JP2013082953A - Method of extending life of converter refractory - Google Patents

Method of extending life of converter refractory Download PDF

Info

Publication number
JP2013082953A
JP2013082953A JP2011221467A JP2011221467A JP2013082953A JP 2013082953 A JP2013082953 A JP 2013082953A JP 2011221467 A JP2011221467 A JP 2011221467A JP 2011221467 A JP2011221467 A JP 2011221467A JP 2013082953 A JP2013082953 A JP 2013082953A
Authority
JP
Japan
Prior art keywords
converter
refractory
less
brick
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011221467A
Other languages
Japanese (ja)
Other versions
JP5769170B2 (en
Inventor
Yoshihiro Tamura
佳洋 田村
Seiji Ogawa
誠二 小川
Kazuhiro Honda
和寛 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp, Nippon Steel and Sumitomo Metal Corp filed Critical Krosaki Harima Corp
Priority to JP2011221467A priority Critical patent/JP5769170B2/en
Publication of JP2013082953A publication Critical patent/JP2013082953A/en
Application granted granted Critical
Publication of JP5769170B2 publication Critical patent/JP5769170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique of preventing melting of a converter refractory more effectively at a lower cost relative to a conventional one.SOLUTION: A converter refractory having been used in an inner refractory liner is crushed to produce a crushed product. The crushed product of particles with a diameter of from 10 mm to smaller than 40 mm is used as an agent for adjusting a slag composition to be charged into a converter to protect a refractory therein. The crushed product of particles with a diameter of smaller than 10 mm is used as a raw material of an unshaped refractory to be sprayed onto the surface of a refractory in the converter to repair the surface of the refractory. The converter refractory preferably is a magnesia-carbon brick including MgO and C.

Description

本発明は、転炉耐火物の寿命延長方法に関するものである。   The present invention relates to a method for extending the life of converter refractories.

金属の精錬に用いられる転炉は、高温の溶融金属やスラグへの耐用性を高めるために、鉄皮の内面表面を永久れんが(パーマれんが)で覆い、更にその内側に耐火用れんが(ウェアれんが)を配設したライニング構造を備えている。これら転炉の内張り耐火物は、使用に伴って損耗し、一定回数使用した後、耐火物の積み替えが必要になる。   In converters used for metal refining, the inner surface of the iron skin is covered with permanent bricks (perma bricks) in order to increase the durability against high-temperature molten metal and slag, and refractory bricks (wear bricks) are further inside. Is provided with a lining structure. The lining refractories of these converters are worn with use, and after being used a certain number of times, it is necessary to reload the refractories.

耐火物の積み替え期間には鋼の製造ができないため、転炉耐火物の寿命延長を図り、積み替え発生頻度を低減することが求められている。   Since steel cannot be manufactured during the refractory transshipment period, it is required to extend the life of the converter refractory and reduce the frequency of transshipment.

従来から、転炉耐火物の寿命延長方法として、吹付け・焼付けなどの耐火物を用いて補修する方法、副原料を投入してスラグ成分をコントロールし、マグネシア-カーボンれんがのMgOの溶解を抑える方法(例えば、特許文献1)、転炉炉振りもしくはスプラッシュを行ってスラグをれんがにコーティングし保護する方法等が知られている。   Conventionally, as a method of extending the life of converter refractories, repairing using refractories such as spraying and baking, adding slag ingredients to control slag components, and suppressing dissolution of magnesia-carbon brick MgO A method (for example, Patent Document 1), a method of coating and protecting slag on a brick by performing a converter furnace swing or a splash are known.

このうち、耐火物を用いて補修する方法は、寿命延長効果は高いがコストが増加する問題があった。スラグ成分をコントロールする方法でも、スラグ成分をコントロールするために使用する副原料分のコストが増加する問題があった。更に、該副原料の溶解速度は、大きさ・性状(気孔率,揮発分の有無等)により変化するが、吹錬初期でスラグに溶解しないとスラグ成分のコントロール効果を発揮しないため、従来、溶解速度調整手段として、マグネシア源原料に粉砕、造粒、揮発分添加などの種々の加工を施す方法が採用されており、これにより、更にコスト高になるという問題があった。   Among these, the method of repairing using a refractory has a problem that the cost is increased although the life extension effect is high. Even in the method of controlling the slag component, there is a problem that the cost of the auxiliary raw material used for controlling the slag component increases. Furthermore, although the dissolution rate of the auxiliary raw material varies depending on the size and properties (porosity, presence or absence of volatile matter, etc.), since it does not exhibit the control effect of the slag component unless dissolved in the slag at the initial stage of blowing, As a dissolution rate adjusting means, a method of subjecting the magnesia source material to various processes such as pulverization, granulation, addition of volatile matter and the like has been adopted, which has a problem that the cost is further increased.

また、副原料を投入してスラグ成分をコントロールする際の副原料として、転炉の内張り耐火物を解体したときに生ずる屑をリサイクル利用する技術が特許文献2に開示されている。   Further, Patent Document 2 discloses a technology that recycles waste generated when dismantling the refractory lining the converter as an auxiliary material when controlling the slag component by adding the auxiliary material.

しかし、特許文献2記載の技術では、粉砕物を転炉に投入する際、10mm未満の粒径の粉砕物は転炉集塵に吸い込まれてしまい、スラグの成分調整機能を発揮できず、特許文献2記載の副原料を投入する手段のみでは、れんがの溶損を抑制する効果が十分ではないという問題があった。   However, in the technique described in Patent Document 2, when the pulverized product is put into the converter, the pulverized product having a particle size of less than 10 mm is sucked into the converter dust collection, and the slag component adjusting function cannot be exhibited. There is a problem that the effect of suppressing the melting loss of brick is not sufficient only by the means for adding the auxiliary material described in Document 2.

特開平11−323424号公報Japanese Patent Laid-Open No. 11-323424 特開平6−116617号公報JP-A-6-116617

本発明の目的は前記の問題を解決し、従来技術よりも低コストかつ効果的に、転炉耐火物の溶損を抑制することができる技術を提供することである。   An object of the present invention is to solve the above-mentioned problems and to provide a technique capable of suppressing the melting loss of the converter refractory at a lower cost and more effectively than the prior art.

上記課題を解決するためになされた本発明の転炉耐火物の寿命延長方法、転炉に内張りされていた使用済み転炉耐火物を粉砕し、粒径10〜40未満mmの粉砕物を、転炉内に投入して使用する耐火物保護用のスラグ成分調整剤とし、粒径10mm未満の粉砕物を、転炉内の耐火物表面補修に吹きつけて使用する不定形耐火物の原料とすることを特徴とするものである。   The method for extending the life of a converter refractory according to the present invention made to solve the above problems, pulverizing a used converter refractory that was lined in the converter, A slag component modifier for protecting refractories used in the converter, and pulverized material having a particle size of less than 10 mm is sprayed on the surface of the refractory in the converter to be used as raw materials for irregular refractories. It is characterized by doing.

請求項2記載の発明は、請求項1記載の転炉耐火物の寿命延長方法において、該転炉耐火物が、MgOとCを含有するマグネシア・カーボンれんがであることを特徴とするものである。   The invention according to claim 2 is characterized in that, in the method for extending the life of the converter refractory according to claim 1, the converter refractory is a magnesia carbon brick containing MgO and C. .

請求項3記載の発明は、請求項1または2記載の転炉耐火物の寿命延長方法において、スラグ成分調整剤を、吹錬開始時に投入し、スラグフォーミングを吹錬初期に集中して発生させることを特徴とするものである。   The invention according to claim 3 is the method for extending the life of the converter refractory according to claim 1 or 2, wherein the slag component adjusting agent is introduced at the start of blowing and slag forming is concentrated and generated at the initial stage of blowing. It is characterized by this.

本発明に係る転炉耐火物の寿命延長方法では、転炉に内張りされていた使用済み転炉耐火物を粉砕し、粒径10〜40未満mmの粉砕物を、転炉内に投入して使用する耐火物保護用のスラグ成分調整剤とし、粒径10mm未満の粉砕物を、転炉内の耐火物表面補修に吹きつけて使用する不定形耐火物の原料とする。従来、10mm未満の粒径の粉砕物は転炉集塵に吸い込まれてしまい、スラグの成分調整機能を発揮できず、れんがの溶損を抑制する効果が十分ではないという問題があったが、本発明では、転炉内に投入する使用済み転炉耐火物の粉砕物の粒径を10〜40未満mmとすることにより、従来技術に比べてスラグの成分調整機能の向上が実現した。更に、本発明では、10mm未満の粒径の粉砕物についても、廃棄処分する代わりに、転炉内の耐火物表面補修に吹きつけて使用する不定形耐火物の原料とする構成を採用しており、当該構成をあわせて採用することによって、更に効果的に転炉耐火物の溶損を抑制可能としている。このように、本発明によれば、使用済み転炉耐火物を40mm未満に粉砕し、10mm未満のものと10〜40未満mmのものとに分級するという簡易な追加工程のみにより、低コストで、従来よりも優れた溶損抑制効果を発揮することができる。   In the method for extending the life of a converter refractory according to the present invention, a used converter refractory lined in the converter is pulverized, and a pulverized product having a particle size of 10 to less than 40 mm is put into the converter. A slag component modifier for protecting the refractory to be used, and a pulverized product having a particle size of less than 10 mm is used as a raw material for an indeterminate refractory to be used for refractory surface repair in a converter. Conventionally, the pulverized product having a particle size of less than 10 mm is sucked into the converter dust collection, and the slag component adjustment function cannot be exhibited, and there is a problem that the effect of suppressing the melting of brick is not sufficient, In the present invention, the slag component adjustment function is improved as compared with the prior art by setting the particle size of the pulverized product of the used converter refractory to be introduced into the converter to less than 10 to less than 40 mm. Furthermore, in the present invention, a configuration in which a pulverized product having a particle size of less than 10 mm is used as a raw material for an irregular refractory used for spraying and repairing the surface of a refractory in a converter instead of being disposed of. In addition, by adopting the configuration together, it is possible to more effectively suppress the melting loss of the converter refractory. As described above, according to the present invention, the spent converter refractory is pulverized to less than 40 mm and classified into those less than 10 mm and those less than 10 to 40 mm. In addition, it is possible to exhibit a melting damage suppressing effect superior to that of the prior art.

また、粒径が40mm以上になると、溶解速度が遅くなりスラグ成分調整機能に効果がないばかりか,特に請求項2記載の発明のように、粉砕物にカーボンを含有する場合には、吹錬末期にガスが発生し、スラグフォーミングを生じ、炉の生産性を阻害する問題があったが、本発明では、転炉内に投入する使用済み転炉耐火物の粉砕物の粒径を10〜40未満mmとすることにより、当該吹錬末期におけるスラグフォーミングの問題も効果的に回避可能としている。   Further, when the particle size is 40 mm or more, not only the dissolution rate becomes slow and the slag component adjusting function is not effective, but particularly when the pulverized material contains carbon as in the invention of claim 2, Although gas was generated at the end, causing slag foaming and hindering the productivity of the furnace, in the present invention, the particle size of the pulverized product of the used converter refractory to be introduced into the converter is 10 to 10. By setting it to less than 40 mm, the problem of slag forming at the end of the blowing can be effectively avoided.

粒径によるガス発生時間とガス発生量の関係を、計算式に基づいて求めたグラフである。It is the graph which calculated | required the relationship between the gas generation time by a particle size, and gas generation amount based on the calculation formula. 転炉耐火物の修復に用いる不定形耐火物の効果を示す図である。It is a figure which shows the effect of the amorphous refractory used for repair of a converter refractory.

以下に本発明の好ましい実施形態を示す。   Preferred embodiments of the present invention are shown below.

転炉に内張りされるMgO-Cれんがの解体に伴って生ずるれんが屑を40mm未満の粒径に粉砕し、その後、10mm未満と10〜40未満mmのものに分級する。本発明では、このうち、10mm未満のものを、転炉内の耐火物表面補修に吹きつけて使用する不定形耐火物の原料とし、10〜40未満mmのものを、転炉内に投入して使用する耐火物保護用のスラグ成分調整剤として使用する。れんが粉砕物の粒径は、ふるい目が40mmと10mmの2種のふるいを用いて分別した。40mmの目を透過したれんが粉砕物の粒径を40mm未満、10mmの目を透過したれんが粉砕物の粒径を10mm未満とした。40mmの目を透過し10mmの目を不透過のれんが粉砕物の粒径を10〜40未満mmとした。尚、40mmの目を不透過のれんが粉砕物が生じた場合は、粉砕物が40mmの目を透過するまで再度粉砕処理を行った。   Brick scraps generated by the demolition of MgO-C bricks lined in the converter are pulverized to a particle size of less than 40 mm, and then classified into less than 10 mm and less than 10 to 40 mm. In the present invention, a material of less than 10 mm is used as a raw material for an amorphous refractory to be used by spraying on the surface of the refractory in the converter, and a material of less than 10 to 40 mm is put into the converter. It is used as a slag component modifier for protecting refractories. The particle size of the pulverized brick was classified using two types of sieves having a sieve size of 40 mm and 10 mm. The particle size of the crushed brick that passed through the 40 mm eye was less than 40 mm, and the particle size of the brick that passed through the 10 mm eye was less than 10 mm. The particle size of the crushed bricks that passed through 40-mm eyes and impermeable to 10-mm eyes was 10 to less than 40 mm. In addition, when 40-mm eye-impervious brick crushed material was generated, the pulverization treatment was performed again until the crushed material passed through the 40-mm eye.

(耐火物保護用のスラグ成分調整剤:10〜40未満mmのれんが屑の粉砕物)
転炉内に、軽焼ドロマイトの代替物として、10〜40未満mmのMgO-Cれんが屑の粉砕物を投入することで、大幅なコスト削減が達成できる。
(Slag component modifier for refractory protection: crushed material of brick scraps of less than 10-40 mm)
Significant cost reductions can be achieved by putting pulverized MgO-C brick scraps of less than 10 to 40 mm into the converter as an alternative to light-burned dolomite.

ただし、MgO-Cれんがの粉砕物を軽焼ドロマイトの代替物として使用した場合、C+FeO→CO↑+Feの反応によりガスが発生してスラグフォーミングが生じる。スラグフォーミングが吹錬末期〜出鋼中に生じると、出鋼時間の増大や成分外れといった問題が生じるが、本発明ではMgO-Cれんがの粉砕物の粒径を40未満mmとする構成を採用することにより、当該問題を回避可能としている。なお、10mm未満の粒径の粉砕物は転炉集塵に吸い込まれてしまい、スラグ成分調整剤としての機能を十分に発揮することはできない。   However, when the pulverized MgO—C brick is used as an alternative to light-burned dolomite, gas is generated due to the reaction of C + FeO → CO ↑ + Fe and slag forming occurs. When slag foaming occurs during the last stage of blowing and during steel production, problems such as increased steel production time and out-of-component occur, but the present invention adopts a configuration in which the grain size of MgO-C brick is less than 40 mm. By doing so, the problem can be avoided. In addition, the pulverized material having a particle diameter of less than 10 mm is sucked into the converter dust collection, and cannot sufficiently function as a slag component adjusting agent.

当該粒径を40mm未満とする構成は、れんが粒度とれんが溶解時間には相関があることに着目して、決定されたものである。具体的には、以下の考え方に基づきガス発生量の推定を行い、決定したものである。   The configuration in which the particle size is less than 40 mm is determined with a focus on the fact that there is a correlation between the particle size of brick and the dissolution time of brick. Specifically, the gas generation amount is estimated and determined based on the following concept.

転炉に投入したMgO-Cれんが屑の消失速度はMgO-Cれんが屑の温度に依存する変数と考えられる。したがって、MgO−Cれんが屑の消失速度とMgO-Oれんが屑に含まれる炭素量から、C+FeO→CO↑+Feなる反応で単位時間あたりに発生するガスの量を求めることができる。   The disappearance rate of MgO-C brick scraps charged into the converter is considered to be a variable depending on the temperature of MgO-C brick scraps. Therefore, the amount of gas generated per unit time in the reaction of C + FeO → CO ↑ + Fe can be determined from the disappearance rate of MgO-C brick waste and the amount of carbon contained in the MgO-O brick waste.

MgO-Cれんが屑の粒径が29mm、39mm、60mm、100mmの各々の場合について、周囲の温度(転炉内の溶融スラグ温度)を1650℃と仮定し、MgO-Cれんが屑内の温度の上昇を(数1)を元に一次元非定常伝熱解析により推定した。
ここにT温度,t時間,x距離,a熱伝導率であり、計算には熱伝導率20.0W/mK、熱容量1300J/kgK、密度3000kg/mを用いた。
For each of the cases where the particle size of the MgO-C brick scraps is 29 mm, 39 mm, 60 mm, and 100 mm, the ambient temperature (molten slag temperature in the converter) is assumed to be 1650 ° C., and the temperature in the MgO—C brick scrap is The rise was estimated by one-dimensional unsteady heat transfer analysis based on (Equation 1).
Here, T temperature, t time, x distance, and a thermal conductivity were used, and the thermal conductivity was 20.0 W / mK, the heat capacity was 1300 J / kgK, and the density was 3000 kg / m 3 .

つぎに、実験的に得られた知見であるMgO-Cれんが屑温度が1650℃の温度条件下でのMgO-Cれんが屑粉砕物の消失速度3mm/minを仮定し、前述の方法で求めた温度変化の下でのMgO-Cれんが屑粉砕物の消失速度を、粉砕物の粒径が29mm、39mm、60mm、100mmの各々の場合について求め、MgO-Cれんが屑消失速度から前記の考え方に基づきガス発生量の推定を行った結果を、図1に示している。   Next, the disappearance rate of the MgO-C brick crushed material under the temperature condition of 1650 ° C., which is the knowledge obtained experimentally, was determined by the above-mentioned method. The disappearance rate of the MgO—C brick crushed material under temperature change was determined for each of the particle sizes of 29 mm, 39 mm, 60 mm, and 100 mm of the pulverized material, The result of estimating the gas generation amount based on this is shown in FIG.

図1に示すように、粒径29mm、39mmの場合、吹錬初期までに、前記反応が完了し、吹錬末期でのガス発生は観察され、粒径100mmの場合には、吹錬末期まで前記反応が継続し、ガス発生が観察された。当該観察結果に基づき、40mm未満に粉砕したMgO-Cれんが屑の粉砕物を実際の転炉に供し、溶解性の確認をスロッピング発生状況の目視観察とサンプリングしたスラグの組成の評価により行った。   As shown in FIG. 1, when the particle size is 29 mm and 39 mm, the reaction is completed by the early stage of blowing, and gas generation is observed at the end of blowing, and when the particle size is 100 mm, until the end of blowing. The reaction continued and gas evolution was observed. Based on the observation results, the crushed MgO-C brick scraped to less than 40 mm was subjected to an actual converter, and the solubility was confirmed by visual observation of the occurrence of slopping and evaluation of the composition of the sampled slag. .

実際の転炉を使用し、40mm未満に粉砕したMgO-Cれんが屑を転炉炉上バンカーに貯鉱し、従来使用していたスラグ中MgO調整用副原料である軽焼ドロマイトのMgO純分と同量になるように秤量し、転炉吹錬開始直後に炉内へ投入した。溶解性の確認をスロッピング発生状況の目視観察とサンプリングしたスラグの組成の評価により行った結果、スロッピングの発生は観察されなかった。   MgO-C brick scraps crushed to less than 40mm using an actual converter are stored in a bunker on the converter furnace, and the MgO pure content of light-burned dolomite, which is an auxiliary material for adjusting MgO in slag, which has been conventionally used Was weighed so as to be the same amount as in the above, and was put into the furnace immediately after the start of converter blowing. As a result of confirming the solubility by visual observation of the state of occurrence of slopping and evaluation of the composition of the sampled slag, no occurrence of slopping was observed.

上記実施例より、40mm未満に粉砕したMgO-Cれんが屑をスラグ成分調整剤として使用することにより、吹錬末期にガスが発生しスラグフォーミングを生じ炉の生産性を阻害する問題を効果的に回避できることが確認された。また、スラグ組成におけるMgO量は、従来のスラグ調整剤と差異がなく、耐火物保護効果も十分に発揮することが確認された。   From the above examples, by using MgO-C brick scraps pulverized to less than 40 mm as a slag component modifier, gas is generated at the end of blowing and slag forming occurs, effectively preventing the furnace productivity. It was confirmed that it can be avoided. Moreover, it was confirmed that the amount of MgO in the slag composition is not different from the conventional slag adjusting agent, and the refractory protection effect is sufficiently exhibited.

(不定形耐火物の原料:10mm未満のれんが屑の粉砕物)
前述のように、10mm以下の粒径の粉砕物は転炉集塵に吸い込まれてしまい、スラグ成分調整剤としての機能を十分に発揮することはできないが、本発明では、該10mm未満の粒径の粉砕物についても、廃棄処分する代わりに、転炉内の耐火物表面補修に吹きつけて使用する不定形耐火物の原料とする構成を採用しており、当該構成をあわせて採用することによって、更に効果的に転炉耐火物の溶損を抑制可能としている。
(Raw material of amorphous refractory: crushed material of brick waste less than 10 mm)
As described above, the pulverized product having a particle size of 10 mm or less is sucked into the converter dust collection and cannot sufficiently function as a slag component adjusting agent. The crushed material of diameter is also used as a raw material for the irregular refractory material that is sprayed to repair the surface of the refractory inside the converter instead of being disposed of. Therefore, it is possible to more effectively suppress the melting loss of the converter refractory.

下記の表1は、転炉耐火物の修復に用いる不定形耐火物の物性をまとめた表である。
Table 1 below is a table summarizing the physical properties of the irregular refractories used for repairing converter refractories.

本発明者は、フェノール樹脂をボンドとし、不定形耐火物の原料である骨材として10mm未満のれんが屑の粉砕物を使用することで、修復用不定形耐火物に占めるMgO-Cれんが屑の粉砕物の割合を70%まで増やしても耐用が低下しないことを新たに見出した。   The present inventor uses phenol resin as a bond, and uses a crushed material of brick waste of less than 10 mm as an aggregate that is a raw material of the amorphous refractory, so that the MgO—C brick waste occupying the repairable amorphous refractory is reduced. It was newly found that the durability does not decrease even when the proportion of the pulverized product is increased to 70%.

表1に示すように、転炉耐火物の修復に用いる不定形耐火物は、ピッチ、フェノール樹脂、マグネシア、10mm未満に粉砕したMgO−Cれんが屑粉砕物及びその他原料を含み、マグネシアとMgO-Cれんが屑の割合を変化させ、ピッチとフェノール樹脂をあわせた質量が全体の15質量%となるようにして、ピッチとフェノール樹脂の配合率をA、Bの二種で混合した。なお、Aはピッチとフェノール樹脂との配合率をピッチ:フェノール樹脂=1:1、Bはピッチとフェノール樹脂との配合率をピッチ:フェノール樹脂=2:1とした。
なお、その他原料は、シリカ質原料、アルミナ質原料、ドロマイト質原料、マグネシア−ライム質原料を少なくとも1つ含む原料である。
As shown in Table 1, the irregular refractories used for repairing the converter refractories include pitch, phenol resin, magnesia, MgO-C brick waste pulverized to less than 10 mm, and other raw materials, and magnesia and MgO- The ratio of the C brick scrap was changed so that the total mass of the pitch and the phenol resin was 15% by mass, and the blending ratio of the pitch and the phenol resin was mixed in two types A and B. In addition, A set the ratio of pitch and phenol resin to pitch: phenol resin = 1: 1, and B set the ratio of pitch to phenol resin to pitch: phenol resin = 2: 1.
The other raw materials are raw materials containing at least one of a siliceous raw material, an alumina raw material, a dolomite raw material, and a magnesia-lime raw material.

このようにして調整した修復用不定形耐火剤に水分を15%添加、混合したものを1200℃に熱したホットプレート上に均一な厚さとなるように流し込み、硬化後に強度を測定した。表1の強度評価結果は、MgO-Cれんが屑粉砕物の配合量が0質量%(MgO-Cれんが屑粉砕物を不定形耐火物の原料として不使用)のもの(参考例1)に対して各実施例1〜6の相対値を%で示した。   A 15% moisture was added to the repaired irregular refractory prepared as described above, and the mixture was poured onto a hot plate heated to 1200 ° C. so as to have a uniform thickness, and the strength was measured after curing. The strength evaluation results in Table 1 show that the blending amount of the MgO-C brick crushed material is 0% by mass (the MgO-C brick crushed material is not used as a raw material for the amorphous refractory) (Reference Example 1). The relative values of Examples 1 to 6 are shown in%.

MgO-Cれんが屑粉砕物の割合が増加するに従って硬化強度は低下するが、実用上は問題ないと考えられる。さらにピッチとフェノール樹脂の配合率を2:1に変えた場合や、マグネシアを使用せずにMgO-Cれんが屑を70質量%配合した実施例6においても、MgO-Cれんが屑の粉砕物を配合しない参考例1とほぼ同等の強度が得られた。   Although the hardening strength decreases as the proportion of the MgO—C brick crushed material increases, it is considered that there is no problem in practical use. Furthermore, when the blending ratio of pitch and phenol resin was changed to 2: 1 or in Example 6 in which 70% by mass of MgO—C brick waste was used without using magnesia, the pulverized product of MgO—C brick waste was also used. A strength almost equal to that of Reference Example 1 in which no blending was performed was obtained.

図2には、MgO-Cれんが屑粉砕物を原料とした吹付け補修材を、実際の転炉炉内の耐火物表面の補修に供し、目視観察を行った結果を示している。前記の補修材はMgO-Cれんが屑粉砕物を原料として75質量%添加したものを使用した。耐火物表面の補修は、当該補修材を圧縮空気を用いてホースにより気相搬送し、転炉炉内に挿入したノズルを介して水分を10〜15%添加し、転炉炉内の耐火物表面に吹付けて実施した。耐用の判定は目視観察によって行った。   FIG. 2 shows the result of visual observation using a spray repair material made of crushed MgO—C brick as a raw material for repairing the surface of a refractory in an actual converter furnace. As the repair material, a material in which 75% by mass of MgO—C brick crushed material as a raw material was added was used. The surface of the refractory is repaired by transporting the repair material in a gas phase with a hose using compressed air, adding 10 to 15% of water through a nozzle inserted into the converter, and then adding the refractory in the converter. Sprayed on the surface. The durability was determined by visual observation.

図2では、吹付け施工後の使用回数に対して、目視により判定した残存率を示している。図2に示すように、本発明例は、従来の高耐用品と同等以上の耐用性を示すことが確認された。尚、本発明者らは、ボンド(結合剤)の選定を更に考慮すれば、図2の本発明品のように、従来の耐用品に比較して補修後不定形耐火物の耐用性を更に向上することが可能であることも見出した。   In FIG. 2, the remaining rate determined visually is shown with respect to the number of times of use after spraying. As shown in FIG. 2, it was confirmed that the example of the present invention showed a durability equal to or higher than that of a conventional high durability product. In addition, if the present inventors further consider the selection of the bond (binder), the durability of the indeformed refractory after repair is further improved as compared with the conventional product as in the product of the present invention in FIG. We have also found that it is possible to improve.

このように、本発明によれば、使用済み転炉耐火物を40mm未満に粉砕し、10mm未満のものと10〜40mm未満のものとに分級するという簡易な追加工程のみにより、低コストで、従来よりも優れた溶損抑制効果を発揮し、転炉耐火物寿命の大幅な延長を実現可能となる。   As described above, according to the present invention, the spent converter refractory is pulverized to less than 40 mm and classified into less than 10 mm and less than 10 to 40 mm. It exhibits an excellent melting damage suppression effect than before, and can greatly extend the life of converter refractories.

Claims (3)

転炉に内張りされていた使用済み転炉耐火物を粉砕し、
粒径10〜40mm未満の粉砕物を、転炉内に投入して使用する耐火物保護用のスラグ成分調整剤とし、
粒径10mm未満の粉砕物を、転炉内の耐火物表面補修に吹きつけて使用する不定形耐火物の原料とする
ことを特徴とする転炉耐火物の寿命延長方法。
Grinding used converter refractories lining the converter,
A pulverized product having a particle size of less than 10 to 40 mm is used as a slag component adjusting agent for protecting a refractory used by being put into a converter.
A method for extending the life of a converter refractory, characterized in that a pulverized product having a particle size of less than 10 mm is used as a raw material for an irregular refractory used by spraying the surface of the refractory in the converter.
該転炉耐火物が、MgOとCを含有するマグネシア・カーボンれんがであることを特徴とする請求項1記載の転炉耐火物の寿命延長方法。   2. The method for extending the life of a converter refractory according to claim 1, wherein the converter refractory is a magnesia carbon brick containing MgO and C. スラグ成分調整剤を、吹錬開始時に投入し、スラグフォーミングを吹錬初期に集中して発生させることを特徴とする請求項1または2記載の転炉耐火物の寿命延長方法。   The method for extending the life of a converter refractory according to claim 1 or 2, wherein a slag component adjusting agent is introduced at the start of blowing and slag forming is concentrated and generated in the initial stage of blowing.
JP2011221467A 2011-10-06 2011-10-06 How to extend the life of converter refractories Active JP5769170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011221467A JP5769170B2 (en) 2011-10-06 2011-10-06 How to extend the life of converter refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011221467A JP5769170B2 (en) 2011-10-06 2011-10-06 How to extend the life of converter refractories

Publications (2)

Publication Number Publication Date
JP2013082953A true JP2013082953A (en) 2013-05-09
JP5769170B2 JP5769170B2 (en) 2015-08-26

Family

ID=48528423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011221467A Active JP5769170B2 (en) 2011-10-06 2011-10-06 How to extend the life of converter refractories

Country Status (1)

Country Link
JP (1) JP5769170B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104673966A (en) * 2015-01-22 2015-06-03 河北钢铁股份有限公司承德分公司 Method for rapidly maintaining converter lining
CN114350885A (en) * 2022-01-07 2022-04-15 鞍钢股份有限公司 Blow-in method of top-bottom combined blown converter
CN115161427A (en) * 2022-05-26 2022-10-11 玉溪新兴钢铁有限公司 Converter quick-repairing method based on waste refractory material

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382705A (en) * 1989-08-25 1991-04-08 Kawasaki Steel Corp Method for repairing converter in hot-state
JPH06116617A (en) * 1992-10-06 1994-04-26 Nisshin Steel Co Ltd Method for using mgo refractory in molten steel treating tank
JPH0920916A (en) * 1995-06-30 1997-01-21 Nkk Corp Method for suppressing erosion of converter refractories
JPH11323424A (en) * 1998-05-11 1999-11-26 Nippon Steel Corp Slag component conditioner for slag-coating converter lining refractory, its production and protection method of converter lining refractory by the same
JP2001089806A (en) * 1999-09-20 2001-04-03 Kawasaki Steel Corp Hot-repairing method of converter
JP2002206867A (en) * 2001-01-09 2002-07-26 Nippon Steel Corp Recycle method for fireproof material
JP2002302713A (en) * 2001-01-30 2002-10-18 Nippon Steel Corp Method for hot-repairing converter for steelmaking
JP2003212667A (en) * 2002-01-23 2003-07-30 Nippon Steel Corp Process for recycling used refractory
JP2004161594A (en) * 2002-09-27 2004-06-10 Jfe Steel Kk Graphite-containing monolithic refractory material
JP2005058835A (en) * 2003-08-19 2005-03-10 Nippon Steel Corp Method for reusing used refractory
JP2005188798A (en) * 2003-12-25 2005-07-14 Jfe Steel Kk Recycling method for used refractory and method of forming lining protective layer of molten metal container
JP2007261874A (en) * 2006-03-28 2007-10-11 Nippon Steel Corp Method for recycling used refractory, recycled refractory raw material for monolithic refractory produced using the same, and monolithic refractory
JP2009132951A (en) * 2007-11-28 2009-06-18 Jfe Steel Corp Method for utilizing waste mgo-c brick
JP2011121798A (en) * 2009-12-09 2011-06-23 Koua Fireproofing Industries Co Ltd Spraying repairing material using used brick

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382705A (en) * 1989-08-25 1991-04-08 Kawasaki Steel Corp Method for repairing converter in hot-state
JPH06116617A (en) * 1992-10-06 1994-04-26 Nisshin Steel Co Ltd Method for using mgo refractory in molten steel treating tank
JPH0920916A (en) * 1995-06-30 1997-01-21 Nkk Corp Method for suppressing erosion of converter refractories
JPH11323424A (en) * 1998-05-11 1999-11-26 Nippon Steel Corp Slag component conditioner for slag-coating converter lining refractory, its production and protection method of converter lining refractory by the same
JP2001089806A (en) * 1999-09-20 2001-04-03 Kawasaki Steel Corp Hot-repairing method of converter
JP2002206867A (en) * 2001-01-09 2002-07-26 Nippon Steel Corp Recycle method for fireproof material
JP2002302713A (en) * 2001-01-30 2002-10-18 Nippon Steel Corp Method for hot-repairing converter for steelmaking
JP2003212667A (en) * 2002-01-23 2003-07-30 Nippon Steel Corp Process for recycling used refractory
JP2004161594A (en) * 2002-09-27 2004-06-10 Jfe Steel Kk Graphite-containing monolithic refractory material
JP2005058835A (en) * 2003-08-19 2005-03-10 Nippon Steel Corp Method for reusing used refractory
JP2005188798A (en) * 2003-12-25 2005-07-14 Jfe Steel Kk Recycling method for used refractory and method of forming lining protective layer of molten metal container
JP2007261874A (en) * 2006-03-28 2007-10-11 Nippon Steel Corp Method for recycling used refractory, recycled refractory raw material for monolithic refractory produced using the same, and monolithic refractory
JP2009132951A (en) * 2007-11-28 2009-06-18 Jfe Steel Corp Method for utilizing waste mgo-c brick
JP2011121798A (en) * 2009-12-09 2011-06-23 Koua Fireproofing Industries Co Ltd Spraying repairing material using used brick

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104673966A (en) * 2015-01-22 2015-06-03 河北钢铁股份有限公司承德分公司 Method for rapidly maintaining converter lining
CN114350885A (en) * 2022-01-07 2022-04-15 鞍钢股份有限公司 Blow-in method of top-bottom combined blown converter
CN115161427A (en) * 2022-05-26 2022-10-11 玉溪新兴钢铁有限公司 Converter quick-repairing method based on waste refractory material

Also Published As

Publication number Publication date
JP5769170B2 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
JP2010053012A (en) Raw material of refractory repairing material of iron making/steel making equipment and method of making the same and repairing material containing the same
KR20130010021A (en) Granular metal production method
CN102372487A (en) Magnesium-carbon gunning mix
CN105859314A (en) Carbon-containing gunning mix for liquid steel smelting equipment and preparation method thereof
CN104032066A (en) Process for maintaining converter lining by combining metal material with heat-state furnace slag
JP5769170B2 (en) How to extend the life of converter refractories
JP2014015374A (en) Powder accelerating agent and spray application method of castable refractory
US20130055853A1 (en) Method for producing metallic iron
CN103332964B (en) Viscous slag prevention coating for refractory material in casting blank heating furnace
CN108264362A (en) A kind of Large face repair material of converter and preparation method thereof
JP6756794B2 (en) Hot dry spray material and hot dry spray construction method
JP5463644B2 (en) Method for refining molten metal
JP2011121798A (en) Spraying repairing material using used brick
CN105060910B (en) Converter flue discharge chute repair material and preparation method thereof
JP6172227B2 (en) Tundish for continuous casting
JP6043271B2 (en) Method for producing reduced iron
JP2006220376A (en) Hot repairing method of lining castable refractory of refining vessel such as electric furnace
TWI678418B (en) Slag regulating agent in steel making process and manufacturing method thereof
JP6280427B2 (en) Refractory for spray construction
JP5441093B2 (en) Slag component modifier for protecting refractories stretched in furnace and method for producing the same
JP5181878B2 (en) Hot metal production method
JP5671426B2 (en) Manufacturing method of granular metallic iron
JP2015059234A (en) Prevention method of smoking in molten iron tapping
JP2009001892A (en) Material for repairing refractory in converter and method for repairing refractory in converter
JP6538522B2 (en) Reuse method of tundish refractories for continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150616

R150 Certificate of patent or registration of utility model

Ref document number: 5769170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250