JP2005306680A - Semiconductor substrate, stand-alone substrate, and method for manufacturing these, as well as method for polishing substrate - Google Patents

Semiconductor substrate, stand-alone substrate, and method for manufacturing these, as well as method for polishing substrate Download PDF

Info

Publication number
JP2005306680A
JP2005306680A JP2004127202A JP2004127202A JP2005306680A JP 2005306680 A JP2005306680 A JP 2005306680A JP 2004127202 A JP2004127202 A JP 2004127202A JP 2004127202 A JP2004127202 A JP 2004127202A JP 2005306680 A JP2005306680 A JP 2005306680A
Authority
JP
Japan
Prior art keywords
substrate
layer
epitaxial growth
self
epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004127202A
Other languages
Japanese (ja)
Other versions
JP4333466B2 (en
Inventor
Masatomo Shibata
真佐知 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2004127202A priority Critical patent/JP4333466B2/en
Publication of JP2005306680A publication Critical patent/JP2005306680A/en
Application granted granted Critical
Publication of JP4333466B2 publication Critical patent/JP4333466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor substrate which has at an as-grown state a high flatness on the surface of at least the side of an epitaxial growth layer and which thereafter is easy to polish, and to provide a manufacturing method therefor. <P>SOLUTION: The semiconductor substrate 10 of a crystal growth system which causes the warpage because of forming a GaN epitaxial growth layer 12 on a sapphire substrate 11, is such one that the GaN epitaxial growth layer 12 is so formed for the purpose of canceling out previously the effect of the warpage by thinning the thickness t<SB>1</SB>on the central part of the sapphire substrate 11 thinner than a thickness t<SB>2</SB>on the edge part of the sapphire substrate 11. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、エピタキシャル半導体成長層を有する反りの小さい半導体基板、自立基板及びそれらの製造方法、並びに基板の研磨方法に関する。   The present invention relates to a semiconductor substrate having a small warp having an epitaxial semiconductor growth layer, a self-standing substrate, a method for manufacturing the same, and a method for polishing the substrate.

窒化ガリウム(GaN)、窒化インジウムガリウム(InGaN)、窒化ガリウムアルミニウム(GaAlN)等の窒化物系半導体材料は、禁制帯幅が充分大きく、バンド間遷移も直接遷移型であるため、短波長発光素子への適用が盛んに検討されている。また、電子の飽和ドリフト速度が大きいこと、ヘテロ接合による2次元キャリアガスの利用が可能なこと等から、電子素子への応用も期待されている。
既に世の中に広く普及しているシリコン(Si)や砒化ガリウム(GaAs)等は、それぞれSi基板、GaAs基板といった同種の材料からなる基板の上に、デバイスを作るためのエピタキシャル成長層を、ホモエピタキシャル成長させて使用されている。同種基板上のホモエピタキシャル成長では、基板とエピタキシャル成長層の間に格子定数や線膨張係数の差が無いため、エピタキシャル成長後の基板が反ることはなく、平坦なエピタキシャル成長表面を得ることができる。
Nitride-based semiconductor materials such as gallium nitride (GaN), indium gallium nitride (InGaN), and gallium aluminum nitride (GaAlN) have a sufficiently large forbidden band width and a direct transition type between bands. Application to is actively studied. In addition, application to electronic devices is also expected due to the high saturation drift velocity of electrons and the use of two-dimensional carrier gas by heterojunction.
Silicon (Si) and gallium arsenide (GaAs), which are already widely used in the world, are homoepitaxially grown on a substrate made of the same kind of material such as a Si substrate and a GaAs substrate, respectively. Have been used. In homoepitaxial growth on the same type of substrate, there is no difference in lattice constant or linear expansion coefficient between the substrate and the epitaxial growth layer, so that the substrate after epitaxial growth does not warp and a flat epitaxial growth surface can be obtained.

一方、窒化物系半導体材料は、バルク結晶成長が難しく、従って実用に耐えるGaNの自立基板は未だ開発途上にある。現在広く実用化されているGaN成長用の基板はサファイアであり、単結晶サファイア基板の上に有機金属気相成長法(MOVPE法)や分子線気相成長法(MBE)、ハイドライド気相成長法(HVPE)等の気相成長法で、いったんGaNをヘテロエピタキシャル成長させ、その上に連続で、あるいは別の成長炉でデバイスを作るための窒化物系半導体エピ層を成長させる方法が一般に用いられている。   On the other hand, nitride-based semiconductor materials are difficult to grow bulk crystals, and therefore, a GaN free-standing substrate that can withstand practical use is still under development. Currently, sapphire is a substrate for GaN growth that is in widespread use. Metal organic vapor phase epitaxy (MOVPE), molecular beam vapor phase epitaxy (MBE), hydride vapor phase epitaxy on a single crystal sapphire substrate. In general, a method of growing a nitride-based semiconductor epilayer for heteroepitaxial growth of GaN once and continuously or in another growth furnace by using a vapor phase growth method such as (HVPE) is used. Yes.

サファイア基板は、GaNと格子定数が異なるため、サファイア基板上に直接GaNを成長させたのでは単結晶膜を成長させることができない。このため、サファイア基板上に一旦500℃程度の低温でAlNやGaNのバッファ層を成長させ、この低温成長バッファ層で格子の歪みを緩和させてからその上にGaNを成長させる方法が考案された(例えば、特許文献1参照。)。この低温成長窒化物層をバッファ層として用いることで、GaNの単結晶エピタキシャル成長は可能になった。しかし、この方法でも、やはり基板と結晶の格子のずれは如何ともし難く、成長の開始当初は3次元島状成長モードで結晶成長が進行するため、こうして得られたGaNは、10〜1010cm−2もの転位を有している。この欠陥は、GaN系LDを製作する上で障害となる。 Since the sapphire substrate has a lattice constant different from that of GaN, a single crystal film cannot be grown by directly growing GaN on the sapphire substrate. For this reason, a method has been devised in which a buffer layer of AlN or GaN is once grown on a sapphire substrate at a low temperature of about 500 ° C., lattice strain is relaxed by this low temperature growth buffer layer, and then GaN is grown thereon. (For example, refer to Patent Document 1). Using this low-temperature grown nitride layer as a buffer layer, GaN single crystal epitaxial growth has become possible. However, even with this method, the difference between the lattice of the substrate and the crystal is still difficult, and since the crystal growth proceeds in the three-dimensional island growth mode at the beginning of the growth, the GaN thus obtained has 10 9 to 10. It has as many as 10 cm -2 dislocations. This defect becomes an obstacle to manufacturing a GaN-based LD.

近年、サファイアとGaNの格子定数差に起因して発生する欠陥の密度を低減する方法として、ELO(例えば、非特許文献1参照。)や、FIELO(例えば、非特許文献2参照。)、ペンデオエピタキシー(例えば、非特許文献3参照。)といった成長技術が報告された。これらの成長技術は、サファイア等の基板上に成長させたGaN上に、SiO等でパターニングされたマスクを形成し、マスクの窓部からさらにGaN結晶を選択的に成長させて、マスク上をGaNがラテラル成長で覆うようにすることで、下地結晶からの転位の伝播を防ぐものである。これらの成長技術の開発により、GaN中の転位密度は10cm−2台程度にまで、飛躍的に低減させることができるようになった(例えば、特許文献2参照)。 In recent years, as a method of reducing the density of defects generated due to the difference in lattice constant between sapphire and GaN, ELO (for example, see Non-Patent Document 1), FIELO (for example, see Non-Patent Document 2), pens. Growth techniques such as deoepitaxy (for example, see Non-Patent Document 3) have been reported. In these growth techniques, a mask patterned with SiO 2 or the like is formed on GaN grown on a substrate such as sapphire, and further a GaN crystal is selectively grown from the window portion of the mask. By covering GaN with lateral growth, the propagation of dislocations from the underlying crystal is prevented. With the development of these growth techniques, the dislocation density in GaN can be drastically reduced to about 10 7 cm −2 (see, for example, Patent Document 2).

一方、サファイア基板等の異種基板上に、転位密度を低減したGaN層を厚くエピ成長させ、成長後に下地から剥離して、GaN層を自立したGaN基板として用いる方法が提案されている(特許文献3参照)。また、前述のELO技術を用いてサファイア基板上にGaN層を形成した後、サファイア基板をエッチング等により除去し、GaN自立基板を得ることも提案されている(特許文献4参照)。更に、サファイア等の基板上で、網目構造のTiN薄膜を介してGaNを成長することで、下地基板とGaN層の界面にボイドを形成し、GaN基板の剥離と低転位化を同時に可能にした技術(VAS(Void−Assisted Separation))も開示されている(非特許文献4、特許文献5参照)。
特開平4−297023号公報 特開平10−312971号公報 特開2000−22212号公報 特開平11−251253号公報 特開2003−178984号公報 Appl.Phys.Lett.71(18)2638(1997) Jpan.J.Appl.Phys.38,L184(1999) MRS Internet J.Nitride Semicond.Res. 4S1,G3.38(1999) Y.Oshima et.al.,Jpn.J.Appl.Phys.Vol.42(2003)pp.L1−L3
On the other hand, a method has been proposed in which a dislocation density-reduced GaN layer is thickly grown on a dissimilar substrate such as a sapphire substrate, and the GaN layer is peeled off from the underlying layer after growth to use the GaN layer as a self-supporting GaN substrate (Patent Literature). 3). It has also been proposed to form a GaN layer on a sapphire substrate using the above-described ELO technique, and then remove the sapphire substrate by etching or the like to obtain a GaN free-standing substrate (see Patent Document 4). Furthermore, by growing GaN on a substrate such as sapphire via a TiN thin film with a network structure, a void is formed at the interface between the base substrate and the GaN layer, and the GaN substrate can be peeled off and the dislocation can be reduced at the same time. Technology (VAS (Void-Assisted Separation)) is also disclosed (see Non-Patent Document 4 and Patent Document 5).
Japanese Patent Laid-Open No. 4-297003 Japanese Patent Laid-Open No. 10-312971 JP 2000-22212 A JP-A-11-251253 JP 2003-178984 A Appl. Phys. Lett. 71 (18) 2638 (1997) Japan. J. et al. Appl. Phys. 38, L184 (1999) MRS Internet J.M. Nitride Semicond. Res. 4S1, G3.38 (1999) Y. Oshima et. al. , Jpn. J. et al. Appl. Phys. Vol. 42 (2003) p. L1-L3

しかしながら、上述のように、GaNの自立基板を作製するためのGaNの結晶は、一度は格子定数の大きく異なるサファイア等の異種基板上にヘテロエピタキシャル成長させている。異種基板上に成長したGaN結晶は、下地基板となる前記異種基板との格子定数差や線膨張係数差に起因する反りを生じさせる。例えば、GaNの線膨張係数は、サファイア基板の線膨張係数と1.9%もの差があるため、サファイア基板上にGaNをエピタキシャル成長させると、エピ基板を室温まで冷却することにより、基板は上に凸に反ってしまう。φ4インチのサファイア基板上に、GaN単層を2μm成長させたとき、基板の中央部が周辺部に較べて40μmも高くなるほど凸に反ったという例も報告されている。
また、下地基板を除去したGaN自立基板においても、反りが顕著に観察されることが知られている。結晶成長中に既に反りが生じ始め、反った形のまま成長する場合もあるし、歪を内在したまま成長し、下地基板を除去することによって反りを生じることもある。例えば、前述のVAS法では、厚さ350μmのGaN自立基板を作成した場合、自立基板は下に凸に反り、膜厚がほぼ均一であれば、基板の中央部と周辺部で数百μmもの反りを生じることがある。
However, as described above, a GaN crystal for producing a GaN free-standing substrate is once heteroepitaxially grown on a heterogeneous substrate such as sapphire having a greatly different lattice constant. The GaN crystal grown on the heterogeneous substrate causes a warp caused by a difference in lattice constant and a difference in linear expansion coefficient from the heterogeneous substrate serving as a base substrate. For example, since the linear expansion coefficient of GaN is 1.9% different from the linear expansion coefficient of the sapphire substrate, when GaN is epitaxially grown on the sapphire substrate, the epitaxial substrate is cooled to room temperature, so that the substrate is It will warp convexly. It has also been reported that when a GaN single layer is grown 2 μm on a φ4 inch sapphire substrate, the center of the substrate warps more convexly by 40 μm than the peripheral portion.
Further, it is known that warpage is remarkably observed even in a GaN free-standing substrate from which the base substrate is removed. Warping has already begun to occur during crystal growth, and it may grow in a warped shape, or it may be warped by growing under the presence of strain and removing the underlying substrate. For example, in the above-described VAS method, when a GaN free-standing substrate having a thickness of 350 μm is formed, the free-standing substrate warps downward, and if the film thickness is almost uniform, the central portion and the peripheral portion of the substrate have several hundred μm May cause warping.

基板に反りが生じていると、その後のデバイス作製工程で、様々な問題が生じてしまう。
例えば、基板に反りがあると、基板上にデバイス構造のエピタキシャル成長を行う際に、基板の裏面とサセプタとが密着せず、このため基板を加熱した際の基板への熱の伝わり方が不均一になって、基板面内で温度分布が生じてしまう。基板面内で温度に差があると、エピタキシャル成長を行う際に、成長膜厚、組成、不純物濃度等にばらつきが生じてしまい、面内で均一な成長を行うことができず、ひいてはデバイス特性のばらつきを大きくする要因となる。
When the substrate is warped, various problems occur in the subsequent device manufacturing process.
For example, if the substrate is warped, when the device structure is epitaxially grown on the substrate, the back surface of the substrate and the susceptor do not adhere to each other, and thus the heat transfer to the substrate is uneven when the substrate is heated. As a result, temperature distribution occurs in the substrate surface. If there is a difference in temperature within the substrate plane, variations in the growth film thickness, composition, impurity concentration, etc. occur during epitaxial growth, and uniform growth cannot be achieved within the plane. It becomes a factor to increase the variation.

更に、基板に反りがあると、フォトリソグラフィの工程でも様々な問題が生じる。例えば、反りの大きな基板は真空吸着で保持することが難しく、スピンナやマスクアライナに基板を精度良く固定することが難しい。また、コンタクト式のマスクアライナでは、マスクを基板に密着させることが難しく、このため、マスクパターンを焼き付けたとき、場所によってパターニングの精度が落ちてしまう。これを回避すべく、マスクを基板に押し付けようとすると、基板が割れてしまうというリスクが高まる。非コンタクト式のマスクアライナであっても、基板表面に反りがあると、投影したマスクパターンのフォーカスが基板面内で一定とならないため、線幅にばらつきが生じてしまい、特に細いストライプを精度良くパターニングすることが必要とされる、短波長レーザデバイスの作製では、致命的な問題となる。   Furthermore, if the substrate is warped, various problems occur in the photolithography process. For example, a substrate with a large warp is difficult to hold by vacuum suction, and it is difficult to accurately fix the substrate to a spinner or mask aligner. Further, in the contact-type mask aligner, it is difficult to bring the mask into close contact with the substrate. For this reason, when the mask pattern is baked, the patterning accuracy is lowered depending on the location. In order to avoid this, if the mask is pressed against the substrate, there is an increased risk that the substrate will break. Even if it is a non-contact type mask aligner, if the substrate surface is warped, the focus of the projected mask pattern will not be constant within the substrate surface, resulting in variations in line width, and particularly fine stripes with high accuracy. Fabrication of short wavelength laser devices that require patterning is a fatal problem.

一方、反りを生じた基板の表裏面を研磨で平坦化する方法も提案されている。しかし、基板を研磨するためには、平坦な研磨治具に貼り付け、研磨の基準面を決める必要があるが、反りの大きな基板は、平坦な面に貼り付けること自体が難しい。反った基板を研磨治具に貼り付ける際、無理に押し付けて貼れば割れるリスクが高くなる。仮に基板を弾性変形させて割れずに貼り付けることができても、弾性変形している基板は、研磨後に治具から外すと、また反りを生じてしまう。そこで、反った形のまま、基板と治具との隙間にワックスを入れて貼り付けると、基板と研磨治具との平行度がばらつきやすくなり、このため、基準となる面の精度も出ない。   On the other hand, a method for flattening the front and back surfaces of a warped substrate by polishing has also been proposed. However, in order to polish a substrate, it is necessary to stick it to a flat polishing jig and determine a reference surface for polishing. However, it is difficult to stick a substrate with a large warp to a flat surface. When attaching a warped substrate to a polishing jig, the risk of cracking increases if the substrate is pressed and applied forcibly. Even if the substrate can be elastically deformed and stuck without cracking, the elastically deformed substrate will be warped again if it is removed from the jig after polishing. Therefore, if wax is put in the gap between the substrate and the jig in a warped shape, the parallelism between the substrate and the polishing jig tends to vary, and therefore the accuracy of the reference surface does not come out. .

一般に、基板の研磨は、デバイス工程で使用する基板表面を保護するため、基板の裏面を先に研磨し、途中で治具から基板の表裏を張り替えて、後に基板の表面の研磨を行う。従って、最初に研磨治具に貼り付けられる面は、基板の表面ということになり、ここで研磨の基準となる面が決定される。従って、アズグロウン(as grown)の状態で基板表面の平坦度が高いほど基板の研磨がやりやすくなるが、従来の結晶は、膜厚分布が均一になるよう制御されていたため、基板に反りが生じると、基板の表も裏も同じように反りを生じてしまい、上述のような課題が生じていた。   In general, in order to protect the substrate surface used in the device process, the substrate is polished by first polishing the back surface of the substrate, re-mounting the front and back of the substrate from the jig on the way, and polishing the surface of the substrate later. Therefore, the surface that is first attached to the polishing jig is the surface of the substrate, and the surface that serves as the reference for polishing is determined here. Therefore, the higher the flatness of the substrate surface in the as-grown state, the easier the polishing of the substrate. However, the conventional crystal is controlled so that the film thickness distribution is uniform, so that the substrate is warped. Then, the front and back of the substrate were warped in the same manner, and the above-described problems were generated.

従って、本発明の目的は、アズグロウンの状態で、少なくともエピタキシャル成長層側表面の平坦性が高く、その後の研磨が容易な半導体基板とその製造方法、及び半導体基板の研磨方法を提供することにある。   Accordingly, an object of the present invention is to provide a semiconductor substrate, a manufacturing method thereof, and a polishing method for a semiconductor substrate, in which the flatness of at least the surface of the epitaxial growth layer is high in an as-grown state and can be easily polished thereafter.

本発明者らは、上記目的に鑑み鋭意研究の結果、反りの発生を抑止するのではなく、基板の位置によってエピタキシャル成長させる層の膜厚を意図的に変化させることで、アズグロウンの状態で少なくとも表面側の平坦度が高く反りの影響が相殺される半導体基板を製造できること、及び少なくとも表面側の平坦度が高い基板を製造することができれば、裏面が大きく反っていても、表面を研磨治具に貼り付けて裏面の研磨を行うことで、基板を精度良く、高歩留りで加工することが可能になることを見出し、本発明を完成させた。   As a result of diligent research in view of the above object, the present inventors have intentionally changed the film thickness of the layer to be epitaxially grown according to the position of the substrate, rather than suppressing the occurrence of warping, so that at least the surface in an as-grown state. If it is possible to manufacture a semiconductor substrate that has a high flatness on the side and offsets the influence of warpage, and can manufacture a substrate that has at least a high flatness on the front surface side, the surface can be used as a polishing jig even if the back surface is greatly warped. The present invention has been completed by finding that it is possible to process the substrate with high accuracy and high yield by pasting and polishing the back surface.

即ち、上記課題を解決するため、本発明の半導体基板は、異種基板上にエピタキシャル成長層を形成させることにより反りを生じるような結晶成長系の半導体基板であって、前記反りの影響を予め相殺するように前記エピタキシャル成長層の膜厚に分布を持たせたことを特徴とする。   That is, in order to solve the above-mentioned problems, the semiconductor substrate of the present invention is a crystal growth type semiconductor substrate in which warpage is caused by forming an epitaxial growth layer on a heterogeneous substrate, and cancels out the influence of the warp in advance. Thus, the film thickness of the epitaxial growth layer is distributed.

また、本発明の半導体基板は、異種基板上にエピタキシャル成長層を形成させることによりエピタキシャル成長面側に凸に反りを生じるような結晶成長系の半導体基板であって、前記反りの影響を予め相殺するように前記エピタキシャル成長層の膜厚が前記異種基板上の中央部より端部で大きくなるように形成されていることを特徴とする。   Also, the semiconductor substrate of the present invention is a crystal growth type semiconductor substrate in which an epitaxial growth layer is formed on a heterogeneous substrate to cause a warp in a convex manner on the epitaxial growth surface side so as to cancel out the influence of the warp in advance. Further, the epitaxial growth layer is formed so that the film thickness is larger at the end than at the center on the heterogeneous substrate.

更に、本発明の半導体基板は、異種基板上にエピタキシャル成長層を形成させることによりエピタキシャル成長面側に凹に反りを生じるような結晶成長系の半導体基板であって、前記反りの影響を予め相殺するように前記エピタキシャル成長層の膜厚が前記異種基板上の中央部より端部で小さくなるように形成されていることを特徴とする。   Furthermore, the semiconductor substrate of the present invention is a crystal growth type semiconductor substrate in which an epitaxial growth layer is formed on a heterogeneous substrate to cause a concave warp on the epitaxial growth surface side, so that the influence of the warp is canceled in advance. Further, the epitaxial growth layer is formed so that the film thickness is smaller at the end portion than at the central portion on the heterogeneous substrate.

前記異種基板がサファイアであり、前記エピタキシャル成長層がInxGayAl1-x-yN(0≦x≦1、0≦y≦1、0≦x+y≦1)で表される半導体とすることができる。 The heterogeneous substrate may be sapphire, and the epitaxial growth layer may be a semiconductor represented by In x Ga y Al 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1). .

また、上記課題を解決するため、本発明の自立基板は、エピタキシャル成長層のみで反りを生じる材料系の自立基板であって、その反りの影響を予め相殺するように前記エピタキシャル成長層の膜厚に分布を持たせたことを特徴とする。   In order to solve the above problems, the self-supporting substrate of the present invention is a material-based self-supporting substrate that warps only in the epitaxial growth layer, and is distributed in the thickness of the epitaxial growth layer so as to cancel out the influence of the warp in advance. It is characterized by having.

また、本発明の自立基板は、エピタキシャル成長層のみで前記エピタキシャル成長面側に凸の反りを生じる材料系の自立基板であって、前記反りの影響を予め相殺するように前記エピタキシャル成長層の膜厚が前記異種基板上の中央部より端部で大きくなるように形成されていることを特徴とする。   Further, the self-supporting substrate of the present invention is a material-based self-supporting substrate that generates a convex warp only on the epitaxial growth layer on the epitaxial growth surface side, and the film thickness of the epitaxial growth layer is set so as to cancel the influence of the warp in advance. It is characterized by being formed so as to be larger at the end than at the center on the different substrate.

更に、本発明の自立基板は、エピタキシャル成長層のみで前記エピタキシャル成長面側に凹の反りを生じる材料系の自立基板であって、前記反りの影響を予め相殺するように前記エピタキシャル成長層の膜厚が前記異種基板上の中央部より端部で小さくなるように形成されていることを特徴とする。   Furthermore, the self-supporting substrate of the present invention is a self-supporting substrate of a material system in which only the epitaxial growth layer causes a concave warp on the epitaxial growth surface side, and the film thickness of the epitaxial growth layer is such that the influence of the warp is canceled out in advance. It is characterized in that it is formed so as to be smaller at the end than at the center on the different substrate.

また、上記課題を解決するため、本発明の半導体基板の製造方法は、異種基板上にエピタキシャル層を成長させることにより、エピタキシャル層を有する半導体基板が反りを生じるような結晶成長の系において、前記反りの影響を予め相殺するように膜厚に分布を持たせて前記エピタキシャル層を成長させることを特徴とする。 In addition, in order to solve the above-described problem, a method for manufacturing a semiconductor substrate according to the present invention includes a crystal growth system in which a semiconductor substrate having an epitaxial layer is warped by growing an epitaxial layer on a heterogeneous substrate. The epitaxial layer is grown with a distribution of film thickness so as to cancel out the influence of warpage in advance.

また、本発明の半導体基板の製造方法は、異種基板上にエピタキシャル層を成長させることにより、エピタキシャル層を有する半導体基板がエピタキシャル成長面側に凸に反りを生じるような結晶成長の系において、前記反りの影響を予め相殺するように前記エピタキシャル層を前記異種基板の中央部より端部で膜厚が大きくなるように成長させることを特徴とする。   In addition, the method for manufacturing a semiconductor substrate of the present invention includes a crystal growth system in which an epitaxial layer is grown on a heterogeneous substrate so that the semiconductor substrate having the epitaxial layer is warped convexly toward the epitaxial growth surface. The epitaxial layer is grown so that the film thickness is larger at the end portion than the central portion of the heterogeneous substrate so as to cancel out the influence of the above.

更に、本発明の半導体基板の製造方法は、異種基板上にエピタキシャル層を成長させることにより、エピタキシャル層を有する半導体基板がエピタキシャル成長面側に凹に反りを生じるような結晶成長の系において、前記反りの影響を予め相殺するように前記エピタキシャル層を前記異種基板の中央部より端部で膜厚が小さくなるように成長させることを特徴とする。   Furthermore, the method for manufacturing a semiconductor substrate according to the present invention includes the above-described warpage in a crystal growth system in which an epitaxial layer is grown on a heterogeneous substrate so that the semiconductor substrate having the epitaxial layer warps in a concave manner on the epitaxial growth surface side. The epitaxial layer is grown so that the film thickness becomes smaller at the end portion than the central portion of the heterogeneous substrate so as to cancel out the influence of the above.

また、上記課題を解決するため、本発明の自立基板の製造方法は、異種基板上にエピタキシャル層を成長後、前記異種基板を剥離した際に前記エピタキシャル層からなる自立した基板が反りを生じるような材料系において、前記反りの影響を予め相殺するように膜厚に分布を持たせて前記エピタキシャル層を成長させることを特徴とする。   Further, in order to solve the above-described problem, the method for manufacturing a self-supporting substrate according to the present invention causes the self-supporting substrate made of the epitaxial layer to warp when the heterogeneous substrate is peeled off after the epitaxial layer is grown on the heterogeneous substrate. In such a material system, the epitaxial layer is grown with a distribution of film thickness so as to cancel out the influence of the warp in advance.

また、本発明の自立基板の製造方法は、異種基板上にエピタキシャル層を成長後、前記異種基板を剥離した際に前記エピタキシャル層からなる自立した基板がエピタキシャル成長面側に凸に反りを生じるような材料系において、前記反りの影響を予め相殺するように前記エピタキシャル成長層の膜厚を前記異種基板上の中央部より端部で大きくなるように形成することを特徴とする。   In the method for manufacturing a self-supporting substrate according to the present invention, when the heterogeneous substrate is peeled off after growing the epitaxial layer on the heterogeneous substrate, the self-standing substrate made of the epitaxial layer is warped convexly toward the epitaxial growth surface. In the material system, the thickness of the epitaxial growth layer is formed so as to be larger at the end portion than at the central portion on the heterogeneous substrate so as to cancel out the influence of the warp in advance.

更に、本発明の自立基板の製造方法は、異種基板上にエピタキシャル層を成長後、前記異種基板を剥離した際に前記エピタキシャル層からなる自立した基板がエピタキシャル成長面側に凹に反りを生じるような反りを生じるような材料系において、前記反りの影響を予め相殺するように前記エピタキシャル成長層の膜厚を前記異種基板上の中央部より端部で小さくなるように形成することを特徴とする。   Furthermore, in the method for manufacturing a self-supporting substrate according to the present invention, when the heterogeneous substrate is peeled off after the epitaxial layer is grown on the heterogeneous substrate, the self-supporting substrate made of the epitaxial layer warps in a concave on the epitaxial growth surface side. In a material system that causes warpage, the thickness of the epitaxial growth layer is formed so as to be smaller at the end portion than at the central portion on the heterogeneous substrate so as to cancel out the influence of the warp in advance.

また、本発明の基板の研磨方法は、前記半導体基板または前記自立基板の表面と裏面のうち、反りがより小さな方の面を研磨治具に貼り付け、反りがより大きな面を平坦に研磨することを特徴とする。   In the substrate polishing method of the present invention, the surface of the semiconductor substrate or the free-standing substrate, which has a smaller warp, is attached to a polishing jig and the surface having the larger warp is polished flat. It is characterized by that.

更に、表裏を逆に張り替えて、反りがより小さな方の面を鏡面研磨することもできる。   Furthermore, the surface with the smaller warp can be mirror-polished by reversing the front and back.

また、本発明の半導体基板は、異種基板上にエピタキシャル成長層を形成させることにより反りを生じるような結晶成長系の半導体基板であって、前記エピタキシャル成長層表面の反りが、前記異種基板裏面の反りよりも小さいことを特徴とする。   Further, the semiconductor substrate of the present invention is a crystal growth type semiconductor substrate in which warpage is caused by forming an epitaxial growth layer on a heterogeneous substrate, and the warpage of the epitaxial growth layer surface is caused by warpage of the back surface of the heterogeneous substrate. Is also small.

更に、本発明の自立基板は、エピタキシャル成長層のみで反りを生じる材料系の自立基板であって、基板表面の反りが、基板裏面の反りよりも小さいことを特徴とする。   Furthermore, the self-supporting substrate of the present invention is a material-based self-supporting substrate in which warpage occurs only in the epitaxial growth layer, and the warpage of the substrate surface is smaller than the warpage of the back surface of the substrate.

また、本発明の基板の研磨方法は、前記半導体基板または前記自立基板の前記表面を研磨治具に貼り付け、前記裏面を平坦に研磨することを特徴とする。   Further, the substrate polishing method of the present invention is characterized in that the surface of the semiconductor substrate or the freestanding substrate is attached to a polishing jig and the back surface is polished flat.

更に、本発明の基板の研磨方法は、前記半導体基板または前記自立基板の前記表面を研磨治具に貼り付け、前記裏面を平坦に研磨した後、研磨面を逆に貼り替えて、前記表面を鏡面研磨することを特徴とする。   Furthermore, in the method for polishing a substrate of the present invention, the surface of the semiconductor substrate or the freestanding substrate is attached to a polishing jig, the back surface is polished flatly, and then the polishing surface is reversely applied to reverse the surface. It is characterized by mirror polishing.

また、上記課題を解決するため、本発明の自立基板の製造方法は、少なくとも、サファイア基板上に単結晶窒化ガリウム膜を成長させた基板上に金属膜を堆積する工程と、該金属膜を堆積した基板を水素ガス又は水素化物ガスを含む雰囲気中で熱処理し、前記窒化ガリウム膜中に空隙を形成する工程と、その上に単結晶窒化ガリウムを堆積する工程と、前記単結晶窒化ガリウム基板から前記サファイア基板を除去し、自立した窒化ガリウム基板を得る工程とを含み、前記自立した窒化ガリウム基板が単結晶窒化ガリウム成長面側に中央部が凹になるように反りを生じるような系の自立基板の製造方法において、前記単結晶窒化ガリウムを堆積する工程は、前記自立した窒化ガリウム基板の反りの影響を相殺するように、予め端部よりも中央部で膜厚が大きくなるように堆積させることを特徴とする。   In order to solve the above problems, a method for manufacturing a self-supporting substrate according to the present invention includes a step of depositing a metal film on at least a substrate obtained by growing a single crystal gallium nitride film on a sapphire substrate, and depositing the metal film. A step of heat-treating the substrate in an atmosphere containing hydrogen gas or hydride gas to form a void in the gallium nitride film, a step of depositing single-crystal gallium nitride on the substrate, and a step from the single-crystal gallium nitride substrate. Removing the sapphire substrate to obtain a self-supporting gallium nitride substrate, and the self-supporting system in which the self-supporting gallium nitride substrate is warped so that the central portion is concave on the single crystal gallium nitride growth surface side. In the method for manufacturing a substrate, the step of depositing the single crystal gallium nitride may be performed in advance so that the center portion of the gallium nitride substrate is offset from the end portion in advance so as to cancel the influence of warpage of the self-supported gallium nitride substrate. And wherein the depositing such a film thickness is increased.

更に、自立基板のエピタキシャル成長面とその反対面のうち、前記エピタキシャル成長面を研磨治具に貼り付け前記反対面を平坦に研磨することもできる。   Further, the epitaxial growth surface of the free-standing substrate and the opposite surface can be bonded to a polishing jig and the opposite surface can be polished flat.

更に、自立基板のエピタキシャル成長面とその反対面のうち、まず前記エピタキシャル成長面を研磨治具に貼り付け前記反対面を平坦に研磨した後、研磨面を逆に張り替えて前記エピタキシャル成長面を鏡面研磨することもできる。   Furthermore, of the epitaxial growth surface of the self-supporting substrate and the opposite surface, first, the epitaxial growth surface is attached to a polishing jig and the opposite surface is polished flat, and then the polishing surface is reversed and the epitaxial growth surface is mirror-polished. You can also.

ここで、本発明における「反り」とは、平面に置かれた状態での基板の厚さを除いた最大変位、すなわち、前記平面に対向する基板の面と前記平面との間の最大変位をいう。従って、基板の厚さに分布があれば、基板の表面と裏面で反りが異なることがあり得る。   Here, the “warp” in the present invention refers to the maximum displacement excluding the thickness of the substrate when placed on a plane, that is, the maximum displacement between the plane of the substrate facing the plane and the plane. Say. Therefore, if there is a distribution in the thickness of the substrate, the warpage may be different between the front surface and the back surface of the substrate.

本発明の半導体基板、自立基板及びそれらの製造方法によれば、少なくとも基板表面側の平坦度を従来の基板と比較して高くすることができる。このため、アズグロウンの基板表面にフォトリソグラフィのプロセスをかける場合、その加工精度が向上し、デバイス特性のばらつきが少なくなる。この結果、デバイスの取得歩留りを向上させることができる。   According to the semiconductor substrate, the self-standing substrate and the manufacturing method thereof of the present invention, the flatness on at least the substrate surface side can be made higher than that of the conventional substrate. For this reason, when the photolithography process is applied to the surface of the as-grown substrate, the processing accuracy is improved and variations in device characteristics are reduced. As a result, the device acquisition yield can be improved.

また、本発明の基板の研磨方法により、略平坦に成長した基板表面を研磨治具に貼り付けて、最初に裏面の研磨を精度良く、高歩留りで加工することが可能になり、得られた裏面側を研磨治具に貼り直して表面を研磨すれば、表面の研磨精度も向上する。その結果、両面の平坦性が高く、面方位のばらつきの少ない研磨基板を、歩留り良く得ることができる。このため、基板上にデバイス構造のエピタキシャル成長を行うデバイス作製工程において、基板の裏面とサセプタとを密着できるため、基板を加熱した際の基板への熱の伝わり方が均一になって基板面内で温度分布が生じることがなくなる。この結果、均一なエピタキシャル成長を行うことができ、ひいてはデバイス特性を安定化させることができる。   In addition, the substrate polishing method of the present invention enables a substrate surface that has grown substantially flat to be attached to a polishing jig, and can be used to accurately polish the back surface at a high yield with a high yield. If the surface is polished by reattaching the back side to the polishing jig, the polishing accuracy of the surface is improved. As a result, a polished substrate having high flatness on both sides and little variation in plane orientation can be obtained with high yield. For this reason, in the device manufacturing process in which the device structure is epitaxially grown on the substrate, the back surface of the substrate and the susceptor can be in close contact with each other, so that the heat transfer to the substrate becomes uniform when the substrate is heated. No temperature distribution will occur. As a result, uniform epitaxial growth can be performed, and consequently device characteristics can be stabilized.

(基板)
本発明の基板は、異種基板上に半導体層をエピタキシャル成長させたエピタキシャル基板であっても、単一材料の半導体層からなる自立基板であってもよい。
(substrate)
The substrate of the present invention may be an epitaxial substrate obtained by epitaxially growing a semiconductor layer on a heterogeneous substrate, or a free-standing substrate made of a single material semiconductor layer.

前者のエピタキシャル基板の例としては、例えばSi基板上にGaAsをエピタキシャル成長させたもの、サファイア基板上にGaNをエピタキシャル成長させたもの、サファイア基板上にAlNをエピタキシャル成長させたもの、サファイア基板上にAlGaNをエピタキシャル成長させたもの、GaAs基板上にGaNをエピタキシャル成長させたもの、あるいは、Si基板上にGaNをエピタキシャル成長させたものなど、種々の組み合わせのものを用いることができる。要するに、下地基板上に、下地基板とは格子定数や線膨張係数などの物性の異なる半導体材料をエピタキシャル成長させる場合が該当する。   Examples of the former epitaxial substrate include those obtained by epitaxially growing GaAs on a Si substrate, those obtained by epitaxially growing GaN on a sapphire substrate, those obtained by epitaxially growing AlN on a sapphire substrate, and epitaxially growing AlGaN on a sapphire substrate. Various combinations such as those obtained by epitaxial growth of GaN on a GaAs substrate, or those obtained by epitaxial growth of GaN on a Si substrate can be used. In short, this corresponds to a case where a semiconductor material having a physical property such as a lattice constant or a linear expansion coefficient different from that of the base substrate is epitaxially grown on the base substrate.

後者の自立基板とは、自らの形状を保持できるだけでなく、ハンドリングに不都合が生じない程度の強度を有する基板を意味する。このような強度を有するためには、自立基板の厚さを200μm以上とするのが好ましい。また素子形成後の劈開の容易性等を考慮し、自立基板の厚さを1mm以下とするのが好ましい。1mmを超えると劈開が困難となり、劈開面に凹凸が生じる。その結果、たとえば半導体レーザ等に適用した場合、反射のロスによるデバイス特性の劣化が問題となる。   The latter free-standing substrate means a substrate having a strength that can not only maintain its own shape but also does not cause inconvenience in handling. In order to have such strength, the thickness of the self-supporting substrate is preferably 200 μm or more. In consideration of easiness of cleavage after element formation, the thickness of the self-supporting substrate is preferably 1 mm or less. When it exceeds 1 mm, cleavage becomes difficult, and irregularities occur on the cleavage surface. As a result, when applied to a semiconductor laser or the like, for example, degradation of device characteristics due to reflection loss becomes a problem.

(基板の成長方法)
基板を成長させる方法としては、MOVPE法、MBE法、HVPE法等の公知の方法を用いることができる。中でも結晶成長後にエピタキシャル成長層を異種基板から剥離して、エピタキシャル成長させた層の自立基板を作成する方法においては、結晶成長速度の速いHVPE法が好ましい。
(Substrate growth method)
As a method for growing the substrate, a known method such as the MOVPE method, the MBE method, or the HVPE method can be used. In particular, in the method of separating the epitaxially grown layer from the heterogeneous substrate after crystal growth and producing a free-standing substrate of the epitaxially grown layer, the HVPE method having a high crystal growth rate is preferable.

(アズグロウン状態での基板表面の平坦度)
本発明における略平坦な面とは、例えばエピタキシャル層を成長させた直径50mmの基板を平坦な面に置いた時に、基板表面と前記平坦面との距離のばらつきが、50μm以下、好ましくは10μm以下となることが望ましい。前記のばらつきの限度を超えると、コンタクト式のマスクアライナで、マスクを基板に密着させた際に、基板が割れる確率が非常に高くなる。また、研磨治具に基板を貼り付ける際、あるいは研磨工程で、基板が割れる確率も高くなるからである。
(Flatness of substrate surface in as-grown state)
The substantially flat surface in the present invention means that, for example, when a substrate having a diameter of 50 mm on which an epitaxial layer is grown is placed on a flat surface, the variation in the distance between the substrate surface and the flat surface is 50 μm or less, preferably 10 μm or less. It is desirable that If the above limit of variation is exceeded, the probability that the substrate will break when the mask is brought into close contact with the substrate with a contact-type mask aligner becomes very high. In addition, when the substrate is attached to the polishing jig or in the polishing process, the probability that the substrate will break increases.

(表面研磨)
上記基板の中でも、特に自立基板は、表面を鏡面研磨するのが望ましい。一般に、アズグロウンの厚膜エピタキシャル成長層表面には、ヒロック等の大きな凹凸や、ステップバンチングによって現れると思われる微少な凹凸が多数存在している。これらは、その上に成長させるエピタキシャル層のモフォロジを悪化させたり、膜厚、組成等を不均一にする要因となるばかりでなく、デバイス作製工程においても、フォトリソグラフィ工程の露光精度を低下させる要因となる。このため、自立基板表面は平坦な鏡面であるのが好ましい。
(Surface polishing)
Among the above substrates, it is desirable that the surface of the self-supporting substrate is mirror-polished particularly. In general, the surface of the as-grown thick-film epitaxial growth layer has a large number of large irregularities such as hillocks and minute irregularities that appear to be caused by step bunching. These factors not only deteriorate the morphology of the epitaxial layer grown on it, but also cause the film thickness, composition, etc. to be non-uniform, and also reduce the exposure accuracy of the photolithography process in the device fabrication process. It becomes. For this reason, it is preferable that the free-standing substrate surface is a flat mirror surface.

(研磨後の基板表面の平坦度)
鏡面研磨加工後の基板表面の平坦度は、基板表面の50μm×50μmの範囲を測定して求めた算術平均粗さRaを用い、この算術平均粗さRaが10nm以下であるのが好ましい。この値を超えると、ステッパに基板をかける際に要求される一般的な平坦度を超えてしまい、不都合を生じるからである。
(Flatness of substrate surface after polishing)
As the flatness of the substrate surface after the mirror polishing, the arithmetic average roughness Ra obtained by measuring a 50 μm × 50 μm range of the substrate surface is used, and the arithmetic average roughness Ra is preferably 10 nm or less. If this value is exceeded, the general flatness required when placing the substrate on the stepper will be exceeded, causing inconvenience.

以下、本発明を実施例に基づき更に詳細に説明するが、本発明はそれらに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to them.

図1に、本発明の一実施例に係る半導体基板の模式図を示す。
この半導体基板10は、サファイア基板11の表面に、GaNエピタキシャル成長層12を形成したところ、図1のような形状に反りを生じたものである。ここで、GaNエピタキシャル成長層12の膜厚は、サファイア基板11の中央部上の厚さtが、サファイア基板11の端部上の厚さtよりも小さくなるように形成されている。
FIG. 1 shows a schematic diagram of a semiconductor substrate according to an embodiment of the present invention.
The semiconductor substrate 10 has a warped shape as shown in FIG. 1 when a GaN epitaxial growth layer 12 is formed on the surface of a sapphire substrate 11. Here, the film thickness of the GaN epitaxial growth layer 12 is formed such that the thickness t 1 on the center portion of the sapphire substrate 11 is smaller than the thickness t 2 on the end portion of the sapphire substrate 11.

このような半導体基板10を以下のようにして製造した。
まず、横型常圧MOCVD炉を用い、直径φ2インチのサファイア基板(C面)11上に、MOCVD法を用いてGaN単結晶を2μmエピタキシャル成長させた。原料としてアンモニアガスとトリメチルガリウムを、キャリアガスとして水素と窒素の混合ガスを使用した。サファイア基板11は、水素雰囲気で1100℃に加熱して表面の酸化物等をクリーニングしたのち、基板温度を550℃に下げてその上にGaNを20nm成長させ、さらに基板温度を1050℃に上げて、GaNを2μm成長させた。室温まで冷却して得られたGaNエピタキシャル基板は、平坦できれいな鏡面を呈していた。このエピ基板の反りを測定したところ、平坦面に基板を置いた時の基板の中央部と周辺部の高さの差が2.5μmと比較的良好な平坦性を示していた。
Such a semiconductor substrate 10 was manufactured as follows.
First, a GaN single crystal was epitaxially grown by 2 μm on a sapphire substrate (C surface) 11 having a diameter of 2 inches using a horizontal atmospheric pressure MOCVD furnace by MOCVD. Ammonia gas and trimethylgallium were used as raw materials, and a mixed gas of hydrogen and nitrogen was used as a carrier gas. The sapphire substrate 11 is heated to 1100 ° C. in a hydrogen atmosphere to clean the surface oxide and the like, then the substrate temperature is lowered to 550 ° C., GaN is grown to 20 nm thereon, and the substrate temperature is further raised to 1050 ° C. GaN was grown to 2 μm. The GaN epitaxial substrate obtained by cooling to room temperature had a flat and clean mirror surface. When the warpage of the epitaxial substrate was measured, the difference in height between the central portion and the peripheral portion of the substrate when the substrate was placed on a flat surface showed a relatively good flatness of 2.5 μm.

次に、横型常圧HVPE炉を用い、作製した基板上にHVPE法を用いてGaNエピタキシャル単結晶層12を300μmエピタキシャル成長させた。原料としてアンモニアガス及び金属GaとHClガスを850℃で反応させて作ったGaClを用い、キャリアガスには水素ガスを用いた。成長温度は1050℃、成長速度は80μm/hである。   Next, using a horizontal normal pressure HVPE furnace, the GaN epitaxial single crystal layer 12 was epitaxially grown by 300 μm on the produced substrate using the HVPE method. GaCl produced by reacting ammonia gas and metallic Ga and HCl gas at 850 ° C. was used as a raw material, and hydrogen gas was used as a carrier gas. The growth temperature is 1050 ° C. and the growth rate is 80 μm / h.

ここで、横型常圧HVPE炉における原料ガスの噴出し口からサファイア基板11までの距離とHVPE法で成長するGaNエピタキシャル単結晶層12のエピタキシャル成長面の膜厚分布との関係を調べた。その結果、サファイア基板11の位置が、原料ガスの噴出し口に近くなるようにすると、成長するGaNエピタキシャル単結晶層12の膜厚分布は、基板の中央が薄くなる傾向を示した。その状態からサファイア基板11の位置を原料ガスの噴出し口に対して離していくと、逆にサファイア基板11の中央部分が厚くなる傾向を示し、一定以上離すと、成長速度は遅くなり、全面でほぼ均一な膜厚が得られるようになった。目標とする膜厚分布を得るために必要な原料ガスの噴出し口からサファイア基板11までの距離は、原料ガス流速に依存して変化したが、前述の傾向は変わらなかった。   Here, the relationship between the distance from the source gas ejection port to the sapphire substrate 11 in the horizontal atmospheric HVPE furnace and the film thickness distribution of the epitaxial growth surface of the GaN epitaxial single crystal layer 12 grown by the HVPE method was examined. As a result, when the position of the sapphire substrate 11 was brought close to the source gas ejection port, the film thickness distribution of the grown GaN epitaxial single crystal layer 12 showed a tendency that the center of the substrate became thinner. When the position of the sapphire substrate 11 is moved away from the source gas ejection port from that state, the central portion of the sapphire substrate 11 tends to be thicker. As a result, an almost uniform film thickness can be obtained. Although the distance from the source gas ejection port required to obtain the target film thickness distribution to the sapphire substrate 11 changed depending on the source gas flow velocity, the above-mentioned tendency was not changed.

このような横型常圧HVPE炉における原料ガスの噴出し口からサファイア基板11までの距離とHVPE法で成長するGaNエピタキシャル単結晶層12の膜厚分布との関係に基づいて、原料ガスの流速をパラメーターとして、平坦面に成長後のサファイア基板11を置いた時に、基板表面が略平坦になるように、即ち、サファイア基板11の中央ほど薄くなるように、意図的に成長条件を設定した。具体的には、原料ガスの噴出し口から基板までの距離を80mmとし、原料ガス流速は30mm/secとなるようにキャリアガス流量を設定した。   Based on the relationship between the distance from the source gas ejection port to the sapphire substrate 11 and the film thickness distribution of the GaN epitaxial single crystal layer 12 grown by the HVPE method in such a horizontal normal pressure HVPE furnace, the flow rate of the source gas is determined. As parameters, the growth conditions were intentionally set so that when the grown sapphire substrate 11 was placed on a flat surface, the substrate surface became substantially flat, that is, the center of the sapphire substrate 11 became thinner. Specifically, the distance from the source gas ejection port to the substrate was set to 80 mm, and the carrier gas flow rate was set so that the source gas flow rate was 30 mm / sec.

HVPE装置を室温まで冷却して得られた半導体基板10は、表面に六角錐状のモルフォロジが観察されたものの、比較的きれいな鏡面を呈していた。この半導体基板10を平坦面に置いて、半導体基板表面の高さを測定したところ、基板の中央部が、周辺部よりも約40μm高くなっていたものの、表面の平坦性は大幅に改善されていた。図1において、マイクロゲージを用いて測定した、GaNエピタキシャル単結晶層12の厚さは、基板の中央部上tでは220μmであったが、基板の周辺部にいくほど厚くなっており、最外周部から5mm内側に入った点(t)では、350μmであった。半導体基板10を平坦面に置いたときに、その表面が略平坦になったのは、上記のGaNエピタキシャル単結晶層12の膜厚分布のため、反りの発生量が減ったのに加え、GaNエピタキシャル単結晶層12の膜厚分布により見かけ上も基板表面が平坦化したものである。
〔比較例1〕
The semiconductor substrate 10 obtained by cooling the HVPE apparatus to room temperature exhibited a relatively clean mirror surface although a hexagonal pyramid morphology was observed on the surface. When the semiconductor substrate 10 was placed on a flat surface and the height of the surface of the semiconductor substrate was measured, the central portion of the substrate was about 40 μm higher than the peripheral portion, but the flatness of the surface was greatly improved. It was. In Figure 1, was measured using a micro-gauge thickness of the GaN epitaxial single-crystal layer 12 has been a 220μm in the t 1 the central portion of the substrate, and thicker toward the peripheral portion of the substrate, the uppermost It was 350 μm at a point (t 2 ) entering 5 mm from the outer periphery. When the semiconductor substrate 10 is placed on a flat surface, the surface becomes substantially flat because the amount of warpage is reduced due to the film thickness distribution of the GaN epitaxial single crystal layer 12 described above. The substrate surface is apparently flattened by the film thickness distribution of the epitaxial single crystal layer 12.
[Comparative Example 1]

図2に示すように、サファイア基板11上にMOCVD法でGaNを2μm成長させた半導体基板20を用意した。次にこの基板上に、HVPE法でGaNエピタキシャル単結晶層14を約300μmエピタキシャル成長させた。ここで、サファイア基板11の位置を原料ガスの噴出し口に対しての距離を110mmまで離して、全面でほぼ均一な膜厚が得られるようにした以外は実施例1と同様の方法でエピタキシャル成長させた。   As shown in FIG. 2, a semiconductor substrate 20 was prepared by growing GaN on the sapphire substrate 11 by 2 μm by MOCVD. Next, a GaN epitaxial single crystal layer 14 was epitaxially grown about 300 μm on this substrate by HVPE. Here, epitaxial growth was performed in the same manner as in Example 1 except that the position of the sapphire substrate 11 was separated from the source gas ejection port by 110 mm so that a substantially uniform film thickness was obtained on the entire surface. I let you.

HVPE装置を室温まで冷却して得られた半導体基板は、表面に六角錐状のモルフォロジが観察されたものの、比較的きれいな鏡面を呈していた。しかし、この半導体基板を平坦面に置いて、半導体基板表面の高さを測定したところ、基板中央の中央部が、周辺部よりも約180μmも高くなっていた。図2において、マイクロゲージを用いて測定した、GaNエピタキシャル単結晶層14の厚さは、中央部上tと最外周部から5mm内側に入った点tでほぼ等しく、面内25点の測定で、300±25μmの範囲に納まっており、前述の約180μmもの高低差は、基板の反りによって生じていることが確認された。 The semiconductor substrate obtained by cooling the HVPE apparatus to room temperature exhibited a relatively clean mirror surface, although a hexagonal pyramid morphology was observed on the surface. However, when this semiconductor substrate was placed on a flat surface and the height of the surface of the semiconductor substrate was measured, the central portion at the center of the substrate was about 180 μm higher than the peripheral portion. In FIG. 2, the thickness of the GaN epitaxial single crystal layer 14 measured using a micro gauge is substantially equal at t 3 on the center and at point t 4 entering 5 mm from the outermost periphery, and is 25 points in the plane. In the measurement, it was within the range of 300 ± 25 μm, and it was confirmed that the above-mentioned height difference of about 180 μm was caused by the warp of the substrate.

図3(a)〜(g)に示すVAS法の工程に従って、GaNの自立基板を作製した。
まず、φ2インチ径のサファイア基板(C面)21を用意し(工程a)、そのサファイア基板21上に、MOVPE法で、20nmの低温成長GaNバッファ層を介してSiドープGaN層22を0.5μm成長させた(工程b)。成長圧力は常圧、バッファ層成長時の基板温度は600℃、エピ層成長時の基板温度は1100℃とした。原料は、III族原料としてTMGを、V族原料としてNHを、ドーパントとしてモノシランを用いた。キャリアガスは、水素と窒素の混合ガスである。結晶の成長速度は4μm/hであった。エピ層のキャリア濃度は、2×1018cm−3とした。
A GaN free-standing substrate was fabricated according to the steps of the VAS method shown in FIGS.
First, a φ2 inch diameter sapphire substrate (C surface) 21 is prepared (step a), and the Si-doped GaN layer 22 is formed on the sapphire substrate 21 by a MOVPE method through a 20 nm low-temperature growth GaN buffer layer. 5 μm was grown (step b). The growth pressure was normal pressure, the substrate temperature during buffer layer growth was 600 ° C., and the substrate temperature during epi layer growth was 1100 ° C. The raw materials used were TMG as a group III raw material, NH 3 as a group V raw material, and monosilane as a dopant. The carrier gas is a mixed gas of hydrogen and nitrogen. The crystal growth rate was 4 μm / h. The carrier concentration of the epi layer was 2 × 10 18 cm −3 .

次にこのGaNエピ基板上に、金属のTi薄膜23を20nmの厚さに蒸着した(工程c)。このようにして得られた基板を電気炉に入れ、20%のNHを含有するH気流中で1050℃で20分間熱処理した。その結果、SiドープGaN層22の一部がエッチングされて高密度の空隙を有するボイド形成GaN層24が発生し、またTi層は窒化されて表面にサブミクロンの微細な穴が高密度に形成されたTiN層25に変化した(工程d)。 Next, a metallic Ti thin film 23 was deposited on the GaN epi substrate to a thickness of 20 nm (step c). The substrate thus obtained was placed in an electric furnace and heat-treated at 1050 ° C. for 20 minutes in an H 2 stream containing 20% NH 3 . As a result, a part of the Si-doped GaN layer 22 is etched to generate a void-formed GaN layer 24 having high-density voids, and the Ti layer is nitrided to form high-density submicron holes on the surface. The TiN layer 25 was changed (step d).

この基板をHVPE炉に入れ、キャリアガス中に8×10−3atmのGaCl及び4.8×10−2atmのNHからなる原料ガスを含有する供給ガス用いて、GaN層26を600μmの厚さに成長させた(工程e)。キャリアガスは、Hを5%含有するNガスを用いた。GaN層の成長条件は常圧及び1080℃の基板温度であった。またGaN結晶の成長工程において、ドーピング原料ガスとしてSiHClを基板領域に供給することによりSiをドープした。ここで、HVPE法で成長するGaN層26の膜厚分布が、基板の中央ほど厚くなるように、原料ガスの噴出し口から基板までの距離を60mmとし、原料ガス流速は25mm/secとなるようにキャリアガス流量を設定した。 This substrate was put into an HVPE furnace, and a GaN layer 26 having a thickness of 600 μm was used by using a supply gas containing a source gas consisting of 8 × 10 −3 atm GaCl and 4.8 × 10 −2 atm NH 3 in a carrier gas. Grow to thickness (step e). As the carrier gas, N 2 gas containing 5% of H 2 was used. The growth conditions for the GaN layer were atmospheric pressure and a substrate temperature of 1080 ° C. In the GaN crystal growth process, Si was doped by supplying SiH 2 Cl 2 as a doping source gas to the substrate region. Here, the distance from the source gas ejection port to the substrate is set to 60 mm, and the source gas flow rate is 25 mm / sec so that the film thickness distribution of the GaN layer 26 grown by the HVPE method becomes thicker toward the center of the substrate. The carrier gas flow rate was set as follows.

成長が終了した後、HVPE装置を冷却する過程で、GaN層26はボイド形成GaN層24を境に下地基板から自然に剥離し(工程f)、GaN自立基板30が得られた(工程g)。   After the growth is completed, in the process of cooling the HVPE apparatus, the GaN layer 26 is naturally separated from the base substrate with the void-formed GaN layer 24 as a boundary (step f), and a GaN free-standing substrate 30 is obtained (step g). .

得られたGaN自立基板の拡大模式図を図4に示す。GaN自立基板31は、表面に六角錐状のモルフォロジが観察されたものの、比較的きれいな鏡面を呈していた。このGaN自立基板31表面の高低差を測定したところ、基板の周辺部が、中心部よりも約30μm高くなっていたものの表面の平坦性は大幅に改善されていた。図4において、マイクロゲージを用いて測定した、GaN自立基板31の厚さは、基板の中央部上(t)では620μmであったが、基板の周辺部にいくほど薄くなっており、最外周部から5mm内側に入った点(t)では、510μmであった。GaN自立基板31の表面が略平坦になったのは、GaNエピタキシャル成長層の膜厚分布のため、反りの発生量が減ったのに加え、GaNエピタキシャル成長層の膜厚分布により見かけ上も基板表面が平坦化したものである。 An enlarged schematic view of the obtained GaN free-standing substrate is shown in FIG. The GaN free-standing substrate 31 had a relatively clean mirror surface although a hexagonal pyramid morphology was observed on the surface. When the height difference of the surface of the GaN free-standing substrate 31 was measured, the flatness of the surface was greatly improved although the peripheral portion of the substrate was about 30 μm higher than the central portion. In FIG. 4, the thickness of the GaN free-standing substrate 31 measured using a microgauge was 620 μm on the central portion (t 5 ) of the substrate, but it became thinner toward the periphery of the substrate. in that enters from the outer periphery to 5mm inside (t 6), was 510 .mu.m. The surface of the GaN free-standing substrate 31 becomes substantially flat because the amount of warpage is reduced due to the film thickness distribution of the GaN epitaxial growth layer, and the surface of the substrate apparently appears due to the film thickness distribution of the GaN epitaxial growth layer. It is a flattened one.

図5に示すようなGaN自立基板を作製した。基板の作製工程は、図3に示した実施例2の場合と同じである。実施例2と同じ条件で、高密度の空隙を有するボイド層形成GaN層24表面に、サブミクロンの微細な穴が高密度に形成されたTiN層25が積層された構造の基板を用意し、次にこの基板上に、HVPE法でGaN単結晶を約600μmエピタキシャル成長させた。   A GaN free-standing substrate as shown in FIG. 5 was produced. The manufacturing process of the substrate is the same as in the case of Example 2 shown in FIG. A substrate having a structure in which a TiN layer 25 in which fine submicron holes are formed at a high density is laminated on the surface of a void layer forming GaN layer 24 having a high density of voids under the same conditions as in Example 2, Next, a GaN single crystal was epitaxially grown about 600 μm on the substrate by HVPE.

ここで、実施例2と異なる点は、HVPE法で成長するGaNエピ層の膜厚分布が、実施例2の時よりも更に基板の中央が厚くなるように、意図的に条件を設定した点にある。具体的には、実施例2の条件よりも、基板の位置を原料ガスの噴出し口に対して10mm離すことにより、基板中央部の肉厚増大を実現した。   Here, the difference from Example 2 is that the film thickness distribution of the GaN epilayer grown by the HVPE method is intentionally set so that the center of the substrate is thicker than in Example 2. It is in. Specifically, the thickness of the central portion of the substrate was increased by separating the position of the substrate by 10 mm from the material gas ejection port, rather than the conditions of Example 2.

HVPE装置を冷却して得られたGaN自立基板の拡大模式図を図5に示す。得られたGaN自立基板33は、実施例2と同じく表面に六角錐状のモルフォロジが観察されたものの、比較的きれいな鏡面を呈していた。この基板表面の高低差を測定したところ、基板の中心部が、周辺部よりも約20μm高くなっていたものの表面の平坦性は大幅に改善されていた。図5において、マイクロゲージを用いて測定した、GaN自立基板33の厚さは、基板の中央部上(t)では640μmであったが、基板の周辺部にいくほど薄くなっており、最外周部から5mm内側に入った点(t)では、540μmであった。
〔比較例2〕
An enlarged schematic view of a GaN free-standing substrate obtained by cooling the HVPE apparatus is shown in FIG. The obtained GaN free-standing substrate 33 exhibited a relatively clean mirror surface although hexagonal pyramid morphology was observed on the surface as in Example 2. When the height difference of the substrate surface was measured, the flatness of the surface was greatly improved although the center portion of the substrate was about 20 μm higher than the peripheral portion. In FIG. 5, the thickness of the GaN free-standing substrate 33, measured using a microgauge, was 640 μm on the central portion (t 7 ) of the substrate, but it became thinner toward the periphery of the substrate. It was 540 μm at a point (t 8 ) entering 5 mm from the outer periphery.
[Comparative Example 2]

図6に示すようなGaN自立基板を作製した。基板の作製工程は、図3に示した実施例2の場合と同じである。実施例2と同じ条件で、高密度の空隙を有するボイド層形成GaN層24表面に、サブミクロンの微細な穴が高密度に形成されたTiN層25が積層された構造の基板を用意し、次にこの基板上に、HVPE法でGaN単結晶を約600μmエピタキシャル成長させた。ここで、実施例2と異なる点は、サファイア基板11の位置を原料ガスの噴出し口に対しての距離を110mmまで離して、全面でほぼ均一な膜厚が得られるようにした点にある。   A GaN free-standing substrate as shown in FIG. 6 was produced. The manufacturing process of the substrate is the same as in the case of Example 2 shown in FIG. A substrate having a structure in which a TiN layer 25 in which fine submicron holes are formed at a high density is laminated on the surface of a void layer forming GaN layer 24 having a high density of voids under the same conditions as in Example 2, Next, a GaN single crystal was epitaxially grown about 600 μm on the substrate by HVPE. Here, the difference from Example 2 is that the position of the sapphire substrate 11 is separated from the source gas ejection port by 110 mm so that a substantially uniform film thickness can be obtained over the entire surface. .

室温まで冷却後得られたGaN自立基板の拡大模式図を図6に示す。得られたGaN自立基板41は、実施例2と同等の表面モルフォロジが観察されたものの、比較的きれいな鏡面を呈していた。この基板の表面の高低差を測定したところ、基板の周辺部が、中心部よりも約280μmも高くなっていた。図6において、マイクロゲージを用いて測定したGaNエピタキシャル成長層41の厚さは、基板の中央部上(t)で620μm、基板の周辺部(t10)で、610μmと、ほぼ均一な膜厚であった。即ち、前述の約280μmもの高低差は、基板の反りによって生じていることが確認された。 An enlarged schematic view of a GaN free-standing substrate obtained after cooling to room temperature is shown in FIG. The obtained GaN free-standing substrate 41 exhibited a relatively clean mirror surface although the surface morphology equivalent to that of Example 2 was observed. When the height difference of the surface of the substrate was measured, the peripheral portion of the substrate was about 280 μm higher than the central portion. In FIG. 6, the thickness of the GaN epitaxial growth layer 41 measured using a micro gauge is 620 μm on the central portion (t 9 ) of the substrate and 610 μm on the peripheral portion (t 10 ) of the substrate. Met. That is, it was confirmed that the height difference of about 280 μm was caused by the warp of the substrate.

実施例2で得られたGaN自立基板31を、図7(a)〜(e)に示す研磨工程を用いて平坦化した。   The GaN free-standing substrate 31 obtained in Example 2 was planarized using the polishing process shown in FIGS.

まず、平坦なセラミクス製研磨治具51に、熱可塑性ワックス52を用いて実施例2で得られたGaN自立基板31の表面側を貼り付けた。ここで、反った基板を無理に平坦面に圧しつけると、基板が割れてしまうおそれがあるので、研磨治具51と基板中央部との間にできる隙間には、ワックス52が入るようにして、基板を浮かせるようにして貼り付けた(工程a)。   First, the surface side of the GaN free-standing substrate 31 obtained in Example 2 was attached to a flat ceramic polishing jig 51 using a thermoplastic wax 52. Here, if the warped substrate is forcibly pressed against a flat surface, the substrate may be broken. Therefore, the wax 52 should be inserted into the gap formed between the polishing jig 51 and the central portion of the substrate. The substrate was attached so as to float (step a).

次に、ダイアモンドスラリーを用いて、基板の裏面側を鏡面研磨した。基板は図7のように裏面側が凸型に出ているため、はじめは基板の中央部しか研磨されないが、基板の中央部が約500μmになるまで研磨を続けたところ、裏面全体が研磨されて平坦化した(工程b)。   Next, the back surface side of the substrate was mirror-polished using diamond slurry. Since the back side of the substrate is convex as shown in FIG. 7, only the central portion of the substrate is polished at first, but when the polishing is continued until the central portion of the substrate reaches about 500 μm, the entire back surface is polished. Planarized (step b).

そこで、一旦基板を研磨治具51から外し、表裏を逆にして再度貼り直した後(工程c)、裏面と同様に表面をダイアモンドスラリーを用いて鏡面研磨した。基板の表面側は、凹面形状をしているため、はじめは基板の外周部しか研磨されないが、基板の厚さが約450μmになるまで研磨を続けたところ、表面全体が研磨されて完全に平坦化した(工程d)。   Therefore, the substrate was once removed from the polishing jig 51, re-attached with the front and back reversed (step c), and the surface was mirror-polished using diamond slurry in the same manner as the back surface. Since the surface side of the substrate has a concave shape, only the outer periphery of the substrate is polished at first, but when the polishing is continued until the thickness of the substrate reaches about 450 μm, the entire surface is polished and completely flat (Step d).

研磨の完了した基板を治具から外し(工程e)、洗浄した後、基板表面の平坦性を接触式段差計で測ったところ、1mmのスキャンで求めた高低差は100nm以下であった。また原子間力顕微鏡を用いて調べた50μm×50μmの範囲のRaは8nmであった。   After the polished substrate was removed from the jig (step e) and washed, the flatness of the substrate surface was measured with a contact-type step meter, and the height difference obtained by scanning 1 mm was 100 nm or less. Further, Ra in the range of 50 μm × 50 μm examined using an atomic force microscope was 8 nm.

実施例3で得られたGaN自立基板33を、図8(a)〜(e)に示す研磨工程を用いて平坦化した。   The GaN free-standing substrate 33 obtained in Example 3 was planarized using the polishing process shown in FIGS.

まず、平坦なセラミクス製研磨治具51に、熱可塑性ワックス52を用いて実施例3で得られたGaN自立基板33の表面側を貼り付けた。ここで、反った基板を無理に平坦面に圧しつけると、基板が割れてしまうおそれがあるので、研磨治具51と基板外周部との間にできる隙間には、ワックスが入るようにして、基板を浮かせるようにして貼り付けた(工程a)。基板表面は中央がわずかに凸型に出ているため、研磨治具と基板外周部との間にできる隙間には、ワックスが均等に入るようにして、治具の表面に対して基板が傾かないように注意しながら貼り付けの作業を行った。   First, the surface side of the GaN free-standing substrate 33 obtained in Example 3 was attached to a flat ceramic polishing jig 51 using a thermoplastic wax 52. Here, if the warped substrate is forcibly pressed against a flat surface, the substrate may be cracked, so that wax may enter the gap formed between the polishing jig 51 and the outer periphery of the substrate, The substrate was attached so as to float (step a). Since the center of the substrate surface has a slightly convex shape, the substrate is inclined with respect to the surface of the jig so that the wax is evenly placed in the gap formed between the polishing jig and the outer periphery of the substrate. The pasting work was done with care so that there was not.

基板を研磨治具に貼り付けた後に、ダイアモンドスラリーを用いて、基板の裏面側を鏡面研磨した(工程b)。基板は図8のように裏面側も凸型に出ているため、はじめは基板の中央部しか研磨されないが、基板の中央部が約550μmになるまで研磨を続けたところ、裏面全体が研磨されて平坦化した。   After the substrate was attached to the polishing jig, the back surface side of the substrate was mirror-polished using diamond slurry (step b). Since the substrate has a convex shape on the back side as shown in FIG. 8, only the central portion of the substrate is polished at first, but when the polishing is continued until the central portion of the substrate reaches about 550 μm, the entire back surface is polished. And flattened.

そこで、一旦基板を研磨治具から外し、表裏を逆にして再度貼り直した後(工程c)、裏面と同様に表面をダイアモンドスラリーを用いて鏡面研磨した。基板の表面側は、わずかながら凸面形状をしているため、はじめは基板の中心部しか研磨されないが、基板の厚さが約500μmになるまで研磨を続けたところ、表面全体が研磨されて完全に平坦化した(工程d)。   Therefore, the substrate was once removed from the polishing jig, re-attached with the front and back reversed (step c), and then the surface was mirror-polished using diamond slurry in the same manner as the back surface. Since the surface side of the substrate has a slightly convex shape, only the center of the substrate is polished at first, but when the polishing is continued until the thickness of the substrate reaches about 500 μm, the entire surface is completely polished. (Step d).

研磨の完了した基板を治具から外し(工程e)、洗浄した後、基板表面の平坦性を接触式段差計で測ったところ、1mmのスキャンで求めた高低差は100nm以下であった。また原子間力顕微鏡を用いて調べた50μm×50μmの範囲のRaは7nmであった。
〔比較例3〕
After the polished substrate was removed from the jig (step e) and washed, the flatness of the substrate surface was measured with a contact-type step meter, and the height difference obtained by scanning 1 mm was 100 nm or less. Further, Ra in the range of 50 μm × 50 μm examined using an atomic force microscope was 7 nm.
[Comparative Example 3]

実施例4と同じ研磨工程を用いて、比較例2で得られたGaN自立基板41の平坦化を試みた。平坦なセラミクス製研磨治具に、熱可塑性ワックスを用いて比較例2で得られたGaN自立基板の表面側を貼り付けた。反った基板を無理に平坦面に圧しつけると、基板が割れてしまうおそれがあるので、研磨治具と基板中央部との間にできる隙間には、ワックスが入るようにして、基板を浮かせるようにして貼り付け、ダイアモンドスラリーを用いて基板の裏面側を鏡面研磨しようとしたが、研磨を開始した直後、基板にクラックが発生してしまった。   Using the same polishing process as in Example 4, an attempt was made to planarize the GaN free-standing substrate 41 obtained in Comparative Example 2. The surface side of the GaN free-standing substrate obtained in Comparative Example 2 was attached to a flat ceramic polishing jig using a thermoplastic wax. Forcing the warped substrate against a flat surface may cause the substrate to break, so the wax should be placed in the gap between the polishing jig and the center of the substrate to float the substrate. At this time, an attempt was made to mirror-polish the back side of the substrate using diamond slurry, but immediately after the polishing was started, a crack occurred on the substrate.

基板は図6のように裏面側が大きく凸型に反っており、研磨治具と基板表面の隙間に入るワックスの量も多いため、研磨治具を研磨定盤に押し付けた際、ワックスが弾性変形して基板に応力が加わり、これに抗しきれずにクラックが発生したものと考えられた。   As shown in FIG. 6, the back side is largely warped in a convex shape, and the amount of wax entering the gap between the polishing jig and the substrate surface is large. Therefore, when the polishing jig is pressed against the polishing platen, the wax is elastically deformed. Thus, it was considered that stress was applied to the substrate and cracks occurred without resisting it.

以上、本発明を実施例に基づいて詳細に説明したが、これらは例示であり、それらの各プロセスの組合せ等にいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。たとえば、本実施例では、成長後の結晶表面が略平坦になるように成長を行っているが、基板の裏面が平坦になるように成長させることも、変形例として容易に考えられる。また、研磨工程において、研磨で削り取ってしまうことがあらかじめ想定される部分の結晶の全部又は一部を、基板の材料とは別の、成長界面を平坦化しやすい材料や、後の工程で研磨しやすい材料等に置き換えて結晶成長を行うなどの変形例が容易に考えられる。更に、実施例においてはGaN単層の成長を例にとったが、GaAsやAlGaN等の他材料、あるいはそれらを組合わせた多層膜へ適用することも可能である。   As described above, the present invention has been described in detail based on the embodiments. However, these are exemplifications, and various modifications can be made to combinations of these processes, and such modifications are also within the scope of the present invention. This will be understood by those skilled in the art. For example, in this embodiment, the growth is performed such that the crystal surface after growth is substantially flat. However, it is easily conceivable as a modified example that the back surface of the substrate is made flat. In addition, in the polishing process, all or part of the portion of the crystal that is assumed to be scraped off by polishing is polished in a material that is different from the substrate material and that facilitates flattening of the growth interface, or in a later process. Variations such as crystal growth by replacing with an easy material can be easily considered. Further, in the embodiments, the growth of a GaN single layer is taken as an example, but it is also possible to apply to other materials such as GaAs and AlGaN, or a multilayer film combining them.

実施例1に係る半導体基板の断面形状を示す模式図である。1 is a schematic diagram illustrating a cross-sectional shape of a semiconductor substrate according to Example 1. FIG. 比較例1に係る半導体基板の断面形状を示す模式図である。6 is a schematic diagram showing a cross-sectional shape of a semiconductor substrate according to Comparative Example 1. FIG. GaN自立基板の製造工程を示す工程フロー図である。It is a process flow figure showing a manufacturing process of a GaN self-supporting substrate. 実施例2に係る自立基板の断面形状を示す模式図である。6 is a schematic diagram showing a cross-sectional shape of a self-supporting substrate according to Example 2. FIG. 実施例3に係る自立基板の断面形状を示す模式図である。6 is a schematic diagram showing a cross-sectional shape of a self-supporting substrate according to Example 3. FIG. 比較例2に係る自立基板の断面形状を示す模式図である。6 is a schematic diagram showing a cross-sectional shape of a self-supporting substrate according to Comparative Example 2. FIG. 実施例2で得られたGaN自立基板に施す研磨工程を示す工程フロー図である。6 is a process flow diagram showing a polishing process performed on a GaN free-standing substrate obtained in Example 2. FIG. 実施例3で得られたGaN自立基板に施す研磨工程を示す工程フロー図である。10 is a process flow diagram showing a polishing process performed on a GaN free-standing substrate obtained in Example 3. FIG.

符号の説明Explanation of symbols

10 半導体基板
11 サファイア基板
12 GaNエピタキシャル成長層
20 半導体基板
21 サファイア基板
22 SiドープGaN層
23 Ti薄膜
24 ボイド形成GaN層
25 穴形成TiN層
26 GaN層
30、31、33、41 GaN自立基板
51 貼り付け治具
52 ワックス
DESCRIPTION OF SYMBOLS 10 Semiconductor substrate 11 Sapphire substrate 12 GaN epitaxial growth layer 20 Semiconductor substrate 21 Sapphire substrate 22 Si doped GaN layer 23 Ti thin film 24 Void formation GaN layer 25 Hole formation TiN layer 26 GaN layers 30, 31, 33, 41 GaN freestanding substrate 51 Jig 52 Wax

Claims (22)

異種基板上にエピタキシャル成長層を形成させることにより反りを生じるような結晶成長系の半導体基板であって、前記反りの影響を予め相殺するように前記エピタキシャル成長層の膜厚に分布を持たせたことを特徴とする半導体基板。   A crystal growth system semiconductor substrate that generates warpage by forming an epitaxial growth layer on a different substrate, and that the thickness of the epitaxial growth layer has a distribution so as to cancel out the influence of the warpage in advance. A characteristic semiconductor substrate. 異種基板上にエピタキシャル成長層を形成させることによりエピタキシャル成長面側に凸に反りを生じるような結晶成長系の半導体基板であって、前記反りの影響を予め相殺するように前記エピタキシャル成長層の膜厚が前記異種基板上の中央部より端部で大きくなるように形成されていることを特徴とする半導体基板。   A crystal growth system semiconductor substrate in which an epitaxial growth layer is formed on a different substrate to cause a convex warpage on the epitaxial growth surface side, and the thickness of the epitaxial growth layer is set so as to cancel out the influence of the warp in advance. A semiconductor substrate, wherein the semiconductor substrate is formed to be larger at an end portion than at a central portion on a different substrate. 異種基板上にエピタキシャル成長層を形成させることによりエピタキシャル成長面側に凹に反りを生じるような結晶成長系の半導体基板であって、前記反りの影響を予め相殺するように前記エピタキシャル成長層の膜厚が前記異種基板上の中央部より端部で小さくなるように形成されていることを特徴とする半導体基板。   A semiconductor substrate of a crystal growth system in which an epitaxial growth layer is formed on a heterogeneous substrate to cause a concave warpage on the epitaxial growth surface side, and the thickness of the epitaxial growth layer is set so as to cancel the influence of the warp in advance. A semiconductor substrate, wherein the semiconductor substrate is formed so as to be smaller at an end portion than at a central portion on a different substrate. 前記異種基板がサファイアであり、前記エピタキシャル成長層がInxGayAl1-x-yN(0≦x≦1、0≦y≦1、0≦x+y≦1)で表される半導体であることを特徴とする請求項1乃至3のいずれかに記載の半導体基板。 The heterogeneous substrate is sapphire, and the epitaxial growth layer is a semiconductor represented by In x Ga y Al 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1). A semiconductor substrate according to any one of claims 1 to 3. エピタキシャル成長層のみで反りを生じる材料系の自立基板であって、その反りの影響を予め相殺するように前記エピタキシャル成長層の膜厚に分布を持たせたことを特徴とする自立基板。   A self-supporting substrate of a material system that warps only in an epitaxial growth layer, wherein the thickness of the epitaxial growth layer is distributed so as to cancel out the influence of the warp in advance. エピタキシャル成長層のみで前記エピタキシャル成長面側に凸の反りを生じる材料系の自立基板であって、前記反りの影響を予め相殺するように前記エピタキシャル成長層の膜厚が前記異種基板上の中央部より端部で大きくなるように形成されていることを特徴とする自立基板。   A material-based self-supporting substrate that generates a convex warp on the epitaxial growth surface side only by the epitaxial growth layer, and the thickness of the epitaxial growth layer is larger than the center portion on the heterogeneous substrate so as to cancel out the influence of the warp in advance. A self-supporting substrate that is formed so as to be large. エピタキシャル成長層のみで前記エピタキシャル成長面側に凹の反りを生じる材料系の自立基板であって、前記反りの影響を予め相殺するように前記エピタキシャル成長層の膜厚が前記異種基板上の中央部より端部で小さくなるように形成されていることを特徴とする自立基板。   A self-supporting substrate of a material system in which only the epitaxial growth layer causes a concave warp on the epitaxial growth surface side, and the thickness of the epitaxial growth layer is larger than the center portion on the heterogeneous substrate so as to cancel out the influence of the warp in advance. A self-supporting substrate that is formed to be small in size. 異種基板上にエピタキシャル層を成長させることにより、エピタキシャル層を有する半導体基板が反りを生じるような結晶成長の系において、前記反りの影響を予め相殺するように膜厚に分布を持たせて前記エピタキシャル層を成長させることを特徴とする半導体基板の製造方法。   In a crystal growth system in which a semiconductor substrate having an epitaxial layer is warped by growing an epitaxial layer on a heterogeneous substrate, the epitaxial layer is distributed with a thickness distribution so as to cancel out the influence of the warp in advance. A method of manufacturing a semiconductor substrate, comprising growing a layer. 異種基板上にエピタキシャル層を成長させることにより、エピタキシャル層を有する半導体基板がエピタキシャル成長面側に凸に反りを生じるような結晶成長の系において、前記反りの影響を予め相殺するように前記エピタキシャル層を前記異種基板の中央部より端部で膜厚が大きくなるように成長させることを特徴とする半導体基板の製造方法。   In a crystal growth system in which an epitaxial layer is grown on a heterogeneous substrate so that a semiconductor substrate having an epitaxial layer warps convexly toward the epitaxial growth surface, the epitaxial layer is formed so as to cancel out the influence of the warp in advance. A method of manufacturing a semiconductor substrate, wherein the growth is performed so that the film thickness is larger at the end than at the center of the different substrate. 異種基板上にエピタキシャル層を成長させることにより、エピタキシャル層を有する半導体基板がエピタキシャル成長面側に凹に反りを生じるような結晶成長の系において、前記反りの影響を予め相殺するように前記エピタキシャル層を前記異種基板の中央部より端部で膜厚が小さくなるように成長させることを特徴とする半導体基板の製造方法。   In a crystal growth system in which a semiconductor substrate having an epitaxial layer is warped concavely on the epitaxial growth surface side by growing an epitaxial layer on a heterogeneous substrate, the epitaxial layer is formed so as to cancel out the influence of the warp in advance. A method of manufacturing a semiconductor substrate, wherein the growth is performed such that the film thickness is smaller at the end than at the center of the different substrate. 異種基板上にエピタキシャル層を成長後、前記異種基板を剥離した際に前記エピタキシャル層からなる自立した基板が反りを生じるような材料系において、前記反りの影響を予め相殺するように膜厚に分布を持たせて前記エピタキシャル層を成長させることを特徴とする自立基板の製造方法。   In a material system in which a free-standing substrate made of the epitaxial layer is warped when the heterogeneous substrate is peeled off after the epitaxial layer is grown on the heterogeneous substrate, the film thickness is distributed so as to cancel out the influence of the warp in advance. A method of manufacturing a self-supporting substrate, wherein the epitaxial layer is grown while having a thickness. 異種基板上にエピタキシャル層を成長後、前記異種基板を剥離した際に前記エピタキシャル層からなる自立した基板がエピタキシャル成長面側に凸に反りを生じるような材料系において、前記反りの影響を予め相殺するように前記エピタキシャル成長層の膜厚を前記異種基板上の中央部より端部で大きくなるように形成することを特徴とする自立基板の製造方法。   After the epitaxial layer is grown on the heterogeneous substrate, when the heterogeneous substrate is peeled off, the influence of the warp is canceled in advance in a material system in which the self-standing substrate made of the epitaxial layer warps convexly toward the epitaxial growth surface. As described above, the method of manufacturing a self-supporting substrate is characterized in that the epitaxial growth layer is formed so that the film thickness of the epitaxial growth layer is larger at the end than at the center on the heterogeneous substrate. 異種基板上にエピタキシャル層を成長後、前記異種基板を剥離した際に前記エピタキシャル層からなる自立した基板がエピタキシャル成長面側に凹に反りを生じるような反りを生じるような材料系において、前記反りの影響を予め相殺するように前記エピタキシャル成長層の膜厚を前記異種基板上の中央部より端部で小さくなるように形成することを特徴とする自立基板の製造方法。   In a material system in which, after growing an epitaxial layer on a heterogeneous substrate, when the heterogeneous substrate is peeled off, a self-supporting substrate made of the epitaxial layer causes a warp that causes a warp in a recess on the epitaxial growth surface side. A method for manufacturing a self-supporting substrate, wherein the epitaxial growth layer is formed so that the film thickness of the epitaxial growth layer is smaller at the end than at the center on the heterogeneous substrate so as to cancel out the influence in advance. 請求項1乃至4のいずれかに記載の半導体基板または請求項5乃至7のいずれかに記載の自立基板の表面と裏面のうち、反りがより小さな方の面を研磨治具に貼り付け、反りがより大きな面を平坦に研磨することを特徴とする基板の研磨方法。   The surface of the semiconductor substrate according to any one of claims 1 to 4 or the self-standing substrate according to any one of claims 5 to 7 is bonded to a polishing jig by attaching the surface with the smaller warpage to the polishing jig. A method for polishing a substrate, comprising polishing a larger surface flatly. 更に、表裏を逆に張り替えて、反りがより小さな方の面を鏡面研磨することを特徴とする請求項14記載の基板の研磨方法。   15. The method for polishing a substrate according to claim 14, further comprising reversely reversing the front and back surfaces and mirror-polishing the surface having the smaller warpage. 異種基板上にエピタキシャル成長層を形成させることにより反りを生じるような結晶成長系の半導体基板であって、前記エピタキシャル成長層表面の反りが、前記異種基板裏面の反りよりも小さいことを特徴とする半導体基板。   A semiconductor substrate of a crystal growth system in which warpage is generated by forming an epitaxial growth layer on a different substrate, wherein the warpage of the surface of the epitaxial growth layer is smaller than the warpage of the rear surface of the different substrate. . エピタキシャル成長層のみで反りを生じる材料系の自立基板であって、基板表面の反りが、基板裏面の反りよりも小さいことを特徴とする自立基板。   A self-supporting substrate made of a material system that warps only by an epitaxial growth layer, wherein the warpage of the substrate surface is smaller than the warpage of the back surface of the substrate. 請求項16記載の半導体基板または請求項17記載の自立基板の前記表面を研磨治具に貼り付け、前記裏面を平坦に研磨することを特徴とする基板の研磨方法。   A method for polishing a substrate, comprising: attaching the surface of a semiconductor substrate according to claim 16 or a self-standing substrate according to claim 17 to a polishing jig, and polishing the back surface flatly. 請求項16記載の半導体基板または請求項17記載の自立基板の前記表面を研磨治具に貼り付け、前記裏面を平坦に研磨した後、研磨面を逆に貼り替えて、前記表面を鏡面研磨することを特徴とする基板の研磨方法。   The surface of the semiconductor substrate according to claim 16 or the self-standing substrate according to claim 17 is attached to a polishing jig, and the back surface is polished flat, and then the polishing surface is reversely applied to mirror-polish the surface. A method for polishing a substrate, comprising: 少なくとも、サファイア基板上に単結晶窒化ガリウム膜を成長させた基板上に金属膜を堆積する工程と、該金属膜を堆積した基板を水素ガス又は水素化物ガスを含む雰囲気中で熱処理し、前記窒化ガリウム膜中に空隙を形成する工程と、その上に単結晶窒化ガリウムを堆積する工程と、前記単結晶窒化ガリウム基板から前記サファイア基板を除去し、自立した窒化ガリウム基板を得る工程とを含み、前記自立した窒化ガリウム基板が単結晶窒化ガリウム成長面側に中央部が凹になるように反りを生じるような系の自立基板の製造方法において、前記単結晶窒化ガリウムを堆積する工程は、前記自立した窒化ガリウム基板の反りの影響を相殺するように、予め端部よりも中央部で膜厚が大きくなるように堆積させることを特徴とする自立基板の製造方法。   At least a step of depositing a metal film on a substrate on which a single crystal gallium nitride film is grown on a sapphire substrate, and heat-treating the substrate on which the metal film is deposited in an atmosphere containing hydrogen gas or hydride gas, Forming a void in the gallium film; depositing single crystal gallium nitride thereon; and removing the sapphire substrate from the single crystal gallium nitride substrate to obtain a self-supporting gallium nitride substrate; In the method of manufacturing a self-supporting substrate of the system in which the self-supporting gallium nitride substrate is warped so that the central portion is concave on the single crystal gallium nitride growth surface side, the step of depositing the single crystal gallium nitride includes the self-supporting step. In order to cancel the influence of the warped of the gallium nitride substrate, it is deposited in advance so that the film thickness is larger at the center than at the edge. Production method. 更に、自立基板のエピタキシャル成長面とその反対面のうち、前記エピタキシャル成長面を研磨治具に貼り付け前記反対面を平坦に研磨することを特徴とする請求項20記載の自立基板の製造方法。   21. The method of manufacturing a self-supporting substrate according to claim 20, further comprising: affixing the epitaxial growth surface to a polishing jig among the epitaxial growth surface and the opposite surface of the self-supporting substrate and polishing the opposite surface flatly. 更に、自立基板のエピタキシャル成長面とその反対面のうち、まず前記エピタキシャル成長面を研磨治具に貼り付け前記反対面を平坦に研磨した後、研磨面を逆に張り替えて前記エピタキシャル成長面を鏡面研磨することを特徴とする請求項20記載の自立基板の製造方法。   Furthermore, of the epitaxial growth surface of the self-supporting substrate and the opposite surface, first, the epitaxial growth surface is attached to a polishing jig and the opposite surface is polished flat, and then the polishing surface is reversed and the epitaxial growth surface is mirror-polished. The method for manufacturing a self-supporting substrate according to claim 20.
JP2004127202A 2004-04-22 2004-04-22 Manufacturing method of semiconductor substrate and manufacturing method of free-standing substrate Expired - Fee Related JP4333466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004127202A JP4333466B2 (en) 2004-04-22 2004-04-22 Manufacturing method of semiconductor substrate and manufacturing method of free-standing substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004127202A JP4333466B2 (en) 2004-04-22 2004-04-22 Manufacturing method of semiconductor substrate and manufacturing method of free-standing substrate

Publications (2)

Publication Number Publication Date
JP2005306680A true JP2005306680A (en) 2005-11-04
JP4333466B2 JP4333466B2 (en) 2009-09-16

Family

ID=35435856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004127202A Expired - Fee Related JP4333466B2 (en) 2004-04-22 2004-04-22 Manufacturing method of semiconductor substrate and manufacturing method of free-standing substrate

Country Status (1)

Country Link
JP (1) JP4333466B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197276A (en) * 2006-01-27 2007-08-09 Hitachi Cable Ltd Group iii-v nitride-based semiconductor substrate, its manufacturing method, and group iii-v nitride-based light emitting element
JP2007246330A (en) * 2006-03-15 2007-09-27 Hitachi Cable Ltd Group iii-v nitride based semiconductor substrate, group iii-v nitride based device and method for manufacturing the same
JP2007273814A (en) * 2006-03-31 2007-10-18 Furukawa Electric Co Ltd:The Silicon substrate and its manufacturing method
KR100830997B1 (en) 2006-12-21 2008-05-20 주식회사 실트론 Method of fabricating silicon epitaxial wafer with improved flatness
JP2008120670A (en) * 2006-10-20 2008-05-29 Furukawa Co Ltd Method for producing group iii nitride semiconductor substrate and group iii nitride semiconductor substrate
JP2009208991A (en) * 2008-03-04 2009-09-17 Hitachi Cable Ltd Method for producing nitride semiconductor substrate
JP2010062561A (en) * 2008-09-03 2010-03-18 Siltronic Ag Method of polishing semiconductor wafer
JP2010192485A (en) * 2009-02-16 2010-09-02 Nichia Corp Method of working nitride semiconductor substrate
JP2010222186A (en) * 2009-03-24 2010-10-07 Furukawa Co Ltd Production method of group iii nitride semiconductor substrate
JP2011009562A (en) * 2009-06-26 2011-01-13 Disco Abrasive Syst Ltd Method of processing semiconductor wafer
JP2011233766A (en) * 2010-04-28 2011-11-17 Disco Abrasive Syst Ltd Method of processing hard substrate
CN102751412A (en) * 2011-04-22 2012-10-24 夏普株式会社 Chip used for forming nitride semiconductor element and manufacturing method thereof, nitride semiconductor element and manufacturing method thereof
KR20130100205A (en) * 2006-12-28 2013-09-09 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 A sapphire substrate
JP2013187296A (en) * 2012-03-07 2013-09-19 Sharp Corp Wafer for nitride semiconductor element formation, manufacturing method of wafer for nitride semiconductor element formation, nitride semiconductor element and nitride semiconductor element manufacturing method
KR101340822B1 (en) 2006-02-15 2013-12-11 스미토모덴키고교가부시키가이샤 GaN CRYSTAL SUBSTRATE AND METHOD OF MANUFACTURING THE SAME, AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE
US9464365B2 (en) 2006-12-28 2016-10-11 Saint-Gobain Ceramics & Plastics, Inc. Sapphire substrate
CN109817778A (en) * 2017-11-22 2019-05-28 松下知识产权经营株式会社 GaN substrate and its manufacturing method
WO2023218800A1 (en) * 2022-05-10 2023-11-16 信越半導体株式会社 Epitaxial wafer

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4696935B2 (en) * 2006-01-27 2011-06-08 日立電線株式会社 III-V nitride semiconductor substrate and III-V nitride light emitting device
JP2007197276A (en) * 2006-01-27 2007-08-09 Hitachi Cable Ltd Group iii-v nitride-based semiconductor substrate, its manufacturing method, and group iii-v nitride-based light emitting element
KR101340822B1 (en) 2006-02-15 2013-12-11 스미토모덴키고교가부시키가이샤 GaN CRYSTAL SUBSTRATE AND METHOD OF MANUFACTURING THE SAME, AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE
JP2007246330A (en) * 2006-03-15 2007-09-27 Hitachi Cable Ltd Group iii-v nitride based semiconductor substrate, group iii-v nitride based device and method for manufacturing the same
JP2007273814A (en) * 2006-03-31 2007-10-18 Furukawa Electric Co Ltd:The Silicon substrate and its manufacturing method
JP2008120670A (en) * 2006-10-20 2008-05-29 Furukawa Co Ltd Method for producing group iii nitride semiconductor substrate and group iii nitride semiconductor substrate
KR100830997B1 (en) 2006-12-21 2008-05-20 주식회사 실트론 Method of fabricating silicon epitaxial wafer with improved flatness
KR101715024B1 (en) * 2006-12-28 2017-03-10 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 A sapphire substrate
US9464365B2 (en) 2006-12-28 2016-10-11 Saint-Gobain Ceramics & Plastics, Inc. Sapphire substrate
KR20130100205A (en) * 2006-12-28 2013-09-09 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 A sapphire substrate
JP2009208991A (en) * 2008-03-04 2009-09-17 Hitachi Cable Ltd Method for producing nitride semiconductor substrate
USRE44986E1 (en) 2008-09-03 2014-07-01 Siltronic Ag Method for polishing a semiconductor wafer
JP2010062561A (en) * 2008-09-03 2010-03-18 Siltronic Ag Method of polishing semiconductor wafer
JP2010192485A (en) * 2009-02-16 2010-09-02 Nichia Corp Method of working nitride semiconductor substrate
JP2010222186A (en) * 2009-03-24 2010-10-07 Furukawa Co Ltd Production method of group iii nitride semiconductor substrate
JP2011009562A (en) * 2009-06-26 2011-01-13 Disco Abrasive Syst Ltd Method of processing semiconductor wafer
JP2011233766A (en) * 2010-04-28 2011-11-17 Disco Abrasive Syst Ltd Method of processing hard substrate
CN102751412A (en) * 2011-04-22 2012-10-24 夏普株式会社 Chip used for forming nitride semiconductor element and manufacturing method thereof, nitride semiconductor element and manufacturing method thereof
JP2012227479A (en) * 2011-04-22 2012-11-15 Sharp Corp Nitride semiconductor element formation wafer and method of manufacturing the same, and nitride semiconductor element and method of manufacturing the same
JP2013187296A (en) * 2012-03-07 2013-09-19 Sharp Corp Wafer for nitride semiconductor element formation, manufacturing method of wafer for nitride semiconductor element formation, nitride semiconductor element and nitride semiconductor element manufacturing method
CN109817778A (en) * 2017-11-22 2019-05-28 松下知识产权经营株式会社 GaN substrate and its manufacturing method
WO2023218800A1 (en) * 2022-05-10 2023-11-16 信越半導体株式会社 Epitaxial wafer

Also Published As

Publication number Publication date
JP4333466B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
JP4696935B2 (en) III-V nitride semiconductor substrate and III-V nitride light emitting device
JP6067801B2 (en) Finely graded gallium nitride substrate for high quality homoepitaxy
JP4849296B2 (en) GaN substrate
JP4581490B2 (en) III-V group nitride semiconductor free-standing substrate manufacturing method and III-V group nitride semiconductor manufacturing method
JP4529846B2 (en) III-V nitride semiconductor substrate and method for manufacturing the same
JP4691911B2 (en) III-V nitride semiconductor free-standing substrate manufacturing method
JP4333466B2 (en) Manufacturing method of semiconductor substrate and manufacturing method of free-standing substrate
US8012882B2 (en) Method of manufacturing nitride substrate for semiconductors
EP2077345B1 (en) Method for manufacturing gallium nitride single crystalline substrate using self-split
JP5371430B2 (en) Semiconductor substrate, method for manufacturing a self-supporting semiconductor substrate by hydride vapor phase epitaxy, and mask layer used therefor
JP2009132613A (en) Group iii-v nitride semiconductor substrate and its manufacturing method, group iii-v nitride semiconductor device, and lot of group iii-v nitride semiconductor substrate
JP4380294B2 (en) Group III-V nitride semiconductor substrate
JP5120285B2 (en) III-V nitride semiconductor free-standing substrate manufacturing method
JP2005340747A (en) Iii-v group nitride series semiconductor substrate and manufacturing method of the same, iii-v group nitride series semiconductor device, iii-v group nitride series semiconductor substrate lot
JP2009023853A (en) Group iii-v nitride semiconductor substrate, method for manufacturing the same, and group iii-v nitride semiconductor device
US20160076168A1 (en) Substrates for growing group iii nitride crystals and their fabrication method
JP4998407B2 (en) Method for manufacturing group III-V nitride semiconductor substrate
JP3946448B2 (en) Manufacturing method of nitride semiconductor substrate
WO2022079939A1 (en) Group iii nitride semiconductor substrate
JP2005008517A (en) Method for manufacturing nitride semiconductor substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees