JP2013075138A - Elastic net-like structure excellent in stillness and hardness - Google Patents

Elastic net-like structure excellent in stillness and hardness Download PDF

Info

Publication number
JP2013075138A
JP2013075138A JP2012060057A JP2012060057A JP2013075138A JP 2013075138 A JP2013075138 A JP 2013075138A JP 2012060057 A JP2012060057 A JP 2012060057A JP 2012060057 A JP2012060057 A JP 2012060057A JP 2013075138 A JP2013075138 A JP 2013075138A
Authority
JP
Japan
Prior art keywords
network structure
polyester
thermoplastic elastomer
continuous linear
structure according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012060057A
Other languages
Japanese (ja)
Other versions
JP6115015B2 (en
Inventor
Hiroyuki Wakui
洋行 涌井
Masahiko Nakamori
雅彦 中森
Kazunori Kinami
万紀 木南
Yoko Komatsu
陽子 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2012060057A priority Critical patent/JP6115015B2/en
Publication of JP2013075138A publication Critical patent/JP2013075138A/en
Application granted granted Critical
Publication of JP6115015B2 publication Critical patent/JP6115015B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Mattresses And Other Support Structures For Chairs And Beds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an elastic net-like structure excellent in the cushionability with reduced noise when the structure is compressed or recovered.SOLUTION: The net-like structure is formed of a three-dimensional random loop joint structure formed by forming random loops with winding continuous linear bodies of 100-100,000 decitex, bringing the respective loops in a fused state into contact with each other, and fusing most of the contact parts. Tanδ of the continuous linear body at the temperature of 23°C measured by a dynamic viscoelasticity measuring device is at least 0.10, and the hardness of the three-dimensional random loop joint structure when compressed by 25% is at least 10 kg/Φ200 mm.

Description

本発明は、連続線状体の三次元ランダムループ接合構造体からなる弾性網状構造体に関する。   The present invention relates to an elastic network structure composed of a continuous linear three-dimensional random loop joint structure.

ポリエステル系共重合熱可塑性弾性樹脂からなる連続線状体を曲がりくねらせランダムループを形成し、夫々のループを互いに溶融状態で接触せしめて、接触部の大部分を融着させてなる三次元ランダムループ接合構造体が提案されている(特許文献1)。しかしながら、圧縮時および回復時にランダムループ同士がこすれたような音やランダムループ同士がはじけたような音がするため、寝具に用いた場合、うるさくて寝づらいという問題がある。   A three-dimensional random structure in which a continuous linear body made of polyester copolymer thermoplastic elastic resin is twisted to form a random loop, and the respective loops are brought into contact with each other in a molten state, and most of the contact portion is fused. A loop joint structure has been proposed (Patent Document 1). However, there is a problem that when used for bedding, there is a problem that it is loud and difficult to sleep because a sound such that the random loops are rubbed at the time of compression and recovery or a sound that the random loops are repelled.

これに対し、ポリエステル共重合体からなる繊度が300デシテックス以上の連続線状体を曲がりくねらせランダムループを形成し、夫々のループを互いに溶融状態で接触せしめて、接触部の大部分を融着させてなる三次元ランダムループ接合構造体のランダムループ表面にポリエステル系樹脂を付着させたクッション材が提案されている(特許文献2)。圧縮時および回復時にランダムループ同士がこすれたような音は低減されているものの、ランダムループ同士がはじけたような音は依然として鳴っており、静粛性の観点で改善の余地はあった。また、ランダムループ表面にポリエステル系樹脂を付着させる工程は三次元ランダムループ接合構造体とは別工程であり、なおかつバッチ処方であるので、製造の点で問題があった。 In contrast, a continuous linear body having a fineness of 300 dtex or more made of a polyester copolymer is twisted to form a random loop, and the respective loops are brought into contact with each other in a molten state, and most of the contact portion is fused. A cushioning material has been proposed in which a polyester resin is adhered to the surface of a random loop of a three-dimensional random loop joint structure formed (Patent Document 2). Although the sound of rubbing between random loops during compression and recovery was reduced, the sound of rubbing between random loops was still sounding, and there was room for improvement in terms of quietness. Further, the process of attaching the polyester-based resin to the surface of the random loop is a separate process from the three-dimensional random loop bonded structure, and has a problem in terms of manufacturing because it is a batch formulation.

特開平7−68061号公報JP 7-68061 A 特開2010−43376号公報JP 2010-43376 A

本発明は、クッション性に優れ、且つ圧縮時および回復時の音を低減した弾性網状構造体を提供することを目的とする。   An object of the present invention is to provide an elastic network structure having excellent cushioning properties and reduced sound during compression and recovery.

本発明者らは、振動減衰性の高い連続線状体からなる三次元ランダムループ接合構造体であれば、はじける音やこすれる音のような圧縮時および回復時の音が低減された網状構造体となることを見出した。しかしながら、振動減衰性を高めることは弾性の減少と比例し、いわゆる柔らかい網状構造体となって、クッション性が損なわれる結果となった。   If the present inventors are a three-dimensional random loop junction structure composed of a continuous linear body having high vibration damping properties, a network structure with reduced sound during compression and recovery such as repelling sound and rubbing sound I found out that However, increasing the vibration damping property is proportional to the decrease in elasticity, resulting in a so-called soft network structure, resulting in a loss of cushioning properties.

そこで、本発明者らが更に鋭意検討した結果、弾性を確保しつつ、圧縮時および回復時に発生する音が低減された網状構造体を見出し、本発明に至った。 Thus, as a result of further intensive studies by the present inventors, a net-like structure having reduced sound generated during compression and recovery while ensuring elasticity was found, and the present invention was achieved.

すなわち、本発明は、以下の構成からなる。
(項1)
100〜100000デシテックスの連続線状体を曲がりくねらせランダムループを形成し、夫々のループを互いに溶融状態で接触せしめて、接触部の大部分を融着させてなる三次元ランダムループ接合構造体からなる網状構造体であって、連続線状体の動的粘弾性測定装置を用いて測定した23℃でのTanδが0.10以上であり、かつ、三次元ランダムループ接合構造体の25%圧縮時硬さが10kg/Φ200mm以上である、網状構造体。
(項2)
連続線状体が異なる2種以上の熱可塑性エラストマーの混合体で構成されていることを特徴とする、項1に記載の網状構造体
(項3)
異なる2種以上の熱可塑性エラストマーのうち少なくとも1種がポリエステル系熱可塑性エラストマーである、項1又は2に記載の網状構造体。
(項4)
ポリエステル系熱可塑性エラストマーがポリエステルエーテルブロック共重合体又はポリエステルエステルブロック共重合体である、項3に記載の網状構造体。
(項5)
異なる2種以上の熱可塑性エラストマーのうち少なくとも1種がポリエステル系熱可塑性エラストマーであり、かつ少なくとも1種がポリスチレン系熱可塑性エラストマーである、項3又は4に記載の網状構造体。
(項6)
ポリスチレン系熱可塑性エラストマーが、スチレン‐ブタジエンランダム共重合体、スチレン‐イソプレンランダム共重合体、及びこれらの水素添加共重合体からなる群より選択される少なくとも1種である、項5に記載の網状構造体。
(項7)
連続線状体が中空断面である項1〜6のいずれかに記載の網状構造体。
(項8)
連続線状体が異形断面である項1〜6のいずれかに記載の網状構造体。
That is, this invention consists of the following structures.
(Claim 1)
From a three-dimensional random loop bonded structure formed by winding a continuous linear body of 100 to 100,000 decitex to form a random loop, bringing the respective loops into contact with each other in a molten state, and fusing most of the contact portions The tan δ at 23 ° C. measured using a continuous linear dynamic viscoelasticity measuring apparatus is 0.10 or more, and the three-dimensional random loop bonded structure is compressed by 25%. A network structure having an hour hardness of 10 kg / Φ200 mm or more.
(Section 2)
Item 2. The network structure according to Item 1, wherein the continuous linear material is composed of a mixture of two or more different thermoplastic elastomers (Item 3).
Item 3. The network structure according to Item 1 or 2, wherein at least one of two or more different thermoplastic elastomers is a polyester-based thermoplastic elastomer.
(Claim 4)
Item 4. The network structure according to Item 3, wherein the polyester-based thermoplastic elastomer is a polyester ether block copolymer or a polyester ester block copolymer.
(Section 5)
Item 5. The network structure according to Item 3 or 4, wherein at least one of two or more different thermoplastic elastomers is a polyester-based thermoplastic elastomer, and at least one is a polystyrene-based thermoplastic elastomer.
(Claim 6)
Item 6. The network according to Item 5, wherein the polystyrene-based thermoplastic elastomer is at least one selected from the group consisting of a styrene-butadiene random copolymer, a styrene-isoprene random copolymer, and a hydrogenated copolymer thereof. Structure.
(Claim 7)
Item 7. The network structure according to any one of Items 1 to 6, wherein the continuous linear body has a hollow cross section.
(Section 8)
Item 7. The network structure according to any one of Items 1 to 6, wherein the continuous linear body has an irregular cross section.

従前の網状構造体はランダムループ同士がこすれたような音やランダムループ同士がはじけるような音が圧縮時や圧縮回復時に発生していたが、本発明の網状構造体は、それらの音を大幅に低減しつつ、圧縮時の弾性を従前の網状構造体と同レベルに保つ点で優れた効果を有する。 In the conventional network structure, the sound of rubbing between random loops and the sound of repelling random loops were generated during compression and recovery, but the network structure of the present invention greatly reduces the noise. It has an excellent effect in that the elasticity at the time of compression is kept at the same level as that of the conventional network structure.

本発明の網状構造体は、繊度が100〜100000デシテックスの連続した線条(本明細書では、「連続線状体」ということがある。)を曲がりくねらせ、該線条同士を接触させ、接触部を融着して3次元網状構造を形成している。このことで、非常に大きい応力で、大変形を与えても、融着一体化した三次元ランダムループからなる網状構造全体が変形して応力を吸収し、応力が解除されると熱可塑性エラストマーのゴム弾性が発現して、構造体は元の形態に回復することができる。なお、本発明の網状構造体を形成する線状の繊度は100〜100000デシテックスであることが好ましい。100デシテックス以下では抗圧縮強力が低くなり反発力が低下するので好ましくない。100000デシテックス以上では線状体の個々の抗圧縮性は大きいが、構成本数が少なくなるため力の分散が悪くなる。そのため、100kg/cm2 以上の著しく大きい圧縮力を受けた場合に、応力集中によるへたり(圧縮永久歪み)が発生し、使用部分が制限される場合がある。より好ましくは300〜50000デシテックスであり、更に好ましくは500〜30000デシテックスである。なお、本発明において、単一繊度の線条からなる連続線状体だけでなく、繊度の異なる線条を使用し、見掛け密度との組合せで最適な構成とすることもできる。 The network structure of the present invention comprises a continuous filament having a fineness of 100 to 100,000 dtex (in this specification, sometimes referred to as “continuous filament”), and the filaments are brought into contact with each other, The contact portion is fused to form a three-dimensional network structure. As a result, even when a large deformation is caused by a very large stress, the entire network structure composed of the fused three-dimensional random loop is deformed to absorb the stress, and when the stress is released, the thermoplastic elastomer Rubber elasticity develops and the structure can recover to its original form. In addition, it is preferable that the linear fineness which forms the network structure of this invention is 100-100000 decitex. Less than 100 dtex is not preferable because the anti-compression strength is lowered and the repulsive force is lowered. Above 100,000 decitex, the individual bodies have a large anti-compressibility, but the number of components decreases, so that the dispersion of force is worsened. Therefore, when a remarkably large compressive force of 100 kg / cm @ 2 or more is applied, a sag due to stress concentration (compression set) may occur, and the use portion may be limited. More preferably, it is 300-50000 decitex, More preferably, it is 500-30000 decitex. In the present invention, not only a continuous linear body composed of single fine filaments but also filaments having different finenesses can be used to obtain an optimum configuration in combination with the apparent density.

本発明の網状構造体を形成する連続線状体は、動的粘弾性測定装置を用いて測定した23℃でのTanδが0.10以上であることが好ましい。Tanδ(タンジェント・デルタ)とは、動的粘弾性測定装置を用いて測定した損失弾性率E”と貯蔵弾性率E’との比E”/E’であり、数値が高い程、振動減衰性が高くなり、振動音の低減効果が高くなる。23℃でのTanδが0.10未満では、網状構造体を圧縮もしくは回復した時のランダムループのはじけによる振動音が充分に低減できず、好ましくない。より好ましくは0.12以上、更に好ましくは0.15以上である。また、特に好ましくは、動的粘弾性測定装置を用いて測定したTanδが、0℃〜23℃の範囲全てにおいて0.10以上を満たしていることである。これにより、広範の温度域で静粛性を保つことができる。一方、上限は特に規定されないが、好ましくは1.0以下、より好ましくは0.8以下、特に好ましくは0.5以下である。1.0以上であると、クッション性の観点から好ましくない。 The continuous linear body forming the network structure of the present invention preferably has a Tan δ at 23 ° C. of 0.10 or more measured using a dynamic viscoelasticity measuring apparatus. Tanδ (tangent delta) is a ratio E ″ / E ′ of loss elastic modulus E ″ and storage elastic modulus E ′ measured using a dynamic viscoelasticity measuring device. Increases, and the effect of reducing vibration noise increases. If Tan δ at 23 ° C. is less than 0.10, vibration noise due to the random loop bounce when the network structure is compressed or recovered cannot be sufficiently reduced, which is not preferable. More preferably, it is 0.12 or more, More preferably, it is 0.15 or more. Moreover, it is particularly preferable that Tan δ measured using a dynamic viscoelasticity measuring device satisfies 0.10 or more in the entire range of 0 ° C to 23 ° C. Thereby, silence can be maintained in a wide temperature range. On the other hand, the upper limit is not particularly defined, but is preferably 1.0 or less, more preferably 0.8 or less, and particularly preferably 0.5 or less. If it is 1.0 or more, it is not preferable from the viewpoint of cushioning properties.

本発明の網状構造体の25%圧縮時硬さは、10kg/Φ200mm以上であることが好ましい。25%圧縮時硬さとは、網状構造体をΦ200mm径の円形状の圧縮板にて75%まで圧縮して得た応力−歪み曲線の25%圧縮時の応力である。25%圧縮時硬さが10kg/Φ200mmより小さいと、充分な弾発力を得ることができず、快適なクッション性が損なわれてしまう。より好ましくは、15kg/Φ200mm以上、特に好ましくは20kg/Φ200mm以上である。上限は特に規定されないが、好ましくは50kg/Φ200mm以下、より好ましくは45kg/Φ200mm以下、特に好ましくは40kg/Φ200mm以下である。50kg/Φ200mm以上であると硬くなりすぎ、クッション性の観点から好ましくない。 The 25% compression hardness of the network structure of the present invention is preferably 10 kg / Φ200 mm or more. The hardness at 25% compression is the stress at the time of 25% compression of the stress-strain curve obtained by compressing the network structure to 75% with a circular compression plate having a diameter of 200 mm. If the hardness at 25% compression is less than 10 kg / Φ200 mm, sufficient elasticity cannot be obtained, and comfortable cushioning properties are impaired. More preferably, it is 15 kg / Φ200 mm or more, and particularly preferably 20 kg / Φ200 mm or more. The upper limit is not particularly defined, but is preferably 50 kg / Φ200 mm or less, more preferably 45 kg / Φ200 mm or less, and particularly preferably 40 kg / Φ200 mm or less. If it is 50 kg / Φ200 mm or more, it becomes too hard, which is not preferable from the viewpoint of cushioning properties.

本発明の網状構造体を構成する連続線条体の樹脂部分は、クッション性と静粛性の両立という観点から、熱可塑性エラストマーで構成されていることが好ましい。熱可塑性エラストマーとしては、ポリエステル系熱可塑性エラストマー、スチレン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマーなどが例示できる。 The resin portion of the continuous filaments constituting the network structure of the present invention is preferably composed of a thermoplastic elastomer from the viewpoint of both cushioning properties and quietness. Examples of the thermoplastic elastomer include polyester-based thermoplastic elastomers, styrene-based thermoplastic elastomers, polyolefin-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, and the like.

ポリエステル系熱可塑性エラストマーとしては、熱可塑性ポリエステルをハードセグメントとし、ポリアルキレンジオールをソフトセグメントとするポリエステルエーテルブロック共重合体、または脂肪族ポリエステルをソフトセグメントとするポリエステルエステルブロック共重合体が例示できる。ポリエステルエーテルブロック共重合体のより具体的な構成としては、テレフタル酸、イソフタル酸、ナフタレン−2,6−ジカルボン酸、ナフタレン−2,7−ジカルボン酸、ジフェニル−4,4’−ジカルボン酸等の芳香族ジカルボン酸、1・4シクロヘキサンジカルボン酸等の脂環族ジカルボン酸、コハク酸、アジピン酸、セバチン酸ダイマ−酸等の脂肪族ジカルボン酸または、これらのエステル形成性誘導体などから選ばれたジカルボン酸の少なくとも1種と、1・4ブタンジオール、エチレングリコール、トリメチレングリコール、テトラメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール等の脂肪族ジオール、1・1シクロヘキサンジメタノール、1・4シクロヘキサンジメタノール等の脂環族ジオール、またはこれらのエステル形成性誘導体などから選ばれたジオール成分の少なくとも1種、および平均分子量が約300〜5000のポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、またはエチレンオキシド−プロピレンオキシド共重合体などから選ばれたポリアルキレンジオールのうち少なくとも1種から構成される三元ブロック共重合体である。ポリエステルエステルブロック共重合体としては、上記ジカルボン酸とジオール及び平均分子量が約300〜5000のポリラクトン等のポリエステルジオールのうち少なくとも1種から構成される三元ブロック共重合体が例示される。熱接着性、耐加水分解性、伸縮性、耐熱性等を考慮すると、好ましくは、(1)ジカルボン酸としてテレフタル酸または/およびイソフタル酸、ジオ−ル成分として1・4ブタンジオール、ポリアルキレンジオールとしてポリテトラメチレングリコールからなる3元ブロック共重合体、および(2)ジカルボン酸としてテレフタル酸または/およびナフタレン−2・6−ジカルボン酸、ジオ−ル成分として1・4ブタンジオール、ポリエステルジオールとしてポリラクトンからなる3元ブロック共重合体である。特に好ましくは、(1)ジカルボン酸としてテレフタル酸または/およびイソフタル酸、ジオ−ル成分として1・4ブタンジオール、ポリアルキレンジオールとしてポリテトラメチレングリコールからなる3元ブロック共重合体である。特殊な例では、ポリシロキサン系のソフトセグメントを導入したものも使うことができる。 Examples of the polyester-based thermoplastic elastomer include a polyester ether block copolymer having a thermoplastic polyester as a hard segment and a polyalkylene diol as a soft segment, or a polyester ester block copolymer having an aliphatic polyester as a soft segment. More specific configurations of the polyester ether block copolymer include terephthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, diphenyl-4,4′-dicarboxylic acid, and the like. Dicarboxylic acids selected from aromatic dicarboxylic acids, alicyclic dicarboxylic acids such as 1,4 cyclohexane dicarboxylic acid, aliphatic dicarboxylic acids such as succinic acid, adipic acid, and sebacic acid dimer acid, or ester-forming derivatives thereof. At least one kind of acid and aliphatic diols such as 1,4 butanediol, ethylene glycol, trimethylene glycol, tetramethylene glycol, pentamethylene glycol, hexamethylene glycol, 1,1 cyclohexanedimethanol, 1,4 cyclohexanedimethanol Alicyclic dio such as Or at least one diol component selected from these ester-forming derivatives and the like, and polyethylene glycol, polypropylene glycol, polytetramethylene glycol, or ethylene oxide-propylene oxide copolymer having an average molecular weight of about 300 to 5000 It is a ternary block copolymer composed of at least one selected polyalkylenediol. Examples of the polyester ester block copolymer include a ternary block copolymer composed of at least one of the dicarboxylic acid, a diol, and a polyester diol such as a polylactone having an average molecular weight of about 300 to 5000. In consideration of thermal adhesiveness, hydrolysis resistance, stretchability, heat resistance, etc., (1) terephthalic acid or / and isophthalic acid as dicarboxylic acid, 1.4 butanediol, polyalkylenediol as diol component Terephthalic acid or / and naphthalene-2 · 6-dicarboxylic acid as a dicarboxylic acid, 1.4 butanediol as a diol component, and polylactone as a polyester diol A ternary block copolymer consisting of Particularly preferred is (1) a ternary block copolymer comprising terephthalic acid or / and isophthalic acid as the dicarboxylic acid, 1.4 butanediol as the diol component, and polytetramethylene glycol as the polyalkylenediol. As a special example, a polysiloxane-based soft segment can be used.

スチレン系熱可塑性エラストマーとしては、スチレン−ブタジエンランダム共重合体やスチレン−イソプレンランダム共重合体、あるいはそれらを水素添加したスチレン系熱可塑性エラストマーなどが例示できる。 Examples of the styrene thermoplastic elastomer include styrene-butadiene random copolymers, styrene-isoprene random copolymers, and styrene thermoplastic elastomers obtained by hydrogenating them.

ポリオレフィン系熱可塑性エラストマーとしては、エチレン−プロピレンランダム共重合体やエチレン−イソプレンランダム共重合体などが例示できる。 Examples of the polyolefin-based thermoplastic elastomer include an ethylene-propylene random copolymer and an ethylene-isoprene random copolymer.

ポリアミド系エラストマーとしては、ハードセグメントにナイロン6、ナイロン66、ナイロン610、ナイロン612、ナイロン11、ナイロン12等およびそれらの共重合ナイロンを骨格とし、ソフトセグメントには、平均分子量が約300〜5000のポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、エチレンオキシド−プロピレンオキシド共重合体等のポリアルキレンジオールのうち少なくとも1種から構成されるブロック共重合体を単独または2種類以上混合して用いたものが例示される。更には、非エラストマー成分をブレンドされたもの、共重合したもの等も本発明に使用できる。 As the polyamide-based elastomer, the hard segment has nylon 6, nylon 66, nylon 610, nylon 612, nylon 11, nylon 12, etc. and their copolymer nylon as a skeleton, and the soft segment has an average molecular weight of about 300 to 5,000. Examples include those using block copolymers composed of at least one of polyalkylene diols such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, ethylene oxide-propylene oxide copolymer, alone or in admixture of two or more. Is done. Further, blended or copolymerized non-elastomeric components can be used in the present invention.

ポリウレタン系エラストマーとしては、通常の溶媒(ジメチルホルムアミド、ジメチルアセトアミド等)の存在または不存在下に、(A)数平均分子量1000〜6000の末端に水酸基を有するポリエーテル及び又はポリエステルと(B)有機ジイソシアネートを主成分とするポリイソシアネートを反応させた両末端がイソシアネート基であるプレポリマーに、(C)ジアミンを主成分とするポリアミンにより鎖延長したポリウレタンエラストマーを代表例として例示できる。(A)のポリエステル、ポリエーテル類としては、平均分子量が約1000〜6000、好ましくは1300〜5000のポリブチレンアジペート共重合ポリエステルやポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、エチレンオキシド−プロピレンオキシド共重合体等のポリアルキレンジオールが好ましい。(B)のポリイソシアネートとしては、従来公知のポリイソシアネートを用いることができるが、ジフェニルメタン4・4’ジイソシアネートを主体としたイソシアネ−トを用い、必要に応じ従来公知のトリイソシアネート等を微量添加使用してもよい。(C)のポリアミンとしては、エチレンジアミン、1・2プロピレンジアミン等公知のジアミンを主体とし、必要に応じて微量のトリアミン、テトラアミンを併用してもよい。これらのポリウレタン系エラストマーは単独又は2種類以上混合して用いてもよい。また、上記エラストマーに非エラストマー成分をブレンドされたもの、共重合したもの等も本発明の熱可塑性エラストマーに包含される。 Polyurethane elastomers include (A) a polyether and / or polyester having a hydroxyl group at the terminal with a number average molecular weight of 1000 to 6000 and (B) an organic compound in the presence or absence of a normal solvent (dimethylformamide, dimethylacetamide, etc.). A typical example is (C) a polyurethane elastomer in which a chain is extended with a polyamine containing diamine as a main component in a prepolymer obtained by reacting a polyisocyanate containing diisocyanate as a main component with both ends being isocyanate groups. The polyesters and polyethers of (A) include polybutylene adipate copolymer polyester, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, ethylene oxide-propylene oxide copolymer having an average molecular weight of about 1000 to 6000, preferably 1300 to 5000. Polyalkylene diols such as coalescence are preferred. As the polyisocyanate (B), a conventionally known polyisocyanate can be used, but an isocyanate mainly composed of diphenylmethane 4, 4 ′ diisocyanate is used, and if necessary, a conventionally known triisocyanate or the like is added in a small amount. May be. As the polyamine (C), known diamines such as ethylene diamine and 1,2 propylene diamine are mainly used, and a trace amount of triamine and tetraamine may be used in combination as necessary. These polyurethane elastomers may be used alone or in combination of two or more. In addition, the thermoplastic elastomer of the present invention includes those obtained by blending non-elastomeric components with the above elastomer and those obtained by copolymerization.

本発明の網状構造体を構成する連続線条体の樹脂部分は、異なる2種以上の熱可塑性エラストマーの混合体で構成されていることが好ましい。連続線状体のTanδを大きくすることと網状構造体の25%圧縮時硬さを大きくすることは、一般的にはトレードオフ(二律背反)の関係にある。すなわち、連続線状体のTanδを大きくすれば25%圧縮時硬さが小さくなり、連続線状体の25%圧縮時硬さが大きくすればTanδが小さくなる。本発明は、異なる2種以上の熱可塑性エラストマーで相補的に構成することにより、Tanδの大きさと25%圧縮時硬さの大きさを両立した、すなわちクッション性に優れ、かつ静粛性の高い網状構造体が得られたものである。本発明の実施態様において、異なる2種以上の熱可塑性エラストマーは、曲げ弾性率が0.1GPa以上の高弾性率熱可塑性エラストマーを1種以上と、動的粘弾性測定装置を用いて測定した23℃でのTanδが0.20以上の高Tanδ熱可塑性エラストマーの1種以上を相補的に用いることが好ましい。曲げ弾性率とは、矩形断面をもつ棒状試験片を一定の支点間隔(スパン)をもって支え、その中央に加圧くさびをあてて曲げ荷重を加えた時の荷重−たわみ曲線から算出される弾性率である。異なる2種以上の熱可塑性エラストマーの混合比は特に規定されるものではないが、好ましくは、上記高弾性率熱可塑性エラストマーと上記高Tanδ熱可塑性エラストマーの重量比で95/5〜50/50、より好ましくは90/10〜55/45、特に好ましくは85/15〜60/40である。100/0〜95/5もしくは50/50〜0/100となると、クッション性と静粛性の両立という観点から好ましくない。 It is preferable that the resin portion of the continuous filaments constituting the network structure of the present invention is composed of a mixture of two or more different thermoplastic elastomers. Increasing Tan δ of the continuous linear body and increasing the hardness of the network structure at 25% compression generally have a trade-off relationship. That is, if Tanδ of the continuous linear body is increased, the hardness at the time of 25% compression is decreased, and Tanδ is decreased when the hardness of the continuous linear body at the time of 25% compression is increased. In the present invention, the two- or more kinds of different thermoplastic elastomers are used to complement each other, so that both the size of Tan δ and the hardness of 25% compression are compatible, that is, excellent in cushioning properties and high in quietness. A structure is obtained. In an embodiment of the present invention, two or more different thermoplastic elastomers were measured using a dynamic viscoelasticity measuring device as one or more high modulus thermoplastic elastomers having a flexural modulus of 0.1 GPa or more. It is preferable to use one or more high tan δ thermoplastic elastomers having a Tan δ at 0.2 ° C. of 0.20 or more in a complementary manner. Bending elastic modulus is an elastic modulus calculated from a load-deflection curve when a rod-shaped test piece having a rectangular cross section is supported at a fixed fulcrum interval (span) and a bending load is applied by applying a pressure wedge to the center. It is. The mixing ratio of two or more different thermoplastic elastomers is not particularly specified, but preferably 95/5 to 50/50 by weight ratio of the high modulus thermoplastic elastomer and the high Tan δ thermoplastic elastomer, More preferably, it is 90 / 10-55 / 45, Most preferably, it is 85 / 15-60 / 40. When it is 100/0 to 95/5 or 50/50 to 0/100, it is not preferable from the viewpoint of achieving both cushioning properties and quietness.

本発明の網状構造体を構成する連続線条体の樹脂部分には、目的に応じて種々の添加剤を配合することができる。添加剤としては、フタル酸エステル系、トリメリット酸エステル系、脂肪酸系、エポキシ系、アジピン酸エステル系、ポリエステル系の可塑剤、公知のヒンダードフェノール系、硫黄系、燐系、アミン系の酸化防止剤、ヒンダードアミン系、トリアゾール系、ベンゾフェノン系、ベンゾエート系、ニッケル系、サリチル系などの光安定剤、帯電防止剤、過酸化物などの分子調整剤、エポキシ系化合物、イソシアネート系化合物、カルボジイミド系化合物などの反応基を有する化合物、金属不活性剤、有機及び無機系の核剤、中和剤、制酸剤、防菌剤、蛍光増白剤、充填剤、難燃剤、難燃助剤、有機及び無機系の顔料などを添加することができる。   Various additives can be blended in the resin portion of the continuous filaments constituting the network structure of the present invention depending on the purpose. Additives include phthalate ester, trimellitic acid ester, fatty acid, epoxy, adipic acid ester, polyester plasticizer, known hindered phenol, sulfur, phosphorus and amine oxidation Light stabilizers such as inhibitors, hindered amines, triazoles, benzophenones, benzoates, nickels, salicyls, antistatic agents, molecular modifiers such as peroxides, epoxy compounds, isocyanate compounds, carbodiimide compounds Compounds having reactive groups such as, metal deactivators, organic and inorganic nucleating agents, neutralizing agents, antacids, antibacterial agents, fluorescent whitening agents, fillers, flame retardants, flame retardant aids, organic In addition, inorganic pigments and the like can be added.

本発明の網状構造体を構成する連続線条体の樹脂部分は、示差走査型熱量計にて測定した融解曲線において、融点以下に吸熱ピークを有するのが好ましい。融点以下に吸熱ピークを有するものは、耐熱耐へたり性が吸熱ピ−クを有しないものより著しく向上する。例えば、本発明の好ましいポリエステル系熱可塑性エラストマーとして、ハードセグメントの酸成分に剛直性のあるテレフタル酸やナフタレン2・6ジカルボン酸などを90モル%以上、より好ましくは95モル%以上、特に好ましくは100モル%含有するものとグリコ−ル成分をエステル交換後、必要な重合度まで重合し、次いで、ポリアルキレンジオールとして、好ましくは平均分子量が500以上5000以下、より好ましくは1000以上3000以下のポリテトラメチレングリコールを10重量%以上70重量%以下、より好ましくは20重量%以上60重量%以下で共重合させた場合、ハードセグメントの酸成分に剛直性のあるテレフタル酸やナフタレン2・6ジカルボン酸の含有量が多いとハ−ドセグメントの結晶性が向上し、塑性変形しにくく、かつ、耐熱抗へたり性が向上する。加えて、溶融熱接着後更に融点より少なくとも10℃以上低い温度でアニ−リング処理すると、より耐熱抗へたり性が向上する。圧縮歪みを付与してからアニ−リングすると更に耐熱抗へたり性が向上する。このような処理をした網状構造体の線条は、示差走査型熱量計(DSC)で測定した融解曲線に室温以上融点以下の温度で吸熱ピークをより明確に発現する。なおアニ−リングしない場合は融解曲線に室温以上融点以下に吸熱ピ−クを発現しない。このことから類推するに、アニ−リングにより、ハ−ドセグメントが再配列され、疑似結晶化様の架橋点が形成され、耐熱抗へたり性が向上しているのではないかとも考えられる。(以下、このアニーリング処理を「疑似結晶化処理」ということがある。)この疑似結晶化処理効果は、ポリアミド系熱可塑性エラストマーやポリウレタン系熱可塑性エラストマーにも有効である。 The resin portion of the continuous filaments constituting the network structure of the present invention preferably has an endothermic peak below the melting point in the melting curve measured with a differential scanning calorimeter. Those having an endothermic peak below the melting point have significantly improved heat sag resistance than those having no endothermic peak. For example, as a preferable polyester-based thermoplastic elastomer of the present invention, terephthalic acid or naphthalene 2,6-dicarboxylic acid having a rigid hard segment acid component is 90 mol% or more, more preferably 95 mol% or more, particularly preferably. After the transesterification of the glycol component and the component containing 100 mol%, the polymer is polymerized to the required degree of polymerization, and then the polyalkylene diol is preferably a polyalkylene diol having an average molecular weight of 500 or more and 5000 or less, more preferably 1000 or more and 3000 or less. When tetramethylene glycol is copolymerized in an amount of 10 wt% to 70 wt%, more preferably 20 wt% to 60 wt%, terephthalic acid or naphthalene 2.6 dicarboxylic acid having a rigid hard segment acid component When there is much content of hard, crystallinity of hard segment improves , Hardly plastically deformed, and to improve the sexual sag resistant anti. In addition, if the annealing treatment is further performed at a temperature lower than the melting point by at least 10 ° C. after the fusion bonding, the heat resistance and sag resistance is further improved. Heat annealing resistance is further improved by annealing after applying compressive strain. The filaments of the network structure subjected to such treatment more clearly express an endothermic peak at a temperature not lower than the melting point and not higher than the melting point in the melting curve measured by a differential scanning calorimeter (DSC). When annealing is not performed, the endothermic peak does not appear in the melting curve above the room temperature and below the melting point. By analogy with this, it is considered that the hard segments are rearranged by annealing and pseudo-crystallization-like cross-linking points are formed, and the heat resistance and sag resistance are improved. (Hereinafter, this annealing treatment may be referred to as “pseudo crystallization treatment.”) This pseudo crystallization treatment effect is also effective for polyamide thermoplastic elastomers and polyurethane thermoplastic elastomers.

断面形状は特には限定されないが、中空断面や異形断面にすることで、抗圧縮性や嵩だか性を付与でき、低繊度化したい場合には特に好ましい。抗圧縮性は用いる素材のモジュラスにより調整して、柔らかい素材では中空率や異形度を高くし初期圧縮応力の勾配を調整できるし、ややモジュラスの高い素材では中空率や異形度を低くして座り心地が良好な抗圧縮性を付与する。中空断面や異形断面の他の効果として中空率や異形度を高くすることで、同一の抗圧縮性を付与した場合、より軽量化が可能となる。 The cross-sectional shape is not particularly limited, but it is particularly preferable when the hollow cross-section or the irregular cross-section can be imparted with an anti-compression property and bulkiness and it is desired to reduce the fineness. The compressibility can be adjusted according to the modulus of the material used, and the softness of the material can increase the hollowness and the degree of deformation to adjust the gradient of the initial compressive stress. Gives comfort and good compressibility. As another effect of the hollow cross section and the modified cross section, by increasing the hollow ratio and the deformity, when the same anti-compression property is given, the weight can be further reduced.

本発明の網状構造体の具体的な態様は、平均の見掛け密度の好ましい範囲が、クッション材としての機能が発現できる0.005g/cm以上0.20g/cm 以下である。0.005g/cm未満では反発力が失われるのでクッション材には不適当であり、0.20g/cm を越えると反発力が高すぎて座り心地が悪くなり好ましくない。本発明のより好ましい見掛け密度は0.01g/cm〜0.10g/cm であり、更に好ましい範囲は0.03g/cm〜0.06g/cm である。本発明の網状構造体は、繊度の異なる線条からなる複数層を積層し、各層の見掛け密度を変えることにより好ましい特性を付与することができる。例えば、繊度の細い表面層と繊度の太い基本層からなる場合は、表面層の密度はやや高くして構成本数を多くし、線条の一本が受ける応力を少なくして応力の分散を良くし、且つ臀部を支えるクッション性も向上させることで座り心地を向上させることができる。基本層は繊度を太くして少し硬くし、振動吸収と体型保持を受け持つ層としてより緻密な層とするため、やや繊度の細い線条で、且つ高密度とすることができる。これにより座席フレーム面から受ける振動や反発応力を基本層に均一に伝達し、全体が変形してエンルギー変換できるようにし、座り心地を良くすると共にクッションの耐久性も向上させることもできる。さらに、座席のサイドの厚みと張りを付与させるために部分的に繊度をやや細くして高密度化することもできる。このように各層はその目的に応じ好ましい密度と繊度を任意に選択できる。なお、網状構造体の各層の厚みは、特に限定されないが、クッション体としての機能が発現されやすい3mm以上とするのが好ましく5mm以上とするのが特に好ましい。 Specific embodiments of the network structure of the present invention, the preferred range of the average apparent density is not more than 0.005 g / cm 3 or more 0.20 g / cm 3 which functions as a cushion material can be expressed. If it is less than 0.005 g / cm 3 , the repulsive force is lost, so it is unsuitable for a cushioning material. If it exceeds 0.20 g / cm 3 , the repulsive force is too high and the seating comfort is deteriorated. More preferred apparent density of the present invention is 0.01g / cm 3 ~0.10g / cm 3 , more preferable range is 0.03g / cm 3 ~0.06g / cm 3 . The network structure of the present invention can be provided with preferable characteristics by laminating a plurality of layers composed of filaments having different finenesses and changing the apparent density of each layer. For example, if the surface layer is composed of a fine surface layer and a thick basic layer, the density of the surface layer is slightly increased to increase the number of components, and the stress applied to one of the filaments is decreased to improve the stress distribution. In addition, it is possible to improve the sitting comfort by improving the cushioning property that supports the buttocks. Since the basic layer is thicker and slightly harder, and is a denser layer that is responsible for vibration absorption and body shape retention, the basic layer can have a slightly finer filament and a higher density. As a result, vibrations and repulsive stresses received from the seat frame surface are uniformly transmitted to the basic layer so that the whole can be deformed and converted into energy, thereby improving the sitting comfort and improving the durability of the cushion. Furthermore, in order to give the seat side thickness and tension, the fineness can be partially reduced to increase the density. Thus, each layer can arbitrarily select a preferable density and fineness according to the purpose. The thickness of each layer of the network structure is not particularly limited, but is preferably 3 mm or more, and more preferably 5 mm or more, because the function as a cushion body is easily exhibited.

網状構造体の構造体外表面は、曲がりくねらせた線条が途中で30°以上、好ましくは45°以上曲げられ実質的に面がフラット化されており、接触部の大部分が融着している表層部を有することが好ましい。このことで、網状構造体面の該線条の接触点が大幅に増加して接着点を形成するため、座った時の臀部の局部的な外力も臀部に異物感を与えずに構造面で受け止められ、面構造が全体で変形して内部の構造体全体も変形して応力を吸収し、応力が解除されると弾性樹脂のゴム弾性が発現して、構造体は元の形態に回復することができる。実質的にフラット化されてない場合、臀部に異物感を与え、表面に局部的な外力が掛かかり、表面の線条及び接着点部分までに選択的に応力集中が発生する場合があり、応力集中による疲労が発生して耐へたり性が低下する場合がある。構造体外表面がフラット化された場合、ワディング層を使用しないで、又は非常に薄いワディング層を積層し、側地で表面を覆い自動車用、鉄道用等の座席や椅子又はベッド用、ソファー用、布団用等のクッションマットにすることができる。構造体外表面フラット化されていない場合は、網状構造体の表面に比較的厚め(好ましくは10mm以上)のワディング層を積層して側地で表面を覆って座席やクッションマットを形成する必要がある。必要に応じてワディング層との接着または側地との接着は表面がフラットな場合は容易であるが、フラット化されていない場合は凸凹なため接着が不完全になる。 The outer surface of the structure of the net-like structure has a curved surface that is bent 30 ° or more, preferably 45 ° or more in the middle, and is substantially flattened, and most of the contact portion is fused. It is preferable to have a surface layer part. As a result, the contact points of the filaments on the surface of the network structure are greatly increased to form adhesion points, so that the local external force of the buttocks when sitting is received on the structure surface without giving a sense of foreign matter to the buttocks. The surface structure is deformed as a whole, the entire internal structure is also deformed to absorb the stress, and when the stress is released, the elastic elasticity of the elastic resin appears and the structure is restored to its original form. Can do. If it is not substantially flattened, it gives a feeling of foreign matter to the buttocks, local external force is applied to the surface, and stress concentration may occur selectively up to the surface stripes and adhesion points. There is a case where fatigue due to concentration occurs and the sag resistance decreases. When the outer surface of the structure is flattened, do not use a wading layer or laminate a very thin wading layer and cover the surface with the side ground, for seats or chairs or beds for automobiles, railways, etc., for sofas, It can be used as a cushion mat for futons. If the outer surface of the structure is not flattened, a relatively thick (preferably 10 mm or more) wadding layer needs to be laminated on the surface of the network structure, and the seat and cushion mat must be formed by covering the surface with the side ground. . If necessary, adhesion to the wadding layer or adhesion to the side is easy when the surface is flat, but when the surface is not flattened, the adhesion is incomplete and uneven.

次に本発明の三次元ランダムループ接合構造からなる網状構造体の製造方法について以下に述べるが、以下の方法は一例であって、これに限定するものではない。
まず、一般的な溶融押出機を用いて熱可塑性エラストマーを融点より10〜80℃高い温度に加熱して溶融状態とし、複数のオリフィスを持つノズルより下向きに吐出させ、自然降下させループを形成させる。このときノズル面と樹脂を固化させる冷却媒体上に設置した引取りコンベアとの距離、樹脂の溶融粘度、オリフィスの孔径と吐出量などによりループ径と線状体の繊度がきまる。冷却媒体上に設置した間隔が調整可能な一対の引取りコンベアで溶融状態の吐出線状体を挟み込み停留させることでループが発生し、オリフィスの孔間隔を発生ループが接触できる孔間隔にしておくことで発生したループを互いに接触させ、接触することでループがランダムな三次元形態を形成しつつ接触部は融着する。次いでランダムな三次元形態を形成しつつ接触部が融着した連続線状体を連続して冷却媒体中に引込み固化させ網状構造体を形成する。
Next, although the manufacturing method of the network structure which consists of a three-dimensional random loop junction structure of this invention is described below, the following method is an example and is not limited to this.
First, using a general melt extruder, the thermoplastic elastomer is heated to a temperature 10 to 80 ° C. higher than the melting point to be in a molten state, discharged downward from a nozzle having a plurality of orifices, and naturally lowered to form a loop. . At this time, the loop diameter and the fineness of the linear body are determined by the distance between the nozzle surface and the take-up conveyor installed on the cooling medium for solidifying the resin, the melt viscosity of the resin, the orifice diameter and the discharge amount, and the like. A pair of take-up conveyors that can be adjusted on the cooling medium can be adjusted so that a molten discharge linear body is sandwiched and stopped to generate a loop, and the hole interval of the orifice is set to a hole interval at which the generated loop can contact. The generated loops are brought into contact with each other, and the contact portions are fused while the loops form a random three-dimensional form. Next, the continuous linear body in which the contact portion is fused while continuously forming a random three-dimensional form is continuously drawn into the cooling medium and solidified to form a network structure.

オリフィスの形状は特に限定されないが、異形断面(例えば三角形、Y型、星型等の断面二次モ−メントが高くなる形状)や中空断面(例えば三角中空、丸型中空、突起つきの中空等となるよう形状)とすることで溶融状態の吐出線条が形成する3次元構造が流動緩和し難くし、逆に接触点での流動時間を長く保持して接着点を強固にできるので特に好ましい。特開平1−2075号公報に記載の接着のための加熱をする場合、3次元構造が緩和し易くなり平面的構造化し、3次元立体構造化が困難となるので好ましくない。構造体の特性向上効果としては、見掛けの嵩を高くでき軽量化になり、また抗圧縮性が向上し、弾発性も改良できて、へたり難くなる。中空断面では中空率が80%を越えると断面が潰れ易くなるので、中空断面を採用する場合の中空率は、好ましくは軽量化の効果が発現できる10%以上70%以下、より好ましくは20%以上60%以下である。 The shape of the orifice is not particularly limited, but may be an irregular cross-section (for example, a triangle, Y-type, star-shaped, etc. with a high secondary cross-section moment) or a hollow cross-section (for example, a triangular hollow, a round hollow, a hollow with protrusions, etc.) It is particularly preferable that the three-dimensional structure formed by the melted discharge filaments is difficult to flow relax, and conversely the flow time at the contact point can be kept long to strengthen the adhesion point. In the case of heating for adhesion described in JP-A-1-2075, the three-dimensional structure is easy to relax, and a planar structure is formed, making it difficult to form a three-dimensional structure. As an effect of improving the characteristics of the structure, the apparent bulk can be increased, the weight can be reduced, the anti-compression property can be improved, the elasticity can be improved, and the structure cannot be easily set. Since the cross section tends to be crushed when the hollow ratio exceeds 80% in the hollow cross section, the hollow ratio in the case of employing the hollow cross section is preferably 10% or more and 70% or less, more preferably 20%, at which the effect of weight reduction can be exhibited. It is 60% or less.

オリフィスの孔間ピッチは、線状が形成するル−プが充分接触できるピッチとする必要がある。緻密な構造にするには孔間ピッチを短くし、粗密な構造にするには孔間ピッチを長くする。本発明の孔間ピッチは好ましくは3mm〜20mm、より好ましくは5mm〜10mmである。本発明では所望に応じ異密度化や異繊度化もできる。列間のピッチ又は孔間のピッチも変えた構成、及び列間と孔間の両方のピッチも変える方法などで異密度層を形成できる。また、オリフィスの断面積を変えて吐出時の圧力損失差を付与すると、溶融した熱可塑性エラストマーが同一ノズルから一定の圧力で押し出される吐出量が圧力損失の大きいオリフィスほど少なくなる原理を用いて、異繊度化できる。 The pitch between the holes of the orifices needs to be a pitch that can sufficiently contact the loop formed by the linear shape. The pitch between holes is shortened to obtain a dense structure, and the pitch between holes is increased to obtain a dense structure. The pitch between holes of the present invention is preferably 3 mm to 20 mm, more preferably 5 mm to 10 mm. In the present invention, different density and different fineness can be achieved as desired. The different density layer can be formed by a configuration in which the pitch between rows or the pitch between holes is changed, and a method in which both the pitch between rows and between holes are also changed. In addition, when changing the cross-sectional area of the orifice to give a pressure loss difference at the time of discharge, using the principle that the amount of discharge by which the molten thermoplastic elastomer is pushed out from the same nozzle at a constant pressure becomes smaller as the orifice has a larger pressure loss, Different fineness can be achieved.

次いで、引取りネットで溶融状態の三次元立体構造体両外表面を挟み込み、両面の溶融状態の曲がりくねった吐出線条を30°以上折り曲げて変形させ、表面をフラット化すると同時に、曲げられていない吐出線条との接触点を接着して構造を形成する。その後、連続して冷却媒体(通常は室温の水を用いるのが冷却速度を早くでき、コスト面でも安くなるので好ましい。)で急冷して本発明の三次元ランダムループ接合構造体からなる網状構造体を得る。次いで水切り乾燥するが、冷却媒体中に界面活性剤等を添加すると、水切りや乾燥がしにくくなったり、熱可塑性エラストマーが膨潤したりすることもあり好ましくない。本発明の好ましい方法としては、一旦冷却後、疑似結晶化処理を行う。疑似結晶化処理温度は、少なくとも融点(Tm)より10℃以上低く、Tanδのα分散立ち上がり温度(Tαcr)以上で行う。この処理で、融点以下に吸熱ピ−クを持ち、疑似結晶化処理しないもの(吸熱ピ−クを有しないもの)より耐熱耐へたり性が著しく向上する。本発明の好ましい疑似結晶化処理温度は(Tαcr+10℃)から(Tm−20℃)である。単なる熱処理により疑似結晶化させると耐熱耐へたり性が向上する。更には一旦冷却後、10%以上の圧縮変形を付与してアニ−リングすることで耐熱耐へたり性が著しく向上するのでより好ましい。また、一旦冷却後、乾燥工程を経する場合、乾燥温度をアニ−リング温度とすることで同時に疑似結晶化処理を行うができる。また、別途疑似結晶化処理を行うができる。 Next, both outer surfaces of the melted three-dimensional structure are sandwiched by a take-off net, and the twisted discharge filaments on both surfaces are bent and deformed by 30 ° or more, and the surface is flattened and not bent at the same time. A structure is formed by adhering contact points with the discharge filaments. After that, the network structure comprising the three-dimensional random loop joint structure of the present invention is continuously cooled rapidly with a cooling medium (usually room temperature water is preferable because the cooling rate can be increased and the cost is reduced). Get the body. Next, draining and drying are performed. However, adding a surfactant or the like to the cooling medium is not preferable because draining or drying becomes difficult and the thermoplastic elastomer may swell. As a preferred method of the present invention, a pseudo crystallization treatment is performed after cooling. The pseudo-crystallization temperature is at least 10 ° C. lower than the melting point (Tm) and is equal to or higher than the Tan dispersion α dispersion rising temperature (Tαcr). With this treatment, the heat sag resistance is remarkably improved as compared with those having an endothermic peak below the melting point and not subjected to pseudo-crystallization treatment (no endothermic peak). The preferred pseudocrystallization temperature of the present invention is from (Tαcr + 10 ° C.) to (Tm−20 ° C.). When pseudo-crystallization is performed by simple heat treatment, heat sag resistance is improved. Furthermore, after cooling, it is more preferable to apply 10% or more of compressive deformation and perform annealing so that the heat sag resistance is remarkably improved. Moreover, when it passes through a drying process once after cooling, a pseudo crystallization process can be performed simultaneously by making drying temperature into annealing temperature. In addition, a pseudo crystallization process can be performed separately.

次いで所望の長さまたは形状に切断してクッション材に用いる。本発明の網状構造体をクッション材に用いる場合、その使用目的、使用部位により使用する樹脂、繊度、ル−プ径、嵩密度を選択する必要がある。例えば、表層のワディングに用いる場合は、ソフトなタッチと適度の沈み込みと張りのある膨らみを付与するために、低密度で細い繊度、細かいル−プ径にするのが好ましく、中層のクッション体としては、共振振動数を低くし、適度の硬さと圧縮時のヒステリシスを直線的に変化させて体型保持性を良くし、耐久性を保持させるために、中密度で太い繊度、やや大きいル−プ径が好ましい。勿論、用途との関係で要求性能に合うべく他の素材、例えば短繊維集合体からなる硬綿クッション材、不織布等と組合せて用いることも可能である。また、樹脂製造過程以外でも性能を低下させない範囲で製造過程から成形体に加工し、製品化する任意の段階で難燃化、防虫抗菌化、耐熱化、撥水撥油化、着色、芳香等の機能付与を薬剤添加等の処理加工ができる。 Next, it is cut into a desired length or shape and used as a cushioning material. When the network structure of the present invention is used for a cushioning material, it is necessary to select a resin, a fineness, a loop diameter, and a bulk density to be used depending on the purpose of use and the use site. For example, when used for surface wading, it is preferable to have a low density, fine fineness, and a fine loop diameter in order to give a soft touch, moderate subsidence, and a tight bulge. In order to lower the resonant frequency, linearly change the appropriate hardness and hysteresis at the time of compression, improve the body shape retention, and maintain durability, medium density, thick fineness, slightly larger The diameter is preferable. Of course, it can be used in combination with other materials such as a hard cotton cushion material made of short fiber aggregates, non-woven fabric, etc. to meet the required performance in relation to the application. In addition, it can be processed into a molded product from the manufacturing process as long as the performance is not deteriorated even outside the resin manufacturing process, and flame retardant, antibacterial, heat resistance, water and oil repellency, coloring, fragrance, etc. It is possible to perform processing such as adding a drug to impart the function.

以下に実施例で本発明を詳述する。
なお、実施例中の評価は以下の方法で行った。
The present invention is described in detail below with reference to examples.
In addition, evaluation in an Example was performed with the following method.

<樹脂特性>
・ 融点(Tm)
島津製作所TA50、DSC50型示差熱分析計を使用し、10gの試料を昇温速度20℃/分で20℃から250℃まで測定した吸発熱曲線から吸熱ピーク(融解ピーク)温度を求めた。
・ 曲げ弾性率
射出成形機によって長さ125mm×幅12mm×厚み6mmの試験片を作成し、ASTM D790規格により測定した。
・ 原料樹脂のTanδ
測定に用いたサンプルは、設定温度230℃のヒートプレスによって厚さ300umのシートサンプルに成形し、長さ23mm×幅5mmに切り出して作成した。動的粘弾性測定装置(UBM社製Rheogel−E−4000)を用い、サンプルの長辺の両端各4mm部分を引張治具で固定し、11Hz、昇温速度2℃/分で測定した23℃のTanδ(損失弾性率E”と貯蔵弾性率E’との比E”/E’)値を用いた。
<Resin characteristics>
・ Melting point (Tm)
Using a Shimadzu TA50, DSC50 differential thermal analyzer, an endothermic peak (melting peak) temperature was determined from an endothermic curve obtained by measuring a 10 g sample from 20 ° C. to 250 ° C. at a rate of temperature increase of 20 ° C./min.
-Flexural modulus Test pieces having a length of 125 mm, a width of 12 mm and a thickness of 6 mm were prepared by an injection molding machine, and measured according to the ASTM D790 standard.
・ Tanδ of raw material resin
The sample used for the measurement was formed into a sheet sample having a thickness of 300 μm by a heat press at a set temperature of 230 ° C. and cut into a length of 23 mm and a width of 5 mm. Using a dynamic viscoelasticity measuring device (Rhegel-E-4000 manufactured by UBM), the 4 mm portions at both ends of the long side of the sample were each fixed with a tensile jig, and measured at 11 Hz and a heating rate of 2 ° C./min. Tanδ (ratio E ″ / E ′ of loss elastic modulus E ″ and storage elastic modulus E ′) was used.

<網状構造体特性>
(1)連続線条体のTanδ
測定に用いたサンプルは、網状構造体を設定温度230℃のヒートプレスによって厚さ300umのシートサンプルに成形し、長さ23mm×幅5mmに切り出して作成した。動的粘弾性測定装置(UBM社製Rheogel−E−4000)を用い、サンプルの長辺の両端各4mm部分を引張治具で固定し、11Hz、昇温速度2℃/分で測定した23℃のTanδ(損失弾性率E”と貯蔵弾性率E’との比E”/E’)値を用いた。
(2)25%圧縮硬さ
試料を30cm×30cmの大きさに切断し、オリエンテック社製テンシロンにてφ200mm圧縮板にて75%まで圧縮して得た応力−歪み曲線の25%圧縮時の応力で示す。(n=3の平均値)
(3)見掛け密度
試料を15cm×15cmの大きさに切断し、4か所の高さを測定し、体積を求め、試料の重さを体積で徐した値(g/cm)で示す。(n=4の平均値)
(4)線条の繊度
網状構造体を20cm×20cmの大きさに切断し、10か所から長さ1cmの線条体を採取する。10か所で採取した線条体の40℃での比重を密度勾配管を用いて測定する。更に、上記10か所で採取した線条体の断面積を顕微鏡で拡大した写真より求め、それより、線条体の長さ10000m分の体積を求める。得られた比重と体積を乗じた値を繊度(線条体10000m分のグラム重量:デシテックスdtex)とする。(n=10の平均値)。
(5)床つき感:50cm四方、厚み5cm、見掛け密度0.040〜0.050g/cmの網状構造体に体重40kg〜100kgの範囲にあるパネラー30名(20歳〜39歳の男性;5名、20歳〜39歳の女性:5名、40歳〜59歳の男性:5名、40歳〜59歳の女性:5名、60歳〜80歳の男性:5名、60歳〜80歳の女性:5名)を座らせ、座ったときの「どすん」と床に当たった感じの程度を感覚的に定性評価した。感じない;◎、殆ど感じない;○、やや感じる;△、感じる;×
(6)消音性
50cm四方、厚み5cm、見掛け密度0.040〜0.050g/cmの網状構造体に体重40kg〜100kgの範囲にあるパネラー30名(20歳〜39歳の男性;5名、20歳〜39歳の女性:5名、40歳〜59歳の男性:5名、40歳〜59歳の女性:5名、60歳〜80歳の男性:5名、60歳〜80歳の女性:5名)を座らせ、網状構造体から発生する音を感覚的に定性評価した。感じない;◎、殆ど感じない;○、やや感じる;△、感じる;×
(6)中空率
網状構造体から線条を採取し、液体窒素で冷却した後に割断し、その断面を電子顕微鏡で倍率50倍にて観察し、得られた画像をCADシステムにて解析して樹脂部分の断面積(A)と中空部分の断面積(B)を測定し、{B/(A+B)}×100の式により中空率を算出した。
<Network structure characteristics>
(1) Tanδ of continuous striatum
The sample used for the measurement was formed by forming a network structure into a sheet sample having a thickness of 300 μm by a heat press at a set temperature of 230 ° C., and cutting it into a length of 23 mm × a width of 5 mm. Using a dynamic viscoelasticity measuring device (Rhegel-E-4000 manufactured by UBM), the 4 mm portions at both ends of the long side of the sample were each fixed with a tensile jig, and measured at 11 Hz and a heating rate of 2 ° C./min. Tanδ (ratio E ″ / E ′ of loss elastic modulus E ″ and storage elastic modulus E ′) was used.
(2) 25% compression hardness The sample was cut into a size of 30 cm × 30 cm, and the stress-strain curve obtained by compressing to 75% with a φ200 mm compression plate using Tensilon manufactured by Orientec Corp. Indicated by stress. (Average value of n = 3)
(3) Apparent density A sample is cut into a size of 15 cm × 15 cm, the heights at four locations are measured, the volume is determined, and the weight of the sample is expressed as a value (g / cm 3 ) that is gradually reduced. (Average value of n = 4)
(4) Fineness of filaments The network structure is cut into a size of 20 cm × 20 cm, and a filament having a length of 1 cm is collected from 10 locations. The specific gravity at 40 ° C. of the striatum collected at 10 locations is measured using a density gradient tube. Further, the cross-sectional area of the striatum sampled at the 10 locations is determined from a photograph enlarged with a microscope, and the volume of the striatum length of 10,000 m is determined therefrom. The value obtained by multiplying the obtained specific gravity and volume is defined as the fineness (gram weight of striatum 10000 m: decitex dtex). (Average value of n = 10).
(5) Feeling with a floor: 30 panelists (male 20-39 years old) having a body weight of 40 kg to 100 kg in a network structure of 50 cm square, thickness 5 cm, apparent density 0.040 to 0.050 g / cm 3 ; 5, 20-39-year-old women: 5, 40-59-year-old men: 5, 40-59-year-old women: 5, 60- to 80-year-old men: 5, 60-year-old 80-year-old woman: 5) sat down and evaluated the degree of feeling when they sat on the floor and when they sat down. Do not feel; ◎, feel almost; ○, feel a little; △, feel; ×
(6) Silence
30 panelists (men aged 20 to 39 years; men aged 20 to 39; 5 people, aged 20 to 39) in a network structure having a 50 cm square, a thickness of 5 cm and an apparent density of 0.040 to 0.050 g / cm 3 5 year old women: 5 men, 40 to 59 years old: 5 women, 40 to 59 years old women: 5, 60 to 80 year old men: 5 people, 60 to 80 year old women: 5 people ) And satisfactorily qualitatively evaluated the sound generated from the network structure. Do not feel; ◎, feel almost; ○, feel a little; △, feel; ×
(6) Hollow ratio A strip is taken from a network structure, and after cooling with liquid nitrogen, it is cleaved, its cross section is observed with an electron microscope at a magnification of 50 times, and the obtained image is analyzed with a CAD system. The cross-sectional area (A) of the resin part and the cross-sectional area (B) of the hollow part were measured, and the hollow ratio was calculated by the formula {B / (A + B)} × 100.

<合成例1>
ジメチルテレフタレート(DMT)と1,4−ブタンジオール(1,4−BD)とポリテトラメチレングリコール(PTMG:平均分子量1000)を少量の触媒と仕込み、常法によりエステル交換後、昇温減圧しつつ重縮合せしめ、DMT/1,4−BD/PTMG=100/93/7mol%のポリエステルエーテルブロック共重合エラストマーを生成させ、次いで抗酸化剤1%を添加混合練込み後ペレット化し、50℃48時間真空乾燥してポリエステル系熱可塑性エラストマー原料(A−1)を得た。その特性を表1に示す。
<Synthesis Example 1>
Dimethyl terephthalate (DMT), 1,4-butanediol (1,4-BD) and polytetramethylene glycol (PTMG: average molecular weight 1000) are charged with a small amount of catalyst, and after transesterification by a conventional method, while raising the temperature and reducing the pressure Polycondensation was carried out to produce a polyester ether block copolymer elastomer of DMT / 1,4-BD / PTMG = 100/93/7 mol%, then 1% of an antioxidant was added, kneaded, pelletized, and 50 ° C. for 48 hours. Vacuum drying was performed to obtain a polyester-based thermoplastic elastomer raw material (A-1). The characteristics are shown in Table 1.

<合成例2>
ジメチルテレフタレート(DMT)と1,4−ブタンジオール(1,4−BD)とポリテトラメチレングリコール(PTMG:平均分子量1000)を少量の触媒と仕込み、常法によりエステル交換後、昇温減圧しつつ重縮合せしめ、DMT/1,4−BD/PTMG=100/88/12mol%のポリエステルエーテルブロック共重合エラストマーを生成させ、次いで抗酸化剤1%を添加混合練込み後ペレット化し、50℃48時間真空乾燥してポリエステル系熱可塑性エラストマー原料(A−2)を得た。その特性を表1に示す。
<Synthesis Example 2>
Dimethyl terephthalate (DMT), 1,4-butanediol (1,4-BD) and polytetramethylene glycol (PTMG: average molecular weight 1000) are charged with a small amount of catalyst, and after transesterification by a conventional method, while raising the temperature and reducing the pressure Polycondensation was carried out to produce a polyester ether block copolymer elastomer of DMT / 1,4-BD / PTMG = 100/88/12 mol%, and then 1% antioxidant was added and kneaded and pelletized, followed by 50 ° C. for 48 hours. The polyester-based thermoplastic elastomer raw material (A-2) was obtained by vacuum drying. The characteristics are shown in Table 1.

<合成例3>
ジメチルテレフタレート(DMT)と1,4−ブタンジオール(1,4−BD)とポリテトラメチレングリコール(PTMG:平均分子量1000)を少量の触媒と仕込み、常法によりエステル交換後、昇温減圧しつつ重縮合せしめ、DMT/1,4−BD/PTMG=100/84/16mol%のポリエステルエーテルブロック共重合エラストマーを生成させ、次いで抗酸化剤1%を添加混合練込み後ペレット化し、50℃48時間真空乾燥してポリエステル系熱可塑性エラストマー原料(A−3)を得た。その特性を表1に示す。
<Synthesis Example 3>
Dimethyl terephthalate (DMT), 1,4-butanediol (1,4-BD) and polytetramethylene glycol (PTMG: average molecular weight 1000) are charged with a small amount of catalyst, and after transesterification by a conventional method, while raising the temperature and reducing the pressure Polycondensation was carried out to produce a polyester ether block copolymer elastomer of DMT / 1,4-BD / PTMG = 100/84/16 mol%, then 1% antioxidant was added and kneaded, pelletized, and 50 ° C. for 48 hours. The polyester thermoplastic elastomer raw material (A-3) was obtained by vacuum drying. The characteristics are shown in Table 1.

<合成例4>
ジメチルテレフタレート(DMT)と1,4−ブタンジオール(1,4−BD)とポリテトラメチレングリコール(PTMG:平均分子量1000)を少量の触媒と仕込み、常法によりエステル交換後、昇温減圧しつつ重縮合せしめ、DMT/1,4−BD/PTMG=100/72/28mol%のポリエステルエーテルブロック共重合エラストマーを生成させ、次いで抗酸化剤1%を添加混合練込み後ペレット化し、50℃48時間真空乾燥してポリエステル系熱可塑性エラストマー原料(A−4)を得た。その特性を表1に示す。
<Synthesis Example 4>
Dimethyl terephthalate (DMT), 1,4-butanediol (1,4-BD) and polytetramethylene glycol (PTMG: average molecular weight 1000) are charged with a small amount of catalyst, and after transesterification by a conventional method, while raising the temperature and reducing the pressure Polycondensation was carried out to produce a polyester ether block copolymer elastomer of DMT / 1,4-BD / PTMG = 100/72/28 mol%, and then 1% antioxidant was added and kneaded and pelletized, followed by 50 ° C. for 48 hours. A polyester thermoplastic elastomer raw material (A-4) was obtained by vacuum drying. The characteristics are shown in Table 1.

<合成例5>
ジメチルテレフタレート(DMT)とジメチルイソフタレ−ト(DMI)と1,4−ブタンジオール(1,4−BD)とポリテトラメチレングリコール(PTMG:平均分子量1000)を少量の触媒と仕込み、常法によりエステル交換後、昇温減圧しつつ重縮合せしめ、DMT/DMI/1,4−BD/PTMG=75/25/92/8mol%のポリエステルエーテルブロック共重合エラストマーを生成させ、次いで抗酸化剤1%を添加混合練込み後ペレット化し、50℃48時間真空乾燥してポリエステル系熱可塑性エラストマー原料(A−5)を得た。その特性を表1に示す。
<Synthesis Example 5>
Dimethyl terephthalate (DMT), dimethyl isophthalate (DMI), 1,4-butanediol (1,4-BD), and polytetramethylene glycol (PTMG: average molecular weight 1000) are charged with a small amount of catalyst, and the conventional method is used. After the transesterification, polycondensation was carried out while raising the temperature and pressure, and a polyester ether block copolymer elastomer with DMT / DMI / 1,4-BD / PTMG = 75/25/92/8 mol% was produced, and then 1% antioxidant Was added, kneaded and pelletized, and vacuum dried at 50 ° C. for 48 hours to obtain a polyester-based thermoplastic elastomer raw material (A-5). The characteristics are shown in Table 1.

<実施例1>
70kgの合成例1で得られたポリエステル系熱可塑性エラストマー(A−1)および30kgの水添スチレン−ブタジエンランダム共重合体(SBR)(旭化成ケミカルズ社製「S.O.E.S1611」)、1kgのトリメリット酸エステル系可塑剤(DIC社製「モノサイザーW705」)、10kgのポリエステル系可塑剤(DIC社製「ポリサイザーA55」)、0.25kgのヒンダードフェノール系酸化防止剤(ADEKA社製「アデカスタブAO330」)、0.25kgの燐系酸化防止剤(ADEKA社製「アデカスタブPEP36」)をタンブラーにて5分間混合した後、スクリュー径φ57mmの二軸押出機でシリンダー温度220℃、スクリュー回転数130rpmにて溶融混練し、水浴にストランド状に押出して冷却後、樹脂組成物のペレットを得た。得られた樹脂組成物を幅65cm、長さ5cmのノズル有効面に孔径3.0mmの丸型中空形状オリフィスを幅方向5.2mm、長さ方向6.0mmの間隔で配列したノズルより、240℃の温度で溶融して、単孔吐出量を2.5g/分で吐出させ、ノズル面30cm下に冷却水を配し、幅70cmのステンレス製エンドレスネットを平行に5cm間隔で一対の引取りコンベアを水面上に一部出るように配した上に引取り、接触部分を融着させつつ、両面を挟み込みつつ毎分1mの速度で冷却水中へ引込み固化させ、次いで100℃の熱風乾燥機中で15分疑似結晶化処理した後、疑似結晶化処理した後、所定の大きさに切断して網状構造体を得た。得られた網状構造体の特性を表2に示す。
<Example 1>
70 kg of the polyester-based thermoplastic elastomer (A-1) obtained in Synthesis Example 1 and 30 kg of a hydrogenated styrene-butadiene random copolymer (SBR) (“SOE S1611” manufactured by Asahi Kasei Chemicals), 1 kg of trimellitic acid ester plasticizer (DIC monosizer W705), 10 kg polyester plasticizer (DIC polysizer A55), 0.25 kg hindered phenol antioxidant (ADEKA) “Adeka Stub AO330”) and 0.25 kg of phosphorous antioxidant (“ADEKA STAB PEP36” manufactured by ADEKA) were mixed for 5 minutes in a tumbler, and then the cylinder temperature was 220 ° C. with a twin screw extruder with a screw diameter of φ57 mm. It is melt-kneaded at a rotation speed of 130 rpm, extruded in a strand form in a water bath and cooled After, to obtain pellets of the resin composition. From the nozzle obtained by arranging a round hollow orifice having a hole diameter of 3.0 mm on the effective surface of the nozzle having a width of 65 cm and a length of 5 cm on the effective surface of the obtained resin composition at intervals of 5.2 mm in the width direction and 6.0 mm in the length direction, 240 Melting at a temperature of ° C, discharging a single hole at a rate of 2.5 g / min, arranging cooling water under 30 cm of the nozzle surface, and taking a pair of stainless endless nets with a width of 70 cm at intervals of 5 cm The conveyor is placed on the water surface so that it is partly pulled out, and the contact part is melted, the both sides are sandwiched and drawn into the cooling water at a speed of 1 m / min, and then solidified in a 100 ° C hot air dryer. After 15 minutes of pseudo crystallization treatment, pseudo crystallization treatment was performed and then cut into a predetermined size to obtain a network structure. Table 2 shows the characteristics of the obtained network structure.

<実施例2>
80kgの合成例1で得られたポリエステル系熱可塑性エラストマー(A−1)および20kgの水添スチレン−ブタジエンランダム共重合体(SBR)(旭化成ケミカルズ社製「S.O.E.S1611」)、1kgのトリメリット酸エステル系可塑剤(DIC社製「モノサイザーW705」)、10kgのポリエステル系可塑剤(DIC社製「ポリサイザーA55」)、0.25kgのヒンダードフェノール系酸化防止剤(ADEKA社製「アデカスタブAO330」)、0.25kgの燐系酸化防止剤(ADEKA社製「アデカスタブPEP36」)をタンブラーにて5分間混合した後、スクリュー径φ57mmの二軸押出機でシリンダー温度220℃、スクリュー回転数130rpmにて溶融混練し、水浴にストランド状に押出して冷却後、樹脂組成物のペレットを得た。得られた樹脂組成物を幅65cm、長さ5cmのノズル有効面に孔径1.0mmの丸型中実形状オリフィスを幅方向5.2mm、長さ方向6.0mmの間隔で配列したノズルより、240℃の温度で溶融して、単孔吐出量を2.0g/分で吐出させ、ノズル面30cm下に冷却水を配し、幅70cmのステンレス製エンドレスネットを平行に5cm間隔で一対の引取りコンベアを水面上に一部出るように配した上に引取り、接触部分を融着させつつ、両面を挟み込みつつ毎分1mの速度で冷却水中へ引込み固化させ、次いで100℃の熱風乾燥機中で15分疑似結晶化処理した後、疑似結晶化処理した後、所定の大きさに切断して網状構造体を得た。得られた網状構造体の特性を表2に示す。
<Example 2>
80 kg of the polyester-based thermoplastic elastomer (A-1) obtained in Synthesis Example 1 and 20 kg of a hydrogenated styrene-butadiene random copolymer (SBR) ("SOE S1611" manufactured by Asahi Kasei Chemicals), 1 kg of trimellitic acid ester plasticizer (DIC monosizer W705), 10 kg polyester plasticizer (DIC polysizer A55), 0.25 kg hindered phenol antioxidant (ADEKA) “Adeka Stub AO330”) and 0.25 kg of phosphorous antioxidant (“ADEKA STAB PEP36” manufactured by ADEKA) were mixed for 5 minutes in a tumbler, and then the cylinder temperature was 220 ° C. with a twin screw extruder with a screw diameter of φ57 mm. It is melt-kneaded at a rotational speed of 130 rpm, extruded in a strand form in a water bath, and cooled. After, to obtain pellets of the resin composition. From the nozzle in which a round solid shape orifice having a hole diameter of 1.0 mm is arranged at intervals of 5.2 mm in the width direction and 6.0 mm in the length direction on the nozzle effective surface of the obtained resin composition having a width of 65 cm and a length of 5 cm, Melting at a temperature of 240 ° C., discharging a single hole at a discharge rate of 2.0 g / min, arranging cooling water under 30 cm of the nozzle surface, and a pair of pulling stainless steel endless nets with a width of 70 cm in parallel at intervals of 5 cm. Taking up the take-out conveyor so that it comes out partly on the surface of the water, pulling it into the cooling water at a speed of 1 m / min while sandwiching both sides while fusing the contact part, then solidify it, then hot air dryer at 100 ° C After the crystallization treatment for 15 minutes, the crystallization treatment was performed, and then cut into a predetermined size to obtain a network structure. Table 2 shows the characteristics of the obtained network structure.

<実施例3>
80kgの合成例1で得られたポリエステル系熱可塑性エラストマー(A−1)および20kgの水添スチレン−ブタジエンランダム共重合体(SBR)(旭化成ケミカルズ社製「S.O.E.S1611」)、1kgのトリメリット酸エステル系可塑剤(DIC社製「モノサイザーW705」)、10kgのポリエステル系可塑剤(DIC社製「ポリサイザーA55」)、0.25kgのヒンダードフェノール系酸化防止剤(ADEKA社製「アデカスタブAO330」)、0.25kgの燐系酸化防止剤(ADEKA社製「アデカスタブPEP36」)をタンブラーにて5分間混合した後、スクリュー径φ57mmの二軸押出機でシリンダー温度220℃、スクリュー回転数130rpmにて溶融混練し、水浴にストランド状に押出して冷却後、樹脂組成物のペレットを得た。得られた樹脂組成物を幅65cm、長さ5cmのノズル有効面に孔径3.0mmの丸型中空形状オリフィスを幅方向5.2mm、長さ方向6.0mmの間隔で配列したノズルより、240℃の温度で溶融して、単孔吐出量を2.5g/分で吐出させ、ノズル面30cm下に冷却水を配し、幅70cmのステンレス製エンドレスネットを平行に5cm間隔で一対の引取りコンベアを水面上に一部出るように配した上に引取り、接触部分を融着させつつ、両面を挟み込みつつ毎分1mの速度で冷却水中へ引込み固化させ、次いで100℃の熱風乾燥機中で15分疑似結晶化処理した後、疑似結晶化処理した後、所定の大きさに切断して網状構造体を得た。得られた網状構造体の特性を表2に示す。
<Example 3>
80 kg of the polyester-based thermoplastic elastomer (A-1) obtained in Synthesis Example 1 and 20 kg of a hydrogenated styrene-butadiene random copolymer (SBR) ("SOE S1611" manufactured by Asahi Kasei Chemicals), 1 kg of trimellitic acid ester plasticizer (DIC monosizer W705), 10 kg polyester plasticizer (DIC polysizer A55), 0.25 kg hindered phenol antioxidant (ADEKA) “Adeka Stub AO330”) and 0.25 kg of phosphorous antioxidant (“ADEKA STAB PEP36” manufactured by ADEKA) were mixed for 5 minutes in a tumbler, and then the cylinder temperature was 220 ° C. with a twin screw extruder with a screw diameter of φ57 mm. It is melt-kneaded at a rotational speed of 130 rpm, extruded in a strand form in a water bath, and cooled. After, to obtain pellets of the resin composition. From the nozzle obtained by arranging a round hollow orifice having a hole diameter of 3.0 mm on the effective surface of the nozzle having a width of 65 cm and a length of 5 cm on the effective surface of the obtained resin composition at intervals of 5.2 mm in the width direction and 6.0 mm in the length direction, 240 Melting at a temperature of ° C, discharging a single hole at a rate of 2.5 g / min, arranging cooling water under 30 cm of the nozzle surface, and taking a pair of stainless endless nets with a width of 70 cm at intervals of 5 cm The conveyor is placed on the water surface so that it is partly pulled out, and the contact part is melted, the both sides are sandwiched and drawn into the cooling water at a speed of 1 m / min, and then solidified in a 100 ° C hot air dryer. After 15 minutes of pseudo crystallization treatment, pseudo crystallization treatment was performed and then cut into a predetermined size to obtain a network structure. Table 2 shows the characteristics of the obtained network structure.

<実施例4>
30kgの合成例1で得られたポリエステル系熱可塑性エラストマー(A−1)および40kgの合成例5で得られたポリエステル系熱可塑性エラストマー(A−5)、30kgの水添スチレン−ブタジエンランダム共重合体(SBR)(旭化成ケミカルズ社製「S.O.E.S1611」)、0.5kgのトリメリット酸エステル系可塑剤(DIC社製「モノサイザーW705」)、10kgのポリエステル系可塑剤(DIC社製「ポリサイザーA55」)、0.25kgのヒンダードフェノール系酸化防止剤(ADEKA社製「アデカスタブAO330」)、0.25kgの燐系酸化防止剤(ADEKA社製「アデカスタブPEP36」)をタンブラーにて5分間混合した後、スクリュー径φ57mmの二軸押出機でシリンダー温度220℃、スクリュー回転数130rpmにて溶融混練し、水浴にストランド状に押出して冷却後、樹脂組成物のペレットを得た。得られた樹脂組成物を幅65cm、長さ5cmのノズル有効面に孔径1.0mmの丸型中実形状オリフィスを幅方向5.2mm、長さ方向6.0mmの間隔で配列したノズルより、240℃の温度で溶融して、単孔吐出量を2.0g/分で吐出させ、ノズル面30cm下に冷却水を配し、幅70cmのステンレス製エンドレスネットを平行に5cm間隔で一対の引取りコンベアを水面上に一部出るように配した上に引取り、接触部分を融着させつつ、両面を挟み込みつつ毎分1mの速度で冷却水中へ引込み固化させ、次いで100℃の熱風乾燥機中で15分疑似結晶化処理した後、疑似結晶化処理した後、所定の大きさに切断して網状構造体を得た。得られた網状構造体の特性を表2に示す。
<Example 4>
30 kg of the polyester-based thermoplastic elastomer (A-1) obtained in Synthesis Example 1, 40 kg of the polyester-based thermoplastic elastomer (A-5) obtained in Synthesis Example 5, 30 kg of hydrogenated styrene-butadiene random copolymer Combined (SBR) (“SOE S1611” manufactured by Asahi Kasei Chemicals), 0.5 kg trimellitic acid ester plasticizer (“Monicizer W705” manufactured by DIC), 10 kg polyester plasticizer (DIC) "Polysizer A55"), 0.25 kg of hindered phenolic antioxidant (ADEKA "ADK STAB AO330"), 0.25 kg of phosphorus antioxidant (ADEKA "ADK STAB PEP36") on the tumbler After mixing for 5 minutes, the cylinder temperature is 220 using a twin screw extruder with a screw diameter of 57 mm. Was melt-kneaded at a screw rotation speed 130 rpm, cooled extruded into strands in a water bath, to obtain pellets of the resin composition. From the nozzle in which a round solid shape orifice having a hole diameter of 1.0 mm is arranged at intervals of 5.2 mm in the width direction and 6.0 mm in the length direction on the nozzle effective surface of the obtained resin composition having a width of 65 cm and a length of 5 cm, Melting at a temperature of 240 ° C., discharging a single hole at a discharge rate of 2.0 g / min, arranging cooling water under 30 cm of the nozzle surface, and a pair of pulling stainless steel endless nets with a width of 70 cm in parallel at intervals of 5 cm. Taking up the take-out conveyor so that it comes out partly on the surface of the water, pulling it into the cooling water at a speed of 1 m / min while sandwiching both sides while fusing the contact part, then solidify it, then hot air dryer at 100 ° C After the crystallization treatment for 15 minutes, the crystallization treatment was performed, and then cut into a predetermined size to obtain a network structure. Table 2 shows the characteristics of the obtained network structure.

<実施例5>
30kgの合成例1で得られたポリエステル系熱可塑性エラストマー(A−1)および40kgの合成例5で得られたポリエステル系熱可塑性エラストマー(A−5)、30kgの水添スチレン−ブタジエンランダム共重合体(SBR)(旭化成ケミカルズ社製「S.O.E.S1611」)、0.5kgのトリメリット酸エステル系可塑剤(DIC社製「モノサイザーW705」)、10kgのポリエステル系可塑剤(DIC社製「ポリサイザーA55」)、0.25kgのヒンダードフェノール系酸化防止剤(ADEKA社製「アデカスタブAO330」)、0.25kgの燐系酸化防止剤(ADEKA社製「アデカスタブPEP36」)をタンブラーにて5分間混合した後、スクリュー径φ57mmの二軸押出機でシリンダー温度220℃、スクリュー回転数130rpmにて溶融混練し、水浴にストランド状に押出して冷却後、樹脂組成物のペレットを得た。得られた樹脂組成物を幅65cm、長さ5cmのノズル有効面に孔径3.0mmの丸型中空形状オリフィスを幅方向5.2mm、長さ方向6.0mmの間隔で配列したノズルより、240℃の温度で溶融して、単孔吐出量を2.5g/分で吐出させ、ノズル面30cm下に冷却水を配し、幅70cmのステンレス製エンドレスネットを平行に5cm間隔で一対の引取りコンベアを水面上に一部出るように配した上に引取り、接触部分を融着させつつ、両面を挟み込みつつ毎分1mの速度で冷却水中へ引込み固化させ、次いで100℃の熱風乾燥機中で15分疑似結晶化処理した後、疑似結晶化処理した後、所定の大きさに切断して網状構造体を得た。得られた網状構造体の特性を表2に示す。
<Example 5>
30 kg of the polyester-based thermoplastic elastomer (A-1) obtained in Synthesis Example 1, 40 kg of the polyester-based thermoplastic elastomer (A-5) obtained in Synthesis Example 5, 30 kg of hydrogenated styrene-butadiene random copolymer Combined (SBR) (“SOE S1611” manufactured by Asahi Kasei Chemicals), 0.5 kg trimellitic acid ester plasticizer (“Monicizer W705” manufactured by DIC), 10 kg polyester plasticizer (DIC) "Polysizer A55"), 0.25 kg of hindered phenolic antioxidant (ADEKA "ADK STAB AO330"), 0.25 kg of phosphorus antioxidant (ADEKA "ADK STAB PEP36") on the tumbler After mixing for 5 minutes, the cylinder temperature is 220 using a twin screw extruder with a screw diameter of 57 mm. Was melt-kneaded at a screw rotation speed 130 rpm, cooled extruded into strands in a water bath, to obtain pellets of the resin composition. From the nozzle obtained by arranging a round hollow orifice having a hole diameter of 3.0 mm on the effective surface of the nozzle having a width of 65 cm and a length of 5 cm on the effective surface of the obtained resin composition at intervals of 5.2 mm in the width direction and 6.0 mm in the length direction, 240 Melting at a temperature of ° C, discharging a single hole at a rate of 2.5 g / min, arranging cooling water under 30 cm of the nozzle surface, and taking a pair of stainless endless nets with a width of 70 cm at intervals of 5 cm The conveyor is placed on the water surface so that it is partly pulled out, and the contact part is melted, the both sides are sandwiched and drawn into the cooling water at a speed of 1 m / min, and then solidified in a 100 ° C hot air dryer. After 15 minutes of pseudo crystallization treatment, pseudo crystallization treatment was performed and then cut into a predetermined size to obtain a network structure. Table 2 shows the characteristics of the obtained network structure.

<実施例6>
20kgの合成例1で得られたポリエステル系熱可塑性エラストマー(A−1)および60kgの合成例5で得られたポリエステル系熱可塑性エラストマー(A−5)、20kgの水添スチレン−ブタジエンランダム共重合体(SBR)(旭化成ケミカルズ社製「S.O.E.S1611」)、0.5kgのトリメリット酸エステル系可塑剤(DIC社製「モノサイザーW705」)、10kgのポリエステル系可塑剤(DIC社製「ポリサイザーA55」)、0.25kgのヒンダードフェノール系酸化防止剤(ADEKA社製「アデカスタブAO330」)、0.25kgの燐系酸化防止剤(ADEKA社製「アデカスタブPEP36」)をタンブラーにて5分間混合した後、スクリュー径φ57mmの二軸押出機でシリンダー温度220℃、スクリュー回転数130rpmにて溶融混練し、水浴にストランド状に押出して冷却後、樹脂組成物のペレットを得た。得られた樹脂組成物を幅65cm、長さ5cmのノズル有効面に孔径3.0mmの丸型中空形状オリフィスを幅方向5.2mm、長さ方向6.0mmの間隔で配列したノズルより、240℃の温度で溶融して、単孔吐出量を2.5g/分で吐出させ、ノズル面30cm下に冷却水を配し、幅70cmのステンレス製エンドレスネットを平行に5cm間隔で一対の引取りコンベアを水面上に一部出るように配した上に引取り、接触部分を融着させつつ、両面を挟み込みつつ毎分1mの速度で冷却水中へ引込み固化させ、次いで100℃の熱風乾燥機中で15分疑似結晶化処理した後、疑似結晶化処理した後、所定の大きさに切断して網状構造体を得た。得られた網状構造体の特性を表2に示す。
<Example 6>
20 kg of the polyester-based thermoplastic elastomer (A-1) obtained in Synthesis Example 1, 60 kg of the polyester-based thermoplastic elastomer (A-5) obtained in Synthesis Example 5, 20 kg of hydrogenated styrene-butadiene random copolymer Combined (SBR) (“SOE S1611” manufactured by Asahi Kasei Chemicals), 0.5 kg trimellitic acid ester plasticizer (“Monicizer W705” manufactured by DIC), 10 kg polyester plasticizer (DIC) "Polysizer A55"), 0.25 kg of hindered phenolic antioxidant (ADEKA "ADK STAB AO330"), 0.25 kg of phosphorus antioxidant (ADEKA "ADK STAB PEP36") on the tumbler After mixing for 5 minutes, the cylinder temperature is 220 using a twin screw extruder with a screw diameter of 57 mm. Was melt-kneaded at a screw rotation speed 130 rpm, cooled extruded into strands in a water bath, to obtain pellets of the resin composition. From the nozzle obtained by arranging a round hollow orifice having a hole diameter of 3.0 mm on the effective surface of the nozzle having a width of 65 cm and a length of 5 cm on the effective surface of the obtained resin composition at intervals of 5.2 mm in the width direction and 6.0 mm in the length direction, 240 Melting at a temperature of ° C, discharging a single hole at a rate of 2.5 g / min, arranging cooling water under 30 cm of the nozzle surface, and taking a pair of stainless endless nets with a width of 70 cm at intervals of 5 cm The conveyor is placed on the water surface so that it is partly pulled out, and the contact part is melted, the both sides are sandwiched and drawn into the cooling water at a speed of 1 m / min, and then solidified in a 100 ° C hot air dryer. After 15 minutes of pseudo crystallization treatment, pseudo crystallization treatment was performed and then cut into a predetermined size to obtain a network structure. Table 2 shows the characteristics of the obtained network structure.

<比較例1>
100kgの合成例1で得られたポリエステル系熱可塑性エラストマー(A−1)および0.25kgのヒンダードフェノール系酸化防止剤(ADEKA社製「アデカスタブAO330」)、0.25kgの燐系酸化防止剤(ADEKA社製「アデカスタブPEP36」)をタンブラーにて5分間混合した後、スクリュー径φ57mmの二軸押出機でシリンダー温度200℃、スクリュー回転数130rpmにて溶融混練し、水浴にストランド状に押出して冷却後、樹脂組成物のペレットを得た。得られた樹脂組成物を幅65cm、長さ5cmのノズル有効面に孔径3.0mmの丸型中空形状オリフィスを幅方向5.2mm、長さ方向6.0mmの間隔で配列したノズルより、250℃の温度で溶融して、単孔吐出量を2.5g/分で吐出させ、ノズル面30cm下に冷却水を配し、幅70cmのステンレス製エンドレスネットを平行に5cm間隔で一対の引取りコンベアを水面上に一部出るように配した上に引取り、接触部分を融着させつつ、両面を挟み込みつつ毎分1mの速度で冷却水中へ引込み固化させ、次いで100℃の熱風乾燥機中で15分疑似結晶化処理した後、疑似結晶化処理した後、所定の大きさに切断して網状構造体を得た。得られた網状構造体の特性を表2に示す。
<Comparative Example 1>
100 kg of the polyester-based thermoplastic elastomer (A-1) obtained in Synthesis Example 1 and 0.25 kg of a hindered phenol antioxidant (“ADEKA STAB AO330” manufactured by ADEKA), 0.25 kg of a phosphorus-based antioxidant ("ADEKA STAB PEP36" manufactured by ADEKA) was mixed for 5 minutes with a tumbler, melted and kneaded with a twin screw extruder with a screw diameter of 57 mm at a cylinder temperature of 200 ° C and a screw rotation speed of 130 rpm, and extruded into a water bath in a strand shape. After cooling, pellets of the resin composition were obtained. From the nozzle in which a round hollow orifice having a hole diameter of 3.0 mm is arranged on a nozzle effective surface having a width of 65 cm and a length of 5 cm on the effective surface of the obtained resin composition at intervals of 5.2 mm in the width direction and 6.0 mm in the length direction, 250 Melting at a temperature of ° C, discharging a single hole at a rate of 2.5 g / min, arranging cooling water under 30 cm of the nozzle surface, and taking a pair of stainless endless nets with a width of 70 cm at intervals of 5 cm The conveyor is placed on the water surface so that it is partly pulled out, and the contact part is melted, the both sides are sandwiched and drawn into the cooling water at a speed of 1 m / min, and then solidified in a 100 ° C hot air dryer. After 15 minutes of pseudo crystallization treatment, pseudo crystallization treatment was performed and then cut into a predetermined size to obtain a network structure. Table 2 shows the characteristics of the obtained network structure.

<比較例2>
100kgの合成例2で得られたポリエステル系熱可塑性エラストマー(A−2)および0.25kgのヒンダードフェノール系酸化防止剤(ADEKA社製「アデカスタブAO330」)、0.25kgの燐系酸化防止剤(ADEKA社製「アデカスタブPEP36」)をタンブラーにて5分間混合した後、スクリュー径φ57mmの二軸押出機でシリンダー温度200℃、スクリュー回転数130rpmにて溶融混練し、水浴にストランド状に押出して冷却後、樹脂組成物のペレットを得た。得られた樹脂組成物を幅65cm、長さ5cmのノズル有効面に孔径3.0mmの丸型中空形状オリフィスを幅方向5.2mm、長さ方向6.0mmの間隔で配列したノズルより、240℃の温度で溶融して、単孔吐出量を2.5g/分で吐出させ、ノズル面30cm下に冷却水を配し、幅70cmのステンレス製エンドレスネットを平行に5cm間隔で一対の引取りコンベアを水面上に一部出るように配した上に引取り、接触部分を融着させつつ、両面を挟み込みつつ毎分1mの速度で冷却水中へ引込み固化させ、次いで100℃の熱風乾燥機中で15分疑似結晶化処理した後、疑似結晶化処理した後、所定の大きさに切断して網状構造体を得た。得られた網状構造体の特性を表2に示す。
<Comparative example 2>
100 kg of the polyester-based thermoplastic elastomer (A-2) obtained in Synthesis Example 2 and 0.25 kg of a hindered phenol-based antioxidant (“ADEKA STAB AO330” manufactured by ADEKA), 0.25 kg of a phosphorus-based antioxidant ("ADEKA STAB PEP36" manufactured by ADEKA) was mixed for 5 minutes with a tumbler, melted and kneaded with a twin screw extruder with a screw diameter of 57 mm at a cylinder temperature of 200 ° C and a screw rotation speed of 130 rpm, and extruded into a water bath in a strand shape. After cooling, pellets of the resin composition were obtained. From the nozzle obtained by arranging a round hollow orifice having a hole diameter of 3.0 mm on the effective surface of the nozzle having a width of 65 cm and a length of 5 cm on the effective surface of the obtained resin composition at intervals of 5.2 mm in the width direction and 6.0 mm in the length direction, 240 Melting at a temperature of ° C, discharging a single hole at a rate of 2.5 g / min, arranging cooling water under 30 cm of the nozzle surface, and taking a pair of stainless endless nets with a width of 70 cm at intervals of 5 cm The conveyor is placed on the water surface so that it is partly pulled out, and the contact part is melted, the both sides are sandwiched and drawn into the cooling water at a speed of 1 m / min, and then solidified in a 100 ° C hot air dryer. After 15 minutes of pseudo crystallization treatment, pseudo crystallization treatment was performed and then cut into a predetermined size to obtain a network structure. Table 2 shows the characteristics of the obtained network structure.

<比較例3>
100kgの合成例3で得られたポリエステル系熱可塑性エラストマー(A−3)および0.25kgのヒンダードフェノール系酸化防止剤(ADEKA社製「アデカスタブAO330」)、0.25kgの燐系酸化防止剤(ADEKA社製「アデカスタブPEP36」)をタンブラーにて5分間混合した後、スクリュー径φ57mmの二軸押出機でシリンダー温度200℃、スクリュー回転数130rpmにて溶融混練し、水浴にストランド状に押出して冷却後、樹脂組成物のペレットを得た。得られた樹脂組成物を幅65cm、長さ5cmのノズル有効面に孔径3.0mmの丸型中空形状オリフィスを幅方向5.2mm、長さ方向6.0mmの間隔で配列したノズルより、240℃の温度で溶融して、単孔吐出量を2.5g/分で吐出させ、ノズル面30cm下に冷却水を配し、幅70cmのステンレス製エンドレスネットを平行に5cm間隔で一対の引取りコンベアを水面上に一部出るように配した上に引取り、接触部分を融着させつつ、両面を挟み込みつつ毎分1mの速度で冷却水中へ引込み固化させ、次いで100℃の熱風乾燥機中で15分疑似結晶化処理した後、疑似結晶化処理した後、所定の大きさに切断して網状構造体を得た。得られた網状構造体の特性を表2に示す。
<Comparative Example 3>
100 kg of the polyester-based thermoplastic elastomer (A-3) obtained in Synthesis Example 3, 0.25 kg of a hindered phenolic antioxidant (“ADEKA STAB AO330” manufactured by ADEKA), 0.25 kg of a phosphorus-based antioxidant ("ADEKA STAB PEP36" manufactured by ADEKA) was mixed for 5 minutes with a tumbler, melted and kneaded with a twin screw extruder with a screw diameter of 57 mm at a cylinder temperature of 200 ° C and a screw rotation speed of 130 rpm, and extruded into a water bath in a strand shape. After cooling, pellets of the resin composition were obtained. From the nozzle obtained by arranging a round hollow orifice having a hole diameter of 3.0 mm on the effective surface of the nozzle having a width of 65 cm and a length of 5 cm on the effective surface of the obtained resin composition at intervals of 5.2 mm in the width direction and 6.0 mm in the length direction, 240 Melting at a temperature of ° C, discharging a single hole at a rate of 2.5 g / min, arranging cooling water under 30 cm of the nozzle surface, and taking a pair of stainless endless nets with a width of 70 cm at intervals of 5 cm The conveyor is placed on the water surface so that it is partly pulled out, and the contact part is melted, the both sides are sandwiched and drawn into the cooling water at a speed of 1 m / min, and then solidified in a 100 ° C hot air dryer. After 15 minutes of pseudo crystallization treatment, pseudo crystallization treatment was performed and then cut into a predetermined size to obtain a network structure. Table 2 shows the characteristics of the obtained network structure.

<比較例4>
100kgの合成例4で得られたポリエステル系熱可塑性エラストマー(A−4)および0.25kgのヒンダードフェノール系酸化防止剤(ADEKA社製「アデカスタブAO330」)、0.25kgの燐系酸化防止剤(ADEKA社製「アデカスタブPEP36」)をタンブラーにて5分間混合した後、スクリュー径φ57mmの二軸押出機でシリンダー温度200℃、スクリュー回転数130rpmにて溶融混練し、水浴にストランド状に押出して冷却後、樹脂組成物のペレットを得た。得られた樹脂組成物を幅65cm、長さ5cmのノズル有効面に孔径3.0mmの丸型中空形状オリフィスを幅方向5.2mm、長さ方向6.0mmの間隔で配列したノズルより、240℃の温度で溶融して、単孔吐出量を2.5g/分で吐出させ、ノズル面30cm下に冷却水を配し、幅70cmのステンレス製エンドレスネットを平行に5cm間隔で一対の引取りコンベアを水面上に一部出るように配した上に引取り、接触部分を融着させつつ、両面を挟み込みつつ毎分1mの速度で冷却水中へ引込み固化させ、次いで100℃の熱風乾燥機中で15分疑似結晶化処理した後、疑似結晶化処理した後、所定の大きさに切断して網状構造体を得た。得られた網状構造体の特性を表2に示す。
<Comparative example 4>
100 kg of the polyester-based thermoplastic elastomer (A-4) obtained in Synthesis Example 4 and 0.25 kg of a hindered phenol-based antioxidant (“ADEKA STAB AO330” manufactured by ADEKA), 0.25 kg of a phosphorus-based antioxidant ("ADEKA STAB PEP36" manufactured by ADEKA) was mixed for 5 minutes with a tumbler, melted and kneaded with a twin screw extruder with a screw diameter of 57 mm at a cylinder temperature of 200 ° C and a screw rotation speed of 130 rpm, and extruded into a water bath in a strand shape. After cooling, pellets of the resin composition were obtained. From the nozzle obtained by arranging a round hollow orifice having a hole diameter of 3.0 mm on the effective surface of the nozzle having a width of 65 cm and a length of 5 cm on the effective surface of the obtained resin composition at intervals of 5.2 mm in the width direction and 6.0 mm in the length direction, 240 Melting at a temperature of ° C, discharging a single hole at a rate of 2.5 g / min, arranging cooling water under 30 cm of the nozzle surface, and taking a pair of stainless endless nets with a width of 70 cm at intervals of 5 cm The conveyor is placed on the water surface so that it is partly pulled out, and the contact part is melted, the both sides are sandwiched and drawn into the cooling water at a speed of 1 m / min, and then solidified in a 100 ° C hot air dryer. After 15 minutes of pseudo crystallization treatment, pseudo crystallization treatment was performed and then cut into a predetermined size to obtain a network structure. Table 2 shows the characteristics of the obtained network structure.

<比較例5>
100kgの水添スチレン−ブタジエンランダム共重合体(SBS)(旭化成ケミカルズ社製「S.O.E.S1611」)を幅65cm、長さ5cmのノズル有効面に孔径3.0mmの丸型中空形状オリフィスを幅方向5.2mm、長さ方向6.0mmの間隔で配列したノズルより、240℃の温度で溶融して、単孔吐出量を2.5g/分で吐出させ、ノズル面30cm下に冷却水を配し、幅70cmのステンレス製エンドレスネットを平行に5cm間隔で一対の引取りコンベアを水面上に一部出るように配した上に引取り、接触部分を融着させつつ、両面を挟み込みつつ毎分1mの速度で冷却水中へ引込み固化させ、次いで100℃の熱風乾燥機中で15分疑似結晶化処理した後、疑似結晶化処理した後、所定の大きさに切断して網状構造体を得た。得られた網状構造体の特性を表2に示す。
<Comparative Example 5>
100 kg of hydrogenated styrene-butadiene random copolymer (SBS) ("SOE S1611" manufactured by Asahi Kasei Chemicals Corporation) is a round hollow shape with a diameter of 3.0 mm on the effective surface of a nozzle having a width of 65 cm and a length of 5 cm. From a nozzle in which orifices are arranged at intervals of 5.2 mm in the width direction and 6.0 mm in the length direction, the nozzle is melted at a temperature of 240 ° C. and discharged at a single hole discharge rate of 2.5 g / min. Cooling water is distributed, a stainless steel endless net with a width of 70 cm is arranged in parallel at intervals of 5 cm so that a pair of take-out conveyors are partly exposed on the surface of the water, and the both sides are fused while the contact portions are fused. While being sandwiched, it is drawn into cooling water at a rate of 1 m / min and solidified, then subjected to pseudo crystallization treatment in a hot air dryer at 100 ° C. for 15 minutes, then pseudo crystallization treatment, and then cut into a predetermined size to form a network structure. To give the body. Table 2 shows the characteristics of the obtained network structure.

本発明は、クッション性を保ちつつ、優れた静粛性を示す網状構造体に関するものであり、その特性を生かして車両用座席やマットレスなどに使用可能である。 The present invention relates to a network structure that exhibits excellent quietness while maintaining cushioning properties, and can be used for vehicle seats, mattresses, and the like by taking advantage of the characteristics.

Claims (8)

100〜100000デシテックスの連続線状体を曲がりくねらせランダムループを形成し、夫々のループを互いに溶融状態で接触せしめて、接触部の大部分を融着させてなる三次元ランダムループ接合構造体からなる網状構造体であって、連続線状体の動的粘弾性測定装置を用いて測定した23℃でのTanδが0.10以上であり、かつ、三次元ランダムループ接合構造体の25%圧縮時硬さが10kg/Φ200mm以上である、網状構造体。 From a three-dimensional random loop bonded structure formed by winding a continuous linear body of 100 to 100,000 decitex to form a random loop, bringing the respective loops into contact with each other in a molten state, and fusing most of the contact portions The tan δ at 23 ° C. measured using a continuous linear dynamic viscoelasticity measuring apparatus is 0.10 or more, and the three-dimensional random loop bonded structure is compressed by 25%. A network structure having an hour hardness of 10 kg / Φ200 mm or more. 連続線状体が異なる2種以上の熱可塑性エラストマーの混合体で構成されていることを特徴とする請求項1に記載の網状構造体 The network structure according to claim 1, wherein the continuous linear body is composed of a mixture of two or more different thermoplastic elastomers. 異なる2種以上の熱可塑性エラストマーのうち少なくとも1種がポリエステル系熱可塑性エラストマーである、請求項1又は2に記載の網状構造体。 The network structure according to claim 1 or 2, wherein at least one of two or more different thermoplastic elastomers is a polyester-based thermoplastic elastomer. ポリエステル系熱可塑性エラストマーがポリエステルエーテルブロック共重合体又はポリエステルエステルブロック共重合体である、請求項3に記載の網状構造体。 The network structure according to claim 3, wherein the polyester-based thermoplastic elastomer is a polyester ether block copolymer or a polyester ester block copolymer. 異なる2種以上の熱可塑性エラストマーのうち少なくとも1種がポリエステル系熱可塑性エラストマーであり、かつ少なくとも1種がポリスチレン系熱可塑性エラストマーである、請求項3又は4に記載の網状構造体。 The network structure according to claim 3 or 4, wherein at least one of two or more different thermoplastic elastomers is a polyester thermoplastic elastomer and at least one is a polystyrene thermoplastic elastomer. ポリスチレン系熱可塑性エラストマーが、スチレン‐ブタジエンランダム共重合体、スチレン‐イソプレンランダム共重合体、及びこれらの水素添加共重合体からなる群より選択される少なくとも1種である、請求項5に記載の網状構造体。 The polystyrene-based thermoplastic elastomer is at least one selected from the group consisting of a styrene-butadiene random copolymer, a styrene-isoprene random copolymer, and a hydrogenated copolymer thereof. Reticulated structure. 連続線状体が中空断面である請求項1〜6のいずれかに記載の網状構造体。 The network structure according to any one of claims 1 to 6, wherein the continuous linear body has a hollow cross section. 連続線状体が異形断面である請求項1〜6のいずれかに記載の網状構造体。 The network structure according to any one of claims 1 to 6, wherein the continuous linear body has an irregular cross section.
JP2012060057A 2011-09-16 2012-03-16 Elastic network structure with excellent quietness and hardness Active JP6115015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012060057A JP6115015B2 (en) 2011-09-16 2012-03-16 Elastic network structure with excellent quietness and hardness

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011202895 2011-09-16
JP2011202895 2011-09-16
JP2012060057A JP6115015B2 (en) 2011-09-16 2012-03-16 Elastic network structure with excellent quietness and hardness

Publications (2)

Publication Number Publication Date
JP2013075138A true JP2013075138A (en) 2013-04-25
JP6115015B2 JP6115015B2 (en) 2017-04-19

Family

ID=48479091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012060057A Active JP6115015B2 (en) 2011-09-16 2012-03-16 Elastic network structure with excellent quietness and hardness

Country Status (1)

Country Link
JP (1) JP6115015B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7166537B2 (en) * 2018-12-19 2022-11-08 エムケービルド株式会社 Waterproof construction method for bridges and structure of waterproof layer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768061A (en) * 1993-02-26 1995-03-14 Toyobo Co Ltd Net-work structure for cushion and its manufacture
JP2003012905A (en) * 2001-07-03 2003-01-15 Asahi Kasei Corp Cushioning body
JP2004149959A (en) * 2002-10-30 2004-05-27 Toyobo Co Ltd Shock absorbing pad for attachment and product using the same
JP2005089870A (en) * 2002-08-08 2005-04-07 Chisso Corp Elastic nonwoven fabric and textile product using the same
JP2005171456A (en) * 2003-12-15 2005-06-30 Chisso Corp Stretchable nonwoven fabric and fiber product using the same
JP2006200119A (en) * 2004-12-21 2006-08-03 Toyobo Co Ltd Lightweight elastic net-like structure having excellent chemical resistance
JP2010043376A (en) * 2008-08-13 2010-02-25 Toyobo Co Ltd Polyester-based elastic netlike structure having excellent silence and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768061A (en) * 1993-02-26 1995-03-14 Toyobo Co Ltd Net-work structure for cushion and its manufacture
JP2003012905A (en) * 2001-07-03 2003-01-15 Asahi Kasei Corp Cushioning body
JP2005089870A (en) * 2002-08-08 2005-04-07 Chisso Corp Elastic nonwoven fabric and textile product using the same
JP2004149959A (en) * 2002-10-30 2004-05-27 Toyobo Co Ltd Shock absorbing pad for attachment and product using the same
JP2005171456A (en) * 2003-12-15 2005-06-30 Chisso Corp Stretchable nonwoven fabric and fiber product using the same
JP2006200119A (en) * 2004-12-21 2006-08-03 Toyobo Co Ltd Lightweight elastic net-like structure having excellent chemical resistance
JP2010043376A (en) * 2008-08-13 2010-02-25 Toyobo Co Ltd Polyester-based elastic netlike structure having excellent silence and method for producing the same

Also Published As

Publication number Publication date
JP6115015B2 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
JP5418741B1 (en) Elastic network structure with excellent quietness and hardness
KR102227060B1 (en) Quiet, lightweight elastic mesh structure
JP5966471B2 (en) Elastic network structure with excellent quietness and hardness
JP5978674B2 (en) Elastic network structure with high vibration absorption
JP5966472B2 (en) Elastic network structure with high vibration absorption
JP2013091862A (en) Net-like structure
JP6115015B2 (en) Elastic network structure with excellent quietness and hardness
JP2013090657A (en) Bedding
JP3454373B2 (en) Elastic network, manufacturing method and products using the same
CN113166995A (en) Net-shaped structure
JPH07238456A (en) Network structure for cushion, its production and cushion product
JP2013090658A (en) Cushion
JPH07238457A (en) Network structure for cushion, its production and cushion product
JP3430446B2 (en) Composite elastic network, its production method and products using it
JP2014064767A (en) Cushion
JP2013090662A (en) Cushion
JPH07238462A (en) Nonwoven fabric laminated structure, its production and product using the same
JPH07238461A (en) Laminated structure, its production and product using the same
JPH07238460A (en) Laminated elastic structure, its production and product using the same
JP2013090661A (en) Bedding
JPH07300762A (en) Nonwoven fabric laminated network material, its production and product using the same
JPH07238459A (en) Laminated network material, its production and product using the same
JPH07243163A (en) Laminated nonwoven fabric network material, its production and product using the same
JPH07258952A (en) Nonwoven laminated net, its production and product using the same
JPH07252761A (en) Flame-retardant network structure, production thereof and products using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170306

R151 Written notification of patent or utility model registration

Ref document number: 6115015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350