JP2013077664A - Substrate rear surface cleaning method and substrate rear surface cleaning apparatus - Google Patents

Substrate rear surface cleaning method and substrate rear surface cleaning apparatus Download PDF

Info

Publication number
JP2013077664A
JP2013077664A JP2011215884A JP2011215884A JP2013077664A JP 2013077664 A JP2013077664 A JP 2013077664A JP 2011215884 A JP2011215884 A JP 2011215884A JP 2011215884 A JP2011215884 A JP 2011215884A JP 2013077664 A JP2013077664 A JP 2013077664A
Authority
JP
Japan
Prior art keywords
back surface
substrate
cleaning liquid
cleaning
surface cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011215884A
Other languages
Japanese (ja)
Other versions
JP5622282B2 (en
JP2013077664A5 (en
Inventor
Hirofumi Goto
浩文 後藤
Minoru Kubota
稔 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2011215884A priority Critical patent/JP5622282B2/en
Publication of JP2013077664A publication Critical patent/JP2013077664A/en
Publication of JP2013077664A5 publication Critical patent/JP2013077664A5/ja
Application granted granted Critical
Publication of JP5622282B2 publication Critical patent/JP5622282B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Engineering & Computer Science (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a substrate rear surface cleaning method and a substrate rear surface cleaning apparatus which ensure and improve the rear surface washability for a substrate having a large diameter and reduce a rear surface cleaning liquid.SOLUTION: A substrate rear surface cleaning method includes: a cleaning liquid discharge process where a process liquid is supplied to a surface of a wafer rotating around a vertical shaft and then a cleaning liquid is supplied while the wafer is rotated at a first rotation rate so that the cleaning liquid is slowly diffused to a rear surface of the wafer; and a cleaning liquid drain process where the wafer is rotated at a second rotation rate faster than the first rotation rate to quickly diffuse and drain off the cleaning liquid on the rear surface of the wafer. These processes are alternately repeated several times.

Description

この発明は、表面に処理液が供給された基板の裏面を洗浄する基板裏面洗浄方法及び基板裏面洗浄装置に関するものである。   The present invention relates to a substrate back surface cleaning method and a substrate back surface cleaning apparatus for cleaning the back surface of a substrate whose processing liquid is supplied to the front surface.

一般に、半導体製造工程においては、フォトリソグラフィ工程が利用されており、例えば半導体ウエハ(以下にウエハという)等の基板の上にフォトレジストを塗布し、レジスト膜を所定の回路パターンに応じて露光し、現像処理することにより回路パターンを形成する。フォトリソグラフィ工程には、通常、塗布・現像処理装置に露光装置を接続した処理システムが用いられる。   In general, a photolithography process is used in a semiconductor manufacturing process. For example, a photoresist is applied on a substrate such as a semiconductor wafer (hereinafter referred to as a wafer), and the resist film is exposed according to a predetermined circuit pattern. The circuit pattern is formed by developing. In the photolithography process, a processing system in which an exposure apparatus is connected to a coating / development processing apparatus is usually used.

フォトリソグラフィ工程では、鉛直軸回りに回転する基板の表面に例えばフォトレジスト液や現像液等の処理液を供給して、遠心力により液膜を拡げている。この際、基板の裏面に回り込む処理液を除去するために、基板裏面の周辺内方側に洗浄液を供給して処理液を除去するスピン洗浄方法が知られている。   In the photolithography process, a processing solution such as a photoresist solution or a developing solution is supplied to the surface of the substrate that rotates about the vertical axis, and the liquid film is expanded by centrifugal force. At this time, a spin cleaning method is known in which a cleaning liquid is supplied to the inner periphery of the back side of the substrate to remove the processing liquid in order to remove the processing liquid that wraps around the back surface of the substrate.

従来のこの種の基板裏面洗浄方法(装置)として、基板裏面側の周辺内方側の定位置に裏面洗浄ノズルを配置し、基板の回転数を一定の条件にて基板の回転方向の接線位置に対して洗浄液を吐出して基板裏面洗浄処理を行うものが知られている(例えば、特許文献1参照)。   As a conventional substrate back surface cleaning method (apparatus) of this type, a back surface cleaning nozzle is arranged at a fixed position on the inner peripheral side of the back surface of the substrate, and the tangential position in the rotation direction of the substrate with a constant number of substrate rotations. For example, a substrate backside cleaning process is performed by discharging a cleaning liquid (see, for example, Patent Document 1).

特許第3485471号公報(特許請求の範囲、図5)Japanese Patent No. 3485471 (Claims, FIG. 5)

ところで、基板であるウエハのサイズが既存のΦ300mmウエハから大口径(Φ450mm)のウエハになると、特許文献1に記載の裏面洗浄方式では、ウエハ裏面の洗浄性が低下する傾向が認められている。例えば、レジスト塗布処理において、ウエハ裏面洗浄性の確保は、露光処理のデフォーカス対策のため重要である。ウエハ大口径化によるウエハ裏面洗浄性の確保に対して、裏面洗浄の処理時間の延長により補完可能であるが、多量の裏面洗浄液を消費する懸念がある。   By the way, when the size of the wafer as a substrate is changed from an existing Φ300 mm wafer to a wafer having a large diameter (Φ450 mm), the backside cleaning method described in Patent Document 1 has a tendency to reduce the cleaning ability of the backside of the wafer. For example, in resist coating processing, ensuring the wafer backside cleanability is important as a countermeasure against defocus in exposure processing. Ensuring the wafer backside cleanability by increasing the diameter of the wafer can be complemented by extending the processing time of the backside cleaning, but there is a concern that a large amount of backside cleaning liquid is consumed.

しかしながら、近年の省資源化、CO2低減の観点から省薬液化の要求は高まっており、その対策が求められている。   However, in recent years, demands for reducing the amount of chemicals are increasing from the viewpoint of resource saving and CO2 reduction, and countermeasures are required.

この発明は、上記事情に鑑みてなされたもので、大口径の基板に対する裏面洗浄性の確保及び裏面洗浄性の向上を図ると共に、裏面洗浄液の省薬液化を図れるようにした基板裏面洗浄方法及びその装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is intended to ensure the back surface cleaning property and improve the back surface cleaning property for a large-diameter substrate, and to achieve a substrate back surface cleaning method capable of saving the back surface cleaning liquid. An object is to provide such a device.

上記課題を解決するために、この発明の基板裏面洗浄方法は、鉛直軸回りに回転する基板の表面に処理液を供給する工程の後に、上記基板が回転した状態で上記基板の裏面の周辺内方における複数の位置に対して洗浄液を供給して洗浄する洗浄工程を具備し、上記洗浄工程は、上記基板裏面に上記洗浄液を緩やかに拡散すべく第1の回転数で回転して洗浄液を供給する洗浄液吐出工程と、上記第1の回転数より高速の第2の回転数で回転して上記基板裏面の洗浄液を急速に拡散して振り切る洗浄液振り切り工程と、を交互に複数回繰り返し行う、ことを特徴とする(請求項1)。   In order to solve the above-mentioned problems, the substrate back surface cleaning method according to the present invention is provided in the periphery of the back surface of the substrate while the substrate is rotated after the step of supplying the treatment liquid to the surface of the substrate rotating about the vertical axis. A cleaning step of supplying a cleaning solution to a plurality of positions on the substrate and cleaning the substrate, and the cleaning step rotates at a first rotational speed to supply the cleaning solution to gently diffuse the cleaning solution on the back surface of the substrate. A cleaning liquid discharging step and a cleaning liquid sprinkling step in which the cleaning liquid on the back surface of the substrate is rapidly diffused and spun off by rotating at a second rotational speed higher than the first rotational speed are alternately repeated a plurality of times. (Claim 1).

請求項1記載の基板裏面洗浄方法において、上記基板の裏面に洗浄液を供給する位置が基板の周辺内方において径方向に異なる複数位置である方が好ましい(請求項2)。   In the substrate back surface cleaning method according to claim 1, it is preferable that the position where the cleaning liquid is supplied to the back surface of the substrate is a plurality of positions which are different in the radial direction in the inner periphery of the substrate (claim 2).

請求項1又は2に記載の基板裏面洗浄方法において、上記基板の裏面に対する洗浄液の吐出角度を可変にしてもよい(請求項3)。   In the substrate back surface cleaning method according to claim 1 or 2, the discharge angle of the cleaning liquid with respect to the back surface of the substrate may be made variable (claim 3).

請求項1又は2に記載の基板裏面洗浄方法において、上記基板の裏面に洗浄液を供給する位置毎に、上記基板の裏面に対する洗浄液の吐出角度が異なるようにしてもよい(請求項4)。   In the substrate back surface cleaning method according to claim 1 or 2, the discharge angle of the cleaning liquid with respect to the back surface of the substrate may be different at each position where the cleaning liquid is supplied to the back surface of the substrate (claim 4).

請求項1ないし4のいずれかに記載の基板裏面洗浄方法において、上記第1の回転数を10〜120rpmとし、上記第2の回転数を1000〜3000rpmとする方が好ましい(請求項5)。この場合、上記洗浄液吐出工程における吐出時間を2〜5秒とし、上記洗浄液振り切り工程における振り切り時間を1秒とする方がよい(請求項6)。   5. The substrate back surface cleaning method according to claim 1, wherein the first rotational speed is preferably 10 to 120 rpm, and the second rotational speed is preferably 1000 to 3000 rpm (claim 5). In this case, it is preferable that the discharge time in the cleaning liquid discharge step is 2 to 5 seconds, and the swing-off time in the cleaning liquid swing-off step is 1 second.

請求項1ないし6のいずれかに記載の基板裏面洗浄方法において、上記洗浄液吐出工程と、上記洗浄液振り切り工程とを3回繰り返し行う方がよい(請求項7)。   In the substrate backside cleaning method according to any one of claims 1 to 6, it is preferable to repeat the cleaning liquid discharge step and the cleaning liquid shaking step three times (claim 7).

請求項1,2,5又は6に記載の基板裏面洗浄方法において、上記基板の裏面に対する洗浄液の吐出角度を可変にすると共に、上記洗浄液吐出工程と、上記洗浄液振り切り工程とを3回繰り返し行い、上記洗浄液吐出工程における1回目から3回目の上記基板に対する吐出角度を、45°,30°,90°とする方が好ましい(請求項8)。   In the substrate back surface cleaning method according to claim 1, 2, 5, or 6, the discharge angle of the cleaning liquid with respect to the back surface of the substrate is variable, and the cleaning liquid discharging step and the cleaning liquid shaking step are repeated three times. It is preferable that the first to third discharge angles with respect to the substrate in the cleaning liquid discharge step be 45 °, 30 °, and 90 °.

また、請求項1ないし8のいずれかに記載の基板裏面洗浄方法において、上記基板の裏面に対する洗浄液の吐出箇所を基板の径方向に沿って可変としてもよい(請求項9)。   Further, in the substrate back surface cleaning method according to any one of claims 1 to 8, the discharge position of the cleaning liquid with respect to the back surface of the substrate may be variable along the radial direction of the substrate (claim 9).

また、請求項1ないし8のいずれかに記載の基板裏面洗浄方法において、上記基板の裏面に対する洗浄液の吐出箇所を基板の径方向に沿って可変にすると共に、上記洗浄液吐出工程と、上記洗浄液振り切り工程とを3回繰り返し行い、上記洗浄液吐出工程における1回目から3回目の上記洗浄液の吐出箇所を、基板の外周から75mm,55mm,5mmとする方が好ましい(請求項10)。   The substrate back surface cleaning method according to any one of claims 1 to 8, wherein a discharge position of the cleaning liquid with respect to the back surface of the substrate is variable along a radial direction of the substrate, the cleaning liquid discharging step, and the cleaning liquid shaking-off. It is preferable to repeat the process three times and set the first to third cleaning liquid discharge locations in the cleaning liquid discharge process to 75 mm, 55 mm, and 5 mm from the outer periphery of the substrate (claim 10).

この発明に係る基板裏面洗浄装置は、請求項1に記載の基板裏面洗浄方法を具現化するもので、鉛直軸回りに基板を回転自在に保持する基板保持部と、上記基板保持部を回転する回転駆動部と、上記基板保持部にて保持された基板の表面に処理液を供給する処理液供給ノズルと、上記基板保持部によって回転する基板の裏面の周辺内方における複数の位置に対して洗浄液を供給する裏面洗浄ノズルと、上記回転駆動部の回転及び上記裏面洗浄ノズルの駆動を制御する制御部と、を具備し、上記制御部からの信号に基づいて、上記基板裏面に上記洗浄液を緩やかに拡散すべく第1の回転数で回転して洗浄液を供給する洗浄液吐出工程と、上記第1の回転数より高速の第2の回転数で回転して上記基板裏面の洗浄液を急速に拡散して振り切る洗浄液振り切り工程と、を交互に複数回繰り返し行う、ことを特徴とする(請求項11)。   A substrate back surface cleaning apparatus according to the present invention embodies the substrate back surface cleaning method according to claim 1, and rotates a substrate holding unit that rotatably holds a substrate around a vertical axis. With respect to a plurality of positions inside the periphery of the back surface of the substrate rotated by the substrate holding unit, a rotation driving unit, a processing liquid supply nozzle for supplying a processing liquid to the surface of the substrate held by the substrate holding unit A back surface cleaning nozzle that supplies a cleaning liquid; and a control unit that controls rotation of the rotation driving unit and driving of the back surface cleaning nozzle, and the cleaning liquid is applied to the back surface of the substrate based on a signal from the control unit. A cleaning liquid discharge process for supplying a cleaning liquid by rotating at a first rotational speed for gentle diffusion, and a rapid diffusion of the cleaning liquid on the back surface of the substrate by rotating at a second rotational speed higher than the first rotational speed. And shake off A step shake-off, repeated a plurality of times alternately, characterized in that (claim 11).

請求項11記載の基板裏面洗浄装置において、上記裏面洗浄ノズルは複数個設けられ、各裏面洗浄ノズルは、上記基板の周辺内方において径方向に異なる複数位置に対して洗浄液を供給する方が好ましい(請求項12)。   12. The substrate back surface cleaning apparatus according to claim 11, wherein a plurality of the back surface cleaning nozzles are provided, and each of the back surface cleaning nozzles preferably supplies a cleaning liquid to a plurality of radially different positions on the inner periphery of the substrate. (Claim 12).

請求項11又は12に記載の基板裏面洗浄装置において、上記裏面洗浄ノズルが基板の裏面に対して洗浄液を供給する角度が可変に形成するのが好ましい(請求項13)。   13. The substrate back surface cleaning apparatus according to claim 11 or 12, wherein the angle at which the back surface cleaning nozzle supplies the cleaning liquid to the back surface of the substrate is preferably variably formed (claim 13).

請求項11又は12に記載の基板裏面洗浄装置において、上記裏面洗浄ノズルが基板の裏面に洗浄液を供給する位置毎に、上記基板の裏面に対する洗浄液の吐出角度が異なるように形成してもよい(請求項14)。   13. The substrate back surface cleaning apparatus according to claim 11 or 12, wherein the back surface cleaning nozzle is formed so that a discharge angle of the cleaning liquid with respect to the back surface of the substrate is different at each position where the cleaning liquid is supplied to the back surface of the substrate. Claim 14).

請求項11ないし14のいずれかに記載の基板裏面洗浄装置において、上記制御部からの信号に基づいて、上記第1の回転数を10〜120rpmに制御し、上記第2の回転数を1000〜3000rpmに制御する方が好ましい(請求項15)。この場合、上記制御部からの信号に基づいて、上記洗浄液吐出工程における吐出時間を2〜5秒に制御し、上記洗浄液振り切り工程における振り切り時間を1秒に制御する方が好ましい(請求項16)。   15. The substrate back surface cleaning apparatus according to claim 11, wherein the first rotational speed is controlled to 10 to 120 rpm based on a signal from the control unit, and the second rotational speed is 1000 to 1000. It is preferable to control at 3000 rpm (claim 15). In this case, it is preferable to control the discharge time in the cleaning liquid discharge process to 2 to 5 seconds and to control the swing time in the cleaning liquid swing-off process to 1 second based on a signal from the control unit. .

請求項11ないし16のいずれかに記載の基板裏面洗浄装置において、上記制御部からの信号に基づいて、上記洗浄液吐出工程と、洗浄液振り切り工程が3回繰り返す方が好ましい(請求項17)。   The substrate backside cleaning apparatus according to any one of claims 11 to 16, wherein the cleaning liquid discharge step and the cleaning liquid shaking-off step are preferably repeated three times based on a signal from the control unit (claim 17).

また、請求項11,12,15又は16に記載の基板裏面洗浄装置において、上記裏面洗浄ノズルが基板の裏面に対して洗浄液を供給する角度が可変に形成されると共に、上記制御部からの信号に基づいて、上記洗浄液吐出工程と、洗浄液振り切り工程とが3回繰り返され、上記洗浄液吐出工程における1回目から3回目の上記基板に対する吐出角度を、45°,30°,90°とする方が好ましい(請求項18)。   17. The substrate back surface cleaning apparatus according to claim 11, 12, 15 or 16, wherein an angle at which the back surface cleaning nozzle supplies the cleaning liquid to the back surface of the substrate is variably formed, and a signal from the control unit is formed. On the basis of the above, the cleaning liquid discharge step and the cleaning liquid swing-off step are repeated three times, and the discharge angles with respect to the substrate for the first to third times in the cleaning liquid discharge step are 45 °, 30 °, and 90 °. Preferred (claim 18).

また、請求項11ないし18のいずれかに記載の基板裏面洗浄装置において、上記裏面洗浄ノズルが基板の裏面に対して洗浄液を供給する箇所が基板の径方向に沿って可変に形成されている方が好ましい(請求項19)。   The substrate backside cleaning apparatus according to any one of claims 11 to 18, wherein a portion where the backside cleaning nozzle supplies a cleaning liquid to the backside of the substrate is variably formed along the radial direction of the substrate. (Claim 19).

加えて、請求項11ないし18のいずれかに記載の基板裏面洗浄装置において、上記基板の裏面に対する洗浄液の吐出箇所を基板の径方向に沿って可変に形成されると共に、上記制御部からの信号に基づいて、上記洗浄液吐出工程と、上記洗浄液振り切り工程とを3回繰り返し行い、上記洗浄液吐出工程における1回目から3回目の上記洗浄液の吐出箇所を、基板の外周から75mm,55mm,5mmとする方が好ましい(請求項20)。   In addition, in the substrate back surface cleaning apparatus according to any one of claims 11 to 18, a discharge portion of the cleaning liquid with respect to the back surface of the substrate is variably formed along a radial direction of the substrate, and a signal from the control unit On the basis of the above, the cleaning liquid discharging step and the cleaning liquid shaking-off step are repeated three times, and the first to third cleaning liquid discharge locations in the cleaning liquid discharging step are set to 75 mm, 55 mm, and 5 mm from the outer periphery of the substrate. (Claim 20).

(1)請求項1,2,5,7、11,12,15,17に記載の発明によれば、基板裏面に洗浄液を緩やかに拡散すべく第1の回転数で回転して洗浄液を供給する洗浄液吐出工程と、第1の回転数より高速の第2の回転数で回転して基板裏面の洗浄液を急速に拡散して振り切る洗浄液振り切り工程と、を交互に複数回繰り返し行うことにより、洗浄液吐出工程においては、低速回転であるため処理液と洗浄液とが接触し易くなり、洗浄液自体の化学溶解反応によるいわば化学的洗浄よって処理液を除去することができ、洗浄液振り切り工程においては、高速回転に伴う遠心力による洗浄処理及び洗浄液振り切りによるいわば物理的洗浄によって処理液を除去することができる。したがって、洗浄液の溶解性を利用した化学的洗浄と遠心力を利用した物理的洗浄を複数回(例えば3回)繰り返すことによって、基板裏面に付着した処理液を除去することができる。この場合、基板の裏面に洗浄液を供給する位置を基板の周辺内方において径方向に異なる複数位置とすることにより、洗浄領域を広げることができ、更に裏面洗浄性の向上を図ることができる(請求項2,12)。   (1) According to the first, second, fifth, seventh, eleventh, twelfth, fifteenth and seventeenth aspects of the present invention, the cleaning liquid is supplied by rotating at the first rotational speed so as to gently diffuse the cleaning liquid on the back surface of the substrate. The cleaning liquid discharging step and the cleaning liquid sprinkling step of rotating the second substrate at a second speed higher than the first rotational speed and rapidly diffusing and shaking off the cleaning liquid on the back surface of the substrate. In the discharge process, since the rotation speed is low, the processing liquid and the cleaning liquid can easily come into contact with each other, and the processing liquid can be removed by chemical cleaning based on the chemical dissolution reaction of the cleaning liquid itself. The treatment liquid can be removed by the so-called physical washing by the washing treatment by centrifugal force and the washing-off of the washing liquid. Therefore, the treatment liquid adhering to the back surface of the substrate can be removed by repeating the chemical cleaning using the solubility of the cleaning liquid and the physical cleaning using the centrifugal force a plurality of times (for example, three times). In this case, the cleaning region can be widened and the back surface cleaning performance can be further improved by setting the positions where the cleaning liquid is supplied to the back surface of the substrate at a plurality of positions that are different in the radial direction on the inner periphery of the substrate. Claims 2 and 12).

(2)請求項3,4,8、13,14,18に記載の発明によれば、基板の裏面に対する洗浄液の吐出角度を可変にすることにより、少ない裏面洗浄ノズルによって裏面洗浄領域を確保することができる。この場合、洗浄液吐出工程における1回目から3回目の基板に対する吐出角度を、45°,30°,90°とすることにより、基板の径方向に対して多段的に可変洗浄処理を行うことができる(請求項8,18)。   (2) According to the invention described in claims 3, 4, 8, 13, 14, and 18, the back surface cleaning region is secured by a small number of back surface cleaning nozzles by changing the discharge angle of the cleaning liquid with respect to the back surface of the substrate. be able to. In this case, the variable cleaning process can be performed in multiple stages in the radial direction of the substrate by setting the discharge angle to the substrate for the first to third times in the cleaning liquid discharge process to 45 °, 30 °, and 90 °. (Claims 8 and 18).

(3)請求項9,10、19,20に記載の発明によれば、基板の裏面に対する洗浄液の吐出箇所を基板の径方向に沿って可変とすることにより、少ない裏面洗浄ノズルによって裏面洗浄領域を確保することができる。この場合、洗浄液吐出工程における1回目から3回目の上記洗浄液の吐出箇所を、基板の外周から75mm,55mm,5mmとすることにより、基板の径方向に対して多段的に可変洗浄処理を行うことができる(請求項10,20)。   (3) According to the invention described in the ninth, tenth, nineteenth and twentieth aspects, the back surface cleaning region can be formed by a small number of back surface cleaning nozzles by changing the discharge position of the cleaning liquid to the back surface of the substrate along the radial direction of the substrate. Can be secured. In this case, variable cleaning processing is performed in multiple stages in the radial direction of the substrate by setting the first to third cleaning liquid discharge locations in the cleaning liquid discharge step to 75 mm, 55 mm, and 5 mm from the outer periphery of the substrate. (Claims 10 and 20).

この発明によれば、上記のように構成することにより、大口径の基板に対する裏面洗浄性の確保及び裏面洗浄性を図ることができると共に、裏面洗浄液の省薬液化を図ることができる。   According to this invention, by being configured as described above, it is possible to ensure the back surface cleanability and back surface cleanability for a large-diameter substrate, and to save the back surface cleaning liquid.

この発明に係る基板裏面洗浄装置を適用した塗布・現像処理装置に露光装置を接続した処理システムの全体を示す概略平面図である。1 is a schematic plan view showing an entire processing system in which an exposure apparatus is connected to a coating / development processing apparatus to which a substrate back surface cleaning apparatus according to the present invention is applied. 上記処理システムの概略斜視図である。It is a schematic perspective view of the said processing system. この発明の第1実施形態に係る基板裏面洗浄装置を適用した塗布処理装置の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the coating processing apparatus to which the substrate back surface cleaning apparatus according to the first embodiment of the present invention is applied. 上記第1実施形態に係る基板裏面洗浄装置を示す概略平面図である。It is a schematic plan view which shows the board | substrate back surface cleaning apparatus which concerns on the said 1st Embodiment. この発明における裏面洗浄ノズルの洗浄液吐出状態を示す概略底面図である。It is a schematic bottom view which shows the washing | cleaning liquid discharge state of the back surface washing nozzle in this invention. 上記第1実施形態に係る基板裏面洗浄方法の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the substrate back surface cleaning method which concerns on the said 1st Embodiment. この発明の第2実施形態に係る基板裏面洗浄装置における裏面洗浄ノズルの吐出位置を示す概略底面図である。It is a schematic bottom view which shows the discharge position of the back surface cleaning nozzle in the board | substrate back surface cleaning apparatus concerning 2nd Embodiment of this invention. 上記第2実施形態における洗浄液吐出角度を示す概略側面図である。It is a schematic side view which shows the cleaning liquid discharge angle in the said 2nd Embodiment. 第2実施形態の裏面洗浄の処理手順のみを示すフローチャートである。It is a flowchart which shows only the process sequence of the back surface washing | cleaning of 2nd Embodiment. この発明の第3実施形態に係る基板裏面洗浄装置における裏面洗浄ノズルの吐出状態を示す概略側面図である。It is a schematic side view which shows the discharge state of the back surface cleaning nozzle in the board | substrate back surface cleaning apparatus which concerns on 3rd Embodiment of this invention. 第3実施形態の裏面洗浄の処理手順のみを示すフローチャートである。It is a flowchart which shows only the process sequence of the back surface washing | cleaning of 3rd Embodiment. 裏面洗浄除去率とバックリンス量の評価試験に用いられる300mmウエハと450mmウエハのリンス吐出位置を示す概略底面図である。It is a schematic bottom view showing rinse discharge positions of a 300 mm wafer and a 450 mm wafer used for an evaluation test of a back surface cleaning removal rate and a back rinse amount. 上記評価試験の結果の裏面洗浄除去率とバックリンス量の関係を示すグラフである。It is a graph which shows the relationship between the back surface washing removal rate of the result of the said evaluation test, and the amount of back rinses. 300mmウエハと450mmウエハの回転数を変えた場合の裏面洗浄除去率とバックリンス量の関係を示すグラフである。It is a graph which shows the relationship between a back surface cleaning removal rate and the amount of back rinses when changing the rotation speed of a 300 mm wafer and a 450 mm wafer. 300mmウエハと450mmウエハの回転数を変えた場合の除去率100%を達成するバックリンス量を示すグラフである。It is a graph which shows the back rinse amount which achieves the removal rate 100% when changing the rotation speed of a 300 mm wafer and a 450 mm wafer. ウエハの回転数による裏面洗浄のメカニズムを模式的に示す概略底面図である。It is a schematic bottom view which shows typically the mechanism of the back surface cleaning by the rotation speed of a wafer. 裏面洗浄処理時のリンス液吐出時とリンス液振り切り時のウエハの回転数と洗浄除去率の関係を示すグラフである。It is a graph which shows the relationship between the rotation speed of the wafer at the time of rinse liquid discharge at the time of back surface cleaning processing, and the rinse liquid swinging off, and a cleaning removal rate. 300mmウエハと450mmウエハのバックリンス量を比較して示すグラフである。It is a graph which compares and shows the amount of back rinses of a 300 mm wafer and a 450 mm wafer.

以下、この発明の実施形態について、添付図面に基づいて説明する。ここでは、この発明に係る基板裏面洗浄装置を塗布・現像処理装置に露光処理装置を接続した処理システムに適用した場合について説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, a case where the substrate back surface cleaning apparatus according to the present invention is applied to a processing system in which an exposure processing apparatus is connected to a coating / developing processing apparatus will be described.

上記処理システムは、被処理基板である半導体ウエハW(以下にウエハWという)を複数枚例えば25枚を密閉収納するキャリア10を搬出入するためのキャリアステーション1と、このキャリアステーション1から取り出されたウエハWにレジスト塗布,現像処理等を施す処理部2と、ウエハWの表面に光を透過する液層を形成した状態でウエハWの表面を液浸露光する露光部4と、処理部2と露光部4との間に接続されて、ウエハWの受け渡しを行うインターフェース部3とを具備している。   The processing system includes a carrier station 1 for carrying in / out a carrier 10 for hermetically storing a plurality of, for example, 25 semiconductor wafers W (hereinafter referred to as wafers W), which are substrates to be processed, and a carrier station 1 for taking out the carrier 10. A processing unit 2 that performs resist coating, development processing, and the like on the wafer W, an exposure unit 4 that performs immersion exposure of the surface of the wafer W in a state where a liquid layer that transmits light is formed on the surface of the wafer W, and the processing unit 2. And an exposure unit 4, and an interface unit 3 that transfers the wafer W.

キャリアステーション1は、キャリア10を複数個並べて載置可能な載置部11と、この載置部11から見て前方の壁面に設けられる開閉部12と、開閉部12を介してキャリア10からウエハWを取り出すための受け渡しアームA1とが設けられている。   The carrier station 1 includes a mounting unit 11 on which a plurality of carriers 10 can be placed side by side, an opening / closing unit 12 provided on a front wall as viewed from the mounting unit 11, and a wafer from the carrier 10 via the opening / closing unit 12. A delivery arm A1 for taking out W is provided.

また、キャリアステーション1の奥側には筐体20にて周囲を囲まれる処理部2が接続されており、この処理部2にはキャリアステーション1から見て左手手前側から順に加熱・冷却系のユニットを多段化した棚ユニットU1,U2,U3を配置し、右手に液処理ユニットU4,U5を配置する。棚ユニットU1,U2,U3の間に、各ユニット間のウエハWの受け渡しを行う主搬送アームA2,A3が棚ユニットU1,U2,U3と交互に配列して設けられている。また、主搬送アームA2,A3は、キャリアステーション1から見て前後方向に配置される棚ユニットU1,U2,U3側の一面部と、後述する例えば右側の液処理ユニットU4,U5側の一面部と、左側の一面をなす背面部とで構成される区画壁21により囲まれる空間内に置かれている。また、キャリアステーション1と処理部2との間、処理部2とインターフェース部3との間には、各ユニットで用いられる処理液の温度調節装置や温湿度調節用のダクト等を備えた温湿度調節ユニット22が配置されている。   Further, a processing unit 2 surrounded by a casing 20 is connected to the back side of the carrier station 1, and the processing unit 2 has a heating / cooling system in order from the left front side when viewed from the carrier station 1. Shelving units U1, U2, and U3 having multiple units are arranged, and liquid processing units U4 and U5 are arranged on the right hand. Between the shelf units U1, U2 and U3, main transfer arms A2 and A3 for transferring the wafer W between the units are provided alternately with the shelf units U1, U2 and U3. Further, the main transfer arms A2 and A3 have one surface portion on the shelf units U1, U2 and U3 side arranged in the front-rear direction as viewed from the carrier station 1, and one surface portion on the right liquid processing unit U4 and U5 side which will be described later. And a space surrounded by a partition wall 21 composed of a rear surface portion forming one surface on the left side. Further, between the carrier station 1 and the processing unit 2 and between the processing unit 2 and the interface unit 3, a temperature / humidity provided with a temperature control device for the processing liquid used in each unit, a duct for temperature / humidity control, and the like. An adjustment unit 22 is arranged.

インターフェース部3は、処理部2と露光部4との間に前後に設けられる第1の搬送室3A及び第2の搬送室3Bにて構成されており、それぞれに第1のウエハ搬送部A4及び第2のウエハ搬送部A5が設けられている。   The interface unit 3 includes a first transfer chamber 3A and a second transfer chamber 3B which are provided between the processing unit 2 and the exposure unit 4 in the front and rear, respectively, and the first wafer transfer unit A4 and the second transfer chamber 3B, respectively. A second wafer transfer unit A5 is provided.

棚ユニットU1,U2,U3は、液処理ユニットU4,U5にて行われる処理の前処理及び後処理を行うための各種ユニットを複数段例えば10段に積層した構成とされており、その組み合わせはウエハWを加熱(ベーク)する加熱ユニット(HP)、ウエハWを冷却する冷却ユニット(CPL)等が含まれる。また、液処理ユニットU4,U5は、例えば図2に示すように、レジストや現像液などの薬液収納部の上に反射防止膜を塗布するボトム反射防止膜塗布ユニット(BCT)23、塗布ユニット(COT)24、ウエハWに現像液を供給して現像処理する現像ユニット(DEV)25等を複数段例えば5段に積層して構成されている。この発明に係る基板裏面洗浄装置は塗布ユニット(COT)24に設けられている。   The shelf units U1, U2, and U3 are configured such that various units for performing pre-processing and post-processing of the processing performed in the liquid processing units U4 and U5 are stacked in a plurality of stages, for example, 10 stages. A heating unit (HP) for heating (baking) the wafer W, a cooling unit (CPL) for cooling the wafer W, and the like are included. In addition, as shown in FIG. 2, for example, the liquid processing units U4 and U5 include a bottom antireflection film coating unit (BCT) 23 for coating an antireflection film on a chemical solution storage unit such as a resist or a developer, and a coating unit ( COT) 24, a developing unit (DEV) 25 for supplying a developing solution to the wafer W and developing it, and the like are stacked in a plurality of stages, for example, five stages. The substrate back surface cleaning apparatus according to the present invention is provided in a coating unit (COT) 24.

次に、上記の処理システムにおけるウエハWの流れについて簡単に説明する。先ず外部からウエハWの収納されたキャリア10が載置台11に載置されると、開閉部12と共にキャリア10の蓋体が外されて受け渡しアームA1によりウエハWが取り出される。そしてウエハWは棚ユニットU1の一段をなす受け渡しユニットを介して主搬送アームA2へと受け渡され、棚ユニットU1〜U3内の一つの棚にて、塗布処理の前処理として、反射防止膜の形成や冷却ユニットによる基板の温度調整などが行われる。   Next, the flow of the wafer W in the above processing system will be briefly described. First, when the carrier 10 in which the wafer W is stored is placed on the mounting table 11 from the outside, the lid of the carrier 10 is removed together with the opening / closing portion 12, and the wafer W is taken out by the transfer arm A1. Then, the wafer W is transferred to the main transfer arm A2 through a transfer unit that forms one stage of the shelf unit U1, and the antireflection film is pre-processed as a pretreatment of the coating process on one shelf in the shelf units U1 to U3. The temperature of the substrate is adjusted by formation or a cooling unit.

その後、主搬送アームA2によりウエハWは塗布ユニット(COT)24内に搬入され、ウエハWの表面にレジスト膜が成膜される。このとき、この発明に係る基板裏面洗浄装置100にてウエハWの裏面が洗浄される。レジスト膜が成膜されたウエハWは主搬送アームA2により外部に搬出され、加熱ユニットに搬入されて所定の温度でベーク処理がなされる。ベーク処理を終えたウエハWは、冷却ユニットにて冷却された後、棚ユニットU3の受け渡しユニットを経由してインターフェース部3へと搬入され、このインターフェース部3を介して露光部4内に搬入される。なお、液浸露光用の保護膜をレジスト膜の上に塗布する場合には、上記冷却ユニットにて冷却された後、処理部2における図示しないユニットにて保護膜用の薬液の塗布が行われる。その後、ウエハWは露光部4に搬入されて液浸露光が行われる。   Thereafter, the wafer W is carried into the coating unit (COT) 24 by the main transfer arm A2, and a resist film is formed on the surface of the wafer W. At this time, the back surface of the wafer W is cleaned by the substrate back surface cleaning apparatus 100 according to the present invention. The wafer W on which the resist film has been formed is unloaded by the main transfer arm A2, loaded into the heating unit, and baked at a predetermined temperature. The wafer W that has been baked is cooled by the cooling unit, and then transferred to the interface unit 3 via the transfer unit of the shelf unit U3, and then transferred into the exposure unit 4 via the interface unit 3. The In the case where a protective film for immersion exposure is applied on the resist film, after cooling by the cooling unit, a chemical solution for protective film is applied in a unit (not shown) in the processing unit 2. . Thereafter, the wafer W is carried into the exposure unit 4 and immersion exposure is performed.

液浸露光を終えたウエハWは第2のウエハ搬送部A5により露光部4から取り出され、棚ユニットU6の一段をなす加熱ユニット(PEB)に搬入される。その後、ウエハWは第1のウエハ搬送部A4によって加熱ユニット(PEB)から搬出され、主搬送アームA3に受け渡される。そしてこの主搬送アームA3により現像ユニット25内に搬入される。現像ユニット25では、現像処理に兼用する基板裏面洗浄装置(図示せず)により基板の現像が行われ、更に洗浄が行われる。その後、ウエハWは主搬送アームA3により現像ユニット25から搬出され、主搬送アームA2、受け渡しアームA1を経由して載置台11上の元のキャリア10へと戻される。   The wafer W that has been subjected to the immersion exposure is taken out from the exposure unit 4 by the second wafer transfer unit A5 and is carried into a heating unit (PEB) that forms one stage of the shelf unit U6. Thereafter, the wafer W is unloaded from the heating unit (PEB) by the first wafer transfer unit A4 and transferred to the main transfer arm A3. Then, it is carried into the developing unit 25 by the main transport arm A3. In the developing unit 25, the substrate is developed by a substrate back surface cleaning device (not shown) that is also used for development processing, and further cleaning is performed. Thereafter, the wafer W is unloaded from the developing unit 25 by the main transfer arm A3, and returned to the original carrier 10 on the mounting table 11 via the main transfer arm A2 and the transfer arm A1.

<第1実施形態>
この発明の基板裏面洗浄装置を塗布処理装置に組み合わせた実施の形態について図3及び図4を参照して説明する。
<First Embodiment>
An embodiment in which the substrate back surface cleaning apparatus of the present invention is combined with a coating processing apparatus will be described with reference to FIGS.

図3及び図4に示すように、上記基板裏面洗浄装置100(以下に裏面洗浄装置100という)は、ケーシング26内に、ウエハWの裏面中央部を吸引吸着して水平姿勢に保持する基板保持部であるスピンチャック30を具備している。スピンチャック30は軸部31を介して、例えばサーボモータ等の回転駆動部32と連結されており、この回転駆動部32によりウエハWを保持した状態で回転可能なように構成されている。なお、回転駆動部32は、制御部であるコントローラ80に電気的に接続されており、コントローラ80からの制御信号に基づいてスピンチャック30の回転数が制御される。また、ケーシング26には、ウエハWの搬入出口27が設けられ、この搬入出口27にはシャッタ28が開閉可能に配設されている。   As shown in FIGS. 3 and 4, the substrate back surface cleaning apparatus 100 (hereinafter referred to as the back surface cleaning apparatus 100) holds the substrate in the casing 26 by sucking and attracting the center of the back surface of the wafer W in a horizontal position. A spin chuck 30 as a part is provided. The spin chuck 30 is connected to a rotation drive unit 32 such as a servo motor via a shaft portion 31, and is configured to be rotatable while the wafer W is held by the rotation drive unit 32. The rotation drive unit 32 is electrically connected to a controller 80 that is a control unit, and the number of rotations of the spin chuck 30 is controlled based on a control signal from the controller 80. Also, the casing 26 is provided with a loading / unloading port 27 for the wafer W, and a shutter 28 is disposed at the loading / unloading port 27 so as to be opened and closed.

上記スピンチャック30上のウエハWの側方を囲むようにして上方側が開口するカップ体40が設けられている。このカップ体40は、円筒状の外カップ41と、上部側が内側に傾斜した筒状の内カップ42とからなり、外カップ41の下端部に接続された例えばシリンダ等の昇降機構43により外カップ41が昇降し、更に内カップ42は外カップ41の下端側内周面に形成された段部に押し上げられて昇降可能なように構成されている。なお、昇降機構43は、コントローラ80に電気的に接続されており、コントローラ80からの制御信号に基づいて外カップ41が昇降するように構成されている。   A cup body 40 having an opening on the upper side is provided so as to surround the side of the wafer W on the spin chuck 30. The cup body 40 includes a cylindrical outer cup 41 and a cylindrical inner cup 42 whose upper side is inclined inward. The outer cup 41 is connected to the lower end of the outer cup 41 by an elevating mechanism 43 such as a cylinder. 41 is moved up and down, and the inner cup 42 is configured to be lifted and lowered by being pushed up by a step formed on the inner peripheral surface of the lower end side of the outer cup 41. The elevating mechanism 43 is electrically connected to the controller 80, and is configured such that the outer cup 41 moves up and down based on a control signal from the controller 80.

また、スピンチャック30の下方側には円形板44が設けられており、この円形板44の外側には断面が凹部状に形成された液受け部45が全周に亘って設けられている。液受け部45の底面にはドレイン排出口46が形成されており、ウエハWからこぼれ落ちるか、あるいは振り切られて液受け部45に貯留されたレジスト液や洗浄液は、このドレイン排出口46を介して装置の外部に排出される。また円形板44の外側には断面山形のリング部材47が設けられている。なお、円形板44を貫通する例えば3本の基板支持ピンである昇降ピン(図示せず)が設けられており、この昇降ピンと基板搬送手段(図示せず)との協働作用によりウエハWはスピンチャック30に受け渡しされるように構成されている。   A circular plate 44 is provided on the lower side of the spin chuck 30, and a liquid receiving portion 45 whose cross section is formed in a concave shape is provided around the entire circumference of the circular plate 44. A drain discharge port 46 is formed on the bottom surface of the liquid receiving part 45, and the resist solution and the cleaning liquid that have been spilled from the wafer W or shaken off and stored in the liquid receiving part 45 are passed through the drain discharge port 46. Discharged outside the device. A ring member 47 having a mountain-shaped cross section is provided outside the circular plate 44. Incidentally, for example, three lift pins (not shown) which are substrate support pins penetrating the circular plate 44 are provided, and the wafer W is caused to cooperate by the lift pins and the substrate transfer means (not shown). It is configured to be delivered to the spin chuck 30.

一方、スピンチャック30に保持されたウエハWの上方側には、レジスト液等の処理液供給ノズル50がノズル移動機構200によって昇降可能及び水平移動可能に設けられている。処理液供給ノズル50は、流量調整弁V1を介設した処理液供給管51を介して処理液供給源52に接続されている。   On the other hand, a processing solution supply nozzle 50 such as a resist solution is provided on the upper side of the wafer W held by the spin chuck 30 so that it can be moved up and down and moved horizontally by the nozzle moving mechanism 200. The processing liquid supply nozzle 50 is connected to a processing liquid supply source 52 via a processing liquid supply pipe 51 provided with a flow rate adjusting valve V1.

上記処理液供給ノズル50は支持部材であるノズルアーム55の一端側に支持されており、このノズルアーム55の他端側は図示しない昇降機構を備えた移動基台56に連結されている。更に、移動基台56は、例えばケーシング26の底面にてX方向に伸びるガイド部材57に沿って、例えば、ボールねじ機構やタイミングベルト機構等からなるノズル移動機構200により横方向に移動可能なように構成されている。また、カップ40の一方の外側には、処理液供給ノズル50の待機部58が設けられ、この待機部58ではノズル先端部の洗浄などが行われる。   The processing liquid supply nozzle 50 is supported on one end side of a nozzle arm 55 which is a support member, and the other end side of the nozzle arm 55 is connected to a moving base 56 provided with a lifting mechanism (not shown). Further, the moving base 56 can be moved in the lateral direction by a nozzle moving mechanism 200 such as a ball screw mechanism or a timing belt mechanism, for example, along a guide member 57 extending in the X direction on the bottom surface of the casing 26. It is configured. In addition, a standby portion 58 of the processing liquid supply nozzle 50 is provided on one outer side of the cup 40, and the nozzle tip is cleaned in the standby portion 58.

また、スピンチャック30によって保持されるウエハWの下方には、裏面洗浄ノズル60が設けられており、裏面洗浄ノズル60は流量調整弁V2を介設した洗浄液供給管61を介して洗浄液供給源62に接続されている。洗浄液の流量及び供給時間は、流量調整弁V2によって調整される。   A back surface cleaning nozzle 60 is provided below the wafer W held by the spin chuck 30. The back surface cleaning nozzle 60 is provided with a cleaning liquid supply source 62 via a cleaning liquid supply pipe 61 having a flow rate adjusting valve V2. It is connected to the. The flow rate and supply time of the cleaning liquid are adjusted by the flow rate adjustment valve V2.

この場合、裏面洗浄ノズル60はウエハWの周辺内方において径方向に異なる位置、例えば外周からの距離がD1とD2の法線上の位置におけるウエハWの回転方向かつ接線方向に洗浄液を吐出するように構成されている(図5参照)。例えば、ウエハWのサイズがΦ450mmである場合には、上記外周からの距離D1は75mmに設定され、D2は55mmに設定される。なお、図3では複雑な表示を避けるために省略して1個の裏面洗浄ノズル60を示している。   In this case, the back surface cleaning nozzle 60 discharges the cleaning liquid in a rotation direction and a tangential direction of the wafer W at positions different in the radial direction on the inner periphery of the wafer W, for example, a distance from the outer periphery on the normal line of D1 and D2. (See FIG. 5). For example, when the size of the wafer W is Φ450 mm, the distance D1 from the outer periphery is set to 75 mm, and D2 is set to 55 mm. In FIG. 3, one back surface cleaning nozzle 60 is shown to be omitted to avoid complicated display.

処理液供給ノズル50を移動させるためのノズル移動機構200、スピンチャック30を回転させる回転駆動部32及びカップ40の昇降機構43、処理液、洗浄液の流量を調整する流量調整弁V1,V2は、コントローラ80に電気的に接続されており、例えばコントローラ80に内蔵されたコンピュータに格納されたプログラムに基づいて上記各部に制御信号を出力するように構成されている。   A nozzle moving mechanism 200 for moving the processing liquid supply nozzle 50, a rotary drive unit 32 for rotating the spin chuck 30, an elevating mechanism 43 for the cup 40, and flow rate adjusting valves V1 and V2 for adjusting the flow rates of the processing liquid and the cleaning liquid are: The control unit 80 is electrically connected to the controller 80, and is configured to output a control signal to each of the units based on a program stored in a computer built in the controller 80, for example.

次に、上記のように構成される基板裏面洗浄装置100の動作態様について説明する。最初に、ウエハWが基板裏面洗浄装置100内に搬入されていない時には、外カップ41、内カップ42は下降位置にあり、処理液供給ノズル50及び溶剤供給ノズル60は所定の待機位置にて待機している。上記処理システムにおいて、ウエハWが主搬送アームA3(図1参照)により基板裏面洗浄装置100内に搬入されると、主搬送アームA3と図示しない昇降ピンとの協働作用によりウエハWはスピンチャック30に受け渡される。   Next, the operation | movement aspect of the board | substrate back surface cleaning apparatus 100 comprised as mentioned above is demonstrated. Initially, when the wafer W is not carried into the substrate back surface cleaning apparatus 100, the outer cup 41 and the inner cup 42 are in the lowered position, and the processing liquid supply nozzle 50 and the solvent supply nozzle 60 are on standby at a predetermined standby position. doing. In the above processing system, when the wafer W is loaded into the substrate back surface cleaning apparatus 100 by the main transfer arm A3 (see FIG. 1), the wafer W is turned into the spin chuck 30 by the cooperative action of the main transfer arm A3 and a lift pin (not shown). Is passed on.

その後、外カップ41及び内カップ42が上昇位置に設定されると共に、処理液供給ノズル50からウエハW上にレジスト液が供給され、スピンチャック30が回転して公知のスピンコート法によりレジスト液の供給(塗布)が行われる。この実施形態では、ウエハWを例えば1000rpmの回転数で1秒(sec)回転させると共に、処理液供給ノズル50からレジスト液をウエハWの中心部に供給(吐出)する。そしてウエハWの回転による遠心力によりウエハWの表面に沿ってレジスト液は外側に広がり、薄膜状の液膜が形成される。   Thereafter, the outer cup 41 and the inner cup 42 are set to the raised position, and the resist liquid is supplied onto the wafer W from the processing liquid supply nozzle 50, and the spin chuck 30 rotates to remove the resist liquid by a known spin coating method. Supply (application) is performed. In this embodiment, for example, the wafer W is rotated at a rotational speed of 1000 rpm for 1 second (sec), and a resist solution is supplied (discharged) from the processing solution supply nozzle 50 to the center of the wafer W. Then, the resist solution spreads outward along the surface of the wafer W by the centrifugal force generated by the rotation of the wafer W, and a thin liquid film is formed.

処理液供給ノズル50がレジスト液の供給を停止した直後に速やかに裏面洗浄ノズル60から洗浄液を吐出してウエハWの裏面の洗浄を行う。以下に、この洗浄工程について図5及び図6を参照して詳細に説明する。   Immediately after the processing liquid supply nozzle 50 stops supplying the resist liquid, the cleaning liquid is quickly discharged from the back surface cleaning nozzle 60 to clean the back surface of the wafer W. Hereinafter, this cleaning process will be described in detail with reference to FIGS.

まず、ウエハWが主搬送アームA3(図1参照)により基板裏面洗浄装置100内に搬入され、ウエハWがスピンチャック30にて保持される(ステップS1)。その後、処理液供給ノズル50がウエハWの上方中心部に移動し、処理液供給ノズル50からウエハWにレジスト液が供給されると共に、ウエハWを回転(回転数:1000rpm、時間:1sec)してレジスト塗布処理を行う{ステップS2}。   First, the wafer W is carried into the substrate back surface cleaning apparatus 100 by the main transfer arm A3 (see FIG. 1), and the wafer W is held by the spin chuck 30 (step S1). Thereafter, the processing liquid supply nozzle 50 moves to the upper central portion of the wafer W, the resist liquid is supplied from the processing liquid supply nozzle 50 to the wafer W, and the wafer W is rotated (rotation speed: 1000 rpm, time: 1 sec). Then, a resist coating process is performed {step S2}.

レジスト塗布後、ウエハWを低速の第1の回転数(120rpm)で回転し、裏面洗浄ノズル60からウエハWの裏面の外周から75mmと55mmの法線上の位置に、ウエハWの回転方向かつ接線方向に洗浄液を3sec間吐出して、洗浄液をウエハW裏面の周辺内方に緩やかに拡散する{洗浄液吐出(1);ステップS3}。これにより、レジスト液と洗浄液とが接触し易くなり、洗浄液自体の化学溶解反応によるいわば化学的洗浄によってレジスト液が除去される。   After applying the resist, the wafer W is rotated at a low first rotation speed (120 rpm), and the rotation direction and tangent of the wafer W are positioned on the normal lines of 75 mm and 55 mm from the outer periphery of the back surface of the wafer W from the back surface cleaning nozzle 60. The cleaning liquid is discharged in the direction for 3 seconds, and the cleaning liquid is gently diffused inwardly around the back surface of the wafer W {cleaning liquid discharge (1); step S3}. As a result, the resist solution and the cleaning solution are easily brought into contact with each other, and the resist solution is removed by so-called chemical cleaning by a chemical dissolution reaction of the cleaning solution itself.

その後、洗浄液の吐出を停止し、ウエハWを高速の第2の回転数(1000rpm)で、1sec間回転して、ウエハWの裏面の洗浄液を急激に拡散すると共に、振り切る{洗浄液振り切り(1);ステップS4}。これにより、ウエハWの高速回転に伴う遠心力による洗浄処理及び洗浄液振り切りによるいわば物理的洗浄によってレジスト液が除去される。   Thereafter, the discharge of the cleaning liquid is stopped, the wafer W is rotated at a high-speed second rotation speed (1000 rpm) for 1 sec, and the cleaning liquid on the back surface of the wafer W is rapidly diffused and shaken {cleaning liquid swing-off (1). Step S4}. As a result, the resist solution is removed by so-called physical cleaning by the cleaning process by centrifugal force accompanying the high-speed rotation of the wafer W and the cleaning liquid swing-off.

次に、再びウエハWを低速の第1の回転数(120rpm)で回転し、裏面洗浄ノズル60から上記と同様にウエハWの裏面の外周から75mmと55mmの法線上の位置に、ウエハWの回転方向かつ接線方向に洗浄液を3sec間吐出して、洗浄液をウエハW裏面の周辺内方に緩やかに拡散する{洗浄液吐出(2);ステップS5}。   Next, the wafer W is rotated again at a low first rotation speed (120 rpm), and the wafer W is moved from the back surface cleaning nozzle 60 to the normal positions of 75 mm and 55 mm from the outer periphery of the back surface of the wafer W as described above. The cleaning liquid is discharged in the rotation direction and the tangential direction for 3 seconds, and the cleaning liquid is gently diffused inwardly around the back surface of the wafer W {cleaning liquid discharge (2); Step S5}.

その後、再び洗浄液の吐出を停止し、ウエハWを高速の第2の回転数(1000rpm)で、1sec間回転して、ウエハWの裏面の洗浄液を急激に拡散すると共に、振り切る{洗浄液振り切り(2);ステップS6}。   Thereafter, the discharge of the cleaning liquid is stopped again, and the wafer W is rotated at a high-speed second rotation speed (1000 rpm) for 1 sec, and the cleaning liquid on the back surface of the wafer W is rapidly diffused and shaken off {cleaning liquid shaking off (2 Step S6}.

その後、再びウエハWを低速の第1の回転数(120rpm)で回転し、裏面洗浄ノズル60から上記と同様にウエハWの裏面の外周から75mmと55mmの法線上の位置に、ウエハWの回転方向かつ接線方向に洗浄液を3sec間吐出して、洗浄液をウエハW裏面の周辺内方に緩やかに拡散する{洗浄液吐出(3);ステップS7}。   Thereafter, the wafer W is rotated again at the first low rotational speed (120 rpm), and the wafer W is rotated from the back surface cleaning nozzle 60 to the positions on the normal lines of 75 mm and 55 mm from the outer periphery of the back surface of the wafer W in the same manner as described above. The cleaning liquid is discharged in the direction and tangential direction for 3 seconds, and the cleaning liquid is gently diffused inwardly around the back surface of the wafer W {cleaning liquid discharge (3); step S7}.

その後、再び洗浄液の吐出を停止し、ウエハWを高速の第2の回転数(1000rpm)で、1sec間回転して、ウエハWの裏面の洗浄液を急激に拡散すると共に、振り切る{洗浄液振り切り(3);ステップS8}。   Thereafter, the discharge of the cleaning liquid is stopped again, and the wafer W is rotated at a high-speed second rotation speed (1000 rpm) for 1 sec, and the cleaning liquid on the back surface of the wafer W is rapidly diffused and shaken off {cleaning liquid shaking off (3 Step S8}.

上記のようにして、ウエハWを低速の第1の回転数(120rpm)で回転し、裏面洗浄ノズル60からウエハWの裏面の外周から75mmと55mmの法線上の位置に、ウエハWの回転方向かつ接線方向に洗浄液を3sec間吐出して、洗浄液をウエハW裏面の周辺内方に緩やかに拡散する洗浄液吐出工程と、洗浄液の吐出を停止し、ウエハWを高速の第2の回転数(1000rpm)で、1sec間回転して、ウエハWの裏面の洗浄液を急激に拡散すると共に、振り切る洗浄液振り切り工程とを3回繰り返して行う。   As described above, the wafer W is rotated at a low first rotation speed (120 rpm), and the rotation direction of the wafer W is set to positions on the normal lines of 75 mm and 55 mm from the outer periphery of the back surface of the wafer W from the back surface cleaning nozzle 60. In addition, the cleaning liquid is discharged in the tangential direction for 3 seconds, and the cleaning liquid discharging step for gently diffusing the cleaning liquid in the inner periphery of the back surface of the wafer W is stopped, and the discharge of the cleaning liquid is stopped, and the wafer W is moved at a second high speed (1000 rpm). ), The cleaning liquid on the back surface of the wafer W is rapidly diffused, and the cleaning liquid shaking-off process is repeated three times.

その後、ウエハWを10sec間、高速回転(回転数:1000rpm)して、ウエハWの裏面に残った洗浄液を除去する{スピン乾燥;ステップS9}。   Thereafter, the wafer W is rotated at high speed for 10 sec (rotation speed: 1000 rpm) to remove the cleaning liquid remaining on the back surface of the wafer W {spin drying; step S9}.

その後、ウエハWは基板裏面洗浄装置100内から搬出されて、処理は終了する。   Thereafter, the wafer W is unloaded from the substrate back surface cleaning apparatus 100, and the process ends.

第1実施形態の裏面洗浄方法によれば、ウエハ裏面に洗浄液を緩やかに拡散すべく第1の回転数(120rpm)で回転して洗浄液を供給する洗浄液吐出工程と、第1の回転数より高速の第2の回転数(1000rpm)で回転してウエハ裏面の洗浄液を急速に拡散して振り切る洗浄液振り切り工程と、を交互に3回繰り返し行うことにより、洗浄液吐出工程においては、低速回転であるため処理液と洗浄液とが接触し易くなり、洗浄液自体の化学溶解反応によるいわば化学的洗浄によってレジスト液を除去することができ、洗浄液振り切り工程においては、高速回転に伴う遠心力による洗浄処理及び洗浄液振り切りによるいわば物理的洗浄によってレジスト液を除去することができる。したがって、洗浄液の溶解性を利用した化学的洗浄と遠心力を利用した物理的洗浄を3回繰り返すことによって、ウエハ裏面に付着したレジスト液を除去することができる。この場合、ウエハWの裏面に洗浄液を供給する位置を、基板の周辺内方の径方向の外周から75mmと55mmという異なる位置とすることにより、洗浄領域を広げることができ、更に裏面洗浄性の向上を図ることができる。   According to the back surface cleaning method of the first embodiment, the cleaning liquid discharge step of supplying the cleaning liquid by rotating at the first rotation speed (120 rpm) to gently diffuse the cleaning liquid on the back surface of the wafer, and the speed higher than the first rotation speed The cleaning liquid discharging step is performed at a low speed in the cleaning liquid discharge step by alternately repeating the cleaning liquid sprinkling step of rotating the second rotation speed (1000 rpm) and rapidly diffusing and shaking off the cleaning liquid on the back surface of the wafer. The treatment liquid and the cleaning liquid can be easily brought into contact with each other, and the resist liquid can be removed by chemical cleaning based on the chemical dissolution reaction of the cleaning liquid itself. In the cleaning liquid swing-off process, the cleaning process and the cleaning liquid swing-off are performed by the centrifugal force accompanying the high-speed rotation. In other words, the resist solution can be removed by physical cleaning. Therefore, the resist solution adhering to the back surface of the wafer can be removed by repeating the chemical cleaning using the solubility of the cleaning solution and the physical cleaning using the centrifugal force three times. In this case, the position where the cleaning liquid is supplied to the back surface of the wafer W is set to be different positions of 75 mm and 55 mm from the outer periphery in the radial direction inside the periphery of the substrate. Improvements can be made.

なお、第1の回転数は、10〜120rpmの範囲であることが好ましく、第2の回転数は、1000〜3000rpmの範囲であることが好ましい。   In addition, it is preferable that the 1st rotation speed is the range of 10-120 rpm, and it is preferable that the 2nd rotation speed is the range of 1000-3000 rpm.

<第2実施形態>
上記第1実施形態では、裏面洗浄ノズル60の洗浄液の吐出角度が固定式の場合について説明したが、図8に示す第2実施形態のように、裏面洗浄ノズル60の洗浄液の吐出角度を可変式としてもよい。
Second Embodiment
In the first embodiment, the case where the discharge angle of the cleaning liquid of the back surface cleaning nozzle 60 is fixed is described. However, as in the second embodiment shown in FIG. 8, the discharge angle of the cleaning liquid of the back surface cleaning nozzle 60 is variable. It is good.

この場合、裏面洗浄ノズル60は、ウエハW裏面からH(例えば、10mm)離れた下方位置に配設されており、例えばステッピングモータを用いた角度調整機構(図示せず)によって洗浄液の吐出角度がウエハWの裏面に対して30°、45°及び90°に可変可能すなわち角度調整可能に形成されている。なお、角度調整機構はコントローラ80に電気的に接続されており、コントローラ80からの制御信号に基づいて吐出角度が調整される。   In this case, the back surface cleaning nozzle 60 is disposed at a lower position away from the back surface of the wafer W by H (for example, 10 mm), and the discharge angle of the cleaning liquid is adjusted by an angle adjustment mechanism (not shown) using a stepping motor, for example. With respect to the back surface of the wafer W, it can be changed to 30 °, 45 ° and 90 °, that is, the angle can be adjusted. The angle adjustment mechanism is electrically connected to the controller 80, and the discharge angle is adjusted based on a control signal from the controller 80.

このように構成することにより、図7及び図8に示すように、裏面洗浄ノズル60の吐出角度を90°にしてウエハWの裏面内方の外周からD3の位置(例えば、5mmの位置)に洗浄液を吐出することができ、これによりウエハWのベベル部の洗浄を行うことができる。また、裏面洗浄ノズル60の吐出角度を90°から45°に変えると、図8に示すように、吐出角度が90°のときの吐出位置からL1の距離(10mm)離れた位置に洗浄液を吐出することができ、洗浄液の跳ね返りを少なくすることができる。この状態で例えばウエハWの外周からD5の位置(例えば、75mmの位置)に洗浄液を吐出してウエハ裏面側の外周部75mmの領域の裏面洗浄を行うことができる。更に、裏面洗浄ノズル60の吐出角度を90°から30°に変えると、図8に示すように、吐出角度が90°のときの吐出位置からL2の距離(17mm)離れた位置に洗浄液を吐出することができ、吐出角度が45°の場合に比べて洗浄液の描く軌跡を長くして、洗浄液の跳ね返りを更に少なくすることができる。また、ウエハWの裏面に対する洗浄液の入射角が緩やかになるため、洗浄液がウエハWの裏面上に拡がり易い。この状態で例えばウエハWの外周からD5の位置よりも若干外周側のD6の位置(例えば、約75mm)の位置に洗浄液を吐出してウエハ裏面側の外周部約75mmの領域の裏面洗浄を行うことができる。   With this configuration, as shown in FIGS. 7 and 8, the discharge angle of the back surface cleaning nozzle 60 is set to 90 °, and the outer periphery of the back surface of the wafer W is positioned at a position D3 (for example, a position of 5 mm). The cleaning liquid can be discharged, whereby the bevel portion of the wafer W can be cleaned. Further, when the discharge angle of the back surface cleaning nozzle 60 is changed from 90 ° to 45 °, as shown in FIG. 8, the cleaning liquid is discharged at a distance L1 (10 mm) away from the discharge position when the discharge angle is 90 °. It is possible to reduce the rebound of the cleaning liquid. In this state, for example, the cleaning liquid can be discharged from the outer periphery of the wafer W to a position D5 (for example, a position of 75 mm) to perform the back surface cleaning of the region of the outer peripheral portion 75 mm on the wafer back surface side. Further, when the discharge angle of the back surface cleaning nozzle 60 is changed from 90 ° to 30 °, as shown in FIG. 8, the cleaning liquid is discharged at a position L2 distance (17 mm) away from the discharge position when the discharge angle is 90 °. Compared with the case where the discharge angle is 45 °, the trajectory drawn by the cleaning liquid can be lengthened and the splashing of the cleaning liquid can be further reduced. Further, since the incident angle of the cleaning liquid with respect to the back surface of the wafer W becomes gentle, the cleaning liquid easily spreads on the back surface of the wafer W. In this state, for example, the cleaning liquid is discharged to the position of D6 (for example, about 75 mm) slightly outside the position of D5 from the outer periphery of the wafer W to perform the back surface cleaning of the area of the outer peripheral portion of about 75 mm on the wafer back surface side. be able to.

なお、第2実施形態において、その他の部分は第1実施形態と同じであるので、同一部分に同一補号を比して説明は省略する。   In the second embodiment, the other parts are the same as those in the first embodiment, and thus the same parts are designated by the same complements and the description thereof is omitted.

次に、第2実施形態の裏面洗浄工程について図9を参照して説明する。図9では、裏面洗浄工程のみを示している。なお、ここでは裏面洗浄ノズル60の洗浄液吐出量は50ml/min.に設定されている。   Next, the back surface cleaning process of 2nd Embodiment is demonstrated with reference to FIG. FIG. 9 shows only the back surface cleaning process. Here, the cleaning liquid discharge rate of the back surface cleaning nozzle 60 is 50 ml / min. Is set to

第1実施形態と同様に、レジスト塗布処理を行った後、ウエハWを低速の第1の回転数(120rpm)で回転し、吐出角度が45°に調整された裏面洗浄ノズル60からウエハWの裏面の外周から75mmの法線上の位置に、ウエハWの回転方向かつ接線方向に洗浄液を3sec間吐出して、洗浄液をウエハW裏面の周辺内方に緩やかに拡散する{洗浄液吐出(1);ステップS2−1}。これにより、ウエハ裏面側の外周から75mmの領域のレジスト液と洗浄液とが接触し易くなり、洗浄液自体の化学溶解反応によるいわば化学的洗浄によってレジスト液が除去される。   Similarly to the first embodiment, after performing the resist coating process, the wafer W is rotated at the first low speed (120 rpm) at a low speed, and the wafer W is removed from the back surface cleaning nozzle 60 whose discharge angle is adjusted to 45 °. The cleaning liquid is discharged for 3 seconds in the rotational direction and tangential direction of the wafer W at a position on the normal line of 75 mm from the outer periphery of the back surface, and the cleaning liquid is gently diffused inwardly around the back surface of the wafer W {cleaning liquid discharge (1); Step S2-1}. As a result, the resist solution in the region of 75 mm from the outer periphery on the back side of the wafer easily comes into contact with the cleaning solution, and the resist solution is removed by chemical cleaning by chemical dissolution reaction of the cleaning solution itself.

その後、洗浄液の吐出を停止し、ウエハWを高速の第2の回転数(1000rpm)で、1sec間回転して、ウエハWの裏面の洗浄液を急激に拡散すると共に、振り切る{洗浄液振り切り(1);ステップS2−2}。これにより、ウエハWの高速回転に伴う遠心力による洗浄処理及び洗浄液振り切りによるいわば物理的洗浄によってレジスト液が除去される。   Thereafter, the discharge of the cleaning liquid is stopped, the wafer W is rotated at a high-speed second rotation speed (1000 rpm) for 1 sec, and the cleaning liquid on the back surface of the wafer W is rapidly diffused and shaken {cleaning liquid swing-off (1). Step S2-2}. As a result, the resist solution is removed by so-called physical cleaning by the cleaning process by centrifugal force accompanying the high-speed rotation of the wafer W and the cleaning liquid swing-off.

次に、裏面洗浄ノズル60の吐出角度を30°に調整して、再びウエハWを低速の第1の回転数(120rpm)で回転し、裏面洗浄ノズル60から上記と同様にウエハWの裏面の外周から約75mmの法線上の位置に、ウエハWの回転方向かつ接線方向に洗浄液を3sec間吐出して、洗浄液をウエハW裏面の周辺内方に緩やかに拡散する{洗浄液吐出(2);ステップS2−3}。これにより、洗浄液吐出(1)(S2−1)に比べてウエハWの裏面に対する洗浄液の入射角が緩やかになるため、洗浄液がウエハWの裏面上に拡がり易くなり、洗浄液自体の化学溶解反応によるいわば化学的洗浄によってレジスト液が除去される。   Next, the discharge angle of the back surface cleaning nozzle 60 is adjusted to 30 °, and the wafer W is rotated again at the first low rotation speed (120 rpm). The cleaning liquid is discharged for 3 seconds in the rotation direction and tangential direction of the wafer W at a position on the normal line of about 75 mm from the outer periphery, and the cleaning liquid is gently diffused inwardly around the back surface of the wafer W {cleaning liquid discharge (2); step S2-3}. As a result, the incident angle of the cleaning liquid with respect to the back surface of the wafer W becomes gentler than that of the cleaning liquid discharge (1) (S2-1), so that the cleaning liquid easily spreads on the back surface of the wafer W. In other words, the resist solution is removed by chemical cleaning.

その後、再び洗浄液の吐出を停止し、ウエハWを高速の第2の回転数(1000rpm)で、1sec間回転して、ウエハWの裏面の洗浄液を急激に拡散すると共に、振り切る{洗浄液振り切り(2);ステップS2−4}。   Thereafter, the discharge of the cleaning liquid is stopped again, and the wafer W is rotated at a high-speed second rotation speed (1000 rpm) for 1 sec, and the cleaning liquid on the back surface of the wafer W is rapidly diffused and shaken off {cleaning liquid shaking off (2 ); Step S2-4}.

その後、裏面洗浄ノズル60の吐出角度を90°に調整して、再びウエハWを低速の第1の回転数(120rpm)で回転し、裏面洗浄ノズル60からウエハWの裏面の周辺内方の外周から5mmの位置に洗浄液を3sec間吐出して、ウエハWのベベル部を洗浄する{洗浄液吐出(3);ステップS2−5}。   Thereafter, the discharge angle of the back surface cleaning nozzle 60 is adjusted to 90 °, the wafer W is rotated again at the first low speed (120 rpm), and the inner periphery of the periphery of the back surface of the wafer W from the back surface cleaning nozzle 60. The cleaning liquid is discharged for 3 seconds to a position 5 mm from the wafer to clean the bevel portion of the wafer W {cleaning liquid discharge (3); step S2-5}.

その後、再び洗浄液の吐出を停止し、ウエハWを高速の第2の回転数(1000rpm)で、1sec間回転して、ウエハWの裏面の洗浄液を急激に拡散すると共に、振り切る{洗浄液振り切り(3);ステップS2−6}。   Thereafter, the discharge of the cleaning liquid is stopped again, and the wafer W is rotated at a high-speed second rotation speed (1000 rpm) for 1 sec, and the cleaning liquid on the back surface of the wafer W is rapidly diffused and shaken off {cleaning liquid shaking off (3 ); Step S2-6}.

その後、ウエハWを10sec間、高速回転(回転数:1000rpm)して、ウエハWの裏面に残った洗浄液を除去した後、ウエハWは基板裏面洗浄装置100内から搬出されて、処理は終了する。   Thereafter, the wafer W is rotated at a high speed (rotation speed: 1000 rpm) for 10 seconds to remove the cleaning liquid remaining on the back surface of the wafer W, and then the wafer W is unloaded from the substrate back surface cleaning apparatus 100 and the processing is completed. .

第2実施形態の裏面洗浄方法によれば、ウエハWの裏面に対する洗浄液の吐出角度を可変にすることにより、少ない裏面洗浄ノズル60によって広範囲の裏面洗浄領域を確保することができる。この場合、洗浄液吐出工程における1回目から3回目のウエハWに対する吐出角度を、45°,30°,90°とすることにより、基板の径方向に対して多段的に可変洗浄処理を行うことができる。   According to the back surface cleaning method of the second embodiment, by changing the discharge angle of the cleaning liquid with respect to the back surface of the wafer W, a wide range of back surface cleaning regions can be secured by a small number of back surface cleaning nozzles 60. In this case, the variable cleaning process can be performed in multiple stages with respect to the radial direction of the substrate by setting the discharge angles of the first to third wafers W in the cleaning liquid discharge process to 45 °, 30 °, and 90 °. it can.

なお、上記実施形態では、裏面洗浄ノズル60を可変式としたが、ウエハWの裏面の洗浄液供給位置、例えば、ウエハWの裏面外周から75mm,55mm,5mmの位置毎に吐出角度を変えて裏面洗浄ノズル60を配置してもよい。   In the above embodiment, the back surface cleaning nozzle 60 is variable, but the back surface of the wafer W is changed by changing the discharge angle at every position of the cleaning liquid supply position on the back surface of the wafer W, for example, 75 mm, 55 mm, and 5 mm from the outer periphery of the back surface of the wafer W. A cleaning nozzle 60 may be arranged.

<第3実施形態>
図10は、この発明の第3実施形態に係る裏面洗浄装置における裏面洗浄ノズル60の吐出状態を示す概略側面図である。
<Third Embodiment>
FIG. 10 is a schematic side view showing a discharge state of the back surface cleaning nozzle 60 in the back surface cleaning apparatus according to the third embodiment of the present invention.

第3実施形態における裏面洗浄ノズル60は、図10に示すように、スピンチャック30によって保持されたウエハWの下方位置に配設され、ノズル移動機構63によって洗浄液吐出箇所をウエハWの径方向に可変に形成されている。   As shown in FIG. 10, the back surface cleaning nozzle 60 in the third embodiment is disposed at a position below the wafer W held by the spin chuck 30, and the nozzle moving mechanism 63 moves the cleaning liquid discharge location in the radial direction of the wafer W. It is variably formed.

ノズル移動機構63は、例えばボールねじ機構やタイミングベルト機構等にて形成されており、裏面洗浄ノズル60を載置する可動台65をノズル移動機構63の往復移動部64に連結することで、裏面洗浄ノズル60の液吐出箇所をウエハWの径方向に可変可能にしている。なお、ノズル移動機構63はコントローラ80と電気的に接続されており、コントローラ80からの制御信号に基づいて裏面洗浄ノズル60の液吐出箇所がウエハWの径方向に可変可能になっている。   The nozzle moving mechanism 63 is formed by, for example, a ball screw mechanism, a timing belt mechanism, or the like, and connects the movable table 65 on which the back surface cleaning nozzle 60 is placed to the reciprocating unit 64 of the nozzle moving mechanism 63, thereby The liquid discharge location of the cleaning nozzle 60 can be varied in the radial direction of the wafer W. The nozzle moving mechanism 63 is electrically connected to the controller 80, and the liquid discharge location of the back surface cleaning nozzle 60 can be varied in the radial direction of the wafer W based on a control signal from the controller 80.

この場合、裏面洗浄ノズル60は、ノズル移動機構63によってウエハWの外周から75mmの位置(D5)と外周から5mmの位置(D3)の範囲内の任意の位置例えば外周から75mmの位置(D5)、外周から55mmの位置(D4)、外周から35mmの位置(D7)、外周から5mmの位置(D3)等任意の位置に可変可能に構成されている。   In this case, the back surface cleaning nozzle 60 is moved to an arbitrary position within the range of the position (D5) 75 mm from the outer periphery of the wafer W and the position (D3) 5 mm from the outer periphery by the nozzle moving mechanism 63, for example, the position (D5) 75 mm from the outer periphery. The position can be changed to any position, such as a position (D4) 55 mm from the outer periphery, a position (D7) 35 mm from the outer periphery, and a position (D3) 5 mm from the outer periphery.

なお、第3実施形態において、その他の部分は第1実施形態と同じであるので、説明は省略する。   In addition, in 3rd Embodiment, since another part is the same as 1st Embodiment, description is abbreviate | omitted.

次に、第3実施形態の裏面洗浄工程について図11を参照して説明する。図11では、裏面洗浄工程のみを示している。なお、ここでは裏面洗浄ノズル60の洗浄液吐出量は50ml/min.に設定され、吐出角度が45°と90°に調整可能に形成される場合について説明する。   Next, the back surface cleaning process of 3rd Embodiment is demonstrated with reference to FIG. FIG. 11 shows only the back surface cleaning process. Here, the cleaning liquid discharge rate of the back surface cleaning nozzle 60 is 50 ml / min. A case where the discharge angle is formed to be adjustable to 45 ° and 90 ° will be described.

第1実施形態と同様に、レジスト塗布処理を行った後、ウエハWを低速の第1の回転数(120rpm)で回転し、吐出角度が45°に調整された裏面洗浄ノズル60からウエハWの裏面の外周から75mmの法線上の位置に、ウエハWの回転方向かつ接線方向に洗浄液を3sec間吐出して、洗浄液をウエハW裏面の周辺内方に緩やかに拡散する{洗浄液吐出(1);ステップS3−1}。これにより、ウエハ裏面側の外周から75mmの領域のレジスト液と洗浄液とが接触し易くなり、洗浄液自体の化学溶解反応によるいわば化学的洗浄によってレジスト液が除去される。   Similarly to the first embodiment, after performing the resist coating process, the wafer W is rotated at the first low speed (120 rpm) at a low speed, and the wafer W is removed from the back surface cleaning nozzle 60 whose discharge angle is adjusted to 45 °. The cleaning liquid is discharged for 3 seconds in the rotational direction and tangential direction of the wafer W at a position on the normal line of 75 mm from the outer periphery of the back surface, and the cleaning liquid is gently diffused inwardly around the back surface of the wafer W {cleaning liquid discharge (1); Step S3-1}. As a result, the resist solution in the region of 75 mm from the outer periphery on the back side of the wafer easily comes into contact with the cleaning solution, and the resist solution is removed by chemical cleaning by chemical dissolution reaction of the cleaning solution itself.

その後、洗浄液の吐出を停止し、ウエハWを高速の第2の回転数(1000rpm)で、1sec間回転して、ウエハWの裏面の洗浄液を急激に拡散すると共に、振り切る{洗浄液振り切り(1);ステップS3−2}。これにより、ウエハWの高速回転に伴う遠心力による洗浄処理及び洗浄液振り切りによるいわば物理的洗浄によってレジスト液が除去される。   Thereafter, the discharge of the cleaning liquid is stopped, the wafer W is rotated at a high-speed second rotation speed (1000 rpm) for 1 sec, and the cleaning liquid on the back surface of the wafer W is rapidly diffused and shaken {cleaning liquid swing-off (1). Step S3-2}. As a result, the resist solution is removed by so-called physical cleaning by the cleaning process by centrifugal force accompanying the high-speed rotation of the wafer W and the cleaning liquid swing-off.

次に、裏面洗浄ノズル60の吐出角度が45°の状態で、再びウエハWを低速の第1の回転数(120rpm)で回転し、裏面洗浄ノズル60から上記と同様にウエハWの裏面の外周から55mmの法線上の位置に、ウエハWの回転方向かつ接線方向に洗浄液を3sec間吐出して、洗浄液をウエハW裏面の周辺内方に緩やかに拡散する{洗浄液吐出(2);ステップS3−3}。これにより、ウエハ裏面側の外周から55mmの領域のレジスト液と洗浄液とが接触し易くなり、洗浄液自体の化学溶解反応によるいわば化学的洗浄によってレジスト液が除去される。   Next, in a state where the discharge angle of the back surface cleaning nozzle 60 is 45 °, the wafer W is rotated again at the first low rotation speed (120 rpm), and the outer periphery of the back surface of the wafer W is returned from the back surface cleaning nozzle 60 in the same manner as described above. The cleaning liquid is discharged for 3 seconds in the rotational direction and tangential direction of the wafer W at a position on the normal line of 55 mm from the surface of the wafer W, and the cleaning liquid is gently diffused inwardly around the back surface of the wafer W {cleaning liquid discharge (2); step S3- 3}. As a result, the resist solution in the region of 55 mm from the outer periphery on the back side of the wafer easily comes into contact with the cleaning solution, and the resist solution is removed by chemical cleaning by chemical dissolution reaction of the cleaning solution itself.

その後、再び洗浄液の吐出を停止し、ウエハWを高速の第2の回転数(1000rpm)で、1sec間回転して、ウエハWの裏面の洗浄液を急激に拡散すると共に、振り切る{洗浄液振り切り(2);ステップS3−4}。   Thereafter, the discharge of the cleaning liquid is stopped again, and the wafer W is rotated at a high-speed second rotation speed (1000 rpm) for 1 sec, and the cleaning liquid on the back surface of the wafer W is rapidly diffused and shaken off {cleaning liquid shaking off (2 ); Step S3-4}.

その後、裏面洗浄ノズル60の吐出角度を90°に調整して、再びウエハWを低速の第1の回転数(120rpm)で回転し、裏面洗浄ノズル60からウエハWの裏面の周辺内方の外周から5mmの位置に洗浄液を3sec間吐出して、ウエハWのベベル部を洗浄する{洗浄液吐出(3);ステップS3−5}。   Thereafter, the discharge angle of the back surface cleaning nozzle 60 is adjusted to 90 °, the wafer W is rotated again at the first low speed (120 rpm), and the inner periphery of the periphery of the back surface of the wafer W from the back surface cleaning nozzle 60. The cleaning liquid is discharged for 3 seconds to a position 5 mm from the wafer to clean the bevel portion of the wafer W {cleaning liquid discharge (3); Step S3-5}.

その後、再び洗浄液の吐出を停止し、ウエハWを高速の第2の回転数(1000rpm)で、1sec間回転して、ウエハWの裏面の洗浄液を急激に拡散すると共に、振り切る{洗浄液振り切り(3);ステップS3−6}。   Thereafter, the discharge of the cleaning liquid is stopped again, and the wafer W is rotated at a high-speed second rotation speed (1000 rpm) for 1 sec, and the cleaning liquid on the back surface of the wafer W is rapidly diffused and shaken off {cleaning liquid shaking off (3 ; Step S3-6}.

その後、ウエハWを10sec間、高速回転(回転数:1000rpm)して、ウエハWの裏面に残った洗浄液を除去した後、ウエハWは基板裏面洗浄装置100内から搬出されて、処理は終了する。   Thereafter, the wafer W is rotated at a high speed (rotation speed: 1000 rpm) for 10 seconds to remove the cleaning liquid remaining on the back surface of the wafer W, and then the wafer W is unloaded from the substrate back surface cleaning apparatus 100 and the processing is completed. .

第3実施形態の裏面洗浄方法によれば、ウエハWの裏面に対する洗浄液の吐出箇所をウエハWの径方向に沿って可変とすることにより、少ない裏面洗浄ノズル60によって広範囲の裏面洗浄領域を確保することができる。この場合、洗浄液吐出工程における1回目から3回目の上記洗浄液の吐出箇所を、ウエハWの外周から75mm,55mm,5mmとすることにより、ウエハWの径方向に対して多段的に可変洗浄処理を行うことができる。   According to the back surface cleaning method of the third embodiment, a wide range of back surface cleaning regions are secured by a small number of back surface cleaning nozzles 60 by making the discharge position of the cleaning liquid on the back surface of the wafer W variable along the radial direction of the wafer W. be able to. In this case, variable cleaning processing is performed in multiple stages in the radial direction of the wafer W by setting the first to third cleaning liquid discharge locations in the cleaning liquid discharge step to 75 mm, 55 mm, and 5 mm from the outer periphery of the wafer W. It can be carried out.

<その他の実施形態>
上記第1実施形態では、固定式の裏面洗浄ノズル60が2個設けられる場合について説明したが、固定式の裏面洗浄ノズル60の数はこれに限定されるものではなく、例えば、図10に示すウエハWの外周から75mmの位置(D5)、外周から55mmの位置(D4)及び外周から35mmの位置(D7)におけるウエハWの回転方向かつ接線方向に対して洗浄液を吐出する3個の裏面洗浄ノズル60を用いてもよい。また、ウエハWの外周から75mmの位置(D5)と、外周から55mmの位置(D4)のそれぞれの対向位置(180度の位置)に洗浄液を吐出する4個の裏面洗浄ノズル60を用いてもよい。
<Other embodiments>
In the first embodiment, the case where two fixed back surface cleaning nozzles 60 are provided has been described. However, the number of the fixed back surface cleaning nozzles 60 is not limited to this, for example, as shown in FIG. Three backside cleanings that discharge cleaning liquid in the rotational direction and tangential direction of the wafer W at a position 75D from the outer periphery of the wafer W (D5), a position 55D from the outer periphery (D4), and a position 35D from the outer periphery (D7). A nozzle 60 may be used. Alternatively, four backside cleaning nozzles 60 that discharge the cleaning liquid to the opposing positions (positions of 180 degrees) of the position (D5) 75 mm from the outer periphery of the wafer W and the position (D4) 55 mm from the outer periphery may be used. Good.

なお、上記実施形態においては、裏面洗浄ノズル60の吐出方向は接線方向としていたが、ウエハWの裏面外周の法線方向としてもよい。   In the above embodiment, the discharge direction of the back surface cleaning nozzle 60 is a tangential direction, but may be a normal direction of the back surface outer periphery of the wafer W.

また、上記実施形態においては、ウエハWの裏面に洗浄液を吐出する時の回転数を低回転(例えば120rpm)、洗浄液の吐出を停止している時の回転数を高回転(例えば1000rpm)としていた。しかし、この代わりに、洗浄液を吐出する時の回転数を高回転(例えば1000rpm)、洗浄液の吐出を停止している時の回転数を低回転(例えば120rpm)としても、洗浄液の吐出と吐出停止を繰り返す間欠洗浄を行わない従来技術と比較して、薬液消費量を削減することができる。   In the above embodiment, the rotation speed when discharging the cleaning liquid onto the back surface of the wafer W is low (for example, 120 rpm), and the rotation speed when discharging of the cleaning liquid is stopped is high (for example, 1000 rpm). . However, instead of discharging the cleaning liquid, stopping the discharge of the cleaning liquid and stopping the discharging even if the rotation speed when discharging the cleaning liquid is high (for example, 1000 rpm) and the rotation speed when discharging the cleaning liquid is low (for example, 120 rpm). Compared with the prior art in which intermittent cleaning is not repeated, the chemical consumption can be reduced.

また、上記第1実施形態においては、固定式の裏面洗浄ノズル60の吐出角度が固定である場合について説明したが、吐出位置に応じて裏面洗浄ノズル60の吐出角度を変えもよい。   In the first embodiment, the case where the discharge angle of the fixed back surface cleaning nozzle 60 is fixed has been described. However, the discharge angle of the back surface cleaning nozzle 60 may be changed according to the discharge position.

また、上記実施形態では、この発明に係る裏面洗浄装置をレジスト塗布処理に適用した場合について説明したが、この発明はこれに限定されるものではなく、鉛直軸回りに回転する基板の表面に処理液が供給される基板処理、例えば現像処理にも適用できる。   Moreover, although the case where the back surface cleaning apparatus according to the present invention is applied to the resist coating process has been described in the above embodiment, the present invention is not limited to this, and the process is performed on the surface of the substrate rotating around the vertical axis. The present invention can also be applied to substrate processing to which a liquid is supplied, for example, development processing.

以下、この発明を完成させるために行った評価実験について説明する。
(評価実験1)
評価条件
・レジスト:ArF液浸工程対応のポジ型フォトレジストをベアウエハの表面に塗布
・洗浄液(バックリンス液):シクロヘキサノン
・吐出流量:100ml/min
・ノズル:接線方向(2本)
・吐出位置:ウエハ外周から70mm
上記評価条件で、図12に示すΦ300mmウエハWAを1000rpmで回転した場合(既存のΦ300mmウエハの洗浄手法)と、Φ450mmウエハWBを1000rpmと500rpmで回転した場合の裏面洗浄除去率とバックリンス量を調べたところ、図13に示すような結果が得られた。
Hereinafter, an evaluation experiment performed to complete the present invention will be described.
(Evaluation Experiment 1)
Evaluation conditions: Resist: A positive photoresist corresponding to an ArF immersion process is applied to the surface of the bare wafer. Cleaning liquid (back rinse liquid): cyclohexanone Discharge flow rate: 100 ml / min
・ Nozzle: Tangent direction (2)
・ Discharge position: 70mm from wafer periphery
Under the above evaluation conditions, the back surface cleaning removal rate and the back rinse amount when the Φ300 mm wafer WA shown in FIG. As a result of the examination, results as shown in FIG. 13 were obtained.

上記評価実験1の結果、既存のΦ300mmウエハの洗浄手法に対して面積比が1.8倍のΦ450mmウエハの洗浄手法では約3.4倍のリンス量が必要であることが判った。   As a result of the evaluation experiment 1, it has been found that the rinsing amount of about 3.4 times is necessary for the cleaning method of Φ450 mm wafer whose area ratio is 1.8 times that of the existing Φ300 mm wafer cleaning method.

(評価実験2)
次に、上記評価条件のうち、Φ450mmウエハでの吐出位置をウエハW外周から75mm(Φ300mmウエハは外周から70mm)の条件として、5秒間吐出と振り切り乾燥を繰り返して行い、Φ450mmウエハの回転数を120rpm、500rpm、1000rpm、2000rpmに変化させて、レジスト除去率とバックリンス量の関係を調べたところ、図14及び図15に示す結果が得られた。
(Evaluation Experiment 2)
Next, among the above evaluation conditions, the discharge position on the Φ450 mm wafer is set to 75 mm from the outer periphery of the wafer W (Φ300 mm wafer is 70 mm from the outer periphery). When the relationship between the resist removal rate and the amount of back rinse was examined while changing to 120 rpm, 500 rpm, 1000 rpm, and 2000 rpm, the results shown in FIGS. 14 and 15 were obtained.

上記評価実験2の結果、Φ450mmウエハにおいては、120rpmのときが、既存のΦ300mmウエハの洗浄手法のバックリンス量25.0ml(繰り返し3回)に対して33.3ml(繰り返し4回)と少なく、次いで2000rpm(繰り返し5回)、1000rpm(繰り返し7回)、500rpm(繰り返し10回)であった。   As a result of the above evaluation experiment 2, in the case of a Φ450 mm wafer, when the speed is 120 rpm, the amount of back rinse of the existing Φ300 mm wafer cleaning method is 23.3 ml (3 repetitions) and 33.3 ml (4 repetitions), Then, it was 2000 rpm (repeated 5 times), 1000 rpm (repeated 7 times), and 500 rpm (repeated 10 times).

評価実験2から裏面洗浄のメカニズムを考察すると、低速の120rpmでは図16(a)に示すように、レジスト膜はバックリンス位置D0を起点として、バックリンス液Lは比較的大きい粒径のまま拡がり、リンス液自体の化学的な溶解作用によりレジストを除去する。図16(a)において、レジスト残渣と除去領域のピッチPaは10〜15mmであった。   Considering the mechanism of the back surface cleaning from Evaluation Experiment 2, at a low speed of 120 rpm, as shown in FIG. 16A, the resist film spreads from the back rinse position D0 as a starting point, while the back rinse liquid L spreads with a relatively large particle size. Then, the resist is removed by the chemical dissolution action of the rinse solution itself. In FIG. 16A, the pitch Pa between the resist residue and the removal region was 10 to 15 mm.

これに対して、高速の1000rpmでは図16(b)に示すように、レジスト膜はバックリンス位置D0を起点として、バックリンス液Lが細分化されて排出されることによりレジストは鋭角的に放射状に除去される。これは高速回転処理による物理的な洗浄作用が支配していると推測される。図16(b)において、レジスト残渣と除去領域のピッチPbは2〜3mmであった。   On the other hand, at a high speed of 1000 rpm, as shown in FIG. 16B, the resist film is radiated at an acute angle by the back rinse liquid L being subdivided and discharged starting from the back rinse position D0. Removed. This is presumed to be governed by the physical cleaning action by the high-speed rotation process. In FIG. 16B, the resist residue and the pitch Pb between the removal regions were 2 to 3 mm.

(評価実験3)
上記評価実験2の結果より低速回転120rpmによる化学的な溶解作用と高速回転1000rpmにより物理的な洗浄作用に着目して、120rpm時にバックリンス(リンス液吐出)と1000rpm時のバックリンスの停止を繰り返す間欠吐出の効果を調べるために、表1に示すような洗浄工程の手順、すなわち、120rpm時のバックリンスを5sec間行う洗浄液吐出工程と、1000rpm時のバックリンスの停止を1sec間行う洗浄液振り切り工程を繰り返し3回行う手順で評価実験3を行った。なお、このときのバックリンスの吐出位置は外周から75mmの位置に設定した。

Figure 2013077664
(Evaluation Experiment 3)
Focusing on the chemical dissolution effect at a low speed of 120 rpm and the physical cleaning action at a high speed of 1000 rpm from the results of the evaluation experiment 2, the back rinse (rinsing liquid discharge) at 120 rpm and the back rinse at 1000 rpm are repeatedly stopped. In order to examine the effect of intermittent discharge, the procedure of the cleaning process as shown in Table 1, that is, the cleaning liquid discharging process for performing the back rinse at 120 rpm for 5 seconds, and the cleaning liquid swing-off process for stopping the back rinse at 1000 rpm for 1 second. The evaluation experiment 3 was conducted by repeating the above procedure three times. Note that the back rinse discharge position at this time was set at a position 75 mm from the outer periphery.
Figure 2013077664

評価実験3の結果、裏面洗浄除去率は100%達成できた。   As a result of Evaluation Experiment 3, the backside cleaning removal rate was 100%.

(評価実験4)
上記評価実験3では間欠吐出時間が15secであるので、間欠吐出時間の短縮を試みるために、評価実験3の洗浄工程における洗浄液吐出時間を5secから3secに代えて、表2に示すような洗浄工程の手順、すなわち、120rpm時のバックリンスを3sec間行う洗浄液吐出工程と、1000rpm時のバックリンスの停止を1sec間行う洗浄液振り切り工程を繰り返し3回行う手順で評価実験4を行った。

Figure 2013077664
(Evaluation Experiment 4)
Since the intermittent discharge time is 15 seconds in the evaluation experiment 3, in order to try to shorten the intermittent discharge time, the cleaning liquid discharge time in the cleaning process of the evaluation experiment 3 is changed from 5 seconds to 3 seconds, and the cleaning process as shown in Table 2 is performed. The evaluation experiment 4 was performed by the above procedure, that is, the cleaning liquid discharging process in which the back rinse at 120 rpm is performed for 3 seconds and the cleaning liquid shaking process in which the back rinse at 1000 rpm is stopped for 1 second are repeated three times.
Figure 2013077664

評価実験4の結果、裏面洗浄除去率は100%達成できず、洗浄領域中心部から外周にかけて縞状にレジスト残渣が発生した。   As a result of Evaluation Experiment 4, the backside cleaning removal rate could not be achieved 100%, and a resist residue was generated in a striped pattern from the center of the cleaning region to the outer periphery.

(評価実験5)
次に、バックリンスの吐出位置を外周から75mmの位置と外周から55mmの位置に設定して、表3に示すような洗浄工程の手順、すなわち、120rpm時のバックリンスを3sec間行う洗浄液吐出工程と、1000rpm時のバックリンスの停止を1sec間行う洗浄液振り切り工程を繰り返し3回行う手順で評価実験5を行った。

Figure 2013077664
(Evaluation Experiment 5)
Next, the back rinse discharge position is set to a position 75 mm from the outer periphery and a position 55 mm from the outer periphery, and the procedure of the cleaning process as shown in Table 3, that is, the cleaning liquid discharge process for performing the back rinse at 120 rpm for 3 seconds. Then, the evaluation experiment 5 was performed by the procedure of repeatedly performing the washing liquid swing-off process of stopping the back rinse at 1000 rpm for 1 second three times.
Figure 2013077664

評価実験5の結果、裏面洗浄除去率は100%達成できた。この時の間欠吐出時間は9secであり、バックリンスの吐出位置を外周から75mmの位置で行った評価実験3の間欠吐出時間15secに比較して6sec短縮できた。   As a result of Evaluation Experiment 5, the backside cleaning removal rate was 100%. The intermittent discharge time at this time was 9 seconds, which was shortened by 6 seconds compared to the intermittent discharge time of 15 seconds in Evaluation Experiment 3 in which the back rinse discharge position was 75 mm from the outer periphery.

(評価実験6)
次に、洗浄液吐出工程の時間と回転数の関係を調べるために、バックリンスの吐出位置は評価実験5と同じ設定で、表4に示すような手順で評価実験6を行った。なお、時間(T)の値を、3sec,2sec,1secとしてそれぞれ実験した。

Figure 2013077664
(Evaluation Experiment 6)
Next, in order to investigate the relationship between the time of the cleaning liquid discharge process and the number of rotations, an evaluation experiment 6 was performed according to the procedure shown in Table 4 with the back rinse discharge position set to the same setting as in evaluation experiment 5. In addition, it experimented by setting the value of time (T) as 3 sec, 2 sec, and 1 sec, respectively.
Figure 2013077664

評価実験6の結果、表5に示すように、回転数120rpmに対して吐出時間3secと2secは裏面洗浄除去率が100%であったが、吐出時間1secでは裏面洗浄除去率は100%達成できなかった。

Figure 2013077664
As a result of the evaluation experiment 6, as shown in Table 5, the backside cleaning removal rate was 100% at the discharge time of 3 sec and 2 sec with respect to the rotation speed of 120 rpm. There wasn't.
Figure 2013077664

(評価実験7)
次に、洗浄液吐出工程と洗浄液振り切り工程における時間と回転数の関係を調べるために、表6に示すように、洗浄液吐出工程時(バックリンス吐出時)の回転数(R1)と洗浄液振り切り工程時の回転数(R2)を代えて評価実験7を行ったところ、図17に示すような結果が得られた。

Figure 2013077664
(Evaluation Experiment 7)
Next, in order to investigate the relationship between the time and the rotational speed in the cleaning liquid discharge process and the cleaning liquid swing-off process, as shown in Table 6, the rotational speed (R1) in the cleaning liquid discharge process (back rinse discharge) and the cleaning liquid swing-off process When the evaluation experiment 7 was performed while changing the number of rotations (R2), results as shown in FIG. 17 were obtained.
Figure 2013077664

評価実験7の結果、バックリンス吐出時の回転数(R1)が10〜120rpmで、洗浄液振り切り工程時の回転数(R2)が1000〜3000rpmの範囲において裏面洗浄除去率が100%を達成できた。   As a result of the evaluation experiment 7, the back surface cleaning removal rate was able to achieve 100% in the range of the rotation speed (R1) at the time of back rinse discharge of 10 to 120 rpm and the rotation speed (R2) at the time of the washing liquid shaking process of 1000 to 3000 rpm. .

(評価実験8)
次に、第2実施形態の裏面洗浄方法について、上記表3に示すような洗浄工程の手順、すなわち、120rpm時のバックリンスを3sec間行う洗浄液吐出工程(1){吐出位置:75mm、吐出角度:45°}、洗浄液吐出工程(2){吐出位置:75mm、吐出角度:30°}、洗浄液吐出工程(3){吐出位置:5mm、吐出角度:90°}と、1000rpm時のバックリンスの停止を1sec間行う洗浄液振り切り工程を繰り返し3回行う手順で評価実験8を行った。評価実験8の結果、裏面洗浄除去率は100%達成できた。
(Evaluation Experiment 8)
Next, with regard to the back surface cleaning method of the second embodiment, the cleaning process procedure as shown in Table 3 above, that is, the cleaning liquid discharge step (3) for performing back rinse at 120 rpm for 3 seconds {Discharge position: 75 mm, discharge angle : 45 °}, cleaning liquid discharge step (2) {discharge position: 75 mm, discharge angle: 30 °}, cleaning liquid discharge step (3) {discharge position: 5 mm, discharge angle: 90 °} and back rinse at 1000 rpm Evaluation experiment 8 was performed by a procedure of repeatedly performing the washing liquid shaking-off process of stopping for 1 second three times. As a result of the evaluation experiment 8, the backside cleaning removal rate was 100%.

(評価実験9)
次に、第3実施形態の裏面洗浄方法について、上記表3に示すような洗浄工程の手順、すなわち、120rpm時のバックリンスを3sec間行う洗浄液吐出工程(1){吐出位置:75mm、吐出角度:45°}、洗浄液吐出工程(2){吐出位置:55mm、吐出角度:45°}、洗浄液吐出工程(3){吐出位置:5mm、吐出角度:90°}と、1000rpm時のバックリンスの停止を1sec間行う洗浄液振り切り工程を繰り返し3回行う手順で評価実験9を行った。評価実験9の結果、裏面洗浄除去率は100%達成できた。
(Evaluation Experiment 9)
Next, regarding the back surface cleaning method of the third embodiment, the cleaning process procedure as shown in Table 3 above, that is, the cleaning liquid discharge process (1) for performing the back rinse at 120 rpm for 3 seconds {Discharge position: 75 mm, discharge angle : 45 °}, cleaning liquid discharge step (2) {discharge position: 55 mm, discharge angle: 45 °}, cleaning liquid discharge step (3) {discharge position: 5 mm, discharge angle: 90 °} and back rinse at 1000 rpm The evaluation experiment 9 was performed by the procedure of repeating the washing liquid shaking-off process of stopping for 1 sec three times. As a result of the evaluation experiment 9, the back surface cleaning removal rate was 100%.

以上の評価実験の結果から、図18に示すように、既存のΦ300mmウエハの洗浄手法のバックリンス量が25.0mlに対して、大口径のΦ450mmウエハにおいては、吐出位置が外周から75mmに設定した場合、バックリンス量が既存のΦ300mmウエハと同量の25.0mlであった。また、吐出位置を外周から75mmと外周から55mmの位置に設定した場合では、バックリンス量が10.0mlと少ない量であった。   From the results of the above evaluation experiment, as shown in FIG. 18, the discharge position is set to 75 mm from the outer periphery in the large-diameter Φ450 mm wafer, whereas the back rinse amount of the existing Φ300 mm wafer cleaning method is 25.0 ml. In this case, the back rinse amount was 25.0 ml, the same amount as that of the existing Φ300 mm wafer. Further, when the discharge position was set at a position 75 mm from the outer periphery and 55 mm from the outer periphery, the back rinse amount was as small as 10.0 ml.

30 スピンチャック(基板保持部)
32 回転駆動部
50 処理液供給ノズル
60 裏面洗浄ノズル
63 ノズル移動機構
80 コントローラ(制御部)
V2 流量調整弁
30 Spin chuck (substrate holder)
32 Rotation drive unit 50 Treatment liquid supply nozzle 60 Back surface cleaning nozzle 63 Nozzle moving mechanism 80 Controller (control unit)
V2 Flow control valve

Claims (20)

鉛直軸回りに回転する基板の表面に処理液を供給する工程の後に、上記基板が回転した状態で上記基板の裏面の周辺内方における複数の位置に対して洗浄液を供給して洗浄する洗浄工程を具備し、
上記洗浄工程は、上記基板裏面に上記洗浄液を緩やかに拡散すべく第1の回転数で回転して洗浄液を供給する洗浄液吐出工程と、上記第1の回転数より高速の第2の回転数で回転して上記基板裏面の洗浄液を急速に拡散して振り切る洗浄液振り切り工程と、を交互に複数回繰り返し行う、ことを特徴とする基板裏面洗浄方法。
After the step of supplying the processing liquid to the surface of the substrate that rotates about the vertical axis, the cleaning step of supplying the cleaning liquid to a plurality of positions in the inner periphery of the back surface of the substrate while the substrate is rotated. Comprising
The cleaning process includes a cleaning liquid discharge process for supplying the cleaning liquid by rotating at a first rotational speed so as to gently diffuse the cleaning liquid on the back surface of the substrate, and a second rotational speed higher than the first rotational speed. A substrate back surface cleaning method, wherein the cleaning liquid sprinkling step of rotating and rapidly diffusing and sprinkling the cleaning liquid on the back surface of the substrate is alternately repeated a plurality of times.
請求項1記載の基板裏面洗浄方法において、
上記基板の裏面に洗浄液を供給する位置が基板の周辺内方において径方向に異なる複数位置である、ことを特徴とする基板裏面洗浄方法。
In the substrate back surface cleaning method according to claim 1,
The substrate back surface cleaning method, wherein the positions for supplying the cleaning liquid to the back surface of the substrate are a plurality of positions which are different in the radial direction in the inner periphery of the substrate.
請求項1又は2に記載の基板裏面洗浄方法において、
上記基板の裏面に対する洗浄液の吐出角度が可変である、ことを特徴とする基板裏面洗浄方法。
In the substrate back surface cleaning method according to claim 1 or 2,
A substrate back surface cleaning method, wherein a discharge angle of the cleaning liquid with respect to the back surface of the substrate is variable.
請求項1又は2に記載の基板裏面洗浄方法において、
上記基板の裏面に洗浄液を供給する位置毎に、上記基板の裏面に対する洗浄液の吐出角度が異なる、ことを特徴とする基板裏面洗浄方法。
In the substrate back surface cleaning method according to claim 1 or 2,
A substrate back surface cleaning method, wherein a discharge angle of the cleaning liquid with respect to the back surface of the substrate is different for each position at which the cleaning liquid is supplied to the back surface of the substrate.
請求項1ないし4のいずれかに記載の基板裏面洗浄方法において、
上記第1の回転数が10〜120rpmであり、上記第2の回転数が1000〜3000rpmである、ことを特徴とする基板裏面洗浄方法。
In the substrate back surface cleaning method according to any one of claims 1 to 4,
The substrate back surface cleaning method, wherein the first rotation speed is 10 to 120 rpm, and the second rotation speed is 1000 to 3000 rpm.
請求項1ないし5のいずれかに記載の基板裏面洗浄方法において、
上記洗浄液吐出工程における吐出時間が2〜5秒であり、上記洗浄液振り切り工程における振り切り時間が1秒である、ことを特徴とする基板裏面洗浄方法。
In the substrate back surface cleaning method according to any one of claims 1 to 5,
A substrate back surface cleaning method, wherein a discharge time in the cleaning liquid discharge step is 2 to 5 seconds, and a swing-off time in the cleaning liquid swing-off step is 1 second.
請求項1ないし6のいずれかに記載の基板裏面洗浄方法において、
上記洗浄液吐出工程と、上記洗浄液振り切り工程とを3回繰り返し行う、ことを特徴とする基板裏面洗浄方法。
In the substrate back surface cleaning method according to any one of claims 1 to 6,
The substrate back surface cleaning method, wherein the cleaning liquid discharging step and the cleaning liquid shaking-off step are repeated three times.
請求項1,2,5又は6に記載の基板裏面洗浄方法において、
上記基板の裏面に対する洗浄液の吐出角度を可変にすると共に、上記洗浄液吐出工程と、上記洗浄液振り切り工程とを3回繰り返し行い、上記洗浄液吐出工程における1回目から3回目の上記基板に対する吐出角度を、45°,30°,90°とする、ことを特徴とする基板裏面洗浄方法。
In the substrate back surface cleaning method according to claim 1, 2, 5, or 6,
While changing the discharge angle of the cleaning liquid with respect to the back surface of the substrate, the cleaning liquid discharging step and the cleaning liquid swing-off step are repeated three times, and the discharge angle with respect to the substrate for the first to third times in the cleaning liquid discharging step is set as follows: A substrate back surface cleaning method, characterized by being 45 °, 30 °, and 90 °.
請求項1ないし8のいずれかに記載の基板裏面洗浄方法において、
上記基板の裏面に対する洗浄液の吐出箇所が基板の径方向に沿って可変である、ことを特徴とする基板裏面洗浄方法。
In the substrate back surface cleaning method according to any one of claims 1 to 8,
A substrate back surface cleaning method, wherein a discharge portion of the cleaning liquid to the back surface of the substrate is variable along a radial direction of the substrate.
請求項1ないし8のいずれかに記載の基板裏面洗浄方法において、
上記基板の裏面に対する洗浄液の吐出箇所を基板の径方向に沿って可変にすると共に、上記洗浄液吐出工程と、上記洗浄液振り切り工程とを3回繰り返し行い、上記洗浄液吐出工程における1回目から3回目の上記洗浄液の吐出箇所を、基板の外周から75mm,55mm,5mmとする、ことを特徴とする基板裏面洗浄方法。
In the substrate back surface cleaning method according to any one of claims 1 to 8,
The discharge position of the cleaning liquid with respect to the back surface of the substrate is made variable along the radial direction of the substrate, and the cleaning liquid discharging process and the cleaning liquid shaking process are repeated three times, and the first to third times in the cleaning liquid discharging process. A substrate back surface cleaning method, characterized in that the discharge position of the cleaning liquid is 75 mm, 55 mm, 5 mm from the outer periphery of the substrate.
鉛直軸回りに基板を回転自在に保持する基板保持部と、
上記基板保持部を回転する回転駆動部と、
上記基板保持部にて保持された基板の表面に処理液を供給する処理液供給ノズルと、
上記基板保持部によって回転する基板の裏面の周辺内方における複数の位置に対して洗浄液を供給する裏面洗浄ノズルと、
上記回転駆動部の回転及び上記裏面洗浄ノズルの駆動を制御する制御部と、を具備し、
上記制御部からの信号に基づいて、上記基板裏面に上記洗浄液を緩やかに拡散すべく第1の回転数で回転して洗浄液を供給する洗浄液吐出工程と、上記第1の回転数より高速の第2の回転数で回転して上記基板裏面の洗浄液を急速に拡散して振り切る洗浄液振り切り工程と、を交互に複数回繰り返し行う、ことを特徴とする基板裏面洗浄装置。
A substrate holding unit that rotatably holds the substrate around a vertical axis;
A rotation driving unit that rotates the substrate holding unit;
A processing liquid supply nozzle for supplying a processing liquid to the surface of the substrate held by the substrate holding unit;
A back surface cleaning nozzle for supplying a cleaning liquid to a plurality of positions in the inner periphery of the back surface of the substrate rotated by the substrate holding unit;
A control unit for controlling the rotation of the rotation driving unit and the driving of the back surface cleaning nozzle,
Based on a signal from the control unit, a cleaning liquid discharging step of supplying the cleaning liquid by rotating at a first rotational speed so as to gently diffuse the cleaning liquid on the back surface of the substrate, and a first speed higher than the first rotational speed. A substrate back surface cleaning apparatus, wherein the cleaning liquid sprinkling step of rotating and rotating at a rotational speed of 2 to rapidly diffuse and shake off the cleaning liquid on the back surface of the substrate is repeated a plurality of times alternately.
請求項11記載の基板裏面洗浄装置において、
上記裏面洗浄ノズルは複数個設けられ、各裏面洗浄ノズルは、上記基板の周辺内方において径方向に異なる複数位置に対して洗浄液を供給する、ことを特徴とする基板裏面洗浄装置。
The substrate back surface cleaning apparatus according to claim 11,
A substrate back surface cleaning apparatus, wherein a plurality of the back surface cleaning nozzles are provided, and each back surface cleaning nozzle supplies a cleaning liquid to a plurality of radially different positions on the inner periphery of the substrate.
請求項11又は12に記載の基板裏面洗浄装置において、
上記裏面洗浄ノズルが基板の裏面に対して洗浄液を供給する角度が可変に形成されている、ことを特徴とする基板裏面洗浄装置。
In the substrate back surface cleaning apparatus according to claim 11 or 12,
The substrate back surface cleaning apparatus, wherein an angle at which the back surface cleaning nozzle supplies the cleaning liquid to the back surface of the substrate is variably formed.
請求項11又は12に記載の基板裏面洗浄装置において、
上記裏面洗浄ノズルが基板の裏面に洗浄液を供給する位置毎に、上記基板の裏面に対する洗浄液の吐出角度が異なるように形成されている、ことを特徴とする基板裏面洗浄装置。
In the substrate back surface cleaning apparatus according to claim 11 or 12,
The substrate back surface cleaning apparatus, wherein the back surface cleaning nozzle is formed so that a discharge angle of the cleaning liquid with respect to the back surface of the substrate is different at each position where the cleaning liquid is supplied to the back surface of the substrate.
請求項11ないし14のいずれかに記載の基板裏面洗浄装置において、
上記制御部からの信号に基づいて、上記第1の回転数が10〜120rpmに制御され、上記第2の回転数が1000〜3000rpmに制御される、ことを特徴とする基板裏面洗浄装置。
The substrate back surface cleaning apparatus according to any one of claims 11 to 14,
The substrate back surface cleaning apparatus, wherein the first rotation speed is controlled to 10 to 120 rpm and the second rotation speed is controlled to 1000 to 3000 rpm based on a signal from the control unit.
請求項11ないし15のいずれかに記載の基板裏面洗浄装置において、
上記制御部からの信号に基づいて、上記洗浄液吐出工程における吐出時間が2〜5秒に制御され、上記洗浄液振り切り工程における振り切り時間が1秒に制御される、ことを特徴とする基板裏面洗浄装置。
The substrate back surface cleaning apparatus according to any one of claims 11 to 15,
The substrate back surface cleaning apparatus, wherein a discharge time in the cleaning liquid discharge process is controlled to 2 to 5 seconds based on a signal from the control unit, and a swing time in the cleaning liquid swing-off process is controlled to 1 second. .
請求項11ないし16のいずれかに記載の基板裏面洗浄装置において、
上記制御部からの信号に基づいて、上記洗浄液吐出工程と、洗浄液振り切り工程が3回繰り返される、ことを特徴とする基板裏面洗浄装置。
The substrate back surface cleaning apparatus according to any one of claims 11 to 16,
The substrate back surface cleaning apparatus, wherein the cleaning liquid discharge step and the cleaning liquid shaking-off step are repeated three times based on a signal from the control unit.
請求項11,12,15又は16に記載の基板裏面洗浄装置において、
上記裏面洗浄ノズルが基板の裏面に対して洗浄液を供給する角度が可変に形成されると共に、上記制御部からの信号に基づいて、上記洗浄液吐出工程と、洗浄液振り切り工程とが3回繰り返され、上記洗浄液吐出工程における1回目から3回目の上記基板に対する吐出角度を、45°,30°,90°とする、ことを特徴とする基板裏面洗浄装置。
In the substrate back surface cleaning apparatus according to claim 11, 12, 15 or 16,
The angle at which the back surface cleaning nozzle supplies the cleaning liquid to the back surface of the substrate is variably formed, and based on the signal from the control unit, the cleaning liquid discharging step and the cleaning liquid shaking step are repeated three times. A substrate back surface cleaning apparatus, characterized in that discharge angles with respect to the substrate for the first to third times in the cleaning liquid discharging step are 45 °, 30 °, and 90 °.
請求項11ないし18のいずれかに記載の基板裏面洗浄装置において、
上記裏面洗浄ノズルが基板の裏面に対して洗浄液を供給する箇所が基板の径方向に沿って可変に形成されている、ことを特徴とする基板裏面洗浄装置。
The substrate back surface cleaning apparatus according to any one of claims 11 to 18,
The substrate back surface cleaning apparatus, wherein a portion where the back surface cleaning nozzle supplies a cleaning liquid to the back surface of the substrate is variably formed along a radial direction of the substrate.
請求項11ないし18のいずれかに記載の基板裏面洗浄装置において、
上記基板の裏面に対する洗浄液の吐出箇所を基板の径方向に沿って可変に形成されると共に、上記制御部からの信号に基づいて、上記洗浄液吐出工程と、上記洗浄液振り切り工程とを3回繰り返し行い、上記洗浄液吐出工程における1回目から3回目の上記洗浄液の吐出箇所を、基板の外周から75mm,55mm,5mmとする、ことを特徴とする基板裏面洗浄装置。
The substrate back surface cleaning apparatus according to any one of claims 11 to 18,
The cleaning liquid discharge location on the back surface of the substrate is variably formed along the radial direction of the substrate, and the cleaning liquid discharging step and the cleaning liquid shaking step are repeated three times based on a signal from the control unit. A substrate back surface cleaning apparatus, wherein the first to third cleaning liquid discharge locations in the cleaning liquid discharge step are set to 75 mm, 55 mm, and 5 mm from the outer periphery of the substrate.
JP2011215884A 2011-09-30 2011-09-30 Substrate backside cleaning device Active JP5622282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011215884A JP5622282B2 (en) 2011-09-30 2011-09-30 Substrate backside cleaning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011215884A JP5622282B2 (en) 2011-09-30 2011-09-30 Substrate backside cleaning device

Publications (3)

Publication Number Publication Date
JP2013077664A true JP2013077664A (en) 2013-04-25
JP2013077664A5 JP2013077664A5 (en) 2013-11-21
JP5622282B2 JP5622282B2 (en) 2014-11-12

Family

ID=48480929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011215884A Active JP5622282B2 (en) 2011-09-30 2011-09-30 Substrate backside cleaning device

Country Status (1)

Country Link
JP (1) JP5622282B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017098295A (en) * 2015-11-18 2017-06-01 トヨタ自動車株式会社 Manufacturing apparatus and manufacturing method of semiconductor device
JP7512779B2 (en) 2020-09-04 2024-07-09 東京エレクトロン株式会社 Liquid processing method and liquid processing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139007A (en) * 1994-11-04 1996-05-31 Hitachi Ltd Cleaning method and apparatus
JPH11162964A (en) * 1997-11-28 1999-06-18 Seiko Epson Corp Manufacture of semiconductor manufacture device
JP2005311150A (en) * 2004-04-23 2005-11-04 Seiko Epson Corp Spin coater and method of washing rear face of substrate
JP2008218535A (en) * 2007-03-01 2008-09-18 Tokyo Electron Ltd Substrate treatment equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139007A (en) * 1994-11-04 1996-05-31 Hitachi Ltd Cleaning method and apparatus
JPH11162964A (en) * 1997-11-28 1999-06-18 Seiko Epson Corp Manufacture of semiconductor manufacture device
JP2005311150A (en) * 2004-04-23 2005-11-04 Seiko Epson Corp Spin coater and method of washing rear face of substrate
JP2008218535A (en) * 2007-03-01 2008-09-18 Tokyo Electron Ltd Substrate treatment equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017098295A (en) * 2015-11-18 2017-06-01 トヨタ自動車株式会社 Manufacturing apparatus and manufacturing method of semiconductor device
JP7512779B2 (en) 2020-09-04 2024-07-09 東京エレクトロン株式会社 Liquid processing method and liquid processing device

Also Published As

Publication number Publication date
JP5622282B2 (en) 2014-11-12

Similar Documents

Publication Publication Date Title
JP4369325B2 (en) Development device and development processing method
JP4947711B2 (en) Development processing method, development processing program, and computer-readable recording medium recording the program
JP5305331B2 (en) Development processing method and development processing apparatus
JP4464763B2 (en) Developing apparatus and developing method
KR101512642B1 (en) Developing processing method and developing apparatus
JP5797532B2 (en) Development processing method and development processing apparatus using developer containing organic solvent
JP4684858B2 (en) Rinse processing method, development processing method, development processing apparatus, control program, and computer-readable storage medium
JP4900116B2 (en) Development method, development device, and storage medium
JP5212538B2 (en) Development method, development device, and storage medium
JP2012114409A (en) Substrate cleaning method, substrate cleaning apparatus and storage medium for substrate cleaning
JP2010219167A (en) Developing apparatus, developing method, and storage medium
TW201233453A (en) Liquid processing apparatus and liquid processing method
JP3843200B2 (en) Substrate processing apparatus and substrate processing method
JP6049825B2 (en) Development processing method and development processing apparatus using developer containing organic solvent
JP5622282B2 (en) Substrate backside cleaning device
JP4780808B2 (en) Development processing method and development processing apparatus
JP4985188B2 (en) Development method, development device, and storage medium
JP5314723B2 (en) Development device
JP2005259874A (en) Substrate treatment device and substrate treatment method
KR100931853B1 (en) Process unit, and substrate processing apparatus and method having same
TWI849104B (en) Substrate processing method and substrate processing device
JP5225880B2 (en) Development processing method
JP2019079999A (en) Substrate processing apparatus and substrate processing method
JP2002289566A (en) Substrate treating equipment and method therefor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131008

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140918

R150 Certificate of patent or registration of utility model

Ref document number: 5622282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250