JP2012106907A - METHOD FOR PRODUCING GaN FILM - Google Patents

METHOD FOR PRODUCING GaN FILM Download PDF

Info

Publication number
JP2012106907A
JP2012106907A JP2011175792A JP2011175792A JP2012106907A JP 2012106907 A JP2012106907 A JP 2012106907A JP 2011175792 A JP2011175792 A JP 2011175792A JP 2011175792 A JP2011175792 A JP 2011175792A JP 2012106907 A JP2012106907 A JP 2012106907A
Authority
JP
Japan
Prior art keywords
gan
film
single crystal
main surface
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011175792A
Other languages
Japanese (ja)
Inventor
Shinsuke Fujiwara
伸介 藤原
Koji Uematsu
康二 上松
Yoshiyuki Yamamoto
喜之 山本
Kazunari Sato
一成 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011175792A priority Critical patent/JP2012106907A/en
Publication of JP2012106907A publication Critical patent/JP2012106907A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a GaN film in which a GaN film having a large principal plane area and a small warp can be produced.SOLUTION: The method for producing a GaN film includes the steps of: preparing a composite substrate 10; and depositing a GaN film 20 on the principal plane 13m of a single crystal film 13 in the composite substrate 10. The composite substrate 10 includes: a supporting substrate 11 in which the coefficient of thermal expansion in the principal plane 11m is larger than 1.0 times and smaller than 1.2 times the coefficient of thermal expansion in the a-axis direction of a GaN crystal; and a single crystal film 13 arranged on the principal plane 11m side of the supporting substrate 11, wherein the single crystal film 13 is a SiC film with 3-fold symmetry about an axis perpendicular to the principal plane 13m of the single crystal film 13.

Description

本発明は、主面の面積が大きく反りの小さいGaN系膜が得られるGaN系膜の製造方法に関する。   The present invention relates to a method for manufacturing a GaN-based film that provides a GaN-based film having a large principal surface area and small warpage.

GaN系膜は、発光デバイス、電子デバイスなどの半導体デバイスの基板および半導体層として、好適に用いられる。かかるGaN系膜を製造するための基板としては、その基板とGaN系膜との間で、格子定数および熱膨張係数を一致させるまたは一致に近づける観点から、GaN基板が最も優れている。ところが、GaN基板は非常に高価であり、また、主面の直径が2インチを超える大口径のGaN基板の入手は困難である。   The GaN-based film is suitably used as a substrate and a semiconductor layer of a semiconductor device such as a light emitting device or an electronic device. As a substrate for producing such a GaN-based film, a GaN substrate is most excellent from the viewpoint of matching or approaching the lattice constant and the thermal expansion coefficient between the substrate and the GaN-based film. However, the GaN substrate is very expensive, and it is difficult to obtain a large-diameter GaN substrate having a main surface diameter exceeding 2 inches.

このため、GaN系膜を成膜するための基板として、一般に、サファイア基板が用いられている。しかしながら、サファイア基板とGaN結晶とでは、それらの格子定数および熱膨張係数が大きく異なる。   For this reason, a sapphire substrate is generally used as a substrate for forming a GaN-based film. However, the sapphire substrate and the GaN crystal have greatly different lattice constants and thermal expansion coefficients.

このため、サファイア基板とGaN結晶との間の格子定数の不整合を緩和して結晶性が良好なGaN結晶を成長させるために、たとえば、特開平04−297023号公報(特許文献1)は、サファイア基板にGaN結晶を成長させる際に、サファイア基板上にGaNバッファ層を形成し、そのGaNバッファ層上にGaN結晶層を成長させることを開示する。   For this reason, in order to relax the mismatch of the lattice constant between the sapphire substrate and the GaN crystal and grow a GaN crystal having good crystallinity, for example, Japanese Patent Laid-Open No. 04-297023 (Patent Document 1) It is disclosed that when a GaN crystal is grown on a sapphire substrate, a GaN buffer layer is formed on the sapphire substrate and the GaN crystal layer is grown on the GaN buffer layer.

また、GaN結晶の熱膨張係数に近い熱膨張係数の基板を用いて反りの小さいGaN膜を得るために、たとえば、特表2007−523472号公報(特許文献2)は、中央層に対して互いにほぼ同一の熱膨張係数を有する各対の層を1対以上有し、全体的熱膨張係数がGaN結晶の熱膨張係数とほぼ同一である複合支持基板を開示する。   In order to obtain a GaN film having a small warp using a substrate having a thermal expansion coefficient close to that of the GaN crystal, for example, JP-T-2007-523472 (Patent Document 2) Disclosed is a composite support substrate having one or more pairs of each pair of layers having substantially the same thermal expansion coefficient, the overall thermal expansion coefficient being substantially the same as the thermal expansion coefficient of the GaN crystal.

特開平04−297023号公報Japanese Patent Laid-Open No. 04-297023 特表2007−523472号公報Special table 2007-523472

上記の特開平04−297023号公報(特許文献1)においては、GaN結晶成長中に転位などの結晶欠陥が会合消滅するためか、結晶成長方向に凹に反りながらGaN結晶が成長する。   In the above-mentioned Japanese Patent Application Laid-Open No. 04-297023 (Patent Document 1), a GaN crystal grows while warping in a concave direction in the crystal growth direction because crystal defects such as dislocations associate and disappear during GaN crystal growth.

しかし、上記のようにサファイア基板の熱膨張係数はGaN結晶の熱膨張係数に比べて非常に大きいため、成長したGaN結晶は結晶成長後の冷却時に結晶成長方向に凸に大きく反り、結晶成長方向に凸に大きく反ったGaN膜が得られる。ここで、サファイア基板の主面の直径を大きくするほど、そのGaN結晶の上記冷却時における反りが大きくなる(具体的には、得られるGaN膜の反りは、サファイア基板における主面の直径の2乗にほぼ比例する)。このため、主面の直径が大きくなるほど、反りの小さいGaN膜を得ることは困難である。   However, as described above, the coefficient of thermal expansion of the sapphire substrate is very large compared to the coefficient of thermal expansion of the GaN crystal, so that the grown GaN crystal warps convexly in the crystal growth direction during cooling after crystal growth, and the crystal growth direction Thus, a GaN film having a large convex curvature is obtained. Here, as the diameter of the main surface of the sapphire substrate is increased, the warpage of the GaN crystal during the cooling increases (specifically, the warpage of the obtained GaN film is 2 times the diameter of the main surface of the sapphire substrate). Almost proportional to the power). For this reason, it is difficult to obtain a GaN film with a small warp as the diameter of the main surface increases.

また、上記の特表2007−523472号公報(特許文献2)に開示された複合支持基板は、その熱膨張係数がGaN結晶の熱膨張係数とほぼ同一であるため、その上に成長させるGaN層の反りを小さくすることができる。しかしながら、かかる複合支持基板は、その構造が複雑であるため、その構造の設計が難しく、またその構造の形成が難しいことから、設計および製造のためのコストが非常に高くなり、GaN膜を製造するコストが非常に高くなる。   Moreover, since the thermal expansion coefficient of the composite support substrate disclosed in the above Japanese translation of PCT publication No. 2007-523472 (Patent Document 2) is substantially the same as the thermal expansion coefficient of the GaN crystal, a GaN layer is grown on it. Can reduce the warpage. However, since the structure of such a composite support substrate is complicated, it is difficult to design the structure, and it is difficult to form the structure, so the cost for designing and manufacturing becomes very high, and the GaN film is manufactured. The cost to do is very high.

本発明は、上記問題点を解決して、主面の面積が大きく反りの小さいGaN系膜を製造することが可能なGaN系膜の製造方法を提供することを目的とする。   An object of the present invention is to solve the above-described problems and to provide a method for manufacturing a GaN-based film capable of manufacturing a GaN-based film having a large principal surface area and a small warpage.

本発明は、主面内の熱膨張係数が、GaN結晶のa軸方向の熱膨脹係数に比べて、1.0倍より大きく1.2倍より小さい支持基板と、支持基板の主面側に配置されている単結晶膜と、を含み、単結晶膜が単結晶膜の主面に垂直な軸に対して3回対称性を有するSiC膜である複合基板を準備する工程と、複合基板における単結晶膜の主面上にGaN系膜を成膜する工程と、を含むGaN系膜の製造方法である。   In the present invention, the thermal expansion coefficient in the main surface is larger than 1.0 times and smaller than 1.2 times the thermal expansion coefficient in the a-axis direction of the GaN crystal, and disposed on the main surface side of the support substrate. A single crystal film comprising: a single crystal film comprising: a single crystal film having a three-fold symmetry with respect to an axis perpendicular to a main surface of the single crystal film; And a step of forming a GaN-based film on the main surface of the crystal film.

本発明にかかるGaN系膜の製造方法において、複合基板における単結晶膜の主面の面積を45cm2以上とすることができる。また、複合基板における支持基板を焼結体とすることができる。また、GaN系膜を成膜する工程は、単結晶膜の主面上にGaN系バッファ層を形成するサブ工程と、GaN系バッファ層の主面上にGaN系単結晶層を形成するサブ工程と、を含むことができる。 In the GaN-based film manufacturing method according to the present invention, the area of the main surface of the single crystal film in the composite substrate can be 45 cm 2 or more. Further, the support substrate in the composite substrate can be a sintered body. The step of forming the GaN-based film includes a sub-step of forming a GaN-based buffer layer on the main surface of the single crystal film and a sub-step of forming a GaN-based single crystal layer on the main surface of the GaN-based buffer layer. And can be included.

本発明によれば、主面の面積が大きく反りの小さいGaN系膜を製造することが可能なGaN系膜の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the GaN-type film | membrane which can manufacture the GaN-type film | membrane with a large area of a main surface and a small curvature can be provided.

本発明にかかるGaN系膜の製造方法の一例を示す概略断面図である。ここで、(A)は複合基板を準備する工程を示し、(B)はGaN系膜を成膜する工程を示す。It is a schematic sectional drawing which shows an example of the manufacturing method of the GaN-type film | membrane concerning this invention. Here, (A) shows a step of preparing a composite substrate, and (B) shows a step of forming a GaN-based film. 本発明にかかるGaN系膜の製造方法に用いられる複合基板の準備する工程の一例を示す概略断面図である。ここで、(A)は支持基板を準備するサブ工程を示し、(B)は下地基板上に単結晶膜を成膜するサブ工程を示し、(C)は支持基板に単結晶膜を貼り合わせるサブ工程を示し、(D)は単結晶膜から下地基板を分離するサブ工程を示す。It is a schematic sectional drawing which shows an example of the process of preparing the composite substrate used for the manufacturing method of the GaN-type film | membrane concerning this invention. Here, (A) shows a sub-process for preparing a support substrate, (B) shows a sub-process for forming a single crystal film on the base substrate, and (C) attaches the single crystal film to the support substrate. (D) shows a sub-process for separating the base substrate from the single crystal film.

図1を参照して、本発明にかかるGaN系膜の製造方法の一実施形態は、主面11m内の熱膨張係数が、GaN結晶のa軸方向の熱膨脹係数に比べて、1.0倍より大きく1.2倍より小さい支持基板11と、支持基板11の主面11m側に配置されている単結晶膜13と、を含み、単結晶膜13は単結晶膜13の主面13mに垂直な軸に対して3回対称性を有する複合基板10を準備する工程(図1(A))と、複合基板10における単結晶膜13の主面13m上にGaN系膜20を成膜する工程(図1(B))と、を含む。ここで、GaN系膜とは、III族元素としてGaを含むIII族窒化物で形成されている膜をいい、たとえばGaxInyAl1-x-yN膜(x>0、y≧0、x+y≦1)が挙げられる。 Referring to FIG. 1, in one embodiment of the method for producing a GaN-based film according to the present invention, the thermal expansion coefficient in the main surface 11m is 1.0 times the thermal expansion coefficient in the a-axis direction of the GaN crystal. A support substrate 11 that is larger and smaller than 1.2 times, and a single crystal film 13 disposed on the main surface 11 m side of the support substrate 11, and the single crystal film 13 is perpendicular to the main surface 13 m of the single crystal film 13. A step of preparing a composite substrate 10 having a three-fold symmetry with respect to an arbitrary axis (FIG. 1A), and a step of forming a GaN-based film 20 on the main surface 13m of the single crystal film 13 of the composite substrate 10 (FIG. 1B). Here, the GaN-based film refers to a film formed of a group III nitride containing Ga as a group III element. For example, a Ga x In y Al 1-xy N film (x> 0, y ≧ 0, x + y ≦ 1).

本実施形態のGaN系膜の製造方法によれば、主面内の熱膨張係数が、GaN結晶のa軸方向の熱膨脹係数に比べて、1.0倍より大きく1.2倍より小さい支持基板と、支持基板の主面側に配置されている単結晶膜と、を含み、単結晶膜が結晶膜の主面に垂直な軸に対して3回対称性を有する複合基板を用いることにより、主面の面積が大きく(すなわち大口径で)反りの小さいGaN系膜が得られる。   According to the method for manufacturing a GaN-based film of this embodiment, the support substrate has a thermal expansion coefficient in the main surface that is greater than 1.0 times and less than 1.2 times the thermal expansion coefficient of the GaN crystal in the a-axis direction. And a single crystal film disposed on the main surface side of the support substrate, and using a composite substrate in which the single crystal film has a three-fold symmetry with respect to an axis perpendicular to the main surface of the crystal film, A GaN-based film having a large principal surface area (ie, a large diameter) and small warpage can be obtained.

(複合基板の準備工程)
図1(A)を参照して、本実施形態のGaN系膜の製造方法は、主面11m内の熱膨張係数が、GaN結晶のa軸方向の熱膨脹係数に比べて、1.0倍より大きく1.2倍より小さい支持基板11と、支持基板11の主面11m側に配置されている単結晶膜13と、を含み、単結晶膜13が単結晶膜13の主面13mに垂直な軸に対して3回対称性を有する複合基板10を準備する工程を含む。
(Preparation process of composite substrate)
Referring to FIG. 1A, in the method for manufacturing a GaN-based film of this embodiment, the thermal expansion coefficient in the main surface 11m is 1.0 times larger than the thermal expansion coefficient in the a-axis direction of the GaN crystal. Including a support substrate 11 that is larger than 1.2 times and a single crystal film 13 disposed on the main surface 11 m side of the support substrate 11, and the single crystal film 13 is perpendicular to the main surface 13 m of the single crystal film 13. A step of preparing a composite substrate 10 having a three-fold symmetry with respect to an axis.

上記の複合基板10は、主面11m内の熱膨張係数がGaN結晶のa軸方向の熱膨張係数に比べて少し大きい(具体的には、1.0倍より大きく1.2倍より小さい)支持基板11と、支持基板11の主面11m側に配置されている単結晶膜13と、を含み、単結晶膜13が単結晶膜13の主面13mに垂直な軸に対して3回対称性を有しているため、複合基板10の単結晶膜13の主面13m上に反りが小さく転位密度が低い大口径のGaN系膜を成長させることができる。   The composite substrate 10 has a slightly larger thermal expansion coefficient in the main surface 11m than the thermal expansion coefficient in the a-axis direction of the GaN crystal (specifically, larger than 1.0 times and smaller than 1.2 times). The support substrate 11 and the single crystal film 13 disposed on the main surface 11m side of the support substrate 11 are included, and the single crystal film 13 is three times symmetrical with respect to an axis perpendicular to the main surface 13m of the single crystal film 13 Therefore, a large-diameter GaN-based film with low warpage and low dislocation density can be grown on the main surface 13 m of the single crystal film 13 of the composite substrate 10.

複合基板10の単結晶膜13上に、反りが小さく転位密度が低い大口径のGaN系膜を成長させる観点から、上記の複合基板10に含まれる支持基板11は、主面11m内の熱膨張係数が、GaN結晶のa軸方向の熱膨脹係数に比べて、1.0倍より大きく1.2倍より小さいことが必要であり、1.04倍より大きく1.15倍より小さいことが好ましく、1.04倍より大きく1.10倍より小さいことがより好ましい。   From the viewpoint of growing a large-diameter GaN-based film with low warpage and low dislocation density on the single crystal film 13 of the composite substrate 10, the support substrate 11 included in the composite substrate 10 has a thermal expansion within the main surface 11m. The coefficient needs to be larger than 1.0 times and smaller than 1.2 times compared with the thermal expansion coefficient in the a-axis direction of the GaN crystal, preferably larger than 1.04 times and smaller than 1.15 times, More preferably, it is larger than 1.04 times and smaller than 1.10 times.

ここで、支持基板11は、主面11m内の熱膨張係数が、GaN結晶のa軸方向の熱膨脹係数に比べて、1.0倍より大きく1.2倍より小さい基板であれば特に制限はなく、単結晶であっても、多結晶であっても、非結晶であってもよい。支持基板11は、その原料の種類と比率とを変動することによりその熱膨張係数の調整が容易で上記の範囲内にある熱膨張係数が容易に得られる観点から、焼結体であることが好ましい。たとえば、Al23−SiO2系焼結体、SiO2−MgO焼結体、SiO2−ZrO2焼結体などが好ましく挙げられる。 Here, the support substrate 11 is not particularly limited as long as the thermal expansion coefficient in the main surface 11m is a substrate that is larger than 1.0 times and smaller than 1.2 times the thermal expansion coefficient in the a-axis direction of the GaN crystal. There may be a single crystal, a polycrystal, or an amorphous. The support substrate 11 is a sintered body from the viewpoint of easily adjusting the thermal expansion coefficient by changing the kind and ratio of the raw material and easily obtaining the thermal expansion coefficient within the above range. preferable. For example, an Al 2 O 3 —SiO 2 sintered body, a SiO 2 —MgO sintered body, a SiO 2 —ZrO 2 sintered body and the like are preferable.

このとき、支持基板11およびGaN結晶の熱膨張係数は、一般に、それらの温度により大きく変動することから、如何なる温度または温度領域における熱膨張係数によって決めるかが重要である。本発明においては、複合基板上に反りの小さいGaN系膜を製造することを目的とするものであり、室温から昇温させてGaN系膜の成膜温度で複合基板上にGaN系膜を成膜した後室温まで降温させて複合基板上に成膜されたGaN系膜を取り出すことから、室温からGaN系膜の成膜温度までにおける支持基板およびGaN結晶の平均熱膨張係数を、それぞれ支持基板およびGaN結晶の熱膨張係数として取り扱うことが適正と考えられる。しかしながら、GaN結晶は、不活性ガス雰囲気中においても、800℃を超えると分解が起こる。このため、本発明においては、支持基板およびGaN結晶の熱膨張係数は、室温(具体的に25℃)から800℃までにおける平均熱膨張係数により決定することにする。   At this time, since the thermal expansion coefficients of the support substrate 11 and the GaN crystal generally vary greatly depending on their temperatures, it is important to determine the temperature or thermal range in which temperature range. The purpose of the present invention is to produce a GaN-based film having a small warp on a composite substrate, and the GaN-based film is formed on the composite substrate at the film formation temperature of the GaN-based film by raising the temperature from room temperature. After the film formation, the temperature is lowered to room temperature and the GaN-based film formed on the composite substrate is taken out, so that the average thermal expansion coefficient of the support substrate and the GaN crystal from room temperature to the film-forming temperature of the GaN-based film is It is considered appropriate to handle it as the thermal expansion coefficient of GaN crystals. However, GaN crystals decompose when the temperature exceeds 800 ° C. even in an inert gas atmosphere. Therefore, in the present invention, the thermal expansion coefficients of the support substrate and the GaN crystal are determined by the average thermal expansion coefficient from room temperature (specifically 25 ° C.) to 800 ° C.

また、複合基板10の単結晶膜13上に、反りが小さく転位密度が低い大口径のGaN系膜を成長させる観点から、上記の複合基板10に含まれる支持基板11の主面11m側に配置される単結晶膜13は、単結晶膜13の主面13mに垂直な軸に対して3回対称性を有することが必要であり、主面13mが(0001)面であるサファイア膜、主面13mが(0001)面であるSiC膜、主面13mが(111)面であるSi膜、主面13mが(111)面であるGaAs膜などが好ましく挙げられる。ここで、単結晶膜が単結晶膜の主面に垂直な軸に対して3回対称性を有するとは、結晶幾何学的に厳密な3回対称性を有していることを意味するのではなく、実際のその単結晶膜において実質的な3回対称性を有していることを意味し、具体的には、その単結晶膜の結晶幾何学的に厳密な3回対称軸とその単結晶膜の主面に垂直な軸とのなす角度の絶対値が10°以下であれば足りるという意味である。   Further, from the viewpoint of growing a large-diameter GaN-based film with low warpage and low dislocation density on the single crystal film 13 of the composite substrate 10, it is disposed on the main surface 11 m side of the support substrate 11 included in the composite substrate 10. The single crystal film 13 is required to have three-fold symmetry with respect to an axis perpendicular to the main surface 13m of the single crystal film 13, and the sapphire film whose main surface 13m is the (0001) plane, the main surface Preferred are an SiC film in which 13m is the (0001) plane, an Si film in which the main surface 13m is the (111) plane, a GaAs film in which the main surface 13m is the (111) plane, and the like. Here, the fact that the single crystal film has a three-fold symmetry with respect to an axis perpendicular to the main surface of the single crystal film means that the crystal has a strict three-fold symmetry in terms of crystal geometry. Rather, it means that the actual single crystal film has a substantial three-fold symmetry. Specifically, the crystal geometrically strict three-fold symmetry axis of the single crystal film and its This means that the absolute value of the angle formed with the axis perpendicular to the main surface of the single crystal film is 10 ° or less.

なお、複合基板10において、反りを小さく転位密度を低くする観点から、支持基板11の主面11mと単結晶膜13の主面13mとは実質的に平行であることが好ましい。ここで、2つの面が実質的に平行とは、それらの2つの面がなす角度の絶対値が10°以下であることをいう。   In the composite substrate 10, it is preferable that the main surface 11 m of the support substrate 11 and the main surface 13 m of the single crystal film 13 are substantially parallel from the viewpoint of reducing warpage and reducing dislocation density. Here, two surfaces being substantially parallel means that the absolute value of the angle formed by these two surfaces is 10 ° or less.

また、複合基板10の支持基板11の主面11m側に単結晶膜13を配置する方法には、特に制限はなく、支持基板11の主面11mに直接単結晶膜13を成長させる方法(第1の方法)、支持基板11の主面11mに、下地基板の主面上に成膜させた単結晶膜13を貼り合わせた後下地基板を除去する方法(第2の方法)、支持基板11の主面11mに単結晶(図示せず)を貼り合わせた後その単結晶を貼り合わせ面から所定の深さの面で分離することにより支持基板11の主面11m上に単結晶膜13を形成する方法(第3の方法)などが挙げられる。支持基板が多結晶の焼結体である場合には、上記の第1の方法が困難であるため、上記の第2および第3のいずれかの方法が好ましく用いられる。上記の第2の方法において、支持基板11に単結晶膜13を貼り合わせる方法には、特に制限はなく、支持基板11の主面11mに直接単結晶膜13を貼り合わせる方法、支持基板11の主面11mに接着層12を介在させて単結晶膜13を貼り合わせる方法などが挙げられる。上記の第3の方法において、支持基板11に単結晶を貼り合わせる方法には、特に制限はなく、支持基板11の主面11mに直接単結晶を貼り合わせる方法、支持基板11の主面11mに接着層12を介在させて単結晶を貼り合わせる方法などが挙げられる。   Further, the method for disposing the single crystal film 13 on the main surface 11m side of the support substrate 11 of the composite substrate 10 is not particularly limited, and a method for growing the single crystal film 13 directly on the main surface 11m of the support substrate 11 (first step). 1), a method of removing the base substrate after bonding the single crystal film 13 formed on the main surface of the base substrate to the main surface 11m of the support substrate 11 (second method), and the support substrate 11 A single crystal (not shown) is bonded to the main surface 11m of the support substrate 11, and then the single crystal is separated from the bonded surface at a predetermined depth to form a single crystal film 13 on the main surface 11m of the support substrate 11. A forming method (third method) is exemplified. When the support substrate is a polycrystalline sintered body, the first method is difficult, and therefore any one of the second and third methods is preferably used. In the second method, the method for bonding the single crystal film 13 to the support substrate 11 is not particularly limited. The method for bonding the single crystal film 13 directly to the main surface 11m of the support substrate 11, Examples thereof include a method in which the single crystal film 13 is bonded to the main surface 11m with the adhesive layer 12 interposed. In the third method, the method for attaching the single crystal to the support substrate 11 is not particularly limited, and the method of attaching the single crystal directly to the main surface 11m of the support substrate 11 or the main surface 11m of the support substrate 11 may be used. Examples thereof include a method of bonding single crystals with the adhesive layer 12 interposed.

上記の複合基板10を準備する工程は、特に制限はないが、効率的に品質の高い複合基板10を準備する観点から、たとえば、図2を参照して、上記の第2の方法においては、支持基板11を準備するサブ工程(図2(A))と、下地基板30の主面30n上に単結晶膜13を成膜するサブ工程(図2(B))と、支持基板11と単結晶膜13とを貼り合わせるサブ工程(図2(C))と、下地基板30を除去するサブ工程(図2(D))と、含むことができる。   The step of preparing the composite substrate 10 is not particularly limited, but from the viewpoint of efficiently preparing a composite substrate 10 with high quality, for example, referring to FIG. A sub-process for preparing the support substrate 11 (FIG. 2A), a sub-process for forming the single crystal film 13 on the main surface 30n of the base substrate 30 (FIG. 2B), the support substrate 11 and the single substrate A sub-process for bonding the crystal film 13 (FIG. 2C) and a sub-process for removing the base substrate 30 (FIG. 2D) can be included.

図2(C)では、支持基板11と単結晶膜13とを貼り合わせるサブ工程において、支持基板11の主面11m上に接着層12aに形成し(図2(C1))、下地基板30の主面30n上に成長させられた単結晶膜13の主面13n上に接着層12bを形成した(図2(C2))後、支持基板11上に形成された接着層12aの主面12amと下地基板30上に成膜された単結晶膜13上に形成された接着層12bの主面12bnとを貼り合わせることにより、接着層12aと接着層12bとが接合して形成された接着層12を介在させて支持基板11と単結晶膜13とが貼り合わされる(図2(C3))。しかし、支持基板11と単結晶膜13とが互いに接合可能なものであれば、支持基板11と単結晶膜13とを、接着層12を介在させることなく直接貼り合わせることができる。   In FIG. 2C, in the sub-process for bonding the support substrate 11 and the single crystal film 13, an adhesive layer 12a is formed on the main surface 11m of the support substrate 11 (FIG. 2C1). After forming the adhesive layer 12b on the main surface 13n of the single crystal film 13 grown on the main surface 30n (FIG. 2 (C2)), the main surface 12am of the adhesive layer 12a formed on the support substrate 11 and The adhesive layer 12 formed by bonding the adhesive layer 12a and the adhesive layer 12b to each other by bonding the main surface 12bn of the adhesive layer 12b formed on the single crystal film 13 formed on the base substrate 30. The support substrate 11 and the single crystal film 13 are bonded to each other with the intervening layer (FIG. 2 (C3)). However, as long as the support substrate 11 and the single crystal film 13 can be bonded to each other, the support substrate 11 and the single crystal film 13 can be directly bonded together without the adhesive layer 12 interposed.

支持基板11と単結晶膜13とを貼り合わせる具体的な手法としては、特に制限はないが、貼り合わせ後高温でも接合強度を保持できる観点から、貼り合わせ面を洗浄しそのまま貼り合わせた後600℃〜1200℃程度に昇温して接合する直接接合法、貼り合わせ面を洗浄しプラズマやイオンなどで活性化させた後に室温(たとえば25℃)〜400℃程度の低温で接合する表面活性化法などが好ましく用いられる。   A specific method for bonding the support substrate 11 and the single crystal film 13 is not particularly limited, but from the viewpoint of maintaining the bonding strength even at a high temperature after bonding, the bonded surface is washed and bonded as it is. Direct bonding method in which bonding is performed by raising the temperature to about 1 to 1200 ° C., surface activation for bonding at a low temperature of about room temperature (for example, 25 ° C.) to about 400 ° C. after cleaning the bonded surfaces and activating them with plasma or ions. The method is preferably used.

(GaN系膜の成膜工程)
図1(B)を参照して、本実施形態のGaN系膜の製造方法は、複合基板10における単結晶膜13の主面13m上にGaN系膜20を成膜する工程を含む。
(GaN film formation process)
With reference to FIG. 1B, the GaN-based film manufacturing method of this embodiment includes a step of forming a GaN-based film 20 on the main surface 13 m of the single crystal film 13 in the composite substrate 10.

上記の複合基板の準備工程において準備された複合基板10は、主面11m内の熱膨張係数がGaN結晶のa軸方向の熱膨張係数に比べて少し大きい(具体的には、1.0倍より大きく1.2倍より小さい)支持基板11と、支持基板11の主面11m側に配置されている単結晶膜13と、を含み、単結晶膜13が単結晶膜13の主面13mに垂直な軸に対して3回対称性を有しているため、複合基板10の単結晶膜13の主面13m上に反りが小さく転位密度が低い大口径のGaN系膜20を成膜することができる。   In the composite substrate 10 prepared in the composite substrate preparation step, the thermal expansion coefficient in the main surface 11m is slightly larger than the thermal expansion coefficient in the a-axis direction of the GaN crystal (specifically, 1.0 times). And a single crystal film 13 disposed on the main surface 11 m side of the support substrate 11, and the single crystal film 13 is formed on the main surface 13 m of the single crystal film 13. Since it has three-fold symmetry with respect to the vertical axis, a large-diameter GaN-based film 20 with a small warpage and a low dislocation density is formed on the main surface 13 m of the single crystal film 13 of the composite substrate 10. Can do.

GaN系膜を成膜する方法には、特に制限はないが、転位密度が低いGaN系膜を成膜する観点から、MOCVD(有機金属化学気相堆積)法、HVPE(ハイドライド気相成長)法、MBE(分子線エピタキシ)法、昇華法などの気相法、フラックス法、高窒素圧溶液法などの液相法などが好ましく挙げられる。   The method for forming the GaN-based film is not particularly limited. From the viewpoint of forming a GaN-based film having a low dislocation density, the MOCVD (metal organic chemical vapor deposition) method and the HVPE (hydride vapor deposition) method are used. Preferred examples include gas phase methods such as MBE (molecular beam epitaxy) method and sublimation method, liquid phase methods such as flux method and high nitrogen pressure solution method.

GaN系膜を成膜する工程は、特に制限はないが、転位密度が低いGaN系膜を成膜する観点から、複合基板10の単結晶膜13の主面13m上にGaN系バッファ層21を形成するサブ工程と、GaN系バッファ層21の主面21m上にGaN系単結晶層23を形成するサブ工程と、を含むことが好ましい。ここで、GaN系バッファ層21とは、GaN系膜20の一部分であり、GaN系膜20の別の一部分であるGaN系単結晶層23の成長温度に比べて低い温度で成長させられる結晶性が低いまたは非結晶の層をいう。   The step of forming the GaN-based film is not particularly limited, but from the viewpoint of forming a GaN-based film having a low dislocation density, the GaN-based buffer layer 21 is formed on the main surface 13m of the single crystal film 13 of the composite substrate 10. It is preferable to include a sub-process for forming and a sub-process for forming the GaN-based single crystal layer 23 on the main surface 21 m of the GaN-based buffer layer 21. Here, the GaN-based buffer layer 21 is a part of the GaN-based film 20 and has a crystallinity that is grown at a temperature lower than the growth temperature of the GaN-based single crystal layer 23 that is another part of the GaN-based film 20. Refers to a low or amorphous layer.

GaN系バッファ層21を形成することにより、GaN系バッファ層21上に形成されるGaN系単結晶層23と単結晶膜13との間の格子定数の不整合が緩和されるため、GaN系単結晶層23の結晶性が向上しその転位密度が低くなる。この結果、GaN系膜の結晶性が向上しその転位密度が低くなる。   By forming the GaN-based buffer layer 21, the lattice constant mismatch between the GaN-based single crystal layer 23 and the single crystal film 13 formed on the GaN-based buffer layer 21 is alleviated. The crystallinity of the crystal layer 23 is improved and the dislocation density is lowered. As a result, the crystallinity of the GaN-based film is improved and the dislocation density is lowered.

なお、単結晶膜13上にGaN系膜20として、GaN系バッファ層21を成長させることなく、GaN系単結晶層23を成長させることもできる。かかる方法は、単結晶膜13とその上に成膜するGaN系膜20との間の格子定数の不整合が小さい場合に好適である。   Note that the GaN-based single crystal layer 23 can be grown as the GaN-based film 20 on the single-crystal film 13 without growing the GaN-based buffer layer 21. Such a method is suitable when the lattice constant mismatch between the single crystal film 13 and the GaN-based film 20 formed thereon is small.

(実施例1)
1.GaN結晶の熱膨張係数の測定
HVPE法により成長させた、転位密度が1×106cm-2、Si濃度が1×1018cm-2、酸素濃度が1×1017cm-2、炭素濃度が1×1016cm-2のGaN単結晶から、サイズが2×2×20mm(長手方向がa軸、長手方向に平行な面がC面およびM面のいずれかで構成され、面方位の精度は±0.1°以内)の評価用サンプルを切り出した。
Example 1
1. Measurement of thermal expansion coefficient of GaN crystal Dislocation density 1 × 10 6 cm −2 , Si concentration 1 × 10 18 cm −2 , oxygen concentration 1 × 10 17 cm −2 , carbon concentration grown by HVPE method Is a 1 × 10 16 cm −2 GaN single crystal and has a size of 2 × 2 × 20 mm (the longitudinal direction is a-axis, and the plane parallel to the longitudinal direction is composed of either the C plane or the M plane. A sample for evaluation having an accuracy of within ± 0.1 ° was cut out.

上記の評価用サンプルについて、室温(25℃)から800℃まで昇温したときの平均熱膨張係数をTMA(熱機械分析)により測定した。具体的には、(株)リガク製TMA8310を用いて示唆膨張方式により窒素ガス流通雰囲気下で評価サンプルの熱膨張係数を測定した。かかる測定により得られたGaN結晶のa軸方向の25℃から800℃までにおける平均熱膨張係数αGaN-aは、5.84×10-6/℃であった。 About said sample for evaluation, the average thermal expansion coefficient when it heated up from room temperature (25 degreeC) to 800 degreeC was measured by TMA (thermomechanical analysis). Specifically, the thermal expansion coefficient of the evaluation sample was measured in a nitrogen gas circulation atmosphere by the suggested expansion method using TMA8310 manufactured by Rigaku Corporation. The average thermal expansion coefficient α GaN-a from 25 ° C. to 800 ° C. in the a-axis direction of the GaN crystal obtained by such measurement was 5.84 × 10 −6 / ° C.

2.複合基板の準備工程
(1)支持基板を準備するサブ工程
図2(A)を参照して、支持基板11の材料として、市販の8つのAl23−SiO2系焼結体A〜Hについて、それぞれからサイズが2×2×20mm(長手方向は焼結体から切り出される支持基板の主面に実質的に平行な方向)の測定用サンプルを切り出した。ここで、Al23−SiO2系焼結体は方向特異性がないため、切り出し方向は任意とした。それらの測定用サンプルについて、上記と同様にして、室温(25℃)から800℃まで昇温下時の平均熱膨張係数αSを測定した。
2. Preparation Step of Composite Substrate (1) Sub-Step of Preparing Support Substrate With reference to FIG. 2A, as a material for the support substrate 11, eight commercially available Al 2 O 3 —SiO 2 based sintered bodies A to H For each, a measurement sample having a size of 2 × 2 × 20 mm (the longitudinal direction is a direction substantially parallel to the main surface of the support substrate cut out from the sintered body) was cut out. Here, since the Al 2 O 3 —SiO 2 sintered body has no direction specificity, the cutting direction is arbitrary. For these measurement samples, the average thermal expansion coefficient α S at the time of temperature increase from room temperature (25 ° C.) to 800 ° C. was measured in the same manner as described above.

Al23−SiO2系焼結体Aについて、25℃から800℃までにおける平均熱膨張係数αSは5.5×10-6/℃であり、GaN結晶のa軸方向の平均熱膨張係数αGaN-aに対する焼結体の熱膨張係数αSの比(以下、αS/αGaN-a比という)は0.942であった。Al23−SiO2系焼結体Bについて、25℃から800℃までにおける平均熱膨張係数αSは5.9×10-6/℃であり、αS/αGaN-a比は1.010であった。Al23−SiO2系焼結体Cについて、25℃から800℃までにおける平均熱膨張係数αSは6.1×10-6/℃であり、αS/αGaN-a比は1.045であった。Al23−SiO2系焼結体Dについて、25℃から800℃までにおける平均熱膨張係数αSは6.4×10-6/℃であり、αS/αGaN-a比は1.096であった。Al23−SiO2系焼結体Eについて、25℃から800℃までにおける平均熱膨張係数αSは6.6×10-6/℃であり、αS/αGaN-a比は1.130であった。Al23−SiO2系焼結体Fについて、25℃から800℃までにおける平均熱膨張係数αSは7.0×10-6/℃であり、αS/αGaN-a比は1.199であった。Al23−SiO2系焼結体Gについて、25℃から800℃までにおける平均熱膨張係数αSは7.2×10-6/℃であり、αS/αGaN-a比は1.233であった。Al23−SiO2系焼結体Hについて、25℃から800℃までにおける平均熱膨張係数αSは7.5×10-6/℃であり、αS/αGaN-a比は1.284であった。 For the Al 2 O 3 —SiO 2 sintered body A, the average thermal expansion coefficient α S from 25 ° C. to 800 ° C. is 5.5 × 10 −6 / ° C., and the average thermal expansion in the a-axis direction of the GaN crystal is The ratio of the thermal expansion coefficient α S of the sintered body to the coefficient α GaN-a (hereinafter referred to as α S / α GaN-a ratio) was 0.942. For the Al 2 O 3 —SiO 2 sintered body B, the average coefficient of thermal expansion α S from 25 ° C. to 800 ° C. is 5.9 × 10 −6 / ° C., and the α S / α GaN-a ratio is 1. .010. For the Al 2 O 3 —SiO 2 sintered body C, the average coefficient of thermal expansion α S from 25 ° C. to 800 ° C. is 6.1 × 10 −6 / ° C., and the α S / α GaN-a ratio is 1. 0.045. For the Al 2 O 3 —SiO 2 sintered body D, the average coefficient of thermal expansion α S from 25 ° C. to 800 ° C. is 6.4 × 10 −6 / ° C., and the α S / α GaN-a ratio is 1. 0.096. For the Al 2 O 3 —SiO 2 sintered body E, the average coefficient of thermal expansion α S from -25 ° C. to 800 ° C. is 6.6 × 10 −6 / ° C., and the α S / α GaN-a ratio is 1. .130. For the Al 2 O 3 —SiO 2 sintered body F, the average coefficient of thermal expansion α S from 25 ° C. to 800 ° C. is 7.0 × 10 −6 / ° C., and the α S / α GaN-a ratio is 1. 199. For the Al 2 O 3 —SiO 2 sintered body G, the average coefficient of thermal expansion α S from 25 ° C. to 800 ° C. is 7.2 × 10 −6 / ° C., and the α S / α GaN-a ratio is 1. .233. For the Al 2 O 3 —SiO 2 based sintered body H, the average thermal expansion coefficient α S from 25 ° C. to 800 ° C. is 7.5 × 10 −6 / ° C., and the α S / α GaN-a ratio is 1. .284.

上記のAl23−SiO2系焼結体A〜Hから、直径4インチ(101.6mm)で厚さ1mmの支持基板をそれぞれ切り出して、それぞれの支持基板の両主面を鏡面に研磨して、支持基板A〜Hとした。すなわち、支持基板A〜Hの25℃から800℃までにおける平均熱膨張係数は、それぞれAl23−SiO2系焼結体A〜Hの25℃から800℃までにおける平均熱膨張係数に等しい。結果を表1にまとめた。 From the Al 2 O 3 —SiO 2 sintered bodies A to H, a support substrate having a diameter of 4 inches (101.6 mm) and a thickness of 1 mm is cut out, and both main surfaces of each support substrate are polished to mirror surfaces. And it was set as support substrate AH. That is, the average thermal expansion coefficient of the support substrates A to H from 25 ° C. to 800 ° C. is equal to the average thermal expansion coefficient of the Al 2 O 3 —SiO 2 based sintered bodies A to H from 25 ° C. to 800 ° C., respectively. . The results are summarized in Table 1.

(2)下地基板上に単結晶膜を成膜するサブ工程
図2(B)を参照して、下地基板30として、鏡面に研磨された(111)面の主面30nを有する直径5インチ(127mm)で厚さ0.5mmのSi基板を準備した。
(2) Sub-Process for Forming Single Crystal Film on Base Substrate With reference to FIG. 2B, the base substrate 30 has a diameter of 5 inches (having a (111) principal surface 30n polished to a mirror surface). 127 mm) and a 0.5 mm thick Si substrate was prepared.

上記のSi基板(下地基板30)の主面30n上に、単結晶膜13として厚さ0.4μmのSiC膜をCVD(化学気相堆積)法により成膜した。成膜条件は、原料ガスとしてSiH4ガスおよびC38ガスを使用し、キャリアガスとしてH2ガスを使用し、成膜温度1300℃、成膜圧力は大気圧とした。なお、こうして得られたSiC膜(単結晶膜13)の主面13mには、Si原子面((0001)面)とC原子面((000−1)面)がモザイク状に混在していた。 On the main surface 30n of the Si substrate (underlying substrate 30), an SiC film having a thickness of 0.4 μm was formed as a single crystal film 13 by a CVD (chemical vapor deposition) method. The film formation conditions were as follows: SiH 4 gas and C 3 H 8 gas were used as source gases, H 2 gas was used as a carrier gas, the film formation temperature was 1300 ° C., and the film formation pressure was atmospheric pressure. In addition, Si atomic plane ((0001) plane) and C atomic plane ((000-1) plane) were mixed in a mosaic pattern on main surface 13m of thus obtained SiC film (single crystal film 13). .

(3)支持基板と単結晶膜とを貼り合わせるサブ工程
図2(C)中の(C1)を参照して、図2(A)の支持基板A〜H(支持基板11)のそれぞれの主面11m上に厚さ2μmのSiO2膜をCVD法により成膜した。次いで、支持基板A〜H(支持基板11)のそれぞれの主面11m上の厚さ2μmのSiO2膜を、CeO2スラリーを用いて研磨することにより、厚さ0.2μmのSiO2膜だけ残存させて、接着層12aとした。これにより、支持基板A〜H(支持基板11)のそれぞれの主面11mの空隙が埋められ、平坦な主面12amを有する厚さ0.2μmのSiO2膜(接着層12a)が得られた。
(3) Sub-process for bonding support substrate and single crystal film Referring to (C1) in FIG. 2 (C), each of the main substrates A to H (support substrate 11) in FIG. 2 (A) A SiO 2 film having a thickness of 2 μm was formed on the surface 11 m by the CVD method. Next, the SiO 2 film having a thickness of 2 μm on each main surface 11 m of the support substrates A to H (support substrate 11) is polished by using CeO 2 slurry, so that only the SiO 2 film having a thickness of 0.2 μm is obtained. The adhesive layer 12a was made to remain. Thus, the gap of each main surface 11m is filled in the supporting substrate A to H (the supporting substrate 11), SiO 2 film having a thickness of 0.2μm having a flat main surface 12am (adhesive layer 12a) was obtained .

また、図2(C)中の(C2)を参照して、図2(B)のSi基板(下地基板30)上に成膜されたSiC膜(単結晶膜13)の主面13nを酸素雰囲気下1000℃で酸化させてSiC膜(単結晶膜13)の主面13n上に厚さ0.2μmのSiO2層(接着層12b)を形成した。 2C, the main surface 13n of the SiC film (single crystal film 13) formed on the Si substrate (underlying substrate 30) in FIG. An SiO 2 layer (adhesive layer 12b) having a thickness of 0.2 μm was formed on the main surface 13n of the SiC film (single crystal film 13) by oxidation at 1000 ° C. in an atmosphere.

次いで、図2(C)中の(C3)を参照して、支持基板A〜H(支持基板11)のそれぞれに形成されたSiO2膜(接着層12a)の主面12amおよびSi基板(下地基板30)上に成膜されたSiC膜(単結晶膜13)上に形成されたSiO2層(接着層12b)の主面12bnをアルゴンプラズマにより清浄化および活性化させた後、SiO2膜(接着層12a)の主面12amとSiO2層(接着層12b)の主面12bnとを貼り合わせて、窒素雰囲気下300℃で2時間熱処理した。 2C, the main surface 12am of the SiO 2 film (adhesive layer 12a) formed on each of the support substrates A to H (support substrate 11) and the Si substrate (underlayer) After the main surface 12bn of the SiO 2 layer (adhesive layer 12b) formed on the SiC film (single crystal film 13) formed on the substrate 30) is cleaned and activated by argon plasma, the SiO 2 film The main surface 12am of the (adhesive layer 12a) and the main surface 12bn of the SiO 2 layer (adhesive layer 12b) were bonded together and heat-treated at 300 ° C. for 2 hours in a nitrogen atmosphere.

(4)下地基板を除去するサブ工程
図2(D)を参照して、支持基板A〜H(支持基板11)の裏側(単結晶膜13が貼り合わされていない側)の主面および側面をワックス40で覆って保護した後、フッ酸および硝酸の混酸水溶液を用いて、エッチングによりSi基板(下地基板30)を除去した。こうして、支持基板A〜H(支持基板11)のそれぞれの主面11m側にSiC膜(単結晶膜13)が配置された複合基板A〜Hが得られた。
(4) Sub-process for removing base substrate Referring to FIG. 2D, the main surface and side surfaces of the back side of support substrate A to H (support substrate 11) (the side where single crystal film 13 is not bonded) are After protection by covering with wax 40, the Si substrate (underlying substrate 30) was removed by etching using a mixed acid aqueous solution of hydrofluoric acid and nitric acid. Thus, composite substrates A to H were obtained in which the SiC film (single crystal film 13) was arranged on the main surface 11m side of each of the support substrates A to H (support substrate 11).

3.GaN系膜の成膜工程
図1(B)を参照して、複合基板A〜H(複合基板10)のSiC膜(単結晶膜13)の主面13m(かかる主面は(0001)面および(000−1)面の少なくともいずれかである。)上および直径4インチ(101.6mm)で厚さ1mmのサファイア基板の主面(かかる主面は(0001)面である。)上に、それぞれMOCVD法によりGaN膜(GaN系膜20)を成膜した。GaN膜(GaN系膜20)の成膜においては、原料ガスとしてTMG(トリメチルガリウム)ガスおよびNH3ガスを使用し、キャリアガスとしてH2ガスを使用し、500℃で厚さ0.1μmのGaNバッファ層(GaN系バッファ層21)を成長させ、次いで1050℃で厚さ5μmのGaN単結晶層(GaN系単結晶層23)を成長させた。ここで、GaN単結晶層の成長速度は1μm/hrであった。その後、複合基板A〜Hおよびサファイア基板のそれぞれにGaN膜が成膜されたウエハA〜HおよびRを10℃/minの速度で室温(25℃)まで冷却した。
3. Step of Forming GaN-Based Film Referring to FIG. 1B, main surface 13m of SiC film (single crystal film 13) of composite substrates A to H (composite substrate 10) (the main surface is (0001) surface and (000-1) plane)) and on the main surface of a sapphire substrate having a diameter of 4 inches (101.6 mm) and a thickness of 1 mm (the main surface is the (0001) plane). A GaN film (GaN-based film 20) was formed by MOCVD. In the formation of the GaN film (GaN-based film 20), TMG (trimethylgallium) gas and NH 3 gas are used as the source gas, H 2 gas is used as the carrier gas, and the thickness is 0.1 μm at 500 ° C. A GaN buffer layer (GaN-based buffer layer 21) was grown, and then a GaN single crystal layer (GaN-based single crystal layer 23) having a thickness of 5 μm was grown at 1050 ° C. Here, the growth rate of the GaN single crystal layer was 1 μm / hr. Thereafter, wafers A to H and R each having a GaN film formed on each of the composite substrates A to H and the sapphire substrate were cooled to room temperature (25 ° C.) at a rate of 10 ° C./min.

室温まで冷却後に成膜装置から取り出されたウエハA〜HおよびRについて、ウエハの反り、GaN膜の外観および転位密度を測定した。ここで、ウエハの反りの形状および反り量は、GaN膜の主面をCorning Tropel社のFM200EWaferにより測定し、GaN膜の外観はノマルスキー顕微鏡により観察し、GaN膜の転位密度はCL(カソードルミネッセンス)による暗点を測定した。   For wafers A to H and R taken out from the film forming apparatus after cooling to room temperature, the warpage of the wafer, the appearance of the GaN film, and the dislocation density were measured. Here, the shape and amount of warpage of the wafer were measured with a Corning Tropel FM200EWafer on the main surface of the GaN film, the appearance of the GaN film was observed with a Nomarski microscope, and the dislocation density of the GaN film was CL (cathode luminescence). The dark spot was measured.

ウエハAは、GaN膜側が凹状に反り、反り量が60μmであり、GaN膜に多数のクラックが発生していた。ウエハBは、GaN膜側が凹状に反り、反り量が320μmであり、GaN膜にクラックの発生はなく、GaN膜の転位密度が3×108cm-2であった。ウエハCは、GaN膜側が凹状に反り、反り量が10μmであり、GaN膜にクラックの発生はなく、GaN膜の転位密度が1×108cm-2であった。ウエハDは、GaN膜側が凸状に反り、反り量が20μmであり、GaN膜にクラックの発生はなく、GaN膜の転位密度が1×108cm-2であった。ウエハEは、GaN膜側が凸状に反り、反り量が110μmであり、GaN膜にクラックの発生はなく、GaN膜の転位密度が2×108cm-2であった。ウエハFは、GaN膜側が凸状に反り、反り量が230μmであり、GaN膜にクラックの発生はなく、GaN膜の転位密度が3×108cm-2であった。ウエハGは、GaN膜側が凸状に反り、反り量が740μmであり、GaN膜にクラックの発生はなく、GaN膜の転位密度が4×108cm-2であった。ウエハHは、支持基板に割れが発生し、十分なGaN膜が得られなかった。ウエハRは、GaN膜側が凸状に反り、反り量が750μmであり、GaN膜にクラックの発生はなく、GaN膜の転位密度は4×108cm-2であった。これらの結果を表1にまとめた。表1において、「−」は、その物性値が未測定であることを示す。 The wafer A warped in a concave shape on the GaN film side, the warpage amount was 60 μm, and many cracks were generated in the GaN film. The wafer B warped in a concave shape on the GaN film side, the warpage amount was 320 μm, no crack was generated in the GaN film, and the dislocation density of the GaN film was 3 × 10 8 cm −2 . The wafer C warped in a concave shape on the GaN film side, the warpage amount was 10 μm, no crack was generated in the GaN film, and the dislocation density of the GaN film was 1 × 10 8 cm −2 . The wafer D warped in a convex shape on the GaN film side, the warpage amount was 20 μm, no crack was generated in the GaN film, and the dislocation density of the GaN film was 1 × 10 8 cm −2 . The wafer E was warped convexly on the GaN film side, the warpage amount was 110 μm, no crack was generated in the GaN film, and the dislocation density of the GaN film was 2 × 10 8 cm −2 . The wafer F was warped convexly on the GaN film side, the warpage amount was 230 μm, no crack was generated in the GaN film, and the dislocation density of the GaN film was 3 × 10 8 cm −2 . The wafer G warped in a convex shape on the GaN film side, the warpage amount was 740 μm, no crack was generated in the GaN film, and the dislocation density of the GaN film was 4 × 10 8 cm −2 . In wafer H, the support substrate was cracked, and a sufficient GaN film could not be obtained. The wafer R warped in a convex shape on the GaN film side, the warpage amount was 750 μm, no crack was generated in the GaN film, and the dislocation density of the GaN film was 4 × 10 8 cm −2 . These results are summarized in Table 1. In Table 1, “-” indicates that the physical property value is not measured.

Figure 2012106907
Figure 2012106907

表1を参照して、主面内の熱膨張係数αSがGaN結晶のa軸方向の熱膨張係数αGaN-aの1.0倍より大きく1.2倍より小さい(すなわち、1.0<(αS/αGaN-a比)<1.2)支持基板を有する複合基板を用いることにより(ウエハB〜F)、サファイア基板を用いる場合(ウエハR)に比べて、反りが極めて小さなGaN膜を成膜することができた。また、ウエハにおけるGaN膜の反りおよび転位密度をさらに低減する観点から、複合基板の支持基板の主面内の熱膨張係数αSは、GaN結晶のa軸方向の熱膨張係数αGaN-aの1.04倍より大きく1.15倍より小さいこと(すなわち、1.04<(αS/αGaN-a比)<1.15)(ウエハC〜E)が好ましく、GaN結晶のa軸方向の熱膨張係数αGaN-aの1.04倍より大きく1.10倍より小さいこと(すなわち、1.04<(αS/αGaN-a比)<1.10)(ウエハCおよびD)がより好ましい。 Referring to Table 1, the thermal expansion coefficient α S in the main surface is larger than 1.0 times and smaller than 1.2 times the thermal expansion coefficient α GaN-a in the a-axis direction of the GaN crystal (that is, 1.0 <(Α S / α GaN-a ratio) <1.2) By using a composite substrate having a supporting substrate (wafers B to F), warpage is extremely small compared to the case of using a sapphire substrate (wafer R). A GaN film could be formed. Further, from the viewpoint of further reducing the warpage and dislocation density of the GaN film on the wafer, the thermal expansion coefficient α S in the main surface of the support substrate of the composite substrate is the thermal expansion coefficient α GaN-a in the a-axis direction of the GaN crystal. It is preferably larger than 1.04 times and smaller than 1.15 times (that is, 1.04 <(α S / α GaN-a ratio) <1.15) (wafers C to E), and the a-axis direction of the GaN crystal The coefficient of thermal expansion of α GaN-a is larger than 1.04 times and smaller than 1.10 times (that is, 1.04 <(α S / α GaN-a ratio) <1.10) (wafers C and D) Is more preferable.

なお、上記実施例においては、複合基板上に非ドーピングのGaN膜を成膜した例を示したが、ドーピングによりn型またはp型の導電性が付与されたGaN膜を成膜した場合、ドーピングにより比抵抗が高められたGaN膜を成膜した場合にも、上記実施例とほぼ同一の結果が得られた。   In the above embodiment, an example is shown in which an undoped GaN film is formed on a composite substrate. However, when an n-type or p-type conductivity imparted by doping is formed, doping is performed. Even when a GaN film with increased specific resistance was formed, the same results as in the above example were obtained.

また、GaN膜に替えてGaxInyAl1-x-yN膜(0<x<1、y≧0、x+y≦1)などのGaN系膜を成膜した場合にも上記実施例と同様の結果が得られた。特に、GaN膜に替えてGaxInyAl1-x-yN膜(x>0.5、y≧0、x+y≦1)を成膜する場合には、上記実施例とほぼ同一の結果が得られた。 Further, when a GaN-based film such as a Ga x In y Al 1-xy N film (0 <x <1, y ≧ 0, x + y ≦ 1) is formed instead of the GaN film, the same as in the above embodiment Results were obtained. In particular, when a Ga x In y Al 1-xy N film (x> 0.5, y ≧ 0, x + y ≦ 1) is formed in place of the GaN film, almost the same result as in the above example is obtained. It was.

また、GaN系膜(具体的にはGaxInyAl1-x-yN膜(x>0、y≧0、x+y≦1)など)は、Ga、In、AlなどのIII族元素の組成比を変えて複数成膜することもできる。また、Gaに替えてGaxInyAl1-x-yN膜(x>0、y≧0、x+y≦1)などのGaN系膜を複数成膜することができる。 A GaN-based film (specifically, Ga x In y Al 1-xy N film (x> 0, y ≧ 0, x + y ≦ 1), etc.) is a composition ratio of group III elements such as Ga, In, and Al. It is also possible to form a plurality of films by changing. Further, a plurality of GaN-based films such as Ga x In y Al 1-xy N films (x> 0, y ≧ 0, x + y ≦ 1) can be formed instead of Ga.

本発明の実施においては、GaN系膜の成膜の際にELO(Epitaxially Lateral Overgrowth;ラテラル成長)技術などの公知の転位低減技術を適用できる。   In the practice of the present invention, a known dislocation reduction technique such as an ELO (Epitaxially Lateral Overgrowth) technique can be applied when forming a GaN-based film.

また、複合基板にGaN系膜を成膜した後に、複合基板の支持基板のみまたは複合基板全体(支持基板および単結晶膜)をエッチングにより除去してもよい。このとき、GaN系膜を別の支持基板に転写してもよい。   Alternatively, after forming a GaN-based film on the composite substrate, only the support substrate of the composite substrate or the entire composite substrate (support substrate and single crystal film) may be removed by etching. At this time, the GaN-based film may be transferred to another support substrate.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

10 複合基板、11 支持基板、11m,12m,12am,12bn,13m,13n,21m,23m,30n 主面、12,12a,12b 接着層、13 単結晶膜、20 GaN系膜、21 GaN系バッファ層、23 GaN系単結晶層、30 下地基板、40 ワックス。   DESCRIPTION OF SYMBOLS 10 Composite substrate, 11 Support substrate, 11m, 12m, 12am, 12bn, 13m, 13n, 21m, 23m, 30n Main surface, 12, 12a, 12b Adhesion layer, 13 Single crystal film, 20 GaN system film, 21 GaN system buffer Layer, 23 GaN-based single crystal layer, 30 base substrate, 40 wax.

Claims (4)

主面内の熱膨張係数が、GaN結晶のa軸方向の熱膨脹係数に比べて、1.0倍より大きく1.2倍より小さい支持基板と、前記支持基板の主面側に配置されている単結晶膜と、を含み、前記単結晶膜が前記単結晶膜の主面に垂直な軸に対して3回対称性を有するSiC膜である複合基板を準備する工程と、
前記複合基板における前記単結晶膜の主面上にGaN系膜を成膜する工程と、を含むGaN系膜の製造方法。
The thermal expansion coefficient in the main surface is arranged on the main surface side of the support substrate, which is larger than 1.0 times and smaller than 1.2 times the thermal expansion coefficient in the a-axis direction of the GaN crystal. Preparing a composite substrate, wherein the single crystal film is a SiC film having a three-fold symmetry with respect to an axis perpendicular to the main surface of the single crystal film;
Forming a GaN-based film on a main surface of the single crystal film in the composite substrate.
前記複合基板における前記単結晶膜の主面の面積が45cm2以上である請求項1に記載のGaN系膜の製造方法。 The method for producing a GaN-based film according to claim 1, wherein an area of a main surface of the single crystal film in the composite substrate is 45 cm 2 or more. 前記複合基板における前記支持基板は、焼結体である請求項1または請求項2に記載のGaN系膜の製造方法。 The method for producing a GaN-based film according to claim 1, wherein the support substrate in the composite substrate is a sintered body. 前記GaN系膜を成膜する工程は、前記単結晶膜の主面上にGaN系バッファ層を形成するサブ工程と、前記GaN系バッファ層の主面上にGaN系単結晶層を形成するサブ工程と、を含む請求項1から請求項3のいずれかに記載のGaN系膜の製造方法。   The step of forming the GaN-based film includes a sub-step of forming a GaN-based buffer layer on the main surface of the single crystal film and a sub-step of forming a GaN-based single crystal layer on the main surface of the GaN-based buffer layer. A method for producing a GaN-based film according to any one of claims 1 to 3, comprising a step.
JP2011175792A 2011-08-11 2011-08-11 METHOD FOR PRODUCING GaN FILM Pending JP2012106907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011175792A JP2012106907A (en) 2011-08-11 2011-08-11 METHOD FOR PRODUCING GaN FILM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011175792A JP2012106907A (en) 2011-08-11 2011-08-11 METHOD FOR PRODUCING GaN FILM

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010254529 Division 2010-11-15 2010-11-15

Publications (1)

Publication Number Publication Date
JP2012106907A true JP2012106907A (en) 2012-06-07

Family

ID=46492975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011175792A Pending JP2012106907A (en) 2011-08-11 2011-08-11 METHOD FOR PRODUCING GaN FILM

Country Status (1)

Country Link
JP (1) JP2012106907A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020086534A1 (en) * 2000-11-30 2002-07-04 Cuomo Jerome J. M'''N based materials and methods and apparatus for producing same
JP2003165798A (en) * 2001-11-28 2003-06-10 Hitachi Cable Ltd Method for producing gallium nitride single crystal substrate, free standing substrate for epitaxial growth of gallium nitride single crystal, and device element formed on the same
JP2003249684A (en) * 2002-02-26 2003-09-05 Nichia Chem Ind Ltd Growth substrate for nitride semiconductor, nitride semiconductor light emitting element and its manufacturing method
JP2004087814A (en) * 2002-08-27 2004-03-18 Japan Science & Technology Corp Method and apparatus for manufacturing integrated circuit device onto oxide substrate
US20070072324A1 (en) * 2005-09-27 2007-03-29 Lumileds Lighting U.S., Llc Substrate for growing a III-V light emitting device
US20080303118A1 (en) * 2007-06-06 2008-12-11 Chantal Arena Process for fabricating a structure for epitaxy without an exclusion zone

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020086534A1 (en) * 2000-11-30 2002-07-04 Cuomo Jerome J. M'''N based materials and methods and apparatus for producing same
JP2004523450A (en) * 2000-11-30 2004-08-05 ノース・キャロライナ・ステイト・ユニヴァーシティ Apparatus and method for producing M'N-based material
JP2003165798A (en) * 2001-11-28 2003-06-10 Hitachi Cable Ltd Method for producing gallium nitride single crystal substrate, free standing substrate for epitaxial growth of gallium nitride single crystal, and device element formed on the same
JP2003249684A (en) * 2002-02-26 2003-09-05 Nichia Chem Ind Ltd Growth substrate for nitride semiconductor, nitride semiconductor light emitting element and its manufacturing method
JP2004087814A (en) * 2002-08-27 2004-03-18 Japan Science & Technology Corp Method and apparatus for manufacturing integrated circuit device onto oxide substrate
US20070072324A1 (en) * 2005-09-27 2007-03-29 Lumileds Lighting U.S., Llc Substrate for growing a III-V light emitting device
JP2007096331A (en) * 2005-09-27 2007-04-12 Philips Lumileds Lightng Co Llc Substrate for growing group iii-v light-emitting device
US20080303118A1 (en) * 2007-06-06 2008-12-11 Chantal Arena Process for fabricating a structure for epitaxy without an exclusion zone
JP2008303137A (en) * 2007-06-06 2008-12-18 Soitec Silicon On Insulator Technologies Process for fabricating composite structure for epitaxy and multilayer structure including the composite structure

Similar Documents

Publication Publication Date Title
JP5938871B2 (en) Manufacturing method of GaN-based film
US8697564B2 (en) Method of manufacturing GaN-based film
TWI429797B (en) Group iii nitride semiconductor crystal substrate and semiconductor device
JP2016020299A (en) Semiconductor device
US20150118830A1 (en) Method of Manufacturing GaN-Based Film and Composite Substrate Used Therefor
US20120118222A1 (en) METHOD OF MANUFACTURING GaN-BASED FILM
JP2005306680A (en) Semiconductor substrate, stand-alone substrate, and method for manufacturing these, as well as method for polishing substrate
JP2017076687A (en) Compound semiconductor substrate
CN106536794B (en) Gallium nitride substrate
JP5929434B2 (en) Method for manufacturing AlN-based film and composite substrate used therefor
JP2012066943A (en) Substrate for forming nitride semiconductor, and nitride semiconductor
JP2019052057A (en) Composite substrate, composite substrate with group iii nitride crystal, and production method of group iii nitride crystal
JP2012106906A (en) METHOD FOR PRODUCING GaN FILM
JP6331553B2 (en) Composite substrate and method for manufacturing semiconductor wafer using the same
JP6156833B2 (en) Manufacturing method of semiconductor substrate
JP2012106907A (en) METHOD FOR PRODUCING GaN FILM
JP6094243B2 (en) Composite substrate and method for manufacturing semiconductor wafer using the same
JP4084539B2 (en) Method for producing crystal growth substrate of group III nitride compound semiconductor
JP2013116848A (en) METHOD FOR PRODUCING GaAs-BASED FILM, AND COMPOSITE SUBSTRATE USED FOR THE METHOD
JP2010225947A (en) Nitride-semiconductor forming substrate and method of manufacturing the same
KR100839224B1 (en) Method for manufacturing thick film of gan
JP2013199389A (en) METHOD FOR PRODUCING InP-BASED FILM AND COMPOSITE SUBSTRATE USED IN THE METHOD
JP2019052056A (en) Composite substrate, composite substrate with group iii nitride crystal, and production method of group iii nitride crystal
KR20180013572A (en) Method of manufacture for horizontal type LED chip of high power and high effectiveness
JP2014051400A (en) Method for producing nitride semiconductor free-standing substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150331