JPH0382705A - Method for repairing converter in hot-state - Google Patents

Method for repairing converter in hot-state

Info

Publication number
JPH0382705A
JPH0382705A JP21997589A JP21997589A JPH0382705A JP H0382705 A JPH0382705 A JP H0382705A JP 21997589 A JP21997589 A JP 21997589A JP 21997589 A JP21997589 A JP 21997589A JP H0382705 A JPH0382705 A JP H0382705A
Authority
JP
Japan
Prior art keywords
furnace
converter
refractory
repair
brick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21997589A
Other languages
Japanese (ja)
Inventor
Haruyuki Okuda
治志 奥田
Hideo Take
武 英雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP21997589A priority Critical patent/JPH0382705A/en
Publication of JPH0382705A publication Critical patent/JPH0382705A/en
Pending legal-status Critical Current

Links

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To repair damaged part in a converter in hot-state by charging MgO series refractory into the remaining molten slag while injecting bottom blowing gas from a bottom blowing tuyere, spraying water and cooling the converter after sticking the above refractory to the damaged part in the furnace by tilting the converter. CONSTITUTION:When the refractory in the furnace at raw material charging side and steel tapping side in the top and bottom combined blowing converter erodes, while injecting the bottom blowing gas into the furnace with the molten slag after tapping molten steel left remaining in the ratio of 0.1-3.0Nm<3>/min from the bottom blowing tuyere, the waste brick having 30-100mm size, of MgO-containing refractory brick, such as magnesia brick, magnesia-chromite brick, dolomite brick, is added at 10-100wt. parts per the 100wt. parts of the remaining molten slag in the furnace. Then, this is kneaded with the molten slag, and while tilting the furnace, this is stuck to the damaged part, and by spraying the water, this is cooled, solidified and stuck to thickness of <=90% the refractory thickness at the time of laying bricks and repaired at the time of repairing the furnace.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は転炉の熱間補修方法に係り、特に底吹き機能を
有する転炉の内張り耐火物の補修方法に関し、製鋼分野
で広く利用される。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for hot repair of a converter, and particularly to a method for repairing a refractory lining of a converter having a bottom-blowing function, and is widely used in the steelmaking field. Ru.

〔従来の技術〕[Conventional technology]

転炉の熱間補修方法としては、例えば不定形耐火物をガ
ンにより吹き付ける熱間吹付補修方法、ピッチ含有不定
形耐火物を損傷部位に投入し炉の保有熱またはバーナー
等で焼付ける焼付補修法。
Hot repair methods for converters include, for example, a hot spray repair method in which monolithic refractories are sprayed with a gun, and a baking repair method in which pitch-containing monolithic refractories are poured into the damaged area and burned using the heat retained in the furnace or a burner. .

出鋼後炉内残留スラグにドロマイトを添加し炉を傾動し
炉壁に吹付は付着させるスラグコーティング法等が知ら
れている。
A slag coating method is known in which dolomite is added to the slag remaining in the furnace after steel tapping, and the furnace is tilted so that the slag is sprayed onto the furnace wall.

しかし、熱間吹付補修方法は基本的に溶媒として水を用
いるため、熱間で施工する場合は水の急激な蒸発を伴い
、吹付材料と被付着体との接着強度が低く、残存寿命が
短く、従って高温出鋼の必要な鋼種には効果が小さい。
However, since the hot spray repair method basically uses water as a solvent, hot repair involves rapid evaporation of water, resulting in low adhesive strength between the spraying material and the object to be adhered, and a short remaining life. Therefore, it is less effective for steel types that require high-temperature tapping.

次に、焼付補修法は結合剤としてピッチ、タール等を用
い、炉の保有熱により軟化→充填→硬化の過程をとり、
従って有機結合剤が有する揮発物のため組織の気孔率が
高く、耐食性が低い欠点がある。これらの従来の熱間補
修方法は、耐食性に問題があり、補修剤の耐用性は多く
ても10チヤ一ジ程度である。従って補修頻度も高く、
転炉の稼動率低下を余儀なくされ、補修費のコスト上昇
と生産性の低下をもたらすという問題点がある。
Next, the baking repair method uses pitch, tar, etc. as a binder, and takes the process of softening → filling → hardening due to the heat retained in the furnace.
Therefore, the structure has a high porosity due to the volatile substances contained in the organic binder, and has the disadvantage of low corrosion resistance. These conventional hot repair methods have problems with corrosion resistance, and the durability of the repair agent is about 10 cycles at most. Therefore, the frequency of repairs is high,
There is a problem in that the operating rate of the converter is forced to decrease, leading to an increase in repair costs and a decrease in productivity.

これに対し、精錬に用いたスラグを耐火物に付着凝固さ
せるスラグコーティング法は新規の補修剤を必要とせず
大規模の補修が可能である点が有利であるが、補修材料
であるスラグの軟化点が精練温度であることから耐用チ
ャージ数に限界がある。
On the other hand, the slag coating method, in which slag used in smelting is adhered to and solidified on refractories, has the advantage of not requiring new repair agents and can be used for large-scale repairs; Since the point is the scouring temperature, there is a limit to the number of charges that can be used.

この問題を解決するため、残したスラグにドロマイト等
の転炉副材料を混合してスラグの軟化点を上昇するとと
もに、冷却して効率を高めているが。
To solve this problem, the remaining slag is mixed with converter auxiliary materials such as dolomite to raise the softening point of the slag and cooled to improve efficiency.

軟化点の十分な上昇ができず付着したスラグ層に亀裂を
生じ、必ずしも好結果が得られていない。
The softening point cannot be raised sufficiently, causing cracks in the attached slag layer, and good results are not always obtained.

また、残留スラグに耐火物もしくは耐火原料を配合して
転炉スラグを冷却固化する転炉の補修方法として特公昭
50−40364.特公昭61−59364が知られて
いる。前者は流動性のある転炉スラグ100重量部に対
し平均直径30IIIl以下に調整した耐大物もしくは
耐火材料20〜100重量部を配合したものを溶損部に
付着させ冷却固化せしめる補修方法である。また後者は
溶融スラグ100重量部に対し100〜200+amの
大きさの塊状塩基性耐火物を5〜20重量部投入した後
、鎮静、保持する補修方法である。
In addition, Japanese Patent Publication No. 50-40364 describes a converter repair method in which a refractory or refractory raw material is mixed with residual slag to cool and solidify the converter slag. Special Publication No. 61-59364 is known. The former is a repair method in which a mixture of 20 to 100 parts by weight of a large-sized material or refractory material adjusted to an average diameter of 30III or less is attached to the melted part and cooled and solidified to 100 parts by weight of fluid converter slag. The latter is a repair method in which 5 to 20 parts by weight of a bulk basic refractory having a size of 100 to 200+ am is added to 100 parts by weight of molten slag, and then the slag is stabilized and maintained.

しかしながら、これらの方法はいずれにおいても、近年
普及してきた上吹き転炉のように鋼浴撹拌の大きい場合
や、出鋼温度が1700℃に達する場合には補修効果が
小さく、耐用性は10〜20チヤ一ジ程度である。更に
、最近の底吹き機能を有する炉底部をこれらの方法にて
補修すると強固な補修層が得られるが、補修後の吹錬に
おいて底吹きによる鋼浴の撹拌機能が低下し、上底軟化
による経済的利益が減少する欠点があった。
However, with any of these methods, the repair effect is small when the steel bath is stirred extensively, such as in the top-blown converter that has become popular in recent years, or when the tapping temperature reaches 1,700°C, and the durability is only 10~10°C. It is about 20 pieces. Furthermore, when repairing the bottom of a furnace with a recent bottom blowing function using these methods, a strong repair layer can be obtained, but during blowing after repair, the stirring function of the steel bath due to bottom blowing deteriorates, and the top bottom softens. The disadvantage was that economic profits were reduced.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は上記従来技術の課題を解決し、底吹き機
能を有する転炉においても、耐用性にすぐれ、吹錬時の
上底吹きの効果を低下させない熱間補修方法を提供する
にある。
An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a hot repair method that has excellent durability and does not reduce the effect of top and bottom blowing during blowing, even in a converter having a bottom blowing function. .

〔問題点を解決するための手段および作用〕本発明の要
旨とするところは次の如くである。
[Means and operations for solving the problems] The gist of the present invention is as follows.

すなわち、底吹き機能を有する転炉の内張り耐火物の熱
間補修方法において、炉底部から0.1〜3 、0 N
m’/winの底吹きガスを流しながら前記転炉内に残
留させた溶融スラグ100重量部に対し大きさが30〜
100mmの塊状の含MgO耐大物を10−100重量
部投入し該転炉を揺動した後静置することを特徴とする
転炉の熱間補修方法である。
That is, in a hot repair method for the lining refractory of a converter having a bottom-blowing function, a pressure of 0.1 to 3,0 N is applied from the bottom of the furnace.
The size is 30 to 100 parts by weight of the molten slag left in the converter while flowing bottom blowing gas of m'/win.
This is a method for hot repair of a converter, which is characterized in that 10 to 100 parts by weight of a 100 mm block of large MgO-containing material is charged, the converter is rocked, and then left to stand still.

本発明を適用するのは、上吹転炉、底吹転炉。The present invention is applied to top-blown converters and bottom-blown converters.

上底吹転炉およびAOD炉等の底吹き機能を有する転炉
である。炉修に際して、先ず補修後の吹錬における底吹
効果の低下を防止するため炉底部より底吹きガスを適量
に流しながら補修する。補修時のガス底吹きは、炉容積
、底吹きノズルの径、ノズルの数および配置により異な
るが、炉底部に生成する補修層内のノズル直上部に適度
な気孔率を有するrガス道」を生成する如く、所定の位
置から炉内へ底吹きガスを流す。
It is a converter having a bottom blowing function such as a top and bottom blowing converter and an AOD furnace. When repairing the furnace, first, repair is carried out while flowing an appropriate amount of bottom blowing gas from the bottom of the furnace in order to prevent a decrease in the bottom blowing effect during blowing after the repair. Gas bottom blowing during repair varies depending on the furnace volume, the diameter of the bottom blowing nozzle, the number and arrangement of nozzles, but it is necessary to install a "r gas path" with an appropriate porosity directly above the nozzle in the repair layer that forms at the bottom of the furnace. Bottom-blown gas is flowed into the furnace from a predetermined position so as to generate gas.

補修中の底吹きガス量は0.1〜3 、0 Nm3/w
inの範囲に限定した。この理由は流量が0.1Nn+
”/mfn未満では「ガス道Jの生成が困難で、吹込時
の補修層内でのガス圧損により底吹きガスが所定の位置
より噴射できず、補修後の吹錬において、上底吹化によ
る効果が著しく減少する。また流量が3 、0 N1/
l1inを越えるとノズル上方の補修層の気孔率が過大
となり、補修による効果が減少するからである。
The amount of bottom blowing gas during repair is 0.1 to 3,0 Nm3/w
The range was limited to in. The reason for this is that the flow rate is 0.1Nn+
If it is less than "/mfn," it is difficult to create a gas path J, and the bottom blowing gas cannot be injected from a predetermined position due to the gas pressure loss within the repair layer during blowing, and during blowing after repair, it is difficult to create a gas path J. The effect decreases significantly.Also, when the flow rate is 3,0 N1/
This is because if it exceeds 11 inches, the porosity of the repair layer above the nozzle becomes excessive, reducing the effect of repair.

かくの如くして炉底から底吹きガスを流しながら転炉内
に残留させた溶融スラグに塊状の含MgO耐火物を投入
し、転炉を揺動して溶融スラグと含MgO耐火物を混合
する。
In this way, the MgO-containing refractory in the form of a lump is introduced into the molten slag remaining in the converter while blowing gas from the bottom of the furnace, and the converter is rocked to mix the molten slag and the MgO-containing refractory. do.

投入する塊状台MgO耐火物の量は残留させた溶融スラ
グ100重量部に対して10〜100重量部に限定する
。その理由は、10重量部未満では結合剤過多の状態に
なり、補修層の凝固スラグの表層が溶融して塊状耐火物
が流出しやすくなり、耐用性が著しく低下し、一方、塊
状耐火物が100重量部を越えると結合剤が不足し、結
合力か弱く、炉傾転時に補修層が崩壊脱落し、補修の効
果が減少するからである。
The amount of the block MgO refractory to be charged is limited to 10 to 100 parts by weight per 100 parts by weight of the remaining molten slag. The reason for this is that if it is less than 10 parts by weight, there will be too much binder, the surface layer of the solidified slag in the repair layer will melt, and the bulk refractories will easily flow out, resulting in a marked decrease in durability; This is because if it exceeds 100 parts by weight, there will be a shortage of binder and the bonding force will be weak, causing the repair layer to collapse and fall off when the furnace is tilted, reducing the repair effect.

本発明で使用する塊状の含MgO耐火物はマグネシアれ
んが、マグ・クロれんが、ドロマイトれんが、マグネシ
ア・カーボンれんが等一般の塩基性れんがであってこれ
らの耐水物はもとより、破損れんが、使用後の回収れん
がを使用することができる。
The bulk MgO-containing refractories used in the present invention are general basic bricks such as magnesia bricks, mag-black bricks, dolomite bricks, and magnesia-carbon bricks, and these water-resistant materials as well as broken bricks and recovered after use. Bricks can be used.

また、使用する塊状前MgO耐火物の大きさは30〜1
00ffllに限定する。これは30問未満では補修層
の凝固スラグの溶融により耐火物の流出が容易となり効
果が減少する。また100mmを越える大きさとなると
溶融スラグへ均一分散の混合が困難となり、結合剤であ
るスラグ単独の部分が大きくなり、吹錬末期の高温下で
この部分が溶融して結合効果が低下し、溶鋼流により補
修層が溶損し、炉傾動時には崩壊脱落しやすくなるから
である。
In addition, the size of the pre-massive MgO refractory used is 30 to 1
Limited to 00ffll. If the number of questions is less than 30, the solidified slag in the repair layer will melt and the refractories will easily flow out, reducing the effectiveness. In addition, if the size exceeds 100 mm, it becomes difficult to mix the molten slag with uniform dispersion, and the portion of the slag alone, which is a binder, becomes large, and this portion melts at high temperatures at the end of blowing, reducing the bonding effect and reducing the bonding effect of the molten slag. This is because the repair layer will be eroded by the flow, and will easily collapse and fall off when the furnace is tilted.

上記の如く揺動により溶融スラグと塊状耐火物の混合が
完了すると、底吹きガスを流したまま静置する。静置時
間については、特に規定しないが、一般にスラグの量、
粘性および塊状耐火物の量によって左右されるが、いず
れにしてもスラグが流動性をもった状態から凝固するま
での時間を静置しておく必要があり、多くの場合30分
以上が必要である。
When the mixing of the molten slag and the lumpy refractories is completed by the shaking as described above, it is allowed to stand still with the bottom blowing gas flowing. There is no particular stipulation regarding the standing time, but it is generally determined by the amount of slag,
It depends on the viscosity and amount of refractory lumps, but in any case, it is necessary to let the slag stand for a period of time from a fluid state until it solidifies, and in most cases, 30 minutes or more is required. be.

静置中に補修部に散水して冷却するのは、この静置時間
を短縮する効果があり、生成した補修層の厚みにもよる
が、散水しない場合に比して散水すると凝固時間を10
分程度短縮することができる。
Sprinkling water on the repaired area while it is standing still to cool it has the effect of shortening this standing time, and depending on the thickness of the repair layer formed, spraying water reduces the solidification time by 10% compared to when no water is sprinkled.
The time can be reduced by about a minute.

上記本発明による補修方法は炉底部のみならず、転炉の
出鋼側、装入側の炉腹部へ適用することが可能である。
The above-mentioned repair method according to the present invention can be applied not only to the furnace bottom but also to the core of the converter on the tapping side and the charging side.

この場合には、当該部分の耐火物の溶損速度をその他の
トラニオン側の炉腹部に比して90%以下とすることが
可能である。従来一般的な転炉においては、炉腹部の耐
火物の厚さは同一であったが、本発明法の適用によって
、装入側および出鋼側の炉腹部の耐火物の厚みを築炉時
の90%以下とすることにより、炉寿命末期に均一な耐
火物残厚とすることができるので、耐火物の利用効率を
高めることができる。
In this case, it is possible to reduce the rate of erosion of the refractory in this part to 90% or less compared to the other part of the trunnion side of the furnace. In conventional converters, the thickness of the refractory in the furnace belly was the same, but by applying the method of the present invention, the thickness of the refractory in the furnace belly on the charging side and the tapping side can be changed at the time of furnace construction. By setting the thickness to 90% or less, it is possible to have a uniform residual thickness of the refractory at the end of the furnace life, thereby increasing the utilization efficiency of the refractory.

〔実施例〕〔Example〕

出鋼温度1650℃前後の吹錬を行う180を上底吹き
転炉(LD−KGC)の炉底部の熱間補修に際し、炉底
から2 、0 Nm”/aimの底吹きガスを流しなが
ら、出鋼後の残留溶解スラグ5tに対しスクラップシュ
ートから50〜90mmの大きさの塊状の回収されたマ
グネシアカーボンれんがを投入し、転炉を揺動して混合
した後、炉を垂直とし40分間静置して補修した。
During hot repair of the bottom of a top-bottom blowing converter (LD-KGC), 180, which performs blowing at a tapping temperature of around 1,650°C, was operated while flowing bottom-blowing gas of 2.0 Nm''/aim from the bottom of the furnace. Recovered magnesia carbon bricks in the form of blocks of 50 to 90 mm in size were charged from the scrap chute to 5 tons of residual molten slag after tapping, and after shaking the converter to mix it, the furnace was turned vertically and allowed to stand still for 40 minutes. I installed it and repaired it.

本補修後、補修層は50ヒ一ト以上残留し、かつ補修後
の吹錬において底吹き効果が低下することはなかった。
After the main repair, more than 50 layers of the repair layer remained, and the bottom blowing effect did not deteriorate during the blowing after the repair.

第1図に50ヒート毎に本発明法により熱間補修をした
場合のヒート数と炉底残厚との関係を示したが、同図か
ら明らかな如く、はとんど永久的に使用することができ
る。
Figure 1 shows the relationship between the number of heats and the remaining thickness of the furnace bottom when hot repair is performed by the method of the present invention every 50 heats. be able to.

〔発明の効果〕〔Effect of the invention〕

本発明は上記実施例からも明らかな如く、底吹き機能を
有する転炉の熱間補修方法において、炉底部から底吹き
ガスを流しながら、残留スラグに対して規定量の塊状の
含MgO耐火物を投入し。
As is clear from the above embodiments, the present invention provides a hot repair method for a converter having a bottom-blowing function, in which a predetermined amount of lumpy MgO-containing refractory is applied to residual slag while flowing bottom-blowing gas from the bottom of the furnace. Insert.

揺動後、静置することによって強固な補修層を形成し次
の如き効果を挙げる;とができた。
After shaking, a strong repair layer was formed by allowing it to stand still, resulting in the following effects.

(イ)1回の補修で50チヤ一ジ以上の操業が可能とな
り、補修回数が減少したので、補修費が低減し、生産性
が向上した。
(a) It is now possible to operate more than 50 wheels per repair, reducing the number of repairs, reducing repair costs and improving productivity.

(ロ)すぐれた熱間補修が可能となったので1本補修法
の適用ができる炉底部、装入側および出鋼側の炉腹部に
おいては、築炉時の耐火物施工厚みを従来より約40%
減少することが可能となり。
(b) Since excellent hot repair has become possible, the thickness of refractory construction at the time of furnace construction has been reduced to approximately 30% less than before at the furnace bottom, charging side, and furnace side on the tapping side, where the one-line repair method can be applied. 40%
It becomes possible to decrease.

築炉費が大幅に削減された。Furnace construction costs were significantly reduced.

(ハ)補修後の吹錬において、従来の補修方法による底
吹き効果の低下を防止し、上底吹化による経済的利益を
受けることができた。
(c) In blowing after repair, it was possible to prevent the lowering of the bottom blowing effect caused by conventional repair methods, and to enjoy the economic benefits of top and bottom blowing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の転炉のヒート数と炉底残厚との
関係を示す線図である。
FIG. 1 is a diagram showing the relationship between the number of heats and the remaining thickness of the furnace bottom of the converter according to the embodiment of the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)底吹き機能を有する転炉の内張り耐火物の熱間補
修方法において、炉底部から0.1〜3.0Nm^3/
minの底吹きガスを流しながら前記転炉内に残留させ
た溶融スラグ100重量部に対し大きさが30〜100
mmの塊状の含MgO耐火物を10〜100重量部投入
し該転炉を揺動した後静置することを特徴とする転炉の
熱間補修方法。
(1) In a hot repair method for the lining refractory of a converter with a bottom-blowing function, 0.1 to 3.0 Nm^3/
The size is 30 to 100 parts by weight for 100 parts by weight of molten slag left in the converter while flowing bottom blowing gas of min.
1. A method for hot repair of a converter, which comprises adding 10 to 100 parts by weight of MgO-containing refractories in the form of blocks of mm, shaking the converter, and then allowing it to stand still.
(2)前記静置時に補修部に散水して冷却する請求項(
1)記載の転炉の熱間補修方法。
(2) Claim (
1) Hot repair method for a converter as described.
(3)前記補修方法を転炉装入側および出鋼側の炉腹部
への適用に際し、当該部耐火物厚みをその他の炉腹部に
比し90%以下とする請求項(1)もしくは(2)記載
の転炉の熱間補修方法。
(3) When the repair method is applied to the converter charging side and the steel tapping side of the furnace belly, the thickness of the refractory material in these areas is 90% or less of that of the other furnace sides (1) or (2). ) Hot repair method for converter as described.
JP21997589A 1989-08-25 1989-08-25 Method for repairing converter in hot-state Pending JPH0382705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21997589A JPH0382705A (en) 1989-08-25 1989-08-25 Method for repairing converter in hot-state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21997589A JPH0382705A (en) 1989-08-25 1989-08-25 Method for repairing converter in hot-state

Publications (1)

Publication Number Publication Date
JPH0382705A true JPH0382705A (en) 1991-04-08

Family

ID=16743961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21997589A Pending JPH0382705A (en) 1989-08-25 1989-08-25 Method for repairing converter in hot-state

Country Status (1)

Country Link
JP (1) JPH0382705A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000043666A (en) * 1998-12-29 2000-07-15 신현준 Slag coating material for converter
KR20000043671A (en) * 1998-12-29 2000-07-15 신현준 Coating material for protecting refractory material for converter
KR100413281B1 (en) * 1998-12-30 2004-05-22 주식회사 포스코 Basic castable composition for tundish bottom reinforcement using waste refractories
JP2013082953A (en) * 2011-10-06 2013-05-09 Nippon Steel & Sumitomo Metal Corp Method of extending life of converter refractory
CN109055654A (en) * 2018-09-05 2018-12-21 鞍钢股份有限公司 A kind of furnace retaining method using dolomite fettling

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040364A (en) * 1973-08-20 1975-04-14
JPS6154084A (en) * 1984-08-23 1986-03-18 Teijin Memorex Kk Floppy disc
JPS6159364A (en) * 1984-08-31 1986-03-26 Ricoh Co Ltd Copying machine
JPS6328816A (en) * 1986-07-22 1988-02-06 Nippon Steel Corp Coating method of converter slag

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040364A (en) * 1973-08-20 1975-04-14
JPS6154084A (en) * 1984-08-23 1986-03-18 Teijin Memorex Kk Floppy disc
JPS6159364A (en) * 1984-08-31 1986-03-26 Ricoh Co Ltd Copying machine
JPS6328816A (en) * 1986-07-22 1988-02-06 Nippon Steel Corp Coating method of converter slag

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000043666A (en) * 1998-12-29 2000-07-15 신현준 Slag coating material for converter
KR20000043671A (en) * 1998-12-29 2000-07-15 신현준 Coating material for protecting refractory material for converter
KR100413281B1 (en) * 1998-12-30 2004-05-22 주식회사 포스코 Basic castable composition for tundish bottom reinforcement using waste refractories
JP2013082953A (en) * 2011-10-06 2013-05-09 Nippon Steel & Sumitomo Metal Corp Method of extending life of converter refractory
CN109055654A (en) * 2018-09-05 2018-12-21 鞍钢股份有限公司 A kind of furnace retaining method using dolomite fettling

Similar Documents

Publication Publication Date Title
CN105525055B (en) A kind of control method of converter less-slag melting carbon period splash
CN104673966A (en) Method for rapidly maintaining converter lining
CN108728603A (en) A kind of method of quick fettling
CN112794700A (en) Converter repairing material and production method thereof
CN102965465A (en) Method for curing converter slag
CN111748670B (en) Method for improving chromium ore reduction by bottom blowing oxygen-lime powder
CN1417549A (en) Large-area self-flowing converter repairing material
CN110317920B (en) Maintenance method for furnace bottom of top-bottom combined blown converter
JPH0382705A (en) Method for repairing converter in hot-state
CN113265504B (en) Operation method for splashing double slag of converter
JP3885499B2 (en) Converter steelmaking method
CN114438277A (en) Converter low slag charge steelmaking process
CN102649987A (en) Method for improving slugging effect at dephosphorization stage by slag-less generation refining process (SGRP) smelting in converter
CN1375478A (en) Stirred magnesia-water mixture for repairing furnace lining and its usage
JPH05331518A (en) Method for hot-repairing converter
CN106148635A (en) A kind of converter segment position restorative procedure
JPS6159364B2 (en)
CN111792920A (en) Novel environment-friendly converter quick repairing material
US5772931A (en) Slag coating process
JPH09316522A (en) Method for repairing furnace bottom of converter
KR100845039B1 (en) Method for repairing a converter
RU2131467C1 (en) Process of reclamation of lining of converter
JP3764543B2 (en) Method of melting iron-containing cold material
JP2000313912A (en) Slag coating method in converter
RU2128714C1 (en) Method of skull application to converter lining