JP2004161594A - Graphite-containing monolithic refractory material - Google Patents

Graphite-containing monolithic refractory material Download PDF

Info

Publication number
JP2004161594A
JP2004161594A JP2003031622A JP2003031622A JP2004161594A JP 2004161594 A JP2004161594 A JP 2004161594A JP 2003031622 A JP2003031622 A JP 2003031622A JP 2003031622 A JP2003031622 A JP 2003031622A JP 2004161594 A JP2004161594 A JP 2004161594A
Authority
JP
Japan
Prior art keywords
graphite
brick
refractory
refractory material
comparative example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003031622A
Other languages
Japanese (ja)
Other versions
JP4470372B2 (en
Inventor
Sadakimi Kiyota
禎公 清田
Yoko Miyamoto
陽子 宮本
Masato Takagi
正人 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003031622A priority Critical patent/JP4470372B2/en
Publication of JP2004161594A publication Critical patent/JP2004161594A/en
Application granted granted Critical
Publication of JP4470372B2 publication Critical patent/JP4470372B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a monolithic refractory material which is suitably usable, e.g. for the application of thin refractories and the repair of the damaged part in refractories, and with which homogeneous refractories having satisfactory spalling resistance and applicability can be applied even in the above cases. <P>SOLUTION: The graphite-containing monolithic refractory material comprises fine aggregate, refractory fine powder and a binder, and the maximum particle diameters thereof are controlled to ≤10 mm. As the fine aggregate, brick scraps comprising 5 to 40 mass% graphite are used. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、耐食性、耐スポーリング性および施工性に優れる黒鉛含有不定形耐火材料に係り、特に、施工耐火物の損傷部位の補修や厚みの薄い薄物耐火物に用いて好適な黒鉛含有不定形耐火材料に関するものである。
【0002】
【従来の技術】
近年、製鉄業で使用される耐火煉瓦としては、転炉用MgO−C煉瓦や連鋳設備用Al23−C煉瓦等の黒鉛含有耐火煉瓦が一般的となっている。こうした傾向は、不定形耐火材料についても同様の変化が起っており、高炉鋳床の主樋用スピネル−Al3−SiC−C系キャスタブル耐火材料や取鍋スラグライン用MgO−C系キャスタブル耐火材料などとして実用化されている。そして、これらの耐火材料の特徴は、耐スラグ浸透性に優れるだけでなく、高熱伝導性ならびに低熱膨張性を有し耐スポーリング性に優れる点にあり、そのために、高炉樋や混銑車、溶銑鍋、転炉、RH脱ガス装置、連続鋳造用ノズルなどの分野において、高耐用性耐火材料として広く使用されている。
【0003】
しかし、これらの黒鉛含有不定形耐火材料は、その中に含まれている黒鉛の種類によって異なる性質を示し、例えば、鱗状黒鉛や薄肉黒鉛は、耐スポーリング性には優れるが、水との濡れ性が悪いため、不定形耐火材料用原料として使用する場合、多量の水と混錬して施工性を確保する必要がある。そのために、施工された耐火物は気孔率が高くなり、耐用性を劣化させてしまうという問題点があった。なお、ここでいう施工性とは、不定形耐火材料を水と混錬したときの流動性を意味しており、該不定形耐火材料を所定の型枠内へ流し込んだり、吹付け材として配管内を吹付けノズルまで輸送するのに必要な特性である。
【0004】
このことから、不定形耐火材料用の黒鉛としては、水との濡れ性の良い人造黒鉛や土状黒鉛を用いることが多いが、一方でこれらの黒鉛は、耐スポーリング性が悪いため不定形耐火材料用原料としてはあまり好ましいものではない。そこで、従来、耐スポーリング性の良好な鱗状黒鉛や薄肉黒鉛を、水との濡れ性の良い材料を混合して用いることにより、不定形耐火材料用原料として使用することが考えられている。
【0005】
例えば、水との濡れ性の良い材料の一つとして、黒鉛を含む煉瓦屑を不定形耐火材料用原料として使用することが考えられる。それは、黒鉛を含む煉瓦屑というのは、酸化物が主体となり、その黒鉛自体もバインダーとして配合された樹脂によって覆われていることが多いため、単味の鱗状黒鉛や薄肉黒鉛ほどには水との濡れ性が悪くはなく、一方で耐スポーリング性もある程度は期待できるからである。
こうした背景の下で、従来、高炉鋳床樋カバー用流し込み耐火材料として、A123−SiC−C系煉瓦屑の1〜30 mmの粒子と黒鉛ならびにピッチとを共に加熱混錬した造粒物を、他の耐火物や結合材と混合したものが提案されている(特許文献1)。この材料は、粒径10 mmを超える煉瓦屑を使用すると共に、ピッチで造粒することにより、水との濡れ性の悪さに起因する施工性の低下を改善したものである。
【0006】
ここで、前記高炉鋳床樋カバーとは、高炉出銑口から排出される溶銑、溶滓を流す樋の上に防熱、防塵のために載置するカバーであり、1500 ℃程度の幅射熱を受けることと、溶銑や溶滓のスプラッシュ等による熱的スポーリング、さらには溶損による損傷を受け易いため、300〜500 mm程度の肉厚で施工するのが普通である。
このような厚みの大きい耐火物を施工するには、粒径が10 mmを超えるような粗骨材を粒径0.1〜10 mm程度の細骨材およびバインダーとなるアルミナセメントなどと混合してなる不定形耐火材料を使用している。この材料は、粗骨材を使用することで、高価なアルミナセメント等の微粉の使用量を減少させることができるので、経済的に有利である。ただし、粒径の大きい上記粗骨材を含有する不定形耐火材料では、最大粗骨材粒径の4〜5倍程度の施工厚さがないと均一な施工ができないと共に、粗骨材が大きくなればなるほど、該粗骨材表面とバインダー等からなるマトリックスとの接着性が悪くなり、強度の低下を招くようになる。その結果、高炉樋の内張り耐火物や、連続鋳造ノズル用耐火物のような、厚みの比較的薄い対象物(耐火物)に対しては使用できないという問題点があった。また、溶銑鍋や混銑車、転炉等であっても、損耗箇所の補修材として不定形耐火材料を施工する場合のように、厚みの薄い箇所が生じるような施工条件で使用できる、耐スポーリング性に優れる不定形耐火材料がなかった。
【0007】
【特許文献1】特開平3−80159号公報
【0008】
【発明が解決しようとする課題】
本発明の目的は、高炉鋳床の主樋メタルライン部への高炉スラグに対する耐食性の付与、あるいは傾注樋敷部への脱珪剤に対する耐食性の付与、または厚みの薄い耐火物の施工や、耐火物の損傷部位の補修のように厚みの薄い施工部分があるような場合であっても、均質で耐食性や耐スポーリング性に富み高い耐用性を示すと共に、施工性の良好な黒鉛含有不定形耐火材料を提供することにある。
【0009】
【発明を解決する手段】
上掲の課題を解決し、上記目的を実現するために、発明者らは、骨材の粒径を種々調整して補修や薄物施工に支障のない不定形耐火物材料を選定すると共に、骨材、耐火物微粉、バインダー等の配合についての研究を行ない、以下に説明するような本発明を開発するに到った。即ち、本発明は基本的に、細骨材、耐火性微粉および結合材を含み、これらが最大粒径:10 mm以下に調整されている不定形耐火材料であって、上記細骨材として、黒鉛を5〜40質量%含有する煉瓦の破砕品を用いたことを特徴とする黒鉛含有不定形耐火材料である。即ち、本発明は、好ましくは粗骨材を配合しない耐火材料である。
【0010】
本発明において、前記細骨材の配合量は、不定形耐火材料の10〜70質量%であること、上記細骨材がAl23−SiC−C系耐火物の破砕品であって全体としてAl23−SiC−C系黒鉛含有不定形耐火物であること、上記細骨材がAl23−SiC−C系耐火物の破砕品であって全体としてスピネル−Al23−SiC−C系黒鉛含有不定形耐火物であること、前記煉瓦の破砕品としては、廃棄煉瓦または廃棄不定形耐火物の破砕品を用いること、そしてこの材料が補修用材料ならびに薄物耐火物用材料として用いられることが好ましい。
【0011】
【発明の実施の形態】
本発明に係る不定形耐火材料は、施工特性を改善して補修や肉薄耐火物の施工にも十分に対応できるようにするために、配合原料のうちの骨材成分として、とくに細骨材についてはその最大粒径を10 mm以下とした不定形耐火材料であり、好ましくは0.1〜10 mm、より好ましくは1mm以上10 mm以下の細骨材を用いることを特徴とする。従って、この材料は、不定形耐火材料の配合原料の最大粒径を10 mm以下としたことで、土木用モルタルと同様に、施工性に優れたものとなる共に、全体に均質な材料が得られるようになる。
【0012】
また、本発明に係る不定形耐火材料は、黒鉛を5〜40質量%含有する煉瓦の破砕品(以下、「黒鉛含有煉瓦屑」という。但し、この場合キャスタブル施工耐火物(不定形耐火物)の破砕品を含むものとする)を、細骨材として配合することが必要である。もし、このような煉瓦の破砕品(新品あるいは使用済みの回収煉瓦屑等であってもよい)について、黒鉛の含有量が5質量%未満では、耐スポーリング性改善の効果がなくなる。一方、その含有量が40質量 %を超えると、気孔率が高くなると共に耐酸化性や耐食性が劣り、その結果として、この煉瓦の破砕品を配合してなる不定形耐火材料自体の耐酸化性、耐食性に悪影響が出るので好ましくない。
【0013】
本発明において前記細骨材とは、上述したように、基本的に粒径0.1〜10 mmのものをいうが、好ましくは1〜10 mmのものを用いる。従って、粒径1mm未満で0.074 mm超えのものや粒径0.074 mm以下のものとは一応区別する。
本発明の耐火材料において、粒径を上記のように限定する理由は、10 mmを超えるものでは、流動性が低下し、施工性が悪化する。しかも、施工体中に黒鉛が偏在する度合いが大きく、耐スポーリング性の向上効果が小さいからである。
一方、0.1 mm未満では、施工性が悪化したり、黒鉛含有煉瓦屑中に含まれるAl化合物が水和し、施工体が膨張するなどの問題が起るからである。特に好ましい黒鉛含有煉瓦屑の粒径は、3mm〜8mmである。
【0014】
本発明において、不定形耐火材料への黒鉛含有煉瓦屑の添加量は、10〜70 質量%、好ましくは10〜50 質量%とする。その理由は、10 質量%未満では、耐食性、および耐スポーリング性の向上効果が小さく、一方70 質量%超では、セメントや繋ぎ成分であるペーストが不足して流動性が悪化して緻密な施工体が得られなくなると共に、煉瓦屑の表面から混練水が吸収され、混練水量が増量して、品質管理が困難となるからである。
【0015】
本発明の不定形耐火材料は、黒鉛含有煉瓦屑をあらかじめ他の材料とミキサー等で混合しておいても、現場で混合してもよい。黒鉛含有煉瓦屑、その他のキャスタブル耐火物成分をミキサーで混合した後、水を添加して、さらにミキサーで混合した後、施工部位に流し込み、必要に応じて棒状バイブレータ等で振動を加え、緻密な施工体を施工する。硬化後は、ガスバーナー等により、乾燥、予熱を行う。
【0016】
前記黒鉛含有煉瓦屑としては、黒鉛を含有する煉瓦やキャスタブル耐火物の破砕品であればよく、この不定形耐火物の使途に応じて、スピネル(MgO・Al23)、アルミナ(Al23)、アルミナ−黒鉛、アルミナ−マグネシア−黒鉛、スピネル−アルミナ−SiC−C、アルミナ−SiC−C、マグネシア−Cなどの煉瓦屑等を適宜に選択して使用する。これらの煉瓦屑中に含まれる黒鉛の形態としては、鱗状黒鉛、薄肉黒鉛、人造黒鉛などいずれであってもよく、使用できる黒鉛に特に制約はない。ただし、耐スポール性改善の効果を考えると、好ましい方から薄肉黒鉛>鱗状黒鉛>人造黒鉛の順となる。
【0017】
本発明において用いる上記煉瓦屑としては、トピード煉瓦やSNプレート等の連鋳設備用煉瓦の新品または使用済みの煉瓦、即ち廃棄煉瓦を破砕し分級したもの(破砕品)を使用することが好ましい。それは、廃棄煉瓦には新品煉瓦のようにバインダー等の揮発性分が含まれておらず、環境衛生上の観点において好ましいばかりでなく、経済的な観点からも好適だからである。
【0018】
本発明の不定形耐火材料中に含まれる黒鉛含有煉瓦屑(細骨材)以外の構成物(耐火物、粗骨材、結合材等)は、以下のものが用いられる。
▲1▼ 耐火性を付与するために用いられる原料としては、アルミナ,スピネル,シリカ,マグネシア,カルシア,ジルコニア,クロミアおよび炭化珪素、これらの混合物や化合物の1種以上のものが用いられる。もちろん、その他の天然鉱物や電融品,焼成品,仮焼品などを配合してもよい。これらの原料は、基本的には、黒鉛含有煉瓦屑と同じように0.1〜10 mm程度の大きさのものが使用される。
▲2▼ また、微粉成分としては、粒径が0.074 mm以下の耐火性微粉とカーボンブラック、Si、Al、Al−Si合金等の金属微粉、B4C、SiC等の炭化物微粉、シリカ微粉、アルミナセメント、各種分散剤等の通常の微粉を用いることができる。前記耐火性微粉は、Al23および/またはSiCなどである。好ましい微粉の粒径は、0.0001〜0.074 mmである。
流し込み用不定形耐火物の流動性を向上させるためにはさらに、0.1〜10 μm程度の粒径を持つアルミナ超微粉(5〜20 質量%)またはシリカ超微粉(1〜10 質量%)を配合することが好ましい。
▲3▼ 上記の細骨材を繋ぎ止めるための原料(結合材)としては、石油系、石炭系のピッチ、アルミナセメント,リン酸塩,珪酸ソーダ,マグネシアセメント,シリカゾル,粘土,アルミナフラワー,シリカフラワー,有機レジンなどを用いることができる。
▲4▼ 黒鉛含有煉瓦破砕品の不定形耐火材料への分散特性を改善するために、有機減水剤、有機分散剤等を使用する。水系流し込み材または吹付け材として使用する場合は、ポリカルボン酸系のAE減水剤等を使用する。
▲5▼ さらに、低価格化を目的として上記黒鉛含有煉瓦屑の添加量を増量したい場合には、20〜40 mmの大きさの粗骨材として、外掛け25質量%以下の範囲内で添加しても、本発明の作用・効果を減殺するものではない。
【0019】
本発明にかかる不定形耐火材料は、前記結合材の選定、その他原料の適宜の配合によって、流し込み材やプラスチック耐火物,吹き付け材などとして使用することができる。流し込み材としては、主として、アルミナセメント,リン酸塩,シリカゾル,粘土,アルミナフラワー,シリカフラワーなどを結合材とし、広範囲に渡って連続的で滑らかな粒度分布になるようにすることで流動性を持たせることが好ましい。プラスチック耐火物としては,粘土やリン酸塩,珪酸ソーダ,有機レジンなどを結合材とし、比較的、微粉の少ない配合とし,施工時に粘土状となる比較的硬い材料に仕上げることが好ましい。そして、吹き付け材としては、流し込み材系またはプラスチック耐火物系の材料を吹き付けしやすいように、低粘度化するなどの修正を行って使用することが好ましい。
【0020】
【実施例】
以下、本発明の実施例につき説明する。
(試験1)
(a) 混銑車用煉瓦であるアルミナ−15 質量%、鱗状黒鉛−7質量%、残部主として SiCからなる煉瓦を破砕し、その煉瓦破砕品をさらに所定の粒度に調整し、煉瓦屑とした。
(b) カーボンブラック:0.5 質量%、粉末ピッチ:1.5 質量%、ハイアルミナセメント:3質量%、アルミナ超微粉末:12質量 %、アルミナ細骨材:残部からなる不定形耐火材料をベースに、上記煉瓦屑を添加して本発明の不定形耐火材料を作製した。
【0021】
こうして得られた不定形耐火材料に所定量の水を添加して万能ミキサーで混練し、JIS R 5201(セメントの物理試験方法)に準拠してフロー試験を行い、フロー値が180となるようにし、40×40×160 mmの角柱状の試験片、上底60 mm×下底100 mm×高さ40 mmの台形断面の長さ160 mmの溶損試験片、を作製した。24時間養生後、脱枠し、110 ℃で24 時間の乾燥を行った後、角柱試験片は、コークスブリーズ中1400 ℃で3時間保持して焼成を行った。
溶損試験片は、乾燥後、コークスブリーズ中600 ℃で3時間保持して仮焼成した後、試験片8本で坩堝を組み、溶銑および高炉スラグを溶解し、1600 ℃で3時間の溶損試験を行った。試験片の最大溶損部の長さを成型煉瓦(比較例5)の値を100として相対比較した溶損指数とし、耐食性を評価した。溶損指数は数値が大きい方が、溶損が大きいことを意味する。
また、40×40×160 mmの角柱試験片は、Ar雰囲気中、1200 ℃に保持した炉に投入し、15分保持した後、水中に投入し、熱衝撃を与えた。熱衝撃前後の試験片について、弾性率を測定し、熱衝撃前の弾性率に対する熱衝撃後の弾性率の比(以下、残存弾性率E/E0と呼ぶ)によって、耐スポーリング性を評価した。
弾性率の測定はJIS R 1602(ファインセラミックスの弾性率試験方法)に準じて超音波パルス法で行った。
なお、熱衝撃によって内部亀裂が発生すると弾性率が低下するので、残存弾性率が1に近いほど、耐スポーリング性に優れることがわかる。
表1に本発明実施例(発明例)および比較例の評価結果をまとめた。
【0022】
【表1】

Figure 2004161594
【0023】
上記表1に示す結果からわかるように、黒鉛を含有する煉瓦を0.1〜10 mmの粒度に破砕したものを用いることで、発明例1〜8はいずれも成型煉瓦(比較例5)に匹敵するような耐スポーリング性を有する不定形耐火材料が得られている。一方、破砕粒度が10 mmを超えると(比較例1)、不定形耐火材料の均質性に問題を生じ、破砕粒度が大きくなるほど破砕粒とマトリックス部の界面での破壊が起こり易くなり、耐スポーリング性の改善効果も低い。また、施工厚さが十分にないと施工も困難であった。なお、比較例2に示すように、破砕粒(煉瓦屑)が0.1 mm未満のものが多くなると、不定形耐火材料の流動性が損なわれるばかりでなく、煉瓦破砕物ではなく黒鉛材料を添加するのと何ら変りがなくなり、その結果、気孔率が大幅に増加し、耐食性(溶損指数)が悪化した。
【0024】
また、表1に示す結果からは、煉瓦破砕物の添加量は10〜70 質量%がよいことがわかった。即ち、煉瓦破砕物の配合量が、70質量 %を超える(比較例6)と、微粉部分が不足し、その結果気孔率が大きくなるため、溶損指数が極めて大きくなり、耐食性が悪化する。一方、10 質量%未満(比較例3)の場合は残存弾性率が低下して耐スポーリング性が悪化して好ましくない結果となった。
また、破砕用煉瓦の黒鉛含有量は、5〜40 質量%が好ましく、2質量%黒鉛含有煉瓦を使用した場合(比較例4)は、破砕品を70質量 %まで添加しても耐スポーリング性の改良は望めないことがわかった。
【0025】
(試験2)
A123−SiC−C系煉瓦の代表であるトピード煉瓦、SNプレートのそれぞれ新品煉瓦と、使用後回収煉瓦を破砕分級して、煉瓦屑細骨材A〜Fを得た。このうち、煉瓦屑細骨材A〜Dを使用し、表2中の発明例21〜26に示すような配合組成でA123−SiC−C系不定形耐火材料を製造した。
比較例として、煉瓦屑細骨材A〜Fを用いずに、A123、SiC、黒鉛を原料としてA123−SiC−C系不定形耐火材料を製造した(比較例21)。また、煉瓦屑の微粉(煉瓦屑E)を使用した不定形耐火材料、製鋼用耐火材料に一般的に使用されているように、20〜40 mmの煉瓦屑Fを使用した不定形耐火材料を製造した(比較例22、23)。また、煉瓦屑の配合量が本発明のものよりも少ない配合、および多い配合で不定形耐火材料を製造した(比較例24、25)。
【0026】
これらの不定形耐火材料に水を添加し、2分間混練した後、JIS R5201(セメントの物理試験方法)に準拠してフロー試験を行い、フロー値が160±10となるような混水量を求め、親水性の尺度とした。
これら不定形耐火材料を混練後、40×40×160 mmの金型に流し込み成型し、1分間振動させて施工体中に巻き込まれた空気を脱泡した。成形後、1日養生し、110 ℃で24時間乾燥した後、1400 ℃で3時間還元焼成を行って得た焼成体の気孔率を測定した。その後1200 ℃のAr雰囲気にした電気炉内で30分間保持し、水冷した。この処理の前後における弾性率の変化を求め、残存弾性率E/E0を求めた。
【0027】
なお、気孔率の測定は、JIS R2205(耐火煉瓦の見掛け気孔率・吸水率・比重測定方法)の真空法に準じて行った。また、弾性率の測定は、JIS R 1602(ファインセラミックスの弾性率試験方法)に準じて超音波パルス法で行った。さらに、全ての発明例、比較例について、高周波内張り法によるスラグ侵食試験を行った。この試験は、53(78)×厚み35×長さ160 mmの台形柱を成形、乾燥後、800 ℃×3時間還元焼成を行い、得られた焼成体を8本組にして、その中で銑鉄6.8 kgを溶解し、1600 ℃×3時間、脱珪スラグ200 g/時間の侵食を測定した。スラグは1時間毎に入れ替えた。この時、8本の中に必ず比較例21を入れるものとし、溶損指数を試験前後の寸法変化から比較例21を100とした指数として求めた。
【0028】
【表2】
Figure 2004161594
【0029】
その結果、発明例21〜27では、比較例21と比較し、いずれも必要混水量は多くなり、乾燥体の気孔率が大きくなるものの、溶損指数は100未満となり、耐食性は良好となった。また、残存弾性率も、いずれも比較例21より大きくなり、耐スポーリング性が良好である。
【0030】
これに対し、比較例22では、煉瓦屑の微粉を利用しているため、黒鉛と水との接触面積が大きくなり、疎水性が大きくなった。そのため、耐スポーリング性は比較例21よりも良好であるものの、必要混水量が多く、気孔率も発明例21〜27よりかなり大きくなり、耐食性が比較例21より大幅に劣化した。また、比較例23では、粗骨材の耐食性が良好であるため、耐食性は良好であるものの、比較例21と比較して、粗骨材を添加している分、流動性が低下して必要混水量が多くなった。また、煉瓦屑の粒径が大きく黒鉛が施工体中に均一に分散しないため、煉瓦屑の添加量がほぼ同等の発明例21と比較して、スポーリング指数が小さく、耐スポーリング性の向上効果は小さい。比較例24では、煉瓦屑の添加量が少ないため、耐食性、耐スポーリング性は煉瓦屑を添加しない比較例21とほとんど変わらない。比較例25では、煉瓦屑の添加量が多く、必要混水量が多くなり、気孔率も大きくなって、耐食性は比較例21よりも大きく悪化した。しかしながら、耐スポーリング性は向上した。
【0031】
(試験3)
A123−SiC−C系煉瓦の代表であるトピード煉瓦、SNプレートのそれぞれ新品煉瓦、使用後回収煉瓦を破砕、分級して、煉瓦屑骨材A〜Fを得た。このうち、煉瓦屑骨材A〜Dを使用し、表3中の発明例31〜36に示すような配合組成でスピネル−A123−SiC−C系不定形耐火材料を製造した。
比較例として、煉瓦屑骨材A〜Fを用いずに、スピネル−A123−SiC−C系不定形耐火材料を製造した(比較例31)。また、煉瓦屑の微粉(煉瓦屑E)を使用した不定形耐火材料、製鋼用耐火材料に一般的に使用されているように、20〜40 mmの煉瓦屑Fを使用した不定形耐火材料を製造した(比較例32、33)。また、煉瓦屑の配合量が本発明より少ない配合、及び多い配合で不定形耐火材料を製造した(比較例34、35)。
【0032】
これらの不定形耐火材料に水を添加し、2分間混練した後、JIS R5201(セメントの物理試験方法)に準拠してフロー試験を行い、フロー値が160±10となるような混水量を求め、親水性の尺度とした。
これら不定形耐火物を混練後、40×40×160 mmの金型に流し込み成形し、1分間振動させて施工体中に巻き込まれた空気を脱泡した。成形後、1日養生し、110 ℃で24時間乾燥し、その後、1400 ℃で3時間還元焼成を行って得た焼成体の気孔率を測定するとともに、1200 ℃のAr雰囲気にした電気炉内で30分間保持し、水冷した。そして、この処理の前後における弾性率の変化を求め、熱衝撃に対する抵抗(耐スポーリング性)の目安として、残存弾性率(=(処理後の弾性率÷処理前の弾性率))を計算した。なお、気孔率の測定はJIS R 2205(耐火煉瓦の見掛け気孔率・吸水率・比重測定方法)の真空法に準じて行った。また、弾性率の測定は、JIS R 1602(ファインセラミックスの弾性率試験方法)に準じて超音波パルス法で行った。さらに、全発明例、比較例について、高周波内張り法によるスラグ侵食試験を行った。この試験は、53(78)×厚み35×長さ160 mmの台形柱を成形、乾燥後、800 ℃×3時間還元焼成を行った。得られた焼成体を8本組にして、その中で銑鉄6.8 kgを溶解し、1600 ℃×3時間、水砕スラグ200 g/時間の侵食実験を行った。スラグは1時間毎に入れ替えた。この時、8本の中に必ず比較例31を入れるものとし、溶損指数を試験前後の寸法変化から比較例31を100とした指数として求めた。
【0033】
【表3】
Figure 2004161594
【0034】
上記各試験の結果、発明例31〜36は、いずれも、比較例31と比較し、必要混水量は多くなり、乾燥体の気孔率が大きくなるものの、溶損指数は100前後となり、耐食性は煉瓦屑を添加していない比較例31と同レベルのまま維持される。また、残存弾性率は、煉瓦屑中の黒鉛の添加効果によりいずれも比較例31より大きくなり、耐スポーリング性が良好であった。
【0035】
これに対し、比較例32では、煉瓦屑の微粉を利用しているため、黒鉛と水との接触面積が大きくなり、疎水性が大きくなった。そのため、耐スポーリング性は比較例31よりも良好であるものの、必要混水量が多く、気孔率も発明例31〜36よりかなり大きくなり、耐食性が比較例31より劣化した。比較例33では、比較例31と比較して、粗骨材を添加している分、流動性が低下して必要混水量が多くなった。また、粗骨材の耐食性が良好でないため、耐食性が劣化した。比較例34では、煉瓦屑(細骨材)の添加量が少ないため、耐食性、耐スポーリング性は煉瓦屑を添加しない比較例31とほとんど変わらない。比較例35では、煉瓦屑の添加量が多く、その分必要混水量が多くなり、気孔率も大きくなる上、煉瓦屑の耐食性が良好でないため耐食性は比較例31、発明例31〜36と比較して良いとは言えない。しかしながら、耐スポーリング性は向上した。
【0036】
【発明の効果】
以上の説明に明らかなとおり、本発明の不定形耐火材料は、煉瓦屑中の、黒鉛の作用により耐スポーリング性が良好になると共に、耐食性のよくない煉瓦屑を破砕して使うことにより、耐食性の維持が可能になり、しかも細骨材を中心として配合しているので、厚みの薄い耐火物の施工や、耐火物の損傷部位の補修のように、肉薄施工の場合にも好適に用いられ、このような場合であっても、均質で耐食性や耐スポーリング性ならびに施工性が良好である共に、高耐久型の耐火物施工を実現することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a graphite-containing amorphous refractory material excellent in corrosion resistance, spalling resistance, and workability, and particularly suitable for use in repairing damaged parts of a construction refractory and thin thin refractory. It relates to refractory materials.
[0002]
[Prior art]
In recent years, graphite-containing refractory bricks such as MgO-C bricks for converters and Al 2 O 3 -C bricks for continuous casting equipment have become common as refractory bricks used in the steel industry. The same change has occurred in the irregular refractory materials. Spinel-Al 2 O 3 —SiC—C castable refractory materials for blast furnace cast floors and MgO-C systems for ladle slag lines It is put into practical use as a castable refractory material. The characteristics of these refractory materials are not only excellent slag penetration resistance, but also high thermal conductivity and low thermal expansion, and excellent spalling resistance. In fields such as pans, converters, RH degassing devices, and continuous casting nozzles, they are widely used as highly durable refractory materials.
[0003]
However, these graphite-containing amorphous refractory materials exhibit different properties depending on the type of graphite contained therein, for example, scaly graphite and thin-walled graphite are excellent in spalling resistance, but wet with water. Therefore, when used as a raw material for irregular refractory materials, it is necessary to knead with a large amount of water to ensure workability. Therefore, the constructed refractory has a problem that the porosity becomes high and the durability is deteriorated. The workability mentioned here means fluidity when the amorphous refractory material is kneaded with water, and the amorphous refractory material is poured into a predetermined formwork or piped as a spraying material. It is a characteristic necessary to transport the inside to the spray nozzle.
[0004]
For this reason, artificial graphite and earthy graphite with good wettability with water are often used as graphite for irregular refractory materials. On the other hand, these graphites are irregular because they have poor spalling resistance. It is not very preferable as a raw material for refractory materials. Therefore, conventionally, it has been considered to use scaly graphite or thin-walled graphite having good spalling resistance as a raw material for an amorphous refractory material by mixing a material having good wettability with water.
[0005]
For example, as one of materials having good wettability with water, it is conceivable to use brick waste containing graphite as a raw material for an indeterminate refractory material. This is because brick waste containing graphite is mainly composed of oxides, and the graphite itself is often covered with a resin blended as a binder. This is because the wettability is not bad and spalling resistance can be expected to some extent.
Against this background, granulation of 1-30 mm particles of A1 2 O 3 -SiC-C brick waste, graphite and pitch, which were conventionally heat-kneaded as cast refractory materials for blast furnace cast iron cover The thing which mixed the thing with other refractories and binders is proposed (patent documents 1). This material uses brick scraps with a particle size of more than 10 mm and is granulated with a pitch to improve the workability deterioration due to poor wettability with water.
[0006]
Here, the blast furnace cast floor iron cover is a cover that is placed for heat and dust prevention on the hot metal discharged from the blast furnace outlet and the iron through which the hot metal flows, and has a width radiant heat of about 1500 ° C. Since it is susceptible to thermal spalling due to hot metal, hot metal splash, etc., and also to damage due to melting damage, it is usually performed with a thickness of about 300 to 500 mm.
In order to construct such a refractory with a large thickness, a coarse aggregate having a particle size exceeding 10 mm is mixed with fine aggregate having a particle size of 0.1 to 10 mm and alumina cement as a binder. Uses irregular refractory materials. This material is economically advantageous because the amount of fine powder such as expensive alumina cement can be reduced by using coarse aggregate. However, in the irregular refractory material containing the coarse aggregate having a large particle size, it is impossible to perform uniform work unless the construction thickness is about 4 to 5 times the maximum coarse aggregate particle size, and the coarse aggregate is large. The closer the surface is, the worse the adhesiveness between the coarse aggregate surface and the matrix made of the binder, leading to a decrease in strength. As a result, there has been a problem that it cannot be used for a relatively thin object (refractory) such as a refractory for the blast furnace lining and a refractory for a continuous casting nozzle. In addition, even in hot metal ladle, kneading car, converter, etc., it can be used under construction conditions where thin parts are generated, such as when an irregular refractory material is used as a repair material for worn parts. There was no amorphous refractory material with excellent poling properties.
[0007]
[Patent Document 1] Japanese Patent Laid-Open No. 3-80159
[Problems to be solved by the invention]
The purpose of the present invention is to provide corrosion resistance to the blast furnace slag to the main metal line part of the blast furnace casting floor, or to give corrosion resistance to the desiliconization agent to the inclined pouring laying part, construction of a thin refractory or fire resistance Even when there is a thin construction part, such as repairing a damaged part of an object, it is homogeneous, rich in corrosion resistance and spalling resistance, exhibits high durability, and has a good workability and contains graphite. It is to provide a refractory material.
[0009]
[Means for Solving the Invention]
In order to solve the above-mentioned problems and realize the above-mentioned object, the inventors selected an irregular refractory material that does not interfere with repair or thin construction by variously adjusting the particle size of the aggregate, Research on the blending of materials, refractory fine powder, binders, etc. has led to the development of the present invention as described below. That is, the present invention basically includes a fine aggregate, a refractory fine powder, and a binder, and these are irregular refractory materials adjusted to a maximum particle size of 10 mm or less, and as the fine aggregate, A graphite-containing amorphous refractory material using a crushed brick containing 5 to 40% by mass of graphite. That is, the present invention is a refractory material that preferably contains no coarse aggregate.
[0010]
In the present invention, the blending amount of the fine aggregate is 10 to 70% by mass of the amorphous refractory material, and the fine aggregate is a crushed product of Al 2 O 3 —SiC—C refractory. As an Al 2 O 3 —SiC—C graphite-containing amorphous refractory, and the fine aggregate is a crushed product of Al 2 O 3 —SiC—C refractory, and as a whole spinel-Al 2 O 3 -SiC-C graphite-containing amorphous refractory, waste brick or waste amorphous refractory is used as the crushed brick, and this material is used for repair materials and thin refractories It is preferable to be used as a material.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The irregular refractory material according to the present invention improves the construction characteristics so that it can sufficiently handle repairs and construction of thin refractories. Is an irregular refractory material having a maximum particle size of 10 mm or less, preferably 0.1 to 10 mm, more preferably 1 to 10 mm. Therefore, this material has excellent workability as well as civil engineering mortar by making the maximum particle size of the raw material of the irregular refractory material 10 mm or less, and a homogeneous material can be obtained as a whole. Be able to.
[0012]
In addition, the irregular refractory material according to the present invention is a crushed brick containing 5 to 40% by mass of graphite (hereinafter referred to as “graphite-containing brick waste”. However, in this case, castable construction refractory (unshaped refractory) Must be blended as a fine aggregate. If such a crushed brick product (which may be a new or used recovered brick waste, etc.) has a graphite content of less than 5% by mass, the effect of improving the spalling resistance is lost. On the other hand, when the content exceeds 40% by mass, the porosity is increased and the oxidation resistance and corrosion resistance are inferior. As a result, the oxidation resistance of the amorphous refractory material itself formed by blending the crushed bricks. This is not preferable because the corrosion resistance is adversely affected.
[0013]
In the present invention, the fine aggregate basically has a particle diameter of 0.1 to 10 mm as described above, and preferably 1 to 10 mm. Therefore, it is temporarily distinguished from those having a particle size of less than 1 mm and exceeding 0.074 mm and those having a particle size of 0.074 mm or less.
In the refractory material of the present invention, the reason why the particle size is limited as described above is that if it exceeds 10 mm, the fluidity is lowered and the workability is deteriorated. Moreover, the degree of uneven distribution of graphite in the construction body is large, and the effect of improving the spalling resistance is small.
On the other hand, if the thickness is less than 0.1 mm, the workability deteriorates, and the Al compound contained in the graphite-containing brick waste hydrates, causing problems such as expansion of the construction body. The particle size of graphite-containing brick waste is particularly preferably 3 mm to 8 mm.
[0014]
In the present invention, the amount of graphite-containing brick waste added to the irregular refractory material is 10 to 70% by mass, preferably 10 to 50% by mass. The reason is that if the amount is less than 10% by mass, the effect of improving the corrosion resistance and spalling resistance is small, whereas if it exceeds 70% by mass, the cement and the paste as a connecting component are insufficient, and the fluidity deteriorates, resulting in dense construction. This is because the body cannot be obtained, and the kneading water is absorbed from the surface of the brick waste, the amount of the kneading water is increased, and quality control becomes difficult.
[0015]
The amorphous refractory material of the present invention may be prepared by mixing graphite-containing brick waste with other materials in advance using a mixer or the like, or may be mixed on site. After mixing graphite-containing brick scraps and other castable refractory components with a mixer, add water, further mix with a mixer, then pour into the construction site, and if necessary, add vibration with a rod-like vibrator, etc. Install the construction body. After curing, dry and preheat with a gas burner or the like.
[0016]
The graphite-containing brick scraps may be bricks containing graphite or a crushed product of castable refractory, and depending on the use of the irregular refractory, spinel (MgO · Al 2 O 3 ), alumina (Al 2 O 3 ), alumina-graphite, alumina-magnesia-graphite, spinel-alumina-SiC-C, alumina-SiC-C, magnesia-C, and the like are appropriately selected and used. The form of graphite contained in these brick scraps may be any of scale-like graphite, thin-walled graphite, artificial graphite and the like, and there is no particular restriction on the usable graphite. However, considering the effect of improving the spall resistance, the preferred order is thin graphite> scale graphite> artificial graphite.
[0017]
As the brick waste used in the present invention, it is preferable to use new or used bricks for continuous casting equipment such as topped bricks and SN plates, that is, those obtained by crushing and classifying waste bricks (crushed products). This is because the waste brick does not contain a volatile component such as a binder unlike a new brick, which is preferable not only from the viewpoint of environmental hygiene but also from the economical viewpoint.
[0018]
As the constituents (refractory, coarse aggregate, binder, etc.) other than the graphite-containing brick waste (fine aggregate) contained in the amorphous refractory material of the present invention, the following are used.
(1) As a raw material used for imparting fire resistance, one or more of alumina, spinel, silica, magnesia, calcia, zirconia, chromia, silicon carbide, mixtures and compounds thereof are used. Of course, other natural minerals, electrofused products, fired products, calcined products, and the like may be blended. As these raw materials, those having a size of about 0.1 to 10 mm are basically used like the graphite-containing brick waste.
(2) Also, as fine powder components, refractory fine powder having a particle size of 0.074 mm or less, fine metal powder such as carbon black, Si, Al, Al-Si alloy, fine carbide powder such as B 4 C, SiC, fine silica powder, Usual fine powders such as alumina cement and various dispersing agents can be used. The refractory fine powder is Al 2 O 3 and / or SiC. The particle size of a preferable fine powder is 0.0001 to 0.074 mm.
In order to improve the fluidity of the irregular refractory for casting, further blended with ultrafine alumina powder (5-20 mass%) or ultrafine silica powder (1-10 mass%) with a particle size of about 0.1-10 μm It is preferable to do.
(3) Raw materials (binding materials) for securing the above fine aggregates include petroleum-based, coal-based pitch, alumina cement, phosphate, sodium silicate, magnesia cement, silica sol, clay, alumina flour, silica Flower, organic resin, etc. can be used.
(4) Use organic water reducing agents, organic dispersants, etc. to improve the dispersion characteristics of graphite-containing brick crushed products into irregular refractory materials. When used as an aqueous casting material or spraying material, a polycarboxylic acid-based AE water reducing agent or the like is used.
(5) Furthermore, when it is desired to increase the amount of the above graphite-containing brick scraps for the purpose of reducing the price, as a coarse aggregate with a size of 20 to 40 mm, add it within the range of 25 mass% or less on the outer shell. However, it does not diminish the action / effect of the present invention.
[0019]
The amorphous refractory material according to the present invention can be used as a casting material, a plastic refractory, a spraying material, etc., by selecting the binder and appropriately mixing other raw materials. As the casting material, mainly alumina cement, phosphate, silica sol, clay, alumina flour, silica flour, etc. are used as binders, and flowability is improved by making the particle size distribution continuous and smooth over a wide range. It is preferable to have it. As a plastic refractory, it is preferable to use clay, phosphate, sodium silicate, organic resin, or the like as a binder, a composition with a relatively small amount of fine powder, and finish into a relatively hard material that becomes clayy during construction. And as a spraying material, it is preferable to use it, after making corrections, such as low-viscosity, so that it may be easy to spray the material of a casting material type or a plastic refractory type.
[0020]
【Example】
Examples of the present invention will be described below.
(Test 1)
(A) Brick made of kneading car made of alumina-15% by mass, scaly graphite-7% by mass and the balance mainly composed of SiC was crushed, and the brick crushed product was further adjusted to a predetermined particle size to obtain brick waste.
(B) Carbon black: 0.5% by mass, powder pitch: 1.5% by mass, high alumina cement: 3% by mass, alumina ultrafine powder: 12% by mass, alumina fine aggregate: based on an amorphous refractory material consisting of the remainder, The above-mentioned brick waste was added to produce the irregular refractory material of the present invention.
[0021]
A predetermined amount of water is added to the amorphous refractory material thus obtained and kneaded with a universal mixer, and a flow test is performed in accordance with JIS R 5201 (cement physical test method) so that the flow value becomes 180. A 40 × 40 × 160 mm prismatic test piece, an upper base 60 mm × lower base 100 mm × height 40 mm trapezoidal cross-section length 160 mm melting test piece were prepared. After curing for 24 hours, the frame was removed and dried at 110 ° C. for 24 hours, and then the prismatic specimen was calcined by holding at 1400 ° C. for 3 hours in coke breeze.
The erosion test piece was dried, calcined in coke breeze at 600 ° C for 3 hours and pre-fired, then crucible was assembled with 8 test pieces, and the hot metal and blast furnace slag were melted. A test was conducted. Corrosion resistance was evaluated by setting the length of the maximum erosion part of the test piece as a erosion index relative to the value of molded brick (Comparative Example 5) as 100. The larger the numerical value of the melting loss index, the larger the melting loss.
A 40 × 40 × 160 mm prism test piece was placed in a furnace maintained at 1200 ° C. in an Ar atmosphere, held for 15 minutes, and then placed in water to give a thermal shock. For the test pieces before and after thermal shock, the elastic modulus was measured, and the spalling resistance was evaluated by the ratio of the elastic modulus after thermal shock to the elastic modulus before thermal shock (hereinafter referred to as residual elastic modulus E / E0). .
The elastic modulus was measured by an ultrasonic pulse method according to JIS R 1602 (elastic modulus test method for fine ceramics).
In addition, since an elastic modulus falls when an internal crack generate | occur | produces by a thermal shock, it turns out that it is excellent in spalling resistance, so that a residual elastic modulus is close to one.
Table 1 summarizes the evaluation results of the inventive examples (inventive examples) and comparative examples.
[0022]
[Table 1]
Figure 2004161594
[0023]
As can be seen from the results shown in Table 1 above, Invention Examples 1 to 8 are comparable to Molded Brick (Comparative Example 5) by using a brick containing graphite and crushed to a particle size of 0.1 to 10 mm. An amorphous refractory material having such spalling resistance has been obtained. On the other hand, if the crushed particle size exceeds 10 mm (Comparative Example 1), a problem arises in the homogeneity of the irregular refractory material. The effect of improving polling is also low. Moreover, if the construction thickness was not sufficient, construction was difficult. In addition, as shown in Comparative Example 2, when the number of crushed grains (brick waste) is less than 0.1 mm, not only the fluidity of the irregular refractory material is impaired, but also graphite material is added instead of brick crushed material. As a result, the porosity was greatly increased and the corrosion resistance (melting index) was deteriorated.
[0024]
Moreover, from the result shown in Table 1, it turned out that 10-70 mass% is good for the addition amount of a brick crushed material. That is, if the blended amount of the crushed brick exceeds 70% by mass (Comparative Example 6), the fine powder portion is insufficient, and as a result, the porosity is increased, so that the erosion index is extremely increased and the corrosion resistance is deteriorated. On the other hand, in the case of less than 10% by mass (Comparative Example 3), the residual elastic modulus decreased and the spalling resistance deteriorated, resulting in an undesirable result.
Further, the graphite content of the crushing brick is preferably 5 to 40% by mass, and when 2% by mass graphite-containing brick is used (Comparative Example 4), spalling resistance is maintained even when the crushed product is added up to 70% by mass. It turned out that improvement of sex cannot be expected.
[0025]
(Test 2)
New bricks of the torpedo brick and SN plate, which are representative of A1 2 O 3 —SiC—C bricks, and recovered bricks after use were crushed and classified to obtain brick scrap fine aggregates A to F. Among these, brick scrap fine aggregates A to D were used, and A1 2 O 3 —SiC—C-based amorphous refractory materials were produced with the blending compositions as shown in Invention Examples 21 to 26 in Table 2.
As a comparative example, an A1 2 O 3 —SiC—C-based amorphous refractory material was produced using A1 2 O 3 , SiC, and graphite as raw materials without using the brick waste fine aggregates A to F (Comparative Example 21). In addition, as is generally used for irregular refractory materials using brick dust (brick scrap E) and refractory materials for steel making, irregular refractory materials using brick scrap F of 20 to 40 mm are used. Manufactured (Comparative Examples 22 and 23). Moreover, the amorphous refractory material was manufactured with the mixing | blending amount of brick waste less than the thing of this invention, and many mixing | blendings (comparative examples 24 and 25).
[0026]
After adding water to these irregular refractory materials and kneading for 2 minutes, a flow test is performed in accordance with JIS R5201 (cement physical test method) to determine the amount of water mixed so that the flow value is 160 ± 10. A measure of hydrophilicity.
These irregular refractory materials were kneaded, poured into a 40 × 40 × 160 mm mold, and oscillated for 1 minute to degas the air entrained in the construction body. After molding, the film was cured for 1 day, dried at 110 ° C. for 24 hours, and then subjected to reduction firing at 1400 ° C. for 3 hours, and the porosity of the fired body was measured. Thereafter, it was kept in an electric furnace in an Ar atmosphere at 1200 ° C. for 30 minutes and cooled with water. The change in elastic modulus before and after this treatment was determined, and the residual elastic modulus E / E0 was determined.
[0027]
The porosity was measured according to the vacuum method of JIS R2205 (Measurement method of apparent porosity / water absorption / specific gravity of refractory bricks). The elastic modulus was measured by an ultrasonic pulse method according to JIS R 1602 (Fine ceramics elastic modulus test method). Furthermore, the slag erosion test by the high frequency lining method was done about all the invention examples and the comparative example. In this test, a trapezoidal column of 53 (78) × thickness 35 × length 160 mm was formed, dried, and then subjected to reduction baking at 800 ° C. for 3 hours. 6.8 kg of pig iron was dissolved, and erosion was measured at 1600 ° C for 3 hours and 200 g / hour of desiliconized slag. The slag was replaced every hour. At this time, it was assumed that Comparative Example 21 was always included in 8 pieces, and the melt index was obtained as an index with Comparative Example 21 taken as 100 from the dimensional change before and after the test.
[0028]
[Table 2]
Figure 2004161594
[0029]
As a result, in the inventive examples 21 to 27, compared with the comparative example 21, in all cases, the required water mixing amount increased and the porosity of the dried body increased, but the erosion index was less than 100 and the corrosion resistance was good. . Further, the residual elastic modulus is also larger than that of Comparative Example 21, and the spalling resistance is good.
[0030]
On the other hand, in Comparative Example 22, since the fine powder of brick waste was used, the contact area between graphite and water was increased, and the hydrophobicity was increased. Therefore, although spalling resistance was better than Comparative Example 21, the amount of necessary water mixture was large, the porosity was considerably larger than Invention Examples 21 to 27, and the corrosion resistance was greatly deteriorated compared to Comparative Example 21. In Comparative Example 23, since the corrosion resistance of the coarse aggregate is good, the corrosion resistance is good. However, compared with Comparative Example 21, the amount of addition of the coarse aggregate reduces the fluidity and is necessary. The amount of mixed water has increased. Moreover, since the particle size of the brick waste is large and graphite is not uniformly dispersed in the construction body, the spalling index is small and the spalling resistance is improved as compared with the invention example 21 in which the added amount of brick waste is almost equal. The effect is small. In Comparative Example 24, since the amount of brick waste added is small, the corrosion resistance and spalling resistance are almost the same as those of Comparative Example 21 in which no brick waste is added. In Comparative Example 25, the amount of brick waste added was large, the required amount of mixed water increased, the porosity increased, and the corrosion resistance deteriorated significantly compared to Comparative Example 21. However, the spalling resistance was improved.
[0031]
(Test 3)
The new bricks and the recovered bricks after use, which are representative of A1 2 O 3 —SiC—C bricks, and SN plates were crushed and classified to obtain brick scrap aggregates A to F. Among these, spinel-A1 2 O 3 —SiC—C-based amorphous refractory material was manufactured with the blending composition as shown in Invention Examples 31 to 36 in Table 3 using brick scrap aggregates A to D.
As a comparative example, a spinel-A1 2 O 3 —SiC—C-based amorphous refractory material was manufactured without using brick waste aggregates A to F (Comparative Example 31). In addition, as is generally used for irregular refractory materials using brick dust (brick scrap E) and refractory materials for steel making, irregular refractory materials using brick scrap F of 20 to 40 mm are used. Manufactured (Comparative Examples 32 and 33). Moreover, the amorphous refractory material was manufactured with the mixing | blending amount of brick waste less than this invention, and many mixing | blendings (comparative examples 34 and 35).
[0032]
After adding water to these irregular refractory materials and kneading for 2 minutes, a flow test is performed in accordance with JIS R5201 (cement physical test method) to determine the amount of water mixed so that the flow value is 160 ± 10. A measure of hydrophilicity.
These irregular shaped refractories were kneaded, cast into a 40 × 40 × 160 mm mold, and oscillated for 1 minute to degas the air entrained in the construction body. After molding, curing for 1 day, drying at 110 ° C for 24 hours, and then measuring the porosity of the fired body obtained by reduction firing at 1400 ° C for 3 hours, and in an electric furnace with an atmosphere of 1200 ° C Held for 30 minutes and cooled with water. Then, the change in elastic modulus before and after this treatment was obtained, and the residual elastic modulus (= (elastic modulus after treatment ÷ elastic modulus before treatment)) was calculated as a measure of resistance to thermal shock (spalling resistance). . The porosity was measured according to the vacuum method of JIS R 2205 (measurement method of apparent porosity / water absorption / specific gravity of refractory bricks). The elastic modulus was measured by an ultrasonic pulse method according to JIS R 1602 (Fine ceramics elastic modulus test method). Furthermore, the slag erosion test by the high frequency lining method was done about all the invention examples and the comparative example. In this test, a trapezoidal column of 53 (78) × thickness 35 × length 160 mm was molded, dried, and then subjected to reduction firing at 800 ° C. × 3 hours. The obtained fired bodies were made into 8 groups, in which 6.8 kg of pig iron was dissolved, and an erosion experiment was conducted at 1600 ° C. × 3 hours and granulated slag 200 g / hour. The slag was replaced every hour. At this time, it was assumed that Comparative Example 31 was put in 8 pieces, and the melt index was obtained as an index with Comparative Example 31 as 100 from the dimensional change before and after the test.
[0033]
[Table 3]
Figure 2004161594
[0034]
As a result of the above tests, all of Invention Examples 31 to 36, compared with Comparative Example 31, require a larger amount of water mixture and increase the porosity of the dried body, but the erosion index is around 100, and the corrosion resistance is It is maintained at the same level as that of Comparative Example 31 in which no brick waste is added. Further, the residual elastic modulus was larger than that of Comparative Example 31 due to the effect of adding graphite in the brick waste, and the spalling resistance was good.
[0035]
On the other hand, in the comparative example 32, since the fine powder of brick waste was utilized, the contact area of graphite and water became large and hydrophobicity became large. Therefore, although spalling resistance was better than that of Comparative Example 31, the required amount of mixed water was large, the porosity was considerably larger than Invention Examples 31 to 36, and the corrosion resistance was deteriorated compared to Comparative Example 31. In the comparative example 33, compared with the comparative example 31, the part which added the coarse aggregate reduced fluidity | liquidity and the required amount of mixed water increased. Moreover, since the corrosion resistance of the coarse aggregate is not good, the corrosion resistance deteriorated. In Comparative Example 34, since the amount of brick waste (fine aggregate) added is small, the corrosion resistance and spalling resistance are almost the same as those of Comparative Example 31 in which brick waste is not added. In Comparative Example 35, the amount of brick waste added is large, the required amount of mixed water is increased, the porosity is increased, and the corrosion resistance of brick waste is not good, so the corrosion resistance is compared with Comparative Example 31 and Invention Examples 31-36. I can't say that. However, the spalling resistance was improved.
[0036]
【The invention's effect】
As is apparent from the above description, the irregular refractory material of the present invention has good spalling resistance due to the action of graphite in the brick scrap, and by crushing and using brick scrap with poor corrosion resistance, Corrosion resistance can be maintained, and it is blended mainly with fine aggregate, so it is also suitable for thin construction such as construction of refractory with thin thickness and repair of damaged part of refractory. Even in such a case, it is possible to realize a highly durable refractory construction while being uniform and having good corrosion resistance, spalling resistance and workability.

Claims (6)

細骨材、耐火性微粉、結合材を含み、これらが最大粒径10 mm以下に調整されている黒鉛含有不定形耐火材料であって、上記細骨材の一部もしくは全部が黒鉛を5〜40質量%含有する煉瓦の破砕品であることを特徴とする黒鉛含有不定形耐火材料。A graphite-containing amorphous refractory material that includes fine aggregate, fire-resistant fine powder, and binder, and these are adjusted to a maximum particle size of 10 mm or less, and a part or all of the fine aggregate contains 5 to 5 graphite. A graphite-containing amorphous refractory material characterized by being a crushed brick containing 40% by mass. 前記煉瓦の破砕品の配合量が、黒鉛含有不定形耐火材料の10〜70質量%であることを特徴とする請求項1に記載の黒鉛含有不定形耐火材料。2. The graphite-containing amorphous refractory material according to claim 1, wherein an amount of the crushed brick is 10 to 70 mass% of the graphite-containing amorphous refractory material. 前記煉瓦の破砕品は、Al23−SiC−C系耐火物の破砕品であり、該耐火物の破砕品以外の細骨材および耐火物微粉には、Al23、SiCおよびCを含有していることを特徴とする、請求項1または2に記載の黒鉛含有不定形耐火材料。The brick crushed product is a crushed product of Al 2 O 3 —SiC—C refractory, and the fine aggregate and refractory fine powder other than the crushed product of the refractory include Al 2 O 3 , SiC and C. The graphite-containing amorphous refractory material according to claim 1, wherein the graphite-containing amorphous refractory material is contained. 前記煉瓦の破砕品は、Al23−SiC−C系耐火物の破砕品であり、該耐火物の破砕品以外の細骨材および耐火物微粉には、スピネル、Al23、SiCおよびCを含有していることを特徴とする、請求項1または2に記載の黒鉛含有不定形耐火材料。The brick crushed product is a crushed product of Al 2 O 3 —SiC—C refractory, and fine aggregate and refractory fine powder other than the crushed product of the refractory include spinel, Al 2 O 3 , SiC The graphite-containing amorphous refractory material according to claim 1 or 2, characterized by containing C and C. 前記煉瓦の破砕品として廃棄煉瓦または廃棄不定形耐火物の破砕品を用いること特徴とする請求項1〜4のいずれか1項に記載の黒鉛含有不定形耐火材料。The graphite-containing amorphous refractory material according to any one of claims 1 to 4, wherein a waste brick or a crushed product of a discarded amorphous refractory is used as the crushed brick. 補修用材料ならびに薄物耐火物用材料として用いられることを特徴とする請求項1〜5のいずれか1項に記載の黒鉛含有不定形耐火材料。The graphite-containing amorphous refractory material according to any one of claims 1 to 5, which is used as a repair material and a thin refractory material.
JP2003031622A 2002-09-27 2003-02-07 Graphite-containing amorphous refractory material Expired - Fee Related JP4470372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003031622A JP4470372B2 (en) 2002-09-27 2003-02-07 Graphite-containing amorphous refractory material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002282325 2002-09-27
JP2003031622A JP4470372B2 (en) 2002-09-27 2003-02-07 Graphite-containing amorphous refractory material

Publications (2)

Publication Number Publication Date
JP2004161594A true JP2004161594A (en) 2004-06-10
JP4470372B2 JP4470372B2 (en) 2010-06-02

Family

ID=32827818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003031622A Expired - Fee Related JP4470372B2 (en) 2002-09-27 2003-02-07 Graphite-containing amorphous refractory material

Country Status (1)

Country Link
JP (1) JP4470372B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106630A (en) * 2005-10-13 2007-04-26 Kurosaki Harima Corp Refractory spray material and spraying method using the same
JP2013082953A (en) * 2011-10-06 2013-05-09 Nippon Steel & Sumitomo Metal Corp Method of extending life of converter refractory

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106630A (en) * 2005-10-13 2007-04-26 Kurosaki Harima Corp Refractory spray material and spraying method using the same
JP4551306B2 (en) * 2005-10-13 2010-09-29 黒崎播磨株式会社 Refractory spray material and spray construction method using the same
JP2013082953A (en) * 2011-10-06 2013-05-09 Nippon Steel & Sumitomo Metal Corp Method of extending life of converter refractory

Also Published As

Publication number Publication date
JP4470372B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
JP3952332B2 (en) Graphite-containing amorphous refractory material for chaotic vehicles
JP4796170B2 (en) Chromium castable refractories and precast blocks using the same
JP2006282486A (en) Alumina cement, alumina cement composition, and monolithic refractory
JP2001114571A (en) Castable refractory for trough of blast furnace
JP4470372B2 (en) Graphite-containing amorphous refractory material
JP2000203953A (en) Castable refractory for trough of blast furnace
JP4703087B2 (en) Water-based castable refractories
JP5663122B2 (en) Castable refractories for non-ferrous metal smelting containers and precast blocks using the same
KR100508521B1 (en) A castable refractories composition containing carbon
JPH08259340A (en) Magnesia-carbon-based castable refractory
JPH026373A (en) Cast amorphous refractory
JPH08175875A (en) Castable refractory
JP3197378B2 (en) Graphite-containing basic amorphous refractory composition
JP3604301B2 (en) Refractory raw materials, kneaded raw materials and refractories
JP4193419B2 (en) Resin granulated graphite and graphite-containing refractories
KR100373702B1 (en) Block Molding Using Alumina-Spinel Waste Castable
JP2000016874A (en) Accelerating agent for refractory and spraying method using the same
JP2003137665A (en) Method of producing castable refractory
JP2000335980A (en) Graphite-containing monolithic refractory
JP2005335966A (en) Graphite-containing castable refractory
KR100317307B1 (en) Monolithic Basic Refractories Having High Durability
JP4006973B2 (en) Castable refractories containing graphite
JP4388190B2 (en) Unshaped refractory for hot metal ladle hot water
JPH10158072A (en) Magnesia-carbon castable refractory and its applied body
JP3128514B2 (en) Thermosetting pouring material for gutter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4470372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees