JP2013076332A - Hermetic compressor and refrigerating cycle device - Google Patents

Hermetic compressor and refrigerating cycle device Download PDF

Info

Publication number
JP2013076332A
JP2013076332A JP2011215086A JP2011215086A JP2013076332A JP 2013076332 A JP2013076332 A JP 2013076332A JP 2011215086 A JP2011215086 A JP 2011215086A JP 2011215086 A JP2011215086 A JP 2011215086A JP 2013076332 A JP2013076332 A JP 2013076332A
Authority
JP
Japan
Prior art keywords
compression mechanism
lubricating oil
sealed case
hermetic compressor
guided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011215086A
Other languages
Japanese (ja)
Inventor
Mototsugu Kikukawa
元嗣 菊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2011215086A priority Critical patent/JP2013076332A/en
Publication of JP2013076332A publication Critical patent/JP2013076332A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Compressor (AREA)

Abstract

PROBLEM TO BE SOLVED: To lubricate sliding portions of a compression mechanism part by a low-cost and simple structure, and to prevent the occurrence of seizure due to the shortage of lubricating oil guided to the sliding portions.SOLUTION: A hermetic compressor 2 includes a working fluid suction passage 28 for guiding the working fluid in a sealed case 7 to the compression mechanism part 9, and a lubricating oil suction passage one end of which communicates with the working fluid suction passage 28 and the other end of which is immersed in the lubricating oil reserved at the bottom of the sealed case 7. The lubricating oil contained in the working fluid compressed by the compression mechanism part is guided to the compression mechanism part 9 after being separated by an oil separator 3, and lubricates the sliding portions in the compression mechanism part 9. The hermetic compressor 2 includes a control part 15 which makes continue the operation of the compression mechanism part 9 for a second operation time at a second operation frequency higher in frequency than a first operation frequency when the operation of the compression mechanism part 9 continues for a first operation time at an operation frequency of equal to or less than the first operation frequency.

Description

本発明の実施形態は、密閉型圧縮機及びこの密閉型圧縮機を用いた冷凍サイクル装置に関する。   Embodiments described herein relate generally to a hermetic compressor and a refrigeration cycle apparatus using the hermetic compressor.

底部に潤滑油を貯留した密閉ケース内に電動機部とこの電動機部により駆動される圧縮機構部とを収容し、循環するガス冷媒(作動流体)を密閉ケース内に一旦流入させ、密閉ケース内に流入したガス冷媒を圧縮機構部に導いて圧縮する密閉型圧縮機として、例えば、下記特許文献1に記載されたものが知られている。   An electric motor part and a compression mechanism driven by the electric motor part are accommodated in a sealed case storing lubricating oil at the bottom, and a circulating gas refrigerant (working fluid) is once flowed into the sealed case, As a hermetic compressor that introduces and compresses the gas refrigerant that has flowed into the compression mechanism, for example, the one described in Patent Document 1 below is known.

特許文献1に記載された密閉型圧縮機では、圧縮機構部の下部に容積型給油ポンプを設け、この容積型給油ポンプを用いて密閉ケースの底部に貯留された潤滑油を圧縮機構部に供給している。圧縮機構部に供給された潤滑油は圧縮機構部で圧縮されたガス冷媒と共に油分離器に導かれ、油分離器で分離された後に圧縮機構部に導かれ、圧縮機構部内の摺動部分を潤滑する。   In the hermetic compressor described in Patent Document 1, a positive displacement oil pump is provided at the lower portion of the compression mechanism portion, and lubricating oil stored at the bottom of the hermetic case is supplied to the compression mechanism portion using the positive displacement oil pump. doing. The lubricating oil supplied to the compression mechanism is guided to the oil separator together with the gas refrigerant compressed by the compression mechanism, and after being separated by the oil separator, is guided to the compression mechanism. Lubricate.

油分離器で分離された後に圧縮機構部に導かれた潤滑油は、密閉ケース内の圧力に比べて高圧であり、密閉ケース内の圧力と潤滑油の圧力との差圧により摺動部分を通過し、密閉ケース内に排出される。密閉ケース内に排出された潤滑油は、密閉ケース内の底部に貯留される潤滑油の一部となり、再び、容積型給油ポンプを用いて圧縮機構部に供給される。   The lubricating oil guided to the compression mechanism after being separated by the oil separator is higher than the pressure in the sealed case, and the sliding part is caused by the differential pressure between the pressure in the sealed case and the pressure of the lubricating oil. Passes and is discharged into the sealed case. The lubricating oil discharged into the sealed case becomes part of the lubricating oil stored at the bottom of the sealed case, and is supplied again to the compression mechanism using a positive displacement oil pump.

特開2011−58472号公報JP 2011-58472 A

しかしながら、特許文献1に記載された密閉型圧縮機は、容積型給油ポンプを使用しているため、コストが高くなっている。   However, since the hermetic compressor described in Patent Document 1 uses a positive displacement oil pump, the cost is high.

本発明の実施形態の目的は、安価で簡単な構造によって圧縮機構部の摺動部分の潤滑を行うことができ、さらに、摺動部分へ導かれる潤滑油が不足して焼付きが発生することを防止することができる密閉型圧縮機及びこの密閉型圧縮機を用いた冷凍サイクル装置を提供することである。   An object of an embodiment of the present invention is that the sliding portion of the compression mechanism portion can be lubricated by an inexpensive and simple structure, and further, seizure occurs due to insufficient lubricating oil guided to the sliding portion. It is an object of the present invention to provide a hermetic compressor and a refrigeration cycle apparatus using the hermetic compressor.

実施形態の密閉型圧縮機によれば、底部に潤滑油が貯留される密閉ケース内に電動機部とこの電動機部により駆動される圧縮機構部とが収容され、密閉ケース内の空間に導かれる作動流体を圧縮機構部に導く作動流体吸込通路が設けられ、一端が作動流体吸込通路に連通されて他端が密閉ケース内の底部に貯留された潤滑油に浸漬される潤滑油吸込通路が設けられ、圧縮機構部で圧縮された作動流体に含まれる潤滑油が油分離器で分離された後に圧縮機構部に導かれてこの圧縮機構部内の摺動部分を潤滑する密閉型圧縮機において、圧縮機構部の運転が第1運転周波数以下の運転周波数で第1運転時間継続された場合、圧縮機構部の運転を第1運転周波数より周波数が高い第2運転周波数で第2運転時間継続させる制御部が設けられている。   According to the hermetic compressor of the embodiment, the electric motor unit and the compression mechanism unit driven by the electric motor unit are housed in the hermetic case in which lubricating oil is stored in the bottom, and the operation is guided to the space in the hermetic case. A working fluid suction passage is provided to guide the fluid to the compression mechanism, and one end is connected to the working fluid suction passage and the other end is provided with a lubricating oil suction passage immersed in the lubricating oil stored in the bottom of the sealed case. In the hermetic compressor, the lubricating oil contained in the working fluid compressed by the compression mechanism is separated by the oil separator and then guided to the compression mechanism to lubricate the sliding portion in the compression mechanism. When the operation of the part is continued for the first operation time at an operation frequency equal to or lower than the first operation frequency, the control unit for continuing the operation of the compression mechanism unit at the second operation frequency having a frequency higher than the first operation frequency. Is provided.

第1の実施形態の密閉式圧縮機を含む冷凍サイクル装置の概略図である。It is the schematic of the refrigerating-cycle apparatus containing the hermetic compressor of 1st Embodiment. 圧縮機構部の運転周波数とシリンダ室内への潤滑油の吸込量との関係を示すグラフである。It is a graph which shows the relationship between the operating frequency of a compression mechanism part, and the suction | inhalation amount of the lubricating oil in a cylinder chamber. 制御部による運転周波数の制御内容を示すグラフである。It is a graph which shows the control content of the driving frequency by a control part. 第2の実施形態における、摺動部分からの潤滑油の排出量と差圧との関係を示すグラフである。It is a graph which shows the relationship between the discharge | emission amount of the lubricating oil from a sliding part, and differential pressure | voltage in 2nd Embodiment. 制御部による運転周波数の制御内容を示す表である。It is a table | surface which shows the control content of the driving frequency by a control part. 第3実施形態における、制御部による運転周波数の制御内容を示す表である。It is a table | surface which shows the control content of the operating frequency by a control part in 3rd Embodiment.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1の実施形態)
第1の実施形態について、図1ないし図3に基づいて説明する。図1に示すように、冷凍サイクル装置1は、密閉型圧縮機2と、密閉型圧縮機2に接続された油分離器3と、油分離器3に接続された凝縮器4と、凝縮器4に接続された膨張装置5と、膨張装置5と密閉型圧縮機2との間に接続された蒸発器6とを有している。この冷凍サイクル装置1では、作動流体である冷媒が気体状のガス冷媒と液体状の液冷媒とに相変化しながら循環し、ガス冷媒から液冷媒に相変化する過程で放熱され、液冷媒からガス冷媒に相変化する過程で吸熱され、これらの放熱や吸熱を利用して暖房、冷房、加熱、冷却等が行われる。
(First embodiment)
1st Embodiment is described based on FIG. 1 thru | or FIG. As shown in FIG. 1, the refrigeration cycle apparatus 1 includes a hermetic compressor 2, an oil separator 3 connected to the hermetic compressor 2, a condenser 4 connected to the oil separator 3, and a condenser. 4, and an evaporator 6 connected between the expansion device 5 and the hermetic compressor 2. In this refrigeration cycle apparatus 1, the refrigerant that is the working fluid circulates while changing in phase between a gaseous gas refrigerant and a liquid liquid refrigerant, and is dissipated in the process of phase change from the gas refrigerant to the liquid refrigerant. Heat is absorbed during the phase change of the gas refrigerant, and heating, cooling, heating, cooling, and the like are performed using these heat dissipation and heat absorption.

密閉型圧縮機2は、略円筒状に形成された気密状態の密閉ケース7を有し、この密閉ケース7内に電動機部8とガス冷媒を圧縮する圧縮機構部9とが収容されている。密閉ケース7は、円筒の中心を上下方向に向けて設置され、密閉ケース7内の上方側に電動機部8が配置され、その下方に圧縮機構部9が配置されている。密閉ケース7内の底部には、潤滑油が貯留されている。密閉ケース7内の空間は、圧縮機構部9で圧縮される前のガス冷媒で満たされている。   The hermetic compressor 2 has an airtight sealed case 7 formed in a substantially cylindrical shape, and an electric motor part 8 and a compression mechanism part 9 for compressing a gas refrigerant are accommodated in the sealed case 7. The sealed case 7 is installed with the center of the cylinder directed in the vertical direction, the electric motor unit 8 is disposed on the upper side in the sealed case 7, and the compression mechanism unit 9 is disposed below the motor unit 8. Lubricating oil is stored at the bottom of the sealed case 7. The space in the sealed case 7 is filled with the gas refrigerant before being compressed by the compression mechanism unit 9.

電動機部8は、固定子10と回転子11と回転軸12と接続端子部13とを有している。固定子10は円筒状に形成され、密閉ケース7の内周部に焼嵌めや圧入又は溶接等により固定されている。回転子11は、固定子10の内側に回転可能に挿入され、回転子11の中心部に回転軸12が嵌合されている。回転軸12は、圧縮機構部9に設けられた後述する軸受(主軸受22、副軸受23)により回転可能に軸支され、回転軸12と回転子11とが一体に回転する。接続端子部13には、図示しないリード線と、圧縮機構部9の運転周波数を可変させるインバータ14と、インバータ14を駆動させる制御部15とが接続されている。   The electric motor unit 8 includes a stator 10, a rotor 11, a rotation shaft 12, and a connection terminal unit 13. The stator 10 is formed in a cylindrical shape, and is fixed to the inner peripheral portion of the sealed case 7 by shrink fitting, press fitting, welding, or the like. The rotor 11 is rotatably inserted inside the stator 10, and a rotating shaft 12 is fitted to the center of the rotor 11. The rotary shaft 12 is rotatably supported by later-described bearings (main bearing 22 and sub-bearing 23) provided in the compression mechanism unit 9, and the rotary shaft 12 and the rotor 11 rotate integrally. A lead wire (not shown), an inverter 14 that varies the operating frequency of the compression mechanism unit 9, and a control unit 15 that drives the inverter 14 are connected to the connection terminal unit 13.

回転軸12には、この回転軸12の外周側に向けて偏心して張り出した二つの偏心部16、17が形成されている。これらの偏心部16、17は、回転軸12の軸方向に沿って設定寸法離間した位置に形成されるとともに、回転軸12の回転方向に沿って180°離間した位置に形成されている。   The rotating shaft 12 is formed with two eccentric portions 16 and 17 that are eccentrically projected toward the outer peripheral side of the rotating shaft 12. The eccentric parts 16 and 17 are formed at positions spaced apart by a set dimension along the axial direction of the rotary shaft 12 and at positions spaced 180 ° along the rotational direction of the rotary shaft 12.

圧縮機構部9は、低圧のガス冷媒を圧縮して高圧・高温のガス冷媒とする部分であり、上下に配置された一対のシリンダ18、19と、シリンダ18、19の間に配置された上下一対の仕切板20、21と、一方のシリンダ18の上方に配置された主軸受22と、他方のシリンダ19の下方に配置された副軸受23とを有している。   The compression mechanism unit 9 is a part that compresses a low-pressure gas refrigerant into a high-pressure / high-temperature gas refrigerant. The compression mechanism unit 9 is a pair of cylinders 18 and 19 arranged above and below, and an upper and lower arranged between the cylinders 18 and 19. It has a pair of partition plates 20, 21, a main bearing 22 disposed above one cylinder 18, and a sub-bearing 23 disposed below the other cylinder 19.

一方のシリンダ18内には、上端側を主軸受22により閉止されて下端側を仕切板20により閉止されたシリンダ室24が形成されている。他方のシリンダ19内には、上端側を仕切板21により閉止されて下端側を副軸受23により閉止されたシリンダ室25が形成されている。   In one cylinder 18, a cylinder chamber 24 whose upper end side is closed by a main bearing 22 and whose lower end side is closed by a partition plate 20 is formed. In the other cylinder 19 is formed a cylinder chamber 25 whose upper end is closed by a partition plate 21 and whose lower end is closed by a sub-bearing 23.

シリンダ室24、25には回転軸12が挿通され、回転軸12に形成された一方の偏心部16がシリンダ室24内に位置し、回転軸12に形成された他方の偏心部17がシリンダ室25内に位置している。偏心部16にはローラ26が嵌合され、偏心部17にはローラ27が嵌合されている。これらのローラ26、27は、回転軸12の回転に伴い外周部の一部をシリンダ室24、25の内周面に当接させながらシリンダ室24、25内を転動する。   The rotating shaft 12 is inserted into the cylinder chambers 24 and 25, and one eccentric portion 16 formed on the rotating shaft 12 is located in the cylinder chamber 24, and the other eccentric portion 17 formed on the rotating shaft 12 is the cylinder chamber. 25. A roller 26 is fitted to the eccentric part 16, and a roller 27 is fitted to the eccentric part 17. These rollers 26 and 27 roll in the cylinder chambers 24 and 25 while a part of the outer peripheral portion is brought into contact with the inner peripheral surfaces of the cylinder chambers 24 and 25 as the rotary shaft 12 rotates.

さらに、シリンダ室24、25内には、スライド可能にブレード(図示せず)が設けられており、ブレードの先端部がスプリング等の付勢体により付勢されてローラ26、27の外周面に当接されている。シリンダ室24、25の内周面にローラ26、27の外周面の一部が当接され、ローラ26、27の外周面にブレードの先端部が当接されることにより、シリンダ室24、25内はローラ26、26の転動に伴って容積が変動する二つの空間に仕切られている。一方の空間にガス冷媒が流入し、その空間の容積がローラ26、27の転動に伴って小さくなることにより、その空間内のガス冷媒が圧縮される。   Further, a blade (not shown) is slidably provided in the cylinder chambers 24 and 25, and the tip of the blade is urged by an urging body such as a spring to the outer peripheral surfaces of the rollers 26 and 27. It is in contact. A part of the outer peripheral surface of the rollers 26 and 27 is brought into contact with the inner peripheral surface of the cylinder chambers 24 and 25, and the tip of the blade is brought into contact with the outer peripheral surface of the rollers 26 and 27. The interior is partitioned into two spaces whose volumes vary as the rollers 26 and 26 roll. The gas refrigerant flows into one space, and the volume of the space decreases as the rollers 26 and 27 roll, whereby the gas refrigerant in the space is compressed.

シリンダ室24、25と密閉ケース7内の空間との間には、密閉ケース7内の空間のガス冷媒をシリンダ室24、25内に吸込んで導く作動流体吸込通路であるガス冷媒通路28が設けられている。副軸受23とシリンダ19と仕切板20、21とシリンダ18とには、一端がガス冷媒通路28に連通されて他端が密閉ケース7内に貯留された潤滑油に浸漬される潤滑油吸込通路29が形成されている。   Between the cylinder chambers 24 and 25 and the space in the sealed case 7, a gas refrigerant passage 28, which is a working fluid suction passage for sucking and guiding the gas refrigerant in the space in the sealed case 7 into the cylinder chambers 24 and 25, is provided. It has been. The auxiliary bearing 23, the cylinder 19, the partition plates 20, 21, and the cylinder 18 have one end communicating with the gas refrigerant passage 28 and the other end immersed in the lubricating oil stored in the sealed case 7. 29 is formed.

仕切板20、21には、シリンダ室24、25内で圧縮されたガス冷媒が吐出される吐出室30が形成されている。シリンダ室24、25と吐出室30との間には、シリンダ室24、25内のガス冷媒の圧力が所定値に上昇した場合に開弁される吐出弁31が設けられている。吐出室30と油分離器3との間には、シリンダ室24、25で圧縮された後に吐出室30に吐出されたガス冷媒を油分離器3に導く吐出管32が接続されている。油分離器3では、シリンダ室24、25で圧縮されたガス冷媒中に含まれる潤滑油が分離される。   The partition plates 20 and 21 are formed with discharge chambers 30 into which gas refrigerant compressed in the cylinder chambers 24 and 25 is discharged. A discharge valve 31 is provided between the cylinder chambers 24 and 25 and the discharge chamber 30 that is opened when the pressure of the gas refrigerant in the cylinder chambers 24 and 25 rises to a predetermined value. Connected between the discharge chamber 30 and the oil separator 3 is a discharge pipe 32 that guides the gas refrigerant discharged to the discharge chamber 30 after being compressed in the cylinder chambers 24 and 25 to the oil separator 3. In the oil separator 3, the lubricating oil contained in the gas refrigerant compressed in the cylinder chambers 24 and 25 is separated.

さらに、仕切板20、21には、油分離器3で分離された潤滑油が導かれる潤滑油戻し室33が形成されている。この潤滑油戻し室33と油分離器3の下部との間には、油分離器3内でガス冷媒中から分離された潤滑油を潤滑油戻し室33に導く油戻し管34が接続されている。油戻し管34を経由して潤滑油戻し室33に導かれた潤滑油は、圧縮機構部9の摺動部分の潤滑に用いられる。   Further, the partition plates 20 and 21 are formed with a lubricant return chamber 33 into which the lubricant separated by the oil separator 3 is guided. An oil return pipe 34 is connected between the lubricating oil return chamber 33 and the lower portion of the oil separator 3 to guide the lubricating oil separated from the gas refrigerant in the oil separator 3 to the lubricating oil return chamber 33. Yes. The lubricating oil guided to the lubricating oil return chamber 33 via the oil return pipe 34 is used for lubricating the sliding portion of the compression mechanism unit 9.

凝縮器4では、油分離器3において潤滑油を分離されたガス冷媒が凝縮され、液冷媒となる。   In the condenser 4, the gas refrigerant from which the lubricating oil has been separated in the oil separator 3 is condensed and becomes a liquid refrigerant.

膨張装置5では、凝縮器4で凝縮された液冷媒が減圧される。   In the expansion device 5, the liquid refrigerant condensed in the condenser 4 is decompressed.

蒸発器6では、膨張装置5で減圧された液冷媒が蒸発し、ガス冷媒となる。   In the evaporator 6, the liquid refrigerant decompressed by the expansion device 5 evaporates and becomes a gas refrigerant.

蒸発器6で蒸発したガス冷媒は、蒸発器6と密閉型圧縮機2とを接続する吸込管35を経由し、密閉ケース7内の空間に導かれる。   The gas refrigerant evaporated in the evaporator 6 is guided to the space in the sealed case 7 via the suction pipe 35 connecting the evaporator 6 and the hermetic compressor 2.

このような構成において、電動機部8が駆動されて回転軸12が回転することにより、密閉ケース7内の空間のガス冷媒がガス冷媒通路28を流れてシリンダ室24、25内に吸込まれ、吸込まれたガス冷媒はシリンダ室24、25で圧縮される。ガス冷媒がガス冷媒通路28を流れる場合、密閉ケース7内の底部に貯留されている潤滑油が潤滑油吸込通路29内を通ってガス冷媒通路28内に吸込まれ、吸込まれた潤滑油はガス冷媒と共にシリンダ室24、25内に吸込まれる。   In such a configuration, when the electric motor unit 8 is driven and the rotating shaft 12 rotates, the gas refrigerant in the space in the sealed case 7 flows through the gas refrigerant passage 28 and is sucked into the cylinder chambers 24 and 25. The diluted gas refrigerant is compressed in the cylinder chambers 24 and 25. When the gas refrigerant flows through the gas refrigerant passage 28, the lubricating oil stored at the bottom in the sealed case 7 is sucked into the gas refrigerant passage 28 through the lubricating oil suction passage 29, and the sucked lubricating oil is gas It is sucked into the cylinder chambers 24 and 25 together with the refrigerant.

シリンダ室24、25内に吸込まれた潤滑油は、シリンダ室24、25内で圧縮されたガス冷媒と共に油分離器3内に導かれ、潤滑油は油分離器3内でガス冷媒から分離される。油分離器3内で分離された潤滑油は高圧であり、この高圧の潤滑油は油戻し管34を通って油戻し室33に導かれ、油戻し室33から圧縮機構部9の摺動部分、例えば、主軸受22や副軸受23と回転軸12との摺動部分の潤滑に用いられる。摺動部分の潤滑に用いられる潤滑油は密閉ケース7内圧力より高圧であり、摺動部分を潤滑する潤滑油は、潤滑油の圧力と密閉ケース7内の圧力との差圧“ΔP(MPa)”により摺動部分を通過して密閉ケース7内の空間に向けて移動し、摺動部分を潤滑した後に密閉ケース7内の空間に排出される。密閉ケース7内の空間に排出された潤滑油は密閉ケース7内の底部に貯留され、潤滑油吸込通路29内を通って再びシリンダ室24、25内に吸込まれる。   The lubricating oil sucked into the cylinder chambers 24 and 25 is guided into the oil separator 3 together with the gas refrigerant compressed in the cylinder chambers 24 and 25, and the lubricating oil is separated from the gas refrigerant in the oil separator 3. The The lubricating oil separated in the oil separator 3 has a high pressure, and the high-pressure lubricating oil is guided to the oil return chamber 33 through the oil return pipe 34, and the sliding portion of the compression mechanism unit 9 from the oil return chamber 33. For example, it is used for lubrication of a sliding portion between the main bearing 22 or the sub bearing 23 and the rotary shaft 12. The lubricating oil used to lubricate the sliding portion is higher than the pressure inside the sealed case 7, and the lubricating oil that lubricates the sliding portion is the differential pressure “ΔP (MPa) between the pressure of the lubricating oil and the pressure inside the sealed case 7. ) ”Passes through the sliding portion and moves toward the space in the sealed case 7, lubricates the sliding portion, and then is discharged into the space in the sealed case 7. The lubricating oil discharged into the space in the sealed case 7 is stored at the bottom of the sealed case 7 and is sucked into the cylinder chambers 24 and 25 again through the lubricating oil suction passage 29.

したがって、一端がガス冷媒通路28に連通されて他端が密閉ケース7内の底部に貯留された潤滑油に浸漬される潤滑油吸込通路29を設けるという簡単で安価な構成により、密閉ケース7内の底部に貯留された潤滑屋を用いて圧縮機構部9の摺動部分を潤滑することができる。   Accordingly, the inside of the sealed case 7 has a simple and inexpensive structure in which one end is connected to the gas refrigerant passage 28 and the other end is provided with the lubricating oil suction passage 29 immersed in the lubricating oil stored in the bottom of the sealed case 7. The sliding portion of the compression mechanism portion 9 can be lubricated using a lubricant store stored at the bottom of the compressor.

ここで、図2は、圧縮機構部9の運転周波数と、潤滑油吸込通路29内を通ってシリンダ室24、25内に吸込まれる潤滑油の吸込量との関係を示すグラフである。圧縮機構部9の運転周波数が上昇すると、シリンダ室24、25内に吸込まれる潤滑油の量は二次関数的に上昇する。これは、圧縮機構部9の運転周波数の上昇に伴い、ガス冷媒通路28を流れるガス冷媒の流速が速くなり、これに伴って潤滑油吸込通路29内を通って吸込まれる潤滑油の量が多くなるためである。   Here, FIG. 2 is a graph showing the relationship between the operating frequency of the compression mechanism section 9 and the amount of lubricating oil sucked into the cylinder chambers 24 and 25 through the lubricating oil suction passage 29. When the operating frequency of the compression mechanism unit 9 increases, the amount of lubricating oil sucked into the cylinder chambers 24 and 25 increases in a quadratic function. This is because the flow rate of the gas refrigerant flowing through the gas refrigerant passage 28 increases as the operating frequency of the compression mechanism 9 increases, and the amount of lubricating oil sucked through the lubricating oil suction passage 29 is increased accordingly. This is because it increases.

このようなことから、圧縮機構部9が低い運転周波数で運転されている場合には、潤滑油吸込通路29内を通ってガス冷媒通路28内に吸込まれ、さらに、シリンダ室24、25内に吸込まれる潤滑油の量が少なくなる。   For this reason, when the compression mechanism 9 is operated at a low operating frequency, it is sucked into the gas refrigerant passage 28 through the lubricating oil suction passage 29 and further into the cylinder chambers 24, 25. The amount of lubricating oil that is sucked is reduced.

シリンダ室24、25内に吸込まれる潤滑油の量が少ないと、圧縮されたガス冷媒と共に油分離器3内に導かれる潤滑油の量が少なくなり、油分離器3内で分離される潤滑油の量が少なくなる。それに伴い、油分離器3内で分離された後に潤滑油戻し室33に導かれる潤滑の量が少なくなるとともに圧縮機構部9の摺動部分に導かれる潤滑油の量が少なくなり、摺動部分で焼付を生じる場合がある。   When the amount of the lubricating oil sucked into the cylinder chambers 24 and 25 is small, the amount of the lubricating oil guided into the oil separator 3 together with the compressed gas refrigerant is reduced, and the lubrication separated in the oil separator 3 is achieved. The amount of oil is reduced. Accordingly, the amount of lubrication guided to the lubricating oil return chamber 33 after being separated in the oil separator 3 is reduced, and the amount of lubricating oil guided to the sliding portion of the compression mechanism portion 9 is reduced. May cause seizure.

そこで、図3に示すように、制御部15により圧縮機構部9の運転周波数の制御を行い、圧縮機構部9の運転が第1運転周波数“X”以下の運転周波数で第1運転時間“T1”継続された場合、第1運転周波数“X”より高い運転周波数である第2運転周波数“Y”で第2運転時間“T2”圧縮機構部9を運転する。これにより、第1運転周波数“X”以下の運転周波数での運転中に潤滑油吸込通路29内を通ってシリンダ室24、25内に吸込まれる潤滑油の量が少ない場合でも、第2運転周波数“Y”での運転中に潤滑油吸込通路29内を通ってシリンダ室24、25内に吸込まれる潤滑油の量を多くすることができ、シリンダ室24、25内から油分離器3内に導かれる潤滑油の量を多くすることができる。したがって、油分離器3内で分離される潤滑油の量を多くすることができ、油分離器3内で分離された後に圧縮機構部9の摺動部分に導かれる潤滑油が不足するという事態の発生を防止することができ、圧縮機構部9の摺動部分が潤滑油の不足により焼付を起こすという事態の発生を防止することができる。   Therefore, as shown in FIG. 3, the control unit 15 controls the operation frequency of the compression mechanism unit 9, and the operation of the compression mechanism unit 9 is performed at a first operation time “T1” at an operation frequency equal to or lower than the first operation frequency “X”. “If continued, the second operating time“ T2 ”compression mechanism unit 9 is operated at a second operating frequency“ Y ”that is higher than the first operating frequency“ X ”. As a result, even when the amount of lubricating oil sucked into the cylinder chambers 24 and 25 through the lubricating oil suction passage 29 during operation at the first operating frequency “X” or less is small, the second operation is performed. During operation at the frequency “Y”, the amount of lubricating oil sucked into the cylinder chambers 24 and 25 through the lubricating oil suction passage 29 can be increased, and the oil separator 3 from the cylinder chambers 24 and 25 can be increased. The amount of lubricating oil introduced into the inside can be increased. Therefore, the amount of lubricating oil separated in the oil separator 3 can be increased, and the lubricating oil guided to the sliding portion of the compression mechanism portion 9 after being separated in the oil separator 3 is insufficient. The occurrence of a situation where the sliding portion of the compression mechanism portion 9 causes seizure due to the lack of lubricating oil can be prevented.

ここで、第1運転周波数“X”、第2運転周波数“Y”、第1運転時間“T1”、第2運転時間“T2”は、密閉型圧縮機2の大きさや性能等に応じて適宜設定される値である。   Here, the first operation frequency “X”, the second operation frequency “Y”, the first operation time “T1”, and the second operation time “T2” are appropriately determined according to the size and performance of the hermetic compressor 2. The value to be set.

(第2の実施形態)
本発明の第2の実施形態を図4及び図5に基づいて説明する。なお、第2の実施形態及びそれ以降の実施形態において、第1の実施形態で説明した構成要素と同じ構成要素には同じ符号を付け、重複する説明は省略する。また、第2の実施形態の密閉型圧縮機2及び冷凍サイクル装置1の外観構成については、図1を援用して説明する。
(Second Embodiment)
A second embodiment of the present invention will be described with reference to FIGS. Note that, in the second embodiment and subsequent embodiments, the same components as those described in the first embodiment are denoted by the same reference numerals, and redundant descriptions are omitted. Moreover, the external configuration of the hermetic compressor 2 and the refrigeration cycle apparatus 1 of the second embodiment will be described with reference to FIG.

圧縮機構部9の摺動部分を潤滑した後に密閉ケース7内の空間に排出される潤滑油の排出量と、油分離器3から導かれて摺動部分を潤滑する潤滑油の圧力と密閉ケース7内の圧力との差圧“ΔP(MPa)”との関係は、図4のグラフに示すようになる。図4のグラフによれば、差圧“ΔP”が大きくなるほど、摺動部分を潤滑した後に密閉ケース7内の空間に排出される潤滑油の量が多くなることがわかる。   The amount of lubricating oil discharged into the space in the sealed case 7 after the sliding portion of the compression mechanism 9 is lubricated, the pressure of the lubricating oil guided from the oil separator 3 to lubricate the sliding portion, and the sealed case The relationship between the pressure difference 7 and the pressure difference “ΔP (MPa)” is as shown in the graph of FIG. According to the graph of FIG. 4, it can be seen that as the differential pressure “ΔP” increases, the amount of lubricating oil discharged into the space in the sealed case 7 after lubricating the sliding portion increases.

そこで、この第2の実施形態の制御部15では、図5の表に示すように、第1運転周波数“X”以下の運転周波数で運転する第1運転時間“T1”を、差圧“ΔP”により変化させる制御が行われる。   Therefore, in the control unit 15 of the second embodiment, as shown in the table of FIG. 5, the first operation time “T1” operated at the operation frequency equal to or lower than the first operation frequency “X” is set to the differential pressure “ΔP”. The control to change is performed.

具体的には、差圧“ΔP”が0〜1未満の場合には、“T1”を15分とし、差圧“ΔP”が1以上〜2未満の場合には、“T1”を10分とし、差圧“ΔP”が2以上の場合には、“T1”を5分としている。   Specifically, when the differential pressure “ΔP” is 0 to less than 1, “T1” is set to 15 minutes, and when the differential pressure “ΔP” is 1 to less than 2, “T1” is set to 10 minutes. When the differential pressure “ΔP” is 2 or more, “T1” is set to 5 minutes.

また、差圧“ΔP”は、凝縮器4の温度を測定する温度センサの測定結果と、蒸発器6の温度を測定する温度センサの測定結果とに基づいて制御部15において推定される。   Further, the differential pressure “ΔP” is estimated by the control unit 15 based on the measurement result of the temperature sensor that measures the temperature of the condenser 4 and the measurement result of the temperature sensor that measures the temperature of the evaporator 6.

このような構成において、第2の実施形態では、差圧“ΔP”に応じて、第1運転周波数“X”以下の運転周波数での第1運転継続時間“T1”を変化させ、差圧“ΔP”が大きくなるにつれて第1運転時間“T1”を短くしている。これにより、差圧“ΔP”が大きくなった場合には、潤滑油吸込通路29内を通ってシリンダ室24、25内への潤滑油の吸込量が少ない第1運転周波数“X”以下の運転周波数で運転される第1運転時間“T1”が短くなり、シリンダ室24、25内への潤滑油の吸込量が多い第2運転周波数“Y”で運転される第2運転時間“T2”の割合が高くなる。このため、差圧“ΔP”が大きいために摺動部分から密閉ケース7内の空間に排出される潤滑油の排出量が多い場合でも、第1運転周波数“X”以下の運転周波数で運転される第1運転時間“T1”を短くすることにより、油分離器3内で分離された後に圧縮機構部9の摺動部分に導かれる潤滑油が不足するという事態の発生を防止することができる。このため、圧縮機構部9の摺動部分が潤滑油の不足により焼付を起こすという事態の発生を防止することができる。   In such a configuration, in the second embodiment, the first operation duration “T1” at the operation frequency equal to or lower than the first operation frequency “X” is changed in accordance with the differential pressure “ΔP” to change the differential pressure “ΔP”. The first operation time “T1” is shortened as ΔP ”increases. As a result, when the differential pressure “ΔP” becomes large, the amount of lubricating oil sucked into the cylinder chambers 24 and 25 through the lubricating oil suction passage 29 is small, and the operation is performed at the first operating frequency “X” or less. The first operation time “T1” operated at the frequency becomes shorter, and the second operation time “T2” operated at the second operation frequency “Y” where the amount of the lubricating oil sucked into the cylinder chambers 24 and 25 is large. The ratio is high. For this reason, even when the amount of lubricating oil discharged from the sliding portion into the space in the sealed case 7 is large because the differential pressure “ΔP” is large, the operation is performed at an operation frequency equal to or lower than the first operation frequency “X”. By shortening the first operating time “T1”, it is possible to prevent occurrence of a situation where the lubricating oil guided to the sliding portion of the compression mechanism portion 9 after being separated in the oil separator 3 is insufficient. . For this reason, it is possible to prevent the sliding portion of the compression mechanism portion 9 from being seized due to lack of lubricating oil.

(第3の実施形態)
本発明の第3の実施形態を図6に基づいて説明する。第3の実施形態では、図6の表に示すように、差圧“ΔP”に応じて、第1運転周波数“X”の値を変化させている。
(Third embodiment)
A third embodiment of the present invention will be described with reference to FIG. In the third embodiment, as shown in the table of FIG. 6, the value of the first operating frequency “X” is changed according to the differential pressure “ΔP”.

具体的には、差圧“ΔP”が0〜1未満の場合には、第1運転周波数を“Xa”とし、差圧“ΔP”が1以上〜2未満の場合には、第1運転周波数を“Xb(但し、Xa<Xb)”とし、差圧“ΔP”が2以上の場合には、第1運転周波数を“Xc(但し、Xb<Xc)”としている。なお、第1運転周波数“Xa”、“Xb”、“Xc”は、密閉型圧縮機2の大きさや性能等に応じて適宜設定される値である。   Specifically, when the differential pressure “ΔP” is 0 to less than 1, the first operating frequency is “Xa”, and when the differential pressure “ΔP” is 1 or more to less than 2, the first operating frequency is set. Is “Xb (where Xa <Xb)” and the differential pressure “ΔP” is 2 or more, the first operating frequency is “Xc (where Xb <Xc)”. The first operating frequencies “Xa”, “Xb”, and “Xc” are values that are appropriately set according to the size and performance of the hermetic compressor 2.

このような構成において、第3の実施形態では、差圧“ΔP”に応じて第1運転周波数を“Xa”、“Xb”、“Xc”と変化させ、差圧“ΔP”が大きくなるにつれて第1運転周波数“X”を高くしている。このため、差圧“ΔP”が大きいために摺動部分から密閉ケース7内の空間に排出される潤滑油の排出量が多い場合でも、潤滑油吸込通路29内を通ってシリンダ室24、25内に吸込まれる潤滑油の量を多くすることができ、シリンダ室24、25内から油分離器3内に導かれる潤滑油の量を多くすることができる。したがって、油分離器3内で分離される潤滑油の量を多くすることができ、油分離器3内で分離された後に圧縮機構部9の摺動部分に導かれる潤滑油が不足するという事態の発生を防止することができる。このため。圧縮機構部9の摺動部分が潤滑油の不足により焼付を起こすという事態の発生を防止することができる。   In such a configuration, in the third embodiment, the first operating frequency is changed to “Xa”, “Xb”, “Xc” according to the differential pressure “ΔP”, and as the differential pressure “ΔP” increases. The first operating frequency “X” is increased. For this reason, even when the amount of lubricating oil discharged from the sliding portion to the space in the sealed case 7 is large because the differential pressure “ΔP” is large, the cylinder chambers 24, 25 pass through the lubricating oil suction passage 29. The amount of lubricating oil sucked into the inside can be increased, and the amount of lubricating oil introduced into the oil separator 3 from the cylinder chambers 24 and 25 can be increased. Therefore, the amount of lubricating oil separated in the oil separator 3 can be increased, and the lubricating oil guided to the sliding portion of the compression mechanism portion 9 after being separated in the oil separator 3 is insufficient. Can be prevented. For this reason. Generation | occurrence | production of the situation where a sliding part of the compression mechanism part 9 raise | generates by the lack of lubricating oil can be prevented.

以上説明した各実施形態によれば、制御部15によって圧縮機構部9の運転周波数を制御し、圧縮機構部9の運転が第1運転周波数“X”以下の運転周波数で第1運転時間“T1”継続された場合、圧縮機構部9の運転を第1運転周波数“X”より周波数が高い第2運転周波数“Y”で第2運転時間“T2”継続させている。これにより、第1運転周波数“X”以下の運転周波数での運転時に潤滑油吸込通路29内を通ってシリンダ室24、25内に吸込まれる潤滑油の量が少ない場合であっても、第2運転周波数“Y”での運転時に潤滑油吸込通路29内を通ってシリンダ室24、25内に吸込まれる潤滑油の量を多くすることができ、シリンダ室24、25から油分離器3内に導かれる潤滑油の量を多くすることができる。したがって、一端がガス冷媒通路28に連通されて他端が密閉ケース7内の底部に貯留された潤滑油に浸漬される潤滑油吸込通路29を設けるという簡単で安価な構成であっても、圧縮機構部の摺動部分に導かれる潤滑油が不足するという事態の発生を防止することができ、圧縮機構部9の摺動部分が潤滑油不足により焼付を起こすという事態の発生を防止することができる。   According to each embodiment described above, the operation frequency of the compression mechanism unit 9 is controlled by the control unit 15, and the first operation time “T1” is operated at an operation frequency equal to or lower than the first operation frequency “X”. When the operation is continued, the operation of the compression mechanism unit 9 is continued for the second operation time “T2” at the second operation frequency “Y”, which is higher than the first operation frequency “X”. As a result, even when the amount of lubricating oil sucked into the cylinder chambers 24 and 25 through the lubricating oil suction passage 29 during operation at the operating frequency equal to or lower than the first operating frequency “X” is small, The amount of lubricating oil sucked into the cylinder chambers 24 and 25 through the lubricating oil suction passage 29 during operation at the two operating frequency “Y” can be increased, and the oil separator 3 from the cylinder chambers 24 and 25 can be increased. The amount of lubricating oil introduced into the inside can be increased. Therefore, even if it is a simple and inexpensive configuration in which one end is in communication with the gas refrigerant passage 28 and the other end is provided with a lubricating oil suction passage 29 that is immersed in the lubricating oil stored in the bottom of the sealed case 7, The occurrence of a situation where the lubricating oil guided to the sliding portion of the mechanism portion is insufficient can be prevented, and the occurrence of a situation where the sliding portion of the compression mechanism portion 9 is seized due to the lack of the lubricating oil can be prevented. it can.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、様々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…冷凍サイクル装置、2…密閉型圧縮機、3…油分離器、4…凝縮器、5…膨張装置、6…蒸発器、7…密閉ケース、8…電動機部、9…圧縮機構部、15…制御部、28…ガス冷媒通路(作動流体吸込通路)、29…潤滑油吸込通路
DESCRIPTION OF SYMBOLS 1 ... Refrigeration cycle apparatus, 2 ... Sealed compressor, 3 ... Oil separator, 4 ... Condenser, 5 ... Expansion device, 6 ... Evaporator, 7 ... Sealed case, 8 ... Electric motor part, 9 ... Compression mechanism part, DESCRIPTION OF SYMBOLS 15 ... Control part, 28 ... Gas refrigerant path (working fluid suction path), 29 ... Lubricating oil suction path

Claims (4)

底部に潤滑油が貯留される密閉ケース内に電動機部とこの電動機部により駆動される圧縮機構部とが収容され、前記密閉ケース内の空間に導かれる作動流体を前記圧縮機構部に導く作動流体吸込通路が設けられ、一端が前記作動流体吸込通路に連通されて他端が前記密閉ケース内の底部に貯留された潤滑油に浸漬される潤滑油吸込通路が設けられ、前記圧縮機構部で圧縮された作動流体に含まれる潤滑油が油分離器で分離された後に前記圧縮機構部に導かれてこの圧縮機構部内の摺動部分を潤滑する密閉型圧縮機において、
前記圧縮機構部の運転が第1運転周波数以下の運転周波数で第1運転時間継続された場合、前記圧縮機構部の運転を前記第1運転周波数より周波数が高い第2運転周波数で第2運転時間継続させる制御部が設けられていることを特徴とする密閉型圧縮機。
A working fluid in which a motor part and a compression mechanism driven by the motor part are housed in a sealed case in which lubricating oil is stored at the bottom, and a working fluid guided to a space in the sealed case is guided to the compression mechanism part A suction passage is provided, one end is connected to the working fluid suction passage, and the other end is provided with a lubricant suction passage immersed in the lubricant stored in the bottom of the sealed case, and compressed by the compression mechanism. In a hermetic compressor in which the lubricating oil contained in the working fluid is separated by an oil separator and guided to the compression mechanism unit to lubricate the sliding portion in the compression mechanism unit.
When the operation of the compression mechanism unit is continued for a first operation time at an operation frequency equal to or lower than the first operation frequency, the operation of the compression mechanism unit is performed for a second operation time at a second operation frequency higher than the first operation frequency. A hermetic compressor provided with a control unit for continuing.
前記制御部は、前記密閉ケース内の圧力と前記油分離器で分離されて前記圧縮機構部に導かれる潤滑油の圧力との差圧に基づいて前記第1運転時間を変化させ、前記差圧が大きくなるにつれて前記第1運転時間を短くすることを特徴とする請求項1記載の密閉型圧縮機。   The control unit changes the first operating time based on a differential pressure between a pressure in the sealed case and a pressure of lubricating oil separated by the oil separator and guided to the compression mechanism, and the differential pressure 2. The hermetic compressor according to claim 1, wherein the first operation time is shortened as the value increases. 前記制御部は、前記密閉ケース内の圧力と前記油分離器で分離されて前記圧縮機構部に導かれる潤滑油の圧力との差圧に基づいて前記第1運転周波数を変化させ、前記差圧が大きくなるにつれて前記第1運転周波数を高くすることを特徴とする請求項1記載の密閉型圧縮機。   The control unit changes the first operating frequency based on a differential pressure between a pressure in the sealed case and a pressure of lubricating oil separated by the oil separator and guided to the compression mechanism unit, and the differential pressure 2. The hermetic compressor according to claim 1, wherein the first operating frequency is increased as the value increases. 請求項1ないし3のいずれか一項に記載の密閉型圧縮機と、前記密閉型圧縮機に接続される凝縮器と、前記凝縮器に接続される膨張装置と、前記膨張装置と前記密閉型圧縮機との間に接続される蒸発器とを備えた冷凍サイクル装置。
The hermetic compressor according to any one of claims 1 to 3, a condenser connected to the hermetic compressor, an expansion device connected to the condenser, the expansion device and the hermetic type A refrigeration cycle apparatus including an evaporator connected to a compressor.
JP2011215086A 2011-09-29 2011-09-29 Hermetic compressor and refrigerating cycle device Withdrawn JP2013076332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011215086A JP2013076332A (en) 2011-09-29 2011-09-29 Hermetic compressor and refrigerating cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011215086A JP2013076332A (en) 2011-09-29 2011-09-29 Hermetic compressor and refrigerating cycle device

Publications (1)

Publication Number Publication Date
JP2013076332A true JP2013076332A (en) 2013-04-25

Family

ID=48479974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011215086A Withdrawn JP2013076332A (en) 2011-09-29 2011-09-29 Hermetic compressor and refrigerating cycle device

Country Status (1)

Country Link
JP (1) JP2013076332A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016173079A (en) * 2015-03-17 2016-09-29 株式会社富士通ゼネラル Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016173079A (en) * 2015-03-17 2016-09-29 株式会社富士通ゼネラル Air conditioner

Similar Documents

Publication Publication Date Title
US20150030487A1 (en) Compressor
WO2013047307A1 (en) Hermetically closed compressor and refrigeration cycle device
JP6022375B2 (en) Scroll compressor
US10233930B2 (en) Rotary compressor having two cylinders
JPWO2018096825A1 (en) Compressor with injection function
JP5905005B2 (en) Multi-cylinder rotary compressor and refrigeration cycle apparatus
JP2013108389A (en) Compressor and refrigerating device
JP2014034940A (en) Rotary compressor and refrigeration cycle device
JP5433604B2 (en) Scroll compressor
JP2010031785A (en) Refrigerant compressor
JP2011058431A (en) Hermetic rotary compressor and refrigerating cycle device
JP5991958B2 (en) Rotary compressor
JP2013076332A (en) Hermetic compressor and refrigerating cycle device
JP6176782B2 (en) Multistage compressor and refrigeration cycle apparatus
JP2013137002A (en) Scroll compressor
JP2011163142A (en) Hermetic compressor and refrigeration cycle device
JP2012036862A (en) Hermetically-sealed compressor, and refrigerating cycle apparatus
JP2016037865A (en) Hermetic type compressor and refrigeration cycle device
JP6078393B2 (en) Rotary compressor, refrigeration cycle equipment
JP2016176458A (en) Compressor
KR101528646B1 (en) 2-stage rotary compressor
JP2004225578A (en) Rotary compressor
JP6619655B2 (en) Compressor and refrigeration cycle apparatus
JP2006161818A (en) Scroll compressor
JP2013076325A (en) Hermetic compressor, and refrigerating cycle device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202