜0質量%と低かったためと考えられる。 Moreover, the transmittance | permeability of the light whose peak wavelength of the film thickness preservation | save direction of the GaN composite substrate (Group III nitride composite substrate 1) of Example A1-Example A4 is 500 nm was measured with the ultraviolet visible light transmittance | permeability measuring apparatus, Example A1 Was 62%, Example A2 was 83%, Example A3 was 46%, and Example A4 was 41%. The results are shown in Table 2. The GaN composite substrate of Example A2 had the highest light transmittance. This is presumably because the Nb concentration of the TiO 2 film (oxide film 20) was as low as 1 to 0% by mass.

Figure 2013084900
Figure 2013084900

(参考例B)
図1を参照して、多結晶(焼結体)で形成される直径2インチ(50.8mm)で厚さ500μmのGaN支持基板(支持基板10)、直径2インチ(50.8mm)で厚さが600nmのSrTiO3膜(酸化物膜20)および単結晶で形成される直径2インチ(50.8mm)で厚さが300nmのGaN層(III族窒化物層30a)がこの順に接合されたGaN複合基板(III族窒化物複合基板1)について、SrTiO3膜(酸化物膜20)中のLa(不純物)の濃度と、SrTiO3膜(酸化物膜20)とGaN支持基板(支持基板10)との接合強度との関係、ならびに、SrTiO3膜(酸化物膜20)中のLa(不純物)の濃度と、SrTiO3膜(酸化物膜20)とGaN層(III族窒化物層30a)との接合強度との関係を、以下のようにして調べた。
(Reference Example B)
Referring to FIG. 1, a GaN support substrate (support substrate 10) having a diameter of 2 inches (50.8 mm) and a thickness of 500 μm formed of polycrystal (sintered body), and a thickness of 2 inches (50.8 mm). A SrTiO 3 film having a thickness of 600 nm (oxide film 20) and a GaN layer (group III nitride layer 30a) having a diameter of 2 inches (50.8 mm) and a thickness of 300 nm formed of a single crystal are joined in this order. for GaN composite substrate (III-nitride composite substrate 1), SrTiO 3 film (oxide film 20) and the concentration of La (impurities) in, SrTiO 3 film (oxide film 20) and the GaN supporting substrate (supporting substrate 10 ) and the relationship between the bonding strength, as well as the concentration of SrTiO 3 film (La oxide film 20) in (impurity), SrTiO 3 film (oxide film 20) and the GaN layer (III-nitride layer 30a) With bonding strength The engagement, was examined in the following manner.

1.酸化物膜中の不純物の濃度と、酸化物膜と支持基板との接合強度と、の関係
酸化物膜20としてSrTiO3膜を形成し、その不純物をLaとしたこと以外は、参考例Aと同様にして、5種類の積層基板1Sについてサンプルを作製し、引張試験によりそれらのサンプルの接合強度を測定した。いずれの積層基板1Sのいずれのサンプルも、GaN支持基板(支持基板)とTiO2膜(酸化物膜)との界面または界面の近傍で破断した。
1. Relationship between concentration of impurities in oxide film and bonding strength between oxide film and supporting substrate SrTiO 3 film was formed as the oxide film 20 and La was used as the impurity except Reference Example A. Similarly, samples were prepared for five types of laminated substrates 1S, and the bonding strength of these samples was measured by a tensile test. Any sample of any multilayer substrate 1S was broken at or near the interface between the GaN support substrate (support substrate) and the TiO 2 film (oxide film).

各種積層基板1Sの接合強度は、La(不純物)の濃度が0質量%のとき1.00、La(不純物)の濃度が0.01質量%のとき1.01、La(不純物)の濃度が0.1質量%のとき1.04、La(不純物)の濃度が1質量%のとき1.43、La(不純物)の濃度が10質量%のとき1.12であった。すなわち、La(不純物)の濃度が0質量%のときに比べて、La(不純物)の濃度が0.01質量%〜10質量%のときは、SrTiO3膜(酸化物膜)とGaN支持基板(支持基板)との間の接合強度が高くなった。結果を表3にまとめた。 The bonding strength of the various laminated substrates 1S is 1.00 when the concentration of La (impurity) is 0 mass%, 1.01 when the concentration of La (impurity) is 0.01 mass%, and the concentration of La (impurity) is It was 1.04 when the concentration was 0.1% by mass, 1.43 when the concentration of La (impurity) was 1% by mass, and 1.12 when the concentration of La (impurity) was 10% by mass. That is, when the concentration of La (impurity) is 0.01% by mass to 10% by mass compared to when the concentration of La (impurity) is 0% by mass, the SrTiO 3 film (oxide film) and the GaN support substrate The bonding strength with the (support substrate) was increased. The results are summarized in Table 3.

2.酸化物膜中の不純物の濃度と、酸化物膜とIII族窒化物層との接合強度と、の関係
酸化物膜20としてSrTiO3膜を形成し、その不純物をLaとしたこと以外は、参考例Aと同様にして、5種類の積層基板1Tについてサンプルを作製し、引張試験によりそれらのサンプルの接合強度を測定した。いずれの積層基板1Tのいずれのサンプルも、GaN層(III族窒化物層)とTiO2膜(酸化物膜)との界面または界面の近傍で破断した。
2. Relationship between the concentration of impurities in the oxide film and the bonding strength between the oxide film and the group III nitride layer Reference is made except that an SrTiO 3 film is formed as the oxide film 20 and the impurity is La. In the same manner as in Example A, samples were prepared for five types of laminated substrates 1T, and the bonding strength of these samples was measured by a tensile test. Any sample of any multilayer substrate 1T was broken at or near the interface between the GaN layer (group III nitride layer) and the TiO 2 film (oxide film).

各種積層基板1Tの接合強度は、La(不純物)の濃度が0質量%のとき1.00、La(不純物)の濃度が0.01質量%のとき0.76、La(不純物)の濃度が0.1質量%のとき0.71、La(不純物)の濃度が1質量%のとき0.55、La(不純物)の濃度が10質量%のとき0.54であった。すなわち、La(不純物)の濃度が0質量%のときに比べて、La(不純物)の濃度が0.01質量%から10質量%と高くなる程、SrTiO3膜(酸化物膜)とGaN層(III族窒化物層)との間の接合強度が低くなった。結果を表3にまとめた。 The bonding strength of various laminated substrates 1T is 1.00 when the concentration of La (impurity) is 0 mass%, 0.76 when the concentration of La (impurity) is 0.01 mass%, and the concentration of La (impurity) is It was 0.71 when the concentration was 0.1% by mass, 0.55 when the concentration of La (impurity) was 1% by mass, and 0.54 when the concentration of La (impurity) was 10% by mass. That is, the SrTiO 3 film (oxide film) and the GaN layer increase as the concentration of La (impurity) increases from 0.01% by mass to 10% by mass compared to when the concentration of La (impurity) is 0% by mass. The bonding strength with the (Group III nitride layer) was low. The results are summarized in Table 3.

Figure 2013084900
Figure 2013084900

図1および表3を参照して、GaN支持基板(支持基板10)、SrTiO3膜(酸化物膜20)およびGaN層(III族窒化物層30a)がこの順に接合されたGaN複合基板(III族窒化物複合基板1)において、SrTiO3膜(酸化物膜20)とGaN支持基板(支持基板10)との接合強度を高めるにはSrTiO3膜(酸化物膜20)のLa(不純物)濃度を高くすることが有効であり(特に、不純物濃度を1質量%程度とするのが好ましく)、SrTiO3膜(酸化物膜20)とGaN層(III族窒化物層30a)との接合強度を高めるにはSrTiO3膜(酸化物膜20)のLa(不純物)濃度を低くすることが有効であることがわかった。 Referring to FIG. 1 and Table 3, a GaN composite substrate (III) in which a GaN support substrate (support substrate 10), a SrTiO 3 film (oxide film 20), and a GaN layer (group III nitride layer 30a) are joined in this order. In the group nitride composite substrate 1), the La (impurity) concentration of the SrTiO 3 film (oxide film 20) is increased in order to increase the bonding strength between the SrTiO 3 film (oxide film 20) and the GaN support substrate (support substrate 10). Is effective (in particular, the impurity concentration is preferably about 1% by mass), and the bonding strength between the SrTiO 3 film (oxide film 20) and the GaN layer (group III nitride layer 30a) is increased. It has been found that it is effective to lower the La (impurity) concentration of the SrTiO 3 film (oxide film 20) in order to increase it.

(実施例B)
図1および図2を参照して、酸化物膜20としてSrTiO3膜を形成し、その不純物をLaとしたこと以外は、実施例Aと同様にして、例B1〜例B4として、GaN支持基板(支持基板10)上にSrTiO3膜(酸化物膜20)およびGaN層(III族窒化物層30a)がこの順に接合されたGaN複合基板(III族窒化物複合基板1)を作製した。
(Example B)
Referring to FIGS. 1 and 2, as Example B1 to Example B4, a GaN support substrate is formed in the same manner as Example A, except that an SrTiO 3 film is formed as oxide film 20 and its impurity is La. A GaN composite substrate (Group III nitride composite substrate 1) in which the SrTiO 3 film (oxide film 20) and the GaN layer (Group III nitride layer 30a) were joined in this order on the (support substrate 10) was produced.

例B1〜例B4のGaN複合基板(III族窒化物複合基板1)は、SrTiO3膜(酸化物膜20)のLa(不純物)の濃度が、SrTiO3膜(酸化物膜20)の支持基板10側の第1主面20sからIII族窒化物層30a側の第2主面20tにかけて膜厚方向に、1質量%から0.01質量%まで単調に変化し(例B1)、1質量%から0質量%まで単調に変化し(例B2)、10質量%から0.01質量%まで単調に変化し(例B3)、1質量%から10質量%を経て0.01質量%まで極大値を有するように変化していた(例B4)。 Example GaN composite substrate B1~ Example B4 (III-nitride composite substrate 1), the concentration of La (impurities) of SrTiO 3 film (oxide film 20), the supporting substrate of SrTiO 3 film (oxide film 20) It changes monotonically from 1% by mass to 0.01% by mass in the film thickness direction from the first main surface 20s on the 10 side to the second main surface 20t on the group III nitride layer 30a side (Example B1), 1% by mass. 1% to 0% by mass (Example B2), 10% to 0.01% by mass monotonically (Example B3), from 1% to 10% by mass to 0.01% by mass maximum (Example B4).

例B1〜例B4のGaN複合基板(III族窒化物複合基板1)について、上記参考例Bにおける接合強度の値を考慮すると、例B1〜例B4のGaN複合基板(III族窒化物複合基板1)におけるSrTiO3膜(酸化物膜20)とGaN支持基板(支持基板10)との接合強度およびSrTiO3膜(酸化物膜20)とGaN層(III族窒化物層30a)との接合強度は、それぞれ、1.43および0.76(例B1)、1.43および1.00(例B2)、1.12および0.76(例B3)、1.43および0.76(例B4)と、いずれも高くなった。結果を表4に示した。 Regarding the GaN composite substrates of Examples B1 to B4 (Group III nitride composite substrate 1), considering the bonding strength values in Reference Example B above, the GaN composite substrates of Examples B1 to B4 (Group III nitride composite substrate 1) The bonding strength between the SrTiO 3 film (oxide film 20) and the GaN supporting substrate (supporting substrate 10) and the bonding strength between the SrTiO 3 film (oxide film 20) and the GaN layer (Group III nitride layer 30a) in FIG. 1.43 and 0.76 (Example B1), 1.43 and 1.00 (Example B2), 1.12 and 0.76 (Example B3), 1.43 and 0.76 (Example B4), respectively. Both were high. The results are shown in Table 4.

また、例B1〜例B4のGaN複合基板(III族窒化物複合基板1)の膜厚保方向の比抵抗(電気抵抗率)は、例B1が9.1×102Ωcm、例B2が4.7×107Ωcm、例B3が1.3×100Ωcm、例B4が3.8×102Ωcmであり、例B2以外は高い導電性を示した。結果を表4に示した。例B2のGaN複合基板は、SrTiO3膜(酸化物膜20)のGaN層(III族窒化物層30a)側の主面におけるLa(不純物)の濃度が0質量%であったため、膜厚方向の導電性が極めて低くなったものと考えられる。また、例B3のGaN複合基板は、比抵抗が最も小さくなった。これは、SrTiO3膜(酸化物膜20)のLa濃度が10〜0.01質量%でありSrTiO3膜全体としてのLa濃度が高かったためと考えられる。 The specific resistance (electrical resistivity) in the film thickness maintaining direction of the GaN composite substrates (Group III nitride composite substrate 1) of Examples B1 to B4 is 9.1 × 10 2 Ωcm in Example B1, and 4. in Example B2. 7 × 10 7 Ωcm, Example B3 was 1.3 × 10 0 Ωcm, and Example B4 was 3.8 × 10 2 Ωcm. Except for Example B2, high conductivity was exhibited. The results are shown in Table 4. In the GaN composite substrate of Example B2, the La (impurity) concentration on the main surface of the SrTiO 3 film (oxide film 20) on the GaN layer (Group III nitride layer 30a) side was 0% by mass. It is considered that the electrical conductivity of the film was extremely low. In addition, the specific resistance of the GaN composite substrate of Example B3 was the smallest. This is presumably because the La concentration of the SrTiO 3 film (oxide film 20) was 10 to 0.01% by mass and the La concentration of the entire SrTiO 3 film was high.

また、例B1〜例B4のGaN複合基板(III族窒化物複合基板1)の膜厚保方向のピーク波長が500nmの光の透過率は、例B1が64%、例B2が86%、例B3が48%、例B4が43%であった。結果を表4に示した。例B2のGaN複合基板は、光の透過率が最大であった。これは、SrTiO3膜(酸化物膜20)のLa濃度が1〜0質量%と低かったためと考えられる。 Moreover, the transmittance | permeability of the light whose peak wavelength of the film thickness maintenance direction of the GaN composite substrate (Group III nitride composite substrate 1) of Example B1 to Example B4 is 500 nm is 64% for Example B1, 86% for Example B2, and Example B3. Was 48% and Example B4 was 43%. The results are shown in Table 4. The GaN composite substrate of Example B2 had the highest light transmittance. This is presumably because the La concentration of the SrTiO 3 film (oxide film 20) was as low as 1 to 0% by mass.

Figure 2013084900
Figure 2013084900

(参考例C)
図1を参照して、多結晶(焼結体)で形成される直径2インチ(50.8mm)で厚さ500μmのムライト支持基板(支持基板10)、直径2インチ(50.8mm)で厚さが600nmのTiO2膜(酸化物膜20)および単結晶で形成される直径2インチ(50.8mm)で厚さが300nmのGaN層(III族窒化物層30a)がこの順に接合されたGaN複合基板(III族窒化物複合基板1)について、TiO2膜(酸化物膜20)中のNb(不純物)の濃度と、TiO2膜(酸化物膜20)とムライト支持基板(支持基板10)との接合強度との関係、ならびに、TiO2膜(酸化物膜20)中のNb(不純物)の濃度と、TiO2膜(酸化物膜20)とGaN層(III族窒化物層30a)との接合強度との関係を、以下のようにして調べた。
(Reference Example C)
Referring to FIG. 1, a mullite supporting substrate (supporting substrate 10) having a diameter of 2 inches (50.8 mm) and a thickness of 500 μm formed of polycrystal (sintered body), and a thickness of 2 inches (50.8 mm). A TiO 2 film (oxide film 20) having a thickness of 600 nm and a GaN layer (group III nitride layer 30a) having a diameter of 2 inches (50.8 mm) and a thickness of 300 nm formed of a single crystal are joined in this order. for GaN composite substrate (III-nitride composite substrate 1), and the concentration of Nb (impurities) in the TiO 2 film (oxide film 20), a TiO 2 film (oxide film 20) and the mullite support substrate (support substrate 10 ) relationship between the bonding strength between, and the concentration of Nb (impurities) in the TiO 2 film (oxide film 20), a TiO 2 film (oxide film 20) and the GaN layer (III-nitride layer 30a) The relationship between bonding strength and It was examined in to.

1.酸化物膜中の不純物の濃度と、酸化物膜と支持基板との接合強度と、の関係
支持基板10として直径2インチ(50.8mm)で厚さ500μmのムライト支持基板を用いたこと以外は、参考例Aと同様にして、5種類の積層基板1Sについてサンプルを作製し、引張試験によりそれらのサンプルの接合強度を測定した。いずれの積層基板1Sのいずれのサンプルも、ムライト支持基板(支持基板)とTiO2膜(酸化物膜)との界面または界面の近傍で破断した。
1. Relationship between impurity concentration in oxide film and bonding strength between oxide film and supporting substrate Except that a mullite supporting substrate having a diameter of 2 inches (50.8 mm) and a thickness of 500 μm was used as the supporting substrate 10. In the same manner as in Reference Example A, samples were prepared for five types of laminated substrates 1S, and the bonding strength of these samples was measured by a tensile test. Any sample of any laminated substrate 1S was broken at or near the interface between the mullite support substrate (support substrate) and the TiO 2 film (oxide film).

各種積層基板1Sの接合強度は、Nb(不純物)の濃度が0質量%のとき1.00、Nb(不純物)の濃度が0.01質量%のとき1.21、Nb(不純物)の濃度が0.1質量%のとき1.22、Nb(不純物)の濃度が1質量%のとき1.68、Nb(不純物)の濃度が10質量%のとき1.32であった。すなわち、Nb(不純物)の濃度が0質量%のときに比べて、Nb(不純物)の濃度が0.01質量%〜10質量%のときは、TiO2膜(酸化物膜)とムライト支持基板(支持基板)との間の接合強度が高くなった。結果を表5にまとめた。 The bonding strength of the various laminated substrates 1S is 1.00 when the concentration of Nb (impurity) is 0% by mass, 1.21 when the concentration of Nb (impurity) is 0.01% by mass, and the concentration of Nb (impurity) is It was 1.22 when the concentration was 0.1% by mass, 1.68 when the concentration of Nb (impurity) was 1% by mass, and 1.32 when the concentration of Nb (impurity) was 10% by mass. That is, when the concentration of Nb (impurity) is 0.01% by mass to 10% by mass compared to when the concentration of Nb (impurity) is 0% by mass, the TiO 2 film (oxide film) and the mullite supporting substrate The bonding strength with the (support substrate) was increased. The results are summarized in Table 5.

2.酸化物膜中の不純物の濃度と、酸化物膜とIII族窒化物層との接合強度と、の関係
参考例Aにおけるサンプルの接合強度の測定から、各種積層基板1Tの接合強度は、Nb(不純物)の濃度が0質量%のとき1.00、Nb(不純物)の濃度が0.01質量%のとき0.78、Nb(不純物)の濃度が0.1質量%のとき0.72、La(不純物)の濃度が1質量%のとき0.56、La(不純物)の濃度が10質量%のとき0.55であった。すなわち、La(不純物)の濃度が0質量%のときに比べて、La(不純物)の濃度が0.01質量%から10質量%と高くなる程、TiO2膜(酸化物膜)とGaN層(III族窒化物膜)との間の接合強度が低くなった。結果を表5にまとめた。
2. Relationship between the concentration of impurities in the oxide film and the bonding strength between the oxide film and the group III nitride layer From the measurement of the bonding strength of the sample in Reference Example A, the bonding strength of the various laminated substrates 1T is Nb ( 1.00 when the concentration of (impurity) is 0% by mass, 0.78 when the concentration of Nb (impurity) is 0.01% by mass, 0.72 when the concentration of Nb (impurity) is 0.1% by mass, It was 0.56 when the concentration of La (impurity) was 1% by mass, and 0.55 when the concentration of La (impurity) was 10% by mass. That is, the TiO 2 film (oxide film) and the GaN layer increase as the concentration of La (impurity) increases from 0.01% by mass to 10% by mass compared to the case where the concentration of La (impurity) is 0% by mass. The bonding strength with (Group III nitride film) was low. The results are summarized in Table 5.

Figure 2013084900
Figure 2013084900

図1および表5を参照して、ムライト支持基板(支持基板10)、TiO2膜(酸化物膜20)およびGaN層(III族窒化物層30a)がこの順に接合されたGaN複合基板(III族窒化物複合基板1)において、TiO2膜(酸化物膜20)とムライト支持基板(支持基板10)との接合強度を高めるにはTiO2膜(酸化物膜20)のNb(不純物)濃度を高くすることが有効であり(特に、不純物濃度を1質量%程度とするのが好ましく)、TiO2膜(酸化物膜20)とGaN層(III族窒化物層30a)との接合強度を高めるにはTiO2膜(酸化物膜20)のNb(不純物)濃度を低くすることが有効であることがわかった。 Referring to FIG. 1 and Table 5, a GaN composite substrate (III) in which a mullite support substrate (support substrate 10), a TiO 2 film (oxide film 20), and a GaN layer (group III nitride layer 30a) are joined in this order. In the group nitride composite substrate 1), in order to increase the bonding strength between the TiO 2 film (oxide film 20) and the mullite support substrate (support substrate 10), the Nb (impurity) concentration of the TiO 2 film (oxide film 20) Is effective (especially, the impurity concentration is preferably about 1% by mass), and the bonding strength between the TiO 2 film (oxide film 20) and the GaN layer (group III nitride layer 30a) is increased. It has been found that it is effective to lower the Nb (impurity) concentration of the TiO 2 film (oxide film 20) in order to increase it.

(実施例C)
図1および図2を参照して、支持基板10として直径2インチ(50.8mm)で厚さ500μmのムライト支持基板を用いたこと以外は、実施例Aと同様にして、例C1〜例C4として、ムライト支持基板(支持基板10)上にTiO2膜(酸化物膜20)およびGaN層(III族窒化物層30a)がこの順に接合されたGaN複合基板(III族窒化物複合基板1)を作製した。
(Example C)
1 and 2, Example C1 to Example C4 are the same as Example A except that a mullite support substrate having a diameter of 2 inches (50.8 mm) and a thickness of 500 μm is used as the support substrate 10. A GaN composite substrate (Group III nitride composite substrate 1) in which a TiO 2 film (oxide film 20) and a GaN layer (Group III nitride layer 30a) are joined in this order on a mullite support substrate (support substrate 10). Was made.

例C1〜例C4のGaN複合基板(III族窒化物複合基板1)は、TiO2膜(酸化物膜20)のNb(不純物)の濃度が、TiO2膜(酸化物膜20)の支持基板10側の第1主面20sからIII族窒化物層30a側の第2主面20tにかけて膜厚方向に、1質量%から0.01質量%まで単調に変化し(例C1)、1質量%から0質量%まで単調に変化し(例C2)、10質量%から0.01質量%まで単調に変化し(例C3)、1質量%から10質量%を経て0.01質量%まで極大値を有するように変化していた(例C4)。 Example GaN composite substrate C1~ Example C4 (III-nitride composite substrate 1), the concentration of Nb (impurities) of the TiO 2 film (oxide film 20), the supporting substrate of the TiO 2 film (oxide film 20) It changes monotonically from 1% by mass to 0.01% by mass in the film thickness direction from the first main surface 20s on the 10 side to the second main surface 20t on the side of the group III nitride layer 30a (Example C1), 1% by mass. 1% to 0% by mass (Example C2), 10% to 0.01% by mass monotonically (Example C3), 1% to 10% by mass and 0.01% by mass maximum (Example C4).

例C1〜例C4のGaN複合基板(III族窒化物複合基板1)について、上記参考例Cにおける接合強度の値を考慮すると、例C1〜例C4のGaN複合基板(III族窒化物複合基板1)におけるTiO2膜(酸化物膜20)とムライト支持基板(支持基板10)との接合強度およびTiO2膜(酸化物膜20)とGaN層(III族窒化物層30a)との接合強度は、それぞれ、1.68および0.78(例C1)、1.68および1.00(例C2)、1.32および0.78(例C3)、1.68および0.78(例C4)と、いずれも高くなった。結果を表6に示した。 Regarding the GaN composite substrates of Examples C1 to C4 (Group III nitride composite substrate 1), considering the bonding strength values in Reference Example C above, the GaN composite substrates of Examples C1 to C4 (Group III nitride composite substrate 1) The bonding strength between the TiO 2 film (oxide film 20) and the mullite supporting substrate (supporting substrate 10) and the bonding strength between the TiO 2 film (oxide film 20) and the GaN layer (group III nitride layer 30a) in FIG. 1.68 and 0.78 (Example C1), 1.68 and 1.00 (Example C2), 1.32 and 0.78 (Example C3), 1.68 and 0.78 (Example C4), respectively. Both were high. The results are shown in Table 6.

また、例C1〜例C4のGaN複合基板(III族窒化物複合基板1)の膜厚保方向のピーク波長が500nmの光の透過率は、例C1が56%、例C2が75%、例C3が41%、例C4が37%であった。結果を表6に示した。例C2のGaN複合基板は、光の透過率が最大であった。これは、TiO2膜(酸化物膜20)のNb濃度が1〜0質量%と低かったためと考えられる。 Moreover, the transmittance | permeability of the light whose peak wavelength of the film thickness maintenance direction of the GaN composite substrate (Group III nitride composite substrate 1) of Examples C1-C4 is 500 nm is 56% for Example C1, 75% for Example C2, and Example C3. Was 41% and Example C4 was 37%. The results are shown in Table 6. The GaN composite substrate of Example C2 had the highest light transmittance. This is presumably because the Nb concentration of the TiO 2 film (oxide film 20) was as low as 1 to 0% by mass.

Figure 2013084900
Figure 2013084900

(参考例D)
図1を参照して、多結晶(焼結体)で形成される直径2インチ(50.8mm)で厚さ500μmのムライト支持基板(支持基板10)、直径2インチ(50.8mm)で厚さが600nmのSrTiO3膜(酸化物膜20)および単結晶で形成される直径2インチ(50.8mm)で厚さが300nmのGaN層(III族窒化物層30a)がこの順に接合されたGaN複合基板(III族窒化物複合基板1)について、SrTiO3膜(酸化物膜20)中のLa(不純物)の濃度と、SrTiO3膜(酸化物膜20)とムライト支持基板(支持基板10)との接合強度との関係、ならびに、SrTiO3膜(酸化物膜20)中のLa(不純物)の濃度と、SrTiO3膜(酸化物膜20)とGaN層(III族窒化物層30a)との接合強度との関係を、以下のようにして調べた。
(Reference Example D)
Referring to FIG. 1, a mullite supporting substrate (supporting substrate 10) having a diameter of 2 inches (50.8 mm) and a thickness of 500 μm formed of polycrystal (sintered body), and a thickness of 2 inches (50.8 mm). A SrTiO 3 film having a thickness of 600 nm (oxide film 20) and a GaN layer (group III nitride layer 30a) having a diameter of 2 inches (50.8 mm) and a thickness of 300 nm formed of a single crystal are joined in this order. for GaN composite substrate (III-nitride composite substrate 1), SrTiO 3 film and the concentration of La (impurities) of (oxide film 20) in, SrTiO 3 film (oxide film 20) and the mullite support substrate (support substrate 10 ) and the relationship between the bonding strength, as well as the concentration of SrTiO 3 film (La oxide film 20) in (impurity), SrTiO 3 film (oxide film 20) and the GaN layer (III-nitride layer 30a) Bonding strength with The relationship was examined in the following manner.

1.酸化物膜中の不純物の濃度と、酸化物膜と支持基板との接合強度と、の関係
支持基板10として直径2インチ(50.8mm)で厚さ500μmのムライト支持基板を用いたこと以外は、参考例Bと同様にして、5種類の積層基板1Sについてサンプルを作製し、引張試験によりそれらのサンプルの接合強度を測定した。いずれの積層基板1Sのいずれのサンプルも、ムライト支持基板(支持基板)とTiO2膜(酸化物膜)との界面または界面の近傍で破断した。
1. Relationship between impurity concentration in oxide film and bonding strength between oxide film and supporting substrate Except that a mullite supporting substrate having a diameter of 2 inches (50.8 mm) and a thickness of 500 μm was used as the supporting substrate 10. In the same manner as in Reference Example B, samples were prepared for five types of laminated substrates 1S, and the bonding strength of these samples was measured by a tensile test. Any sample of any laminated substrate 1S was broken at or near the interface between the mullite support substrate (support substrate) and the TiO 2 film (oxide film).

各種積層基板1Sの接合強度は、La(不純物)の濃度が0質量%のとき1.00、La(不純物)の濃度が0.01質量%のとき1.21、La(不純物)の濃度が0.1質量%のとき1.25、La(不純物)の濃度が1質量%のとき1.72、La(不純物)の濃度が10質量%のとき1.34であった。すなわち、La(不純物)の濃度が0質量%のときに比べて、La(不純物)の濃度が0.01質量%〜10質量%のときは、GaN支持基板(支持基板)とSrTiO3膜(酸化物膜)との間の接合強度が高くなった。結果を表7にまとめた。 The bonding strength of the various laminated substrates 1S is 1.00 when the concentration of La (impurity) is 0 mass%, 1.21 when the concentration of La (impurity) is 0.01 mass%, and the concentration of La (impurity) is It was 1.25 when the concentration was 0.1% by mass, 1.72 when the concentration of La (impurity) was 1% by mass, and 1.34 when the concentration of La (impurity) was 10% by mass. That is, when the concentration of La (impurity) is 0.01% by mass to 10% by mass, compared to when the concentration of La (impurity) is 0% by mass, the GaN support substrate (support substrate) and the SrTiO 3 film ( The bonding strength between the oxide film and the oxide film increased. The results are summarized in Table 7.

2.酸化物膜中の不純物の濃度と、酸化物膜とIII族窒化物層との接合強度と、の関係
参考例Bにおけるサンプルの接合強度の測定から、各種積層基板1Tの接合強度は、La(不純物)の濃度が0質量%のとき1.00、La(不純物)の濃度が0.01質量%のとき0.76、La(不純物)の濃度が0.1質量%のとき0.71、La(不純物)の濃度が1質量%のとき0.55、La(不純物)の濃度が10質量%のとき0.54であった。すなわち、La(不純物)の濃度が0質量%のときに比べて、La(不純物)の濃度が0.01質量%から10質量%と高くなる程、SrTiO3膜(酸化物膜)とGaN支持基板(支持基板)との間の接合強度が低くなった。結果を表7にまとめた。
2. Relationship between the concentration of impurities in the oxide film and the bonding strength between the oxide film and the group III nitride layer From the measurement of the bonding strength of the sample in Reference Example B, the bonding strength of the various laminated substrates 1T is La ( 1.00 when the concentration of (impurity) is 0% by mass, 0.76 when the concentration of La (impurity) is 0.01% by mass, 0.71 when the concentration of La (impurity) is 0.1% by mass, It was 0.55 when the concentration of La (impurity) was 1% by mass, and 0.54 when the concentration of La (impurity) was 10% by mass. That is, the SrTiO 3 film (oxide film) and the GaN support are increased as the concentration of La (impurity) is increased from 0.01% by mass to 10% by mass compared to the case where the concentration of La (impurity) is 0% by mass. Bonding strength with the substrate (support substrate) was lowered. The results are summarized in Table 7.

Figure 2013084900
Figure 2013084900

図1および表7を参照して、ムライト支持基板(支持基板10)、SrTiO3膜(酸化物膜20)およびGaN層(III族窒化物層30a)がこの順に接合されたGaN複合基板(III族窒化物複合基板1)において、SrTiO3膜(酸化物膜20)とムライト支持基板(支持基板10)との接合強度を高めるにはSrTiO3膜(酸化物膜20)のLa(不純物)濃度を高くすることが有効であり(特に、不純物濃度を1質量%程度とするのが好ましく)、SrTiO3膜(酸化物膜20)とGaN層(III族窒化物層30a)との接合強度を高めるにはSrTiO3膜(酸化物膜20)のLa(不純物)濃度を低くすることが有効であることがわかった。 Referring to FIG. 1 and Table 7, a GaN composite substrate (III) in which a mullite support substrate (support substrate 10), a SrTiO 3 film (oxide film 20), and a GaN layer (group III nitride layer 30a) are joined in this order. In the group nitride composite substrate 1), in order to increase the bonding strength between the SrTiO 3 film (oxide film 20) and the mullite support substrate (support substrate 10), the La (impurity) concentration of the SrTiO 3 film (oxide film 20) Is effective (in particular, the impurity concentration is preferably about 1% by mass), and the bonding strength between the SrTiO 3 film (oxide film 20) and the GaN layer (group III nitride layer 30a) is increased. It has been found that it is effective to lower the La (impurity) concentration of the SrTiO 3 film (oxide film 20) in order to increase it.

(実施例D)
図1および図2を参照して、支持基板10として直径2インチ(50.8mm)で厚さ500μmのムライト支持基板を用いたこと以外は、実施例Bと同様にして、例D1〜例D4として、ムライト支持基板(支持基板10)上にSrTiO3膜(酸化物膜20)およびGaN層(III族窒化物層30a)がこの順に接合されたGaN複合基板(III族窒化物複合基板1)を作製した。
(Example D)
1 and 2, Example D1 to Example D4 are the same as Example B except that a mullite support substrate having a diameter of 2 inches (50.8 mm) and a thickness of 500 μm is used as the support substrate 10. A GaN composite substrate (Group III nitride composite substrate 1) in which a SrTiO 3 film (oxide film 20) and a GaN layer (Group III nitride layer 30a) are joined in this order on a mullite support substrate (support substrate 10). Was made.

例D1〜例D4のGaN複合基板(III族窒化物複合基板1)は、SrTiO3膜(酸化物膜20)のLa(不純物)の濃度が、SrTiO3膜(酸化物膜20)の支持基板10側の第1主面20sからIII族窒化物層30a側の第2主面20tにかけて膜厚方向に、1質量%から0.01質量%まで単調に変化し(例D1)、1質量%から0質量%まで単調に変化し(例D2)、10質量%から0.01質量%まで単調に変化し(例D3)、1質量%から10質量%を経て0.01質量%まで極大値を有するように変化していた(例D4)。 GaN composite substrate Example D1~ Example D4 (III-nitride composite substrate 1), the concentration of La (impurities) of SrTiO 3 film (oxide film 20), the supporting substrate of SrTiO 3 film (oxide film 20) It changes monotonically from 1% by mass to 0.01% by mass in the film thickness direction from the first main surface 20s on the 10th side to the second main surface 20t on the III-nitride layer 30a side (Example D1), 1% by mass 1% to 0% by mass (Example D2), 10% to 0.01% by mass monotonically (Example D3), 1% to 10% by mass and 0.01% by mass maximum (Example D4).

例D1〜例D4のGaN複合基板(III族窒化物複合基板1)について、上記参考例Dにおける接合強度の値を考慮すると、例D1〜例D4のGaN複合基板(III族窒化物複合基板1)におけるSrTiO3膜(酸化物膜20)とムライト支持基板(支持基板10)との接合強度およびSrTiO3膜(酸化物膜20)とGaN層(III族窒化物層30a)との接合強度は、それぞれ、1.72および0.76(例D1)、1.72および1.00(例D2)、1.34および0.76(例D3)、1.72および0.76(例D4)と、いずれも高くなった。結果を表8に示した。 For the GaN composite substrates (Group III nitride composite substrate 1) of Examples D1 to D4, considering the bonding strength values in Reference Example D above, the GaN composite substrates of Examples D1 to D4 (Group III nitride composite substrate 1) The bonding strength between the SrTiO 3 film (oxide film 20) and the mullite supporting substrate (supporting substrate 10) and the bonding strength between the SrTiO 3 film (oxide film 20) and the GaN layer (group III nitride layer 30a) in FIG. 1.72 and 0.76 (Example D1), 1.72 and 1.00 (Example D2), 1.34 and 0.76 (Example D3), 1.72 and 0.76 (Example D4), respectively. Both were high. The results are shown in Table 8.

また、例D1〜例D4のGaN複合基板(III族窒化物複合基板1)の膜厚保方向のピーク波長が500nmの光の透過率は、例D1が58%、例D2が77%、例D3が43%、例D4が39%であった。結果を表8に示した。例D2のGaN複合基板は、光の透過率が最大であった。これは、SrTiO3膜(酸化物膜20)のLa濃度が1〜0質量%と低かったためと考えられる。 Moreover, the transmittance | permeability of the light whose peak wavelength of the film thickness maintenance direction of the GaN composite substrate (Group III nitride composite substrate 1) of Example D1-Example D4 is 500 nm is 58% in Example D1, 77% in Example D2, and Example D3. Was 43% and Example D4 was 39%. The results are shown in Table 8. The GaN composite substrate of Example D2 had the highest light transmittance. This is presumably because the La concentration of the SrTiO 3 film (oxide film 20) was as low as 1 to 0% by mass.

Figure 2013084900
Figure 2013084900

(参考例E)
図1を参照して、多結晶で形成される直径2インチ(50.8mm)で厚さ500μmのMo支持基板(支持基板10)、直径2インチ(50.8mm)で厚さが600nmのTiO2膜(酸化物膜20)および単結晶で形成される直径2インチ(50.8mm)で厚さが300nmのGaN層(III族窒化物層30a)がこの順に接合されたGaN複合基板(III族窒化物複合基板1)について、TiO2膜(酸化物膜20)中のNb(不純物)の濃度と、TiO2膜(酸化物膜20)とMo支持基板(支持基板10)との接合強度との関係、ならびに、TiO2膜(酸化物膜20)中のNb(不純物)の濃度と、TiO2膜(酸化物膜20)とGaN層(III族窒化物層30a)との接合強度との関係を、以下のようにして調べた。
(Reference Example E)
Referring to FIG. 1, a Mo support substrate (support substrate 10) having a diameter of 2 inches (50.8 mm) and a thickness of 500 μm and TiO 2 having a diameter of 2 inches (50.8 mm) and a thickness of 600 nm are formed of polycrystal. Two films (oxide film 20) and a GaN composite substrate (III nitride layer 30a) having a diameter of 2 inches (50.8 mm) and a thickness of 300 nm formed of a single crystal are joined in this order (III bonding strength of the nitride composite substrate 1), and the concentration of the TiO 2 film (Nb oxide film 20) in (impurities), and Mo support substrate and the TiO 2 film (oxide film 20) (supporting substrate 10) relationship, as well as the bonding strength and the concentration of Nb (impurities) in the TiO 2 film (oxide film 20), a TiO 2 film (oxide film 20) and the GaN layer and the (III-nitride layer 30a) The relationship was investigated as follows.

1.酸化物膜中の不純物の濃度と、酸化物膜と支持基板との接合強度と、の関係
支持基板10として直径2インチ(50.8mm)で厚さ500μmのMo支持基板を用いたこと以外は、参考例Aと同様にして、5種類の積層基板1Sについてサンプルを作製し、引張試験によりそれらのサンプルの接合強度を測定した。いずれの積層基板1Sのいずれのサンプルも、Mo支持基板(支持基板)とTiO2膜(酸化物膜)との界面または界面の近傍で破断した。
1. Relationship between impurity concentration in oxide film and bonding strength between oxide film and supporting substrate Except that a Mo supporting substrate having a diameter of 2 inches (50.8 mm) and a thickness of 500 μm was used as the supporting substrate 10. In the same manner as in Reference Example A, samples were prepared for five types of laminated substrates 1S, and the bonding strength of these samples was measured by a tensile test. Any sample of any laminated substrate 1S was broken at or near the interface between the Mo support substrate (support substrate) and the TiO 2 film (oxide film).

各種積層基板1Sの接合強度は、Nb(不純物)の濃度が0質量%のとき1.00、Nb(不純物)の濃度が0.01質量%のとき1.11、Nb(不純物)の濃度が0.1質量%のとき1.12、Nb(不純物)の濃度が1質量%のとき1.54、Nb(不純物)の濃度が10質量%のとき1.21であった。すなわち、Nb(不純物)の濃度が0質量%のときに比べて、Nb(不純物)の濃度が0.01質量%〜10質量%のときは、TiO2膜(酸化物膜)とMo支持基板(支持基板)との間の接合強度が高くなった。結果を表9にまとめた。 The bonding strength of the various laminated substrates 1S is 1.00 when the Nb (impurity) concentration is 0 mass%, 1.11 when the Nb (impurity) concentration is 0.01 mass%, and the Nb (impurity) concentration is 1. It was 1.12 when the concentration was 0.1% by mass, 1.54 when the concentration of Nb (impurity) was 1% by mass, and 1.21 when the concentration of Nb (impurity) was 10% by mass. That is, when the concentration of Nb (impurity) is 0.01% by mass to 10% by mass compared to when the concentration of Nb (impurity) is 0% by mass, the TiO 2 film (oxide film) and the Mo support substrate The bonding strength with the (support substrate) was increased. The results are summarized in Table 9.

2.酸化物膜中の不純物の濃度と、酸化物膜とIII族窒化物層との接合強度と、の関係
参考例Aにおけるサンプルの接合強度の測定から、各種積層基板1Tの接合強度は、Nb(不純物)の濃度が0質量%のとき1.00、Nb(不純物)の濃度が0.01質量%のとき0.78、Nb(不純物)の濃度が0.1質量%のとき0.72、La(不純物)の濃度が1質量%のとき0.56、La(不純物)の濃度が10質量%のとき0.55であった。すなわち、Nb(不純物)の濃度が0質量%のときに比べて、Nb(不純物)の濃度が0.01質量%から10質量%と高くなる程、TiO2膜(酸化物膜)とGaN層(III族窒化物膜)との間の接合強度が低くなった。結果を表9にまとめた。
2. Relationship between the concentration of impurities in the oxide film and the bonding strength between the oxide film and the group III nitride layer From the measurement of the bonding strength of the sample in Reference Example A, the bonding strength of the various laminated substrates 1T is Nb ( 1.00 when the concentration of (impurity) is 0% by mass, 0.78 when the concentration of Nb (impurity) is 0.01% by mass, 0.72 when the concentration of Nb (impurity) is 0.1% by mass, It was 0.56 when the concentration of La (impurity) was 1% by mass, and 0.55 when the concentration of La (impurity) was 10% by mass. That is, as the Nb (impurity) concentration increases from 0.01% by mass to 10% by mass compared to when the Nb (impurity) concentration is 0% by mass, the TiO 2 film (oxide film) and the GaN layer The bonding strength with (Group III nitride film) was low. The results are summarized in Table 9.

Figure 2013084900
Figure 2013084900

図1および表9を参照して、Mo支持基板(支持基板10)、TiO2膜(酸化物膜20)およびGaN層(III族窒化物層30a)がこの順に接合されたGaN複合基板(III族窒化物複合基板1)において、TiO2膜(酸化物膜20)とMo支持基板(支持基板10)との接合強度を高めるにはTiO2膜(酸化物膜20)のNb(不純物)濃度を高くすることが有効であり(特に、不純物濃度を1質量%程度とするのが好ましく)、TiO2膜(酸化物膜20)とGaN層(III族窒化物層30a)との接合強度を高めるにはTiO2膜(酸化物膜20)のNb(不純物)濃度を低くすることが有効であることがわかった。 Referring to FIG. 1 and Table 9, a GaN composite substrate (III) in which a Mo support substrate (support substrate 10), a TiO 2 film (oxide film 20), and a GaN layer (group III nitride layer 30a) are joined in this order. In the group nitride composite substrate 1), the Nb (impurity) concentration of the TiO 2 film (oxide film 20) is increased in order to increase the bonding strength between the TiO 2 film (oxide film 20) and the Mo support substrate (support substrate 10). Is effective (especially, the impurity concentration is preferably about 1% by mass), and the bonding strength between the TiO 2 film (oxide film 20) and the GaN layer (group III nitride layer 30a) is increased. It has been found that it is effective to lower the Nb (impurity) concentration of the TiO 2 film (oxide film 20) in order to increase it.

(実施例E)
図1および図2を参照して、支持基板10として直径2インチ(50.8mm)で厚さ500μmのMo支持基板を用いたこと以外は、実施例Aと同様にして、例E1〜例E4として、Mo支持基板(支持基板10)上にTiO2膜(酸化物膜20)およびGaN層(III族窒化物層30a)がこの順に接合されたGaN複合基板(III族窒化物複合基板1)を作製した。
(Example E)
1 and 2, Examples E1 to E4 are the same as Example A except that a Mo support substrate having a diameter of 2 inches (50.8 mm) and a thickness of 500 μm is used as the support substrate 10. A GaN composite substrate (group III nitride composite substrate 1) in which a TiO 2 film (oxide film 20) and a GaN layer (group III nitride layer 30a) are joined in this order on a Mo support substrate (support substrate 10). Was made.

例E1〜例E4のGaN複合基板(III族窒化物複合基板1)は、TiO2膜(酸化物膜20)のNb(不純物)の濃度が、TiO2膜(酸化物膜20)の支持基板10側の第1主面20sからIII族窒化物層30a側の第2主面20tにかけて膜厚方向に、1質量%から0.01質量%まで単調に変化し(例E1)、1質量%から0質量%まで単調に変化し(例E2)、10質量%から0.01質量%まで単調に変化し(例E3)、1質量%から10質量%を経て0.01質量%まで極大値を有するように変化していた(例E4)。 Example GaN composite substrate E1~ Example E4 (III-nitride composite substrate 1), the concentration of Nb (impurities) of the TiO 2 film (oxide film 20), the supporting substrate of the TiO 2 film (oxide film 20) It changes monotonically from 1% by mass to 0.01% by mass in the film thickness direction from the first main surface 20s on the 10 side to the second main surface 20t on the side of the group III nitride layer 30a (Example E1), 1% by mass. 1% to 0% by mass (Example E2), 10% to 0.01% by mass monotonically (Example E3), 1% to 10% by mass and 0.01% by mass maximum (Example E4).

例E1〜例E4のGaN複合基板(III族窒化物複合基板1)について、上記参考例Eにおける接合強度の値を考慮すると、例E1〜例E4のGaN複合基板(III族窒化物複合基板1)におけるTiO2膜(酸化物膜20)とMo支持基板(支持基板10)との接合強度およびTiO2膜(酸化物膜20)とGaN層(III族窒化物層30a)との接合強度は、それぞれ、1.54および0.78(例E1)、1.54および1.00(例E2)、1.21および0.78(例E3)、1.54および0.78(例E4)と、いずれも高くなった。結果を表10に示した。 Regarding the GaN composite substrates of Examples E1 to E4 (Group III nitride composite substrate 1), considering the bonding strength values in Reference Example E above, the GaN composite substrates of Examples E1 to E4 (Group III nitride composite substrate 1) The bonding strength between the TiO 2 film (oxide film 20) and the Mo support substrate (support substrate 10) and the bonding strength between the TiO 2 film (oxide film 20) and the GaN layer (group III nitride layer 30a) in FIG. 1.54 and 0.78 (Example E1), 1.54 and 1.00 (Example E2), 1.21 and 0.78 (Example E3), 1.54 and 0.78 (Example E4), respectively. Both were high. The results are shown in Table 10.

また、例E1〜例E4のGaN複合基板(III族窒化物複合基板1)の膜厚保方向の比抵抗(電気抵抗率)は、例E1が1.7×101Ωcm、例E2が5.3×106Ωcm、例E3が3.9×10-2Ωcm、例E4が5.2×100Ωcmあり、例E2以外は高い導電性を示した。結果を表10に示した。例E2のGaN複合基板は、TiO2膜(酸化物膜20)のGaN層(III族窒化物層30a)側の主面におけるNb(不純物)の濃度が0質量%であったため、膜厚方向の導電性が極めて低くなったものと考えられる。また、例E3のGaN複合基板は、比抵抗が最も小さくなった。これは、TiO2膜(酸化物膜20)のNb濃度が10〜0.01質量%でありTiO2膜全体としてのNb濃度が高かったためと考えられる。 The specific resistance (electrical resistivity) in the film thickness maintaining direction of the GaN composite substrates (Group III nitride composite substrate 1) of Examples E1 to E4 is 1.7 × 10 1 Ωcm in Example E1 and 5. 3 × 10 6 Ωcm, Example E3 was 3.9 × 10 −2 Ωcm, and Example E4 was 5.2 × 10 0 Ωcm. Except for Example E2, high conductivity was exhibited. The results are shown in Table 10. In the GaN composite substrate of Example E2, the concentration of Nb (impurities) on the main surface of the TiO 2 film (oxide film 20) on the GaN layer (Group III nitride layer 30a) side was 0% by mass. It is considered that the electrical conductivity of the film was extremely low. The specific resistance of the GaN composite substrate of Example E3 was the smallest. This is presumably because the Nb concentration of the TiO 2 film (oxide film 20) was 10 to 0.01% by mass and the Nb concentration of the entire TiO 2 film was high.

Figure 2013084900
Figure 2013084900

(参考例F)
図1を参照して、多結晶で形成される直径2インチ(50.8mm)で厚さ500μmのMo支持基板(支持基板10)、直径2インチ(50.8mm)で厚さが600nmのSrTiO3膜(酸化物膜20)および単結晶で形成される直径2インチ(50.8mm)で厚さが300nmのGaN層(III族窒化物層30a)がこの順に接合されたGaN複合基板(III族窒化物複合基板1)について、SrTiO3膜(酸化物膜20)中のLa(不純物)の濃度と、SrTiO3膜(酸化物膜20)とMo支持基板(支持基板10)との接合強度との関係、ならびに、SrTiO3膜(酸化物膜20)中のLa(不純物)の濃度と、SrTiO3膜(酸化物膜20)とGaN層(III族窒化物層30a)との接合強度との関係を、以下のようにして調べた。
(Reference Example F)
Referring to FIG. 1, a Mo support substrate (support substrate 10) having a diameter of 2 inches (50.8 mm) and a thickness of 500 μm and SrTiO 2 having a diameter of 2 inches (50.8 mm) and a thickness of 600 nm are formed of polycrystal 3 films (oxide film 20) and a GaN composite substrate (III nitride layer 30a) having a diameter of 2 inches (50.8 mm) and a thickness of 300 nm formed of a single crystal are joined in this order (III bonding strength of the nitride composite substrate 1), and the concentration of the SrTiO 3 film (oxide film 20) in the La (impurities), and the Mo support substrate SrTiO 3 film (oxide film 20) (supporting substrate 10) relationship, between the well and the bonding strength and density of the SrTiO 3 film (oxide film 20) in the La (impurities), SrTiO 3 film (oxide film 20) and the GaN layer and the (III-nitride layer 30a) The relationship below It was examined Te Unishi.

1.酸化物膜中の不純物の濃度と、酸化物膜と支持基板との接合強度と、の関係
支持基板10として直径2インチ(50.8mm)で厚さ500μmのMo支持基板を用いたこと以外は、参考例Bと同様にして、5種類の積層基板1Sについてサンプルを作製し、引張試験によりそれらのサンプルの接合強度を測定した。いずれの積層基板1Sのいずれのサンプルも、Mo支持基板(支持基板)とTiO2膜(酸化物膜)との界面または界面の近傍で破断した。
1. Relationship between impurity concentration in oxide film and bonding strength between oxide film and supporting substrate Except that a Mo supporting substrate having a diameter of 2 inches (50.8 mm) and a thickness of 500 μm was used as the supporting substrate 10. In the same manner as in Reference Example B, samples were prepared for five types of laminated substrates 1S, and the bonding strength of these samples was measured by a tensile test. Any sample of any laminated substrate 1S was broken at or near the interface between the Mo support substrate (support substrate) and the TiO 2 film (oxide film).

各種積層基板1Sの接合強度は、La(不純物)の濃度が0質量%のとき1.00、La(不純物)の濃度が0.01質量%のとき1.11、La(不純物)の濃度が0.1質量%のとき1.14、La(不純物)の濃度が1質量%のとき1.57、La(不純物)の濃度が10質量%のとき1.23であった。すなわち、La(不純物)の濃度が0質量%のときに比べて、La(不純物)の濃度が0.01質量%〜10質量%のときは、SrTiO3膜(酸化物膜)とMo支持基板(支持基板)との間の接合強度が高くなった。結果を表11にまとめた。 The bonding strength of various laminated substrates 1S is 1.00 when the concentration of La (impurity) is 0% by mass, 1.11 when the concentration of La (impurity) is 0.01% by mass, and the concentration of La (impurity) is It was 1.14 when the concentration was 0.1% by mass, 1.57 when the concentration of La (impurity) was 1% by mass, and 1.23 when the concentration of La (impurity) was 10% by mass. That is, when the concentration of La (impurity) is 0.01% by mass to 10% by mass compared to when the concentration of La (impurity) is 0% by mass, the SrTiO 3 film (oxide film) and the Mo support substrate The bonding strength with the (support substrate) was increased. The results are summarized in Table 11.

2.酸化物膜中の不純物の濃度と、酸化物膜とIII族窒化物層との接合強度と、の関係
参考例Bにおけるサンプルの接合強度の測定から、各種積層基板1Tの接合強度は、La(不純物)の濃度が0質量%のとき1.00、La(不純物)の濃度が0.01質量%のとき0.76、La(不純物)の濃度が0.1質量%のとき0.71、La(不純物)の濃度が1質量%のとき0.55、La(不純物)の濃度が10質量%のとき0.54であった。すなわち、La(不純物)の濃度が0質量%のときに比べて、La(不純物)の濃度が0.01質量%から10質量%と高くなる程、SrTiO3膜(酸化物膜)とGaN層(III族窒化物層)との間の接合強度が低くなった。結果を表11にまとめた。
2. Relationship between the concentration of impurities in the oxide film and the bonding strength between the oxide film and the group III nitride layer From the measurement of the bonding strength of the sample in Reference Example B, the bonding strength of the various laminated substrates 1T is La ( 1.00 when the concentration of (impurity) is 0% by mass, 0.76 when the concentration of La (impurity) is 0.01% by mass, 0.71 when the concentration of La (impurity) is 0.1% by mass, It was 0.55 when the concentration of La (impurity) was 1% by mass, and 0.54 when the concentration of La (impurity) was 10% by mass. That is, the SrTiO 3 film (oxide film) and the GaN layer increase as the concentration of La (impurity) increases from 0.01% by mass to 10% by mass compared to when the concentration of La (impurity) is 0% by mass. The bonding strength with the (Group III nitride layer) was low. The results are summarized in Table 11.

Figure 2013084900
Figure 2013084900

図1および表11を参照して、Mo支持基板(支持基板10)、SrTiO3膜(酸化物膜20)およびGaN層(III族窒化物層30a)がこの順に接合されたGaN複合基板(III族窒化物複合基板1)において、SrTiO3膜(酸化物膜20)とMo支持基板(支持基板10)との接合強度を高めるにはSrTiO3膜(酸化物膜20)のLa(不純物)濃度を高くすることが有効であり(特に、不純物濃度を1質量%程度とするのが好ましく)、SrTiO3膜(酸化物膜20)とGaN層(III族窒化物層30a)との接合強度を高めるにはSrTiO3膜(酸化物膜20)のLa(不純物)濃度を低くすることが有効であることがわかった。 Referring to FIG. 1 and Table 11, a GaN composite substrate (III) in which a Mo support substrate (support substrate 10), a SrTiO 3 film (oxide film 20), and a GaN layer (Group III nitride layer 30a) are joined in this order. In the group nitride composite substrate 1), the La (impurity) concentration of the SrTiO 3 film (oxide film 20) is increased in order to increase the bonding strength between the SrTiO 3 film (oxide film 20) and the Mo support substrate (support substrate 10). Is effective (in particular, the impurity concentration is preferably about 1% by mass), and the bonding strength between the SrTiO 3 film (oxide film 20) and the GaN layer (group III nitride layer 30a) is increased. It has been found that it is effective to lower the La (impurity) concentration of the SrTiO 3 film (oxide film 20) in order to increase it.

(実施例F)
図1および図2を参照して、支持基板10として直径2インチ(50.8mm)で厚さ500μmのMo支持基板を用いたこと以外は、実施例Bと同様にして、例F1〜例F4として、Mo支持基板(支持基板10)上にSrTiO3膜(酸化物膜20)およびGaN層(III族窒化物層30a)がこの順に接合されたGaN複合基板(III族窒化物複合基板1)を作製した。
(Example F)
1 and 2, Examples F1 to F4 are the same as Example B except that a Mo support substrate having a diameter of 2 inches (50.8 mm) and a thickness of 500 μm is used as the support substrate 10. GaN composite substrate (Group III nitride composite substrate 1) in which a SrTiO 3 film (oxide film 20) and a GaN layer (Group III nitride layer 30a) are joined in this order on a Mo support substrate (support substrate 10) Was made.

例F1〜例F4のGaN複合基板(III族窒化物複合基板1)は、SrTiO3膜(酸化物膜20)のLa(不純物)の濃度が、SrTiO3膜(酸化物膜20)の支持基板10側の第1主面20sからIII族窒化物層30a側の第2主面20tにかけて膜厚方向に、1質量%から0.01質量%まで単調に変化し(例F1)、1質量%から0質量%まで単調に変化し(例F2)、10質量%から0.01質量%まで単調に変化し(例F3)、1質量%から10質量%を経て0.01質量%まで極大値を有するように変化していた(例F4)。 Example GaN composite substrate F1~ Example F4 (III-nitride composite substrate 1), the concentration of La (impurities) of SrTiO 3 film (oxide film 20), the supporting substrate of SrTiO 3 film (oxide film 20) It changes monotonically from 1% by mass to 0.01% by mass in the film thickness direction from the first main surface 20s on the 10 side to the second main surface 20t on the side of the group III nitride layer 30a (Example F1), 1% by mass. 1% to 0% by mass (Example F2), 10% to 0.01% by mass monotonically (Example F3), 1% to 10% by mass and 0.01% by mass maximum (Example F4).

例F1〜例F4のGaN複合基板(III族窒化物複合基板1)について、上記参考例Fにおける接合強度の値を考慮すると、例F1〜例F4のGaN複合基板(III族窒化物複合基板1)におけるSrTiO3膜(酸化物膜20)とMo支持基板(支持基板10)との接合強度およびSrTiO3膜(酸化物膜20)とGaN層(III族窒化物層30a)との接合強度は、それぞれ、1.57および0.76(例F1)、1.57および1.00(例F2)、1.23および0.76(例F3)、1.57および0.76(例F4)と、いずれも高くなった。結果を表12に示した。 Regarding the GaN composite substrates of Examples F1 to F4 (Group III nitride composite substrate 1), considering the bonding strength values in Reference Example F above, the GaN composite substrates of Examples F1 to F4 (Group III nitride composite substrate 1) The bonding strength between the SrTiO 3 film (oxide film 20) and the Mo support substrate (support substrate 10) and the bonding strength between the SrTiO 3 film (oxide film 20) and the GaN layer (Group III nitride layer 30a) in FIG. 1.57 and 0.76 (Example F1), 1.57 and 1.00 (Example F2), 1.23 and 0.76 (Example F3), 1.57 and 0.76 (Example F4), respectively. Both were high. The results are shown in Table 12.

また、例F1〜例F4のGaN複合基板(III族窒化物複合基板1)の膜厚保方向の比抵抗(電気抵抗率)は、例F1が5.5×101Ωcm、例F2が2.8×107Ωcm、例F3が7.8×10-2Ωcm、例F4が2.1×101Ωcmであり、例F2以外は高い導電性を示した。結果を表12に示した。例F2のGaN複合基板は、SrTiO3膜(酸化物膜20)のGaN層(III族窒化物層30a)側の主面におけるLa(不純物)の濃度が0質量%であったため、膜厚方向の導電性が極めて低くなったものと考えられる。また、例F3のGaN複合基板は、比抵抗が最も小さくなった。これは、SrTiO3膜(酸化物膜20)のLa濃度が10〜0.01質量%でありSrTiO3膜全体としてのLa濃度が高かったためと考えられる。 The specific resistance (electrical resistivity) in the film thickness maintaining direction of the GaN composite substrates (Group III nitride composite substrate 1) of Examples F1 to F4 is 5.5 × 10 1 Ωcm in Example F1, and 2. 8 × 10 7 Ωcm, Example F3 was 7.8 × 10 −2 Ωcm, and Example F4 was 2.1 × 10 1 Ωcm. Except for Example F2, high conductivity was exhibited. The results are shown in Table 12. In the GaN composite substrate of Example F2, the La (impurity) concentration on the main surface of the SrTiO 3 film (oxide film 20) on the GaN layer (Group III nitride layer 30a) side was 0% by mass. It is considered that the electrical conductivity of the film was extremely low. In addition, the specific resistance of the GaN composite substrate of Example F3 was the smallest. This is presumably because the La concentration of the SrTiO 3 film (oxide film 20) was 10 to 0.01% by mass and the La concentration of the entire SrTiO 3 film was high.

Figure 2013084900
Figure 2013084900

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 III族窒化物複合基板、1S,1T 積層基板、10 支持基板、10m,30n 主面、20,20a,20b 中間膜、20s 第1主面、20t 第2主面、30 III族窒化物基板、30a III族窒化物層、30b 残りのIII族窒化物基板、30i イオン注入領域、100 サファイア支持基板。   1 Group III nitride composite substrate, 1S, 1T laminated substrate, 10 support substrate, 10m, 30n main surface, 20, 20a, 20b intermediate film, 20s first main surface, 20t second main surface, 30 Group III nitride substrate 30a group III nitride layer, 30b remaining group III nitride substrate, 30i ion implantation region, 100 sapphire support substrate.

Claims (4)

支持基板と、前記支持基板上に配置されている酸化物膜と、前記酸化物膜上に配置されているIII族窒化物層と、を含み、
前記支持基板は多結晶で形成され、
前記III族窒化物層は少なくともc軸方向に配向しているIII族窒化物結晶で形成され、
前記酸化物膜は不純物が添加され、前記不純物の濃度は、前記酸化物膜において前記支持基板側の第1主面から前記III族窒化物層側の第2主面にかけて膜厚方向で変化し、前記第1主面における前記不純物の濃度は前記第2主面における前記不純物の濃度よりも高い、III族窒化物複合基板。
A support substrate, an oxide film disposed on the support substrate, and a group III nitride layer disposed on the oxide film,
The support substrate is formed of polycrystal,
The group III nitride layer is formed of group III nitride crystals oriented at least in the c-axis direction,
Impurities are added to the oxide film, and the concentration of the impurities varies in the film thickness direction from the first main surface on the support substrate side to the second main surface on the group III nitride layer side in the oxide film. The group III nitride composite substrate, wherein the impurity concentration in the first main surface is higher than the impurity concentration in the second main surface.
前記酸化物膜は、前記第1主面における前記不純物の濃度が10質量%以下であり、前記第2主面における前記不純物の濃度が0.01質量%以上である請求項1に記載のIII族窒化物複合基板。   3. The III of claim 1, wherein the oxide film has a concentration of the impurity on the first main surface of 10% by mass or less and a concentration of the impurity on the second main surface of 0.01% by mass or more. Group nitride composite substrate. 前記酸化物膜の前記不純物の濃度は、前記酸化物膜において前記第1主面から前記第2主面にかけて膜厚方向で単調に変化する請求項1または請求項2に記載のIII族窒化物複合基板。   3. The group III nitride according to claim 1, wherein the impurity concentration of the oxide film monotonously changes in the film thickness direction from the first main surface to the second main surface in the oxide film. Composite board. 前記支持基板は、窒化物、酸化物および金属からなる群から選ばれる少なくとも1種類を含む請求項1から請求項3のいずれかに記載のIII族窒化物複合基板。   The group III nitride composite substrate according to any one of claims 1 to 3, wherein the support substrate includes at least one selected from the group consisting of nitride, oxide, and metal.
JP2012135772A 2011-09-27 2012-06-15 Group iii nitride composite substrate Pending JP2013084900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012135772A JP2013084900A (en) 2011-09-27 2012-06-15 Group iii nitride composite substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011210981 2011-09-27
JP2011210981 2011-09-27
JP2012135772A JP2013084900A (en) 2011-09-27 2012-06-15 Group iii nitride composite substrate

Publications (1)

Publication Number Publication Date
JP2013084900A true JP2013084900A (en) 2013-05-09

Family

ID=48529752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012135772A Pending JP2013084900A (en) 2011-09-27 2012-06-15 Group iii nitride composite substrate

Country Status (1)

Country Link
JP (1) JP2013084900A (en)

Similar Documents

Publication Publication Date Title
JP5765037B2 (en) Manufacturing method of composite substrate
US8048693B2 (en) Methods and structures for relaxation of strained layers
EP2006887A2 (en) III-V Nitride semiconductor layer-bonded substrate and semiconductor device
WO2014057748A1 (en) Group iii nitride composite substrate, manufacturing method therefor, and group iii nitride semiconductor device manufacturing method
JP5938871B2 (en) Manufacturing method of GaN-based film
WO2014125688A1 (en) Group iii-nitride composite substrate and method of producing same, layered group iii-nitride composite substrate, as well as group iii-nitride semiconductor device and method of producing same
WO2012063774A1 (en) Group iii nitride composite substrate
JP6322890B2 (en) Group III nitride composite substrate and method for manufacturing the same, and method for manufacturing group III nitride semiconductor device
JP2018049868A (en) Semiconductor stacked structure and semiconductor device
JP5857337B2 (en) Gallium oxide substrate and manufacturing method thereof
WO2012111616A1 (en) Composite substrate with protection film and method of manufacturing semiconductor device
JP5439675B2 (en) Nitride semiconductor substrate and nitride semiconductor
JP2013084900A (en) Group iii nitride composite substrate
JP6149428B2 (en) Composite substrate, semiconductor wafer manufacturing method using composite substrate, and support substrate for composite substrate
KR102315908B1 (en) Method of manufacturing AlxGa1-xN (0.5≤x≤1) piezoelectric thin films with high purity and their apparatus using the thin film
KR102556712B1 (en) Method of manufacturing AlxGa1-xN (0.5≤x≤1) piezoelectric thin films with high purity and their apparatus using the thin film
KR101568897B1 (en) Glass-ceramic-based semiconductor-on-insulator structures and method for making the same
US20220149802A1 (en) High purity piezoelectric thin film and method of manufacturing element using same thin film
JP6146041B2 (en) Group III nitride composite substrate, laminated group III nitride composite substrate, group III nitride semiconductor device, and manufacturing method thereof
JP2013053021A (en) Method for manufacturing composite
JP2010192698A (en) Manufacturing method of ion implantation group iii nitride semiconductor substrate, group iii nitride semiconductor layer junction substrate, and group iii nitride semiconductor device
JP2013055119A (en) Composite body
JP2012106907A (en) METHOD FOR PRODUCING GaN FILM