JP2013072130A - Method for manufacturing hot-dip galvanized steel sheet - Google Patents

Method for manufacturing hot-dip galvanized steel sheet Download PDF

Info

Publication number
JP2013072130A
JP2013072130A JP2011213750A JP2011213750A JP2013072130A JP 2013072130 A JP2013072130 A JP 2013072130A JP 2011213750 A JP2011213750 A JP 2011213750A JP 2011213750 A JP2011213750 A JP 2011213750A JP 2013072130 A JP2013072130 A JP 2013072130A
Authority
JP
Japan
Prior art keywords
steel sheet
dip galvanized
galvanized steel
acidic solution
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011213750A
Other languages
Japanese (ja)
Other versions
JP5961967B2 (en
Inventor
Takanobu Yano
孝宣 矢野
Katsuya Hoshino
克弥 星野
Naoto Yoshimi
直人 吉見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011213750A priority Critical patent/JP5961967B2/en
Publication of JP2013072130A publication Critical patent/JP2013072130A/en
Application granted granted Critical
Publication of JP5961967B2 publication Critical patent/JP5961967B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing, stably and in a short period of time, a hot-dip galvanized steel sheet having excellent press formability.SOLUTION: The method includes the steps of: hot-dip galvanizing a steel sheet; temper-rolling the steel sheet; subsequently making the steel sheet brought into contact with an acidic solution having a pH buffer action and containing an iron masking agent; holding the steel sheet for 1 to 60 seconds after the contact treatment; and washing the steel sheet with water. Thereby, a zinc based oxide layer is formed on a surface of the plated steel sheet. In the iron masking agent, it is preferable that a logarithm of the formation constant of a complexation reaction with Fe(II) is 3.0 or more, and that the logarithm of the formation constant of the complexation reaction with Fe(II) is higher than a logarithm of a formation constant of the complexation reaction with Zn(II).

Description

本発明は、プレス成形時の摺動抵抗が小さく優れたプレス成形性を有する溶融亜鉛めっき鋼板の製造方法に関するものである。   The present invention relates to a method for producing a hot-dip galvanized steel sheet having excellent press formability with low sliding resistance during press forming.

溶融亜鉛系めっき鋼板は自動車車体用途を中心に広範な分野で広く利用され、そのような用途では、プレス成形を施されて使用に供される。しかし、溶融亜鉛系めっき鋼板は冷延鋼板に比べてプレス成形性が劣るという欠点を有する。これはプレス金型での溶融亜鉛めっき鋼板の摺動抵抗が冷延鋼板に比べて大きいことが原因であり、金型とビードでの摺動抵抗が大きい部分で溶融亜鉛系めっき鋼板がプレス金型に流入しにくくなり、鋼板の破断が起こりやすくなる。   Hot-dip galvanized steel sheets are widely used in a wide range of fields, mainly for automobile body applications, and in such applications, they are subjected to press forming and used. However, the hot dip galvanized steel sheet has the disadvantage that the press formability is inferior to that of the cold rolled steel sheet. This is because the sliding resistance of the hot dip galvanized steel sheet in the press mold is larger than that of the cold rolled steel sheet. The hot dip galvanized steel sheet is pressed in the part where the sliding resistance between the mold and the bead is large. It becomes difficult to flow into the mold, and the steel sheet tends to break.

ここで、溶融亜鉛系めっき鋼板にはめっき後に合金化を施す場合と合金化を施さない場合がある。特に合金化を施さない場合では、金型にめっきが付着すること(型カジリ)により、更に摺動抵抗が増加する現象があり、連続プレス成形の途中から割れが発生するなど、自動車の生産性に深刻な悪影響を及ぼす。   Here, the hot dip galvanized steel sheet may or may not be alloyed after plating. Especially when not alloyed, there is a phenomenon that the sliding resistance further increases due to the adhesion of the plating to the mold (mold galling), and cracking occurs in the middle of continuous press molding. Has a serious adverse effect.

上記を受けて、溶融亜鉛めっき鋼板使用時のプレス成形性を向上させる方法として、高粘度の潤滑油を塗布する方法が広く用いられている。しかし、この方法では潤滑油が高粘性のために塗装工程で脱脂不良による塗装欠陥が発生する。また、プレス時の油切れにより、プレス性能が不安定になる等の問題がある。   In response to the above, as a method for improving the press formability when using a hot dip galvanized steel sheet, a method of applying a high viscosity lubricant is widely used. However, in this method, since the lubricating oil is highly viscous, a coating defect due to poor degreasing occurs in the coating process. In addition, there is a problem that the press performance becomes unstable due to oil shortage during pressing.

上記問題を解決する方法として、特許文献1及び特許文献2は、めっき後に合金化を施した溶融亜鉛めっき鋼板を調質圧延後、pH緩衝作用を有する酸性溶液に接触させ、接触終了後に1〜30秒放置した後水洗乾燥することで、溶融亜鉛めっき鋼板の表層に、亜鉛系酸化物を形成しプレス成形性を向上させる技術を開示している。   As a method for solving the above-mentioned problem, Patent Document 1 and Patent Document 2 disclose that after hot-dip galvanized steel sheet that has been alloyed after plating is brought into contact with an acidic solution having a pH buffering action, It discloses a technique for improving the press formability by forming a zinc-based oxide on the surface layer of a hot-dip galvanized steel sheet by allowing it to stand for 30 seconds and then drying with water.

また、溶融亜鉛浴には、下地鉄と亜鉛との合金化反応を調整する目的で少量のAlが添加されており、溶融亜鉛めっき鋼板の表面には浴中Alに由来するAl酸化物が存在するため、めっき後に合金化を施さない溶融亜鉛めっき鋼板は、めっき後に合金化を施した溶融亜鉛めっき鋼板に比べて表面のAl酸化物濃度が高く表面の活性度が低い。   In addition, a small amount of Al is added to the hot dip galvanizing bath for the purpose of adjusting the alloying reaction between the base iron and zinc, and there is Al oxide derived from Al in the bath on the surface of the hot dip galvanized steel sheet. Therefore, a hot-dip galvanized steel sheet that is not alloyed after plating has a higher surface Al oxide concentration and lower surface activity than a hot-dip galvanized steel sheet that has been alloyed after plating.

このような問題に対して、特許文献3は、特に表面の活性度が低いめっき後に合金化を施さない溶融亜鉛めっき鋼板に上記亜鉛系酸化物を形成する方法として、酸性溶液接触前にアルカリ溶液に接触させることにより表面のAl酸化物を除去して表面を活性化し亜鉛系酸化物の形成を促進する方法を開示している。   In order to solve such a problem, Patent Document 3 discloses a method of forming the zinc-based oxide on a hot-dip galvanized steel sheet that is not subjected to alloying after plating, particularly when the surface activity is low. A method is disclosed in which the Al oxide on the surface is removed by contact with the surface to activate the surface and promote the formation of a zinc-based oxide.

特許文献4は、めっき後に合金化を施さない溶融亜鉛めっき鋼板の高速での製造条件に対応するため、特許文献3に開示されている技術に対し、さらにTi、Zr、Snのうち、少なくとも1種類以上を酸性溶液中に含有させることで、短時間で十分な亜鉛系酸化物層を形成させ、良好なプレス成形性を得る技術を開示している。   Patent Document 4 corresponds to the manufacturing conditions at high speed of a hot-dip galvanized steel sheet that is not alloyed after plating. Therefore, at least one of Ti, Zr, and Sn is added to the technique disclosed in Patent Document 3. A technique is disclosed in which a sufficient zinc-based oxide layer is formed in a short period of time by containing more than one kind in an acidic solution to obtain good press formability.

特開2002−256448号公報JP 2002-256448 A 特開2003−306781号公報JP 2003-306781 A 特開2004−3004号公報JP 2004-3004 A 特開2010−77456号公報JP 2010-77456 A

しかしながら、特許文献1、2では摺動距離が長い自動車用部品のプレス成形においては、膜厚が不十分であり、自動車部品の生産工程において型カジリが発生することがある。   However, in Patent Documents 1 and 2, the film thickness is insufficient in press molding of automotive parts having a long sliding distance, and mold galling may occur in the production process of automotive parts.

また、特許文献3でも、上記と同様に摺動距離が長い自動車用部品において、型カジリが発生することがある。
さらに、特許文献4に開示されている技術を適用した場合、従来の製造コストに加え、酸性溶液中に含有させるTi、Zr、Sn(添加量:0.1〜50g/L)のコストも掛かるため、製造コストが増加するといった問題点が生じる。
Also in Patent Document 3, mold galling may occur in an automotive part having a long sliding distance as described above.
Furthermore, when the technique disclosed in Patent Document 4 is applied, the cost of Ti, Zr, and Sn (added amount: 0.1 to 50 g / L) contained in the acidic solution is added in addition to the conventional manufacturing cost. Therefore, the problem that a manufacturing cost increases arises.

本発明は上記問題点を改善し、優れたプレス成形性を有する溶融亜鉛めっき鋼板を短時間で安定的に製造する方法を提供することを目的とする。   An object of the present invention is to provide a method for improving the above-mentioned problems and stably producing a hot-dip galvanized steel sheet having excellent press formability in a short time.

本発明者らは、上記の課題を解決すべく、鋭意研究を重ねた結果、鋼板に溶融亜鉛めっきを施し、調質圧延を施した後、pH緩衝作用を有する酸性溶液に接触させ、接触終了後1〜60秒保持した後水洗することによりめっき鋼板表面に亜鉛系酸化物層を形成するに際し、前記酸性溶液中に鉄マスキング剤を含有することで、優れたプレス成形性を有しつつ亜鉛系酸化物層の形成時間を短縮することが可能となることを見出した。   As a result of intensive research to solve the above-mentioned problems, the present inventors applied hot-dip galvanizing to the steel sheet, tempered rolling, and then brought into contact with an acidic solution having a pH buffering action, thereby completing the contact. After forming the zinc-based oxide layer on the surface of the plated steel plate by holding it for 1 to 60 seconds and then washing with water, it contains zinc masking agent in the acidic solution, and has excellent press formability and zinc. It has been found that the formation time of the system oxide layer can be shortened.

本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。   The present invention has been made based on the above findings, and the gist thereof is as follows.

[1]鋼板に溶融亜鉛めっき処理を施し、調質圧延を施した後、pH緩衝作用を有する酸性溶液に接触させ、接触終了後1〜60秒保持した後に水洗することによりめっき鋼板表面に亜鉛系酸化物層を形成する溶融亜鉛めっき鋼板の製造方法において、前記酸性溶液は、鉄マスキング剤を含有することを特徴とする溶融亜鉛めっき鋼板の製造方法。
[2]前記鉄マスキング剤は、Fe(II)との錯形成反応の生成定数の対数が3.0以上であり、かつ、Fe(II)との錯形成反応の生成定数の対数がZn(II)との錯形成反応の生成定数の対数より高いことを特徴とする前記[1]に記載の溶融亜鉛めっき鋼板の製造方法。
[3]前記鉄マスキング剤の濃度は0.01〜5g/Lであることを特徴とする前記[1]または[2]に記載の溶融亜鉛めっき鋼板の製造方法。
[4]前記pH緩衝作用を有する酸性溶液は、酢酸塩、フタル酸塩、クエン酸塩、コハク酸塩、乳酸塩、酒石酸塩、ホウ酸塩、リン酸塩、硫酸塩のうちの少なくとも1種以上を含有し、pHが1.0〜5.0の範囲にある酸性溶液であることを特徴とする前記[1]〜[3]のいずれか一項に記載の溶融亜鉛めっき鋼板の製造方法。
[5]pH緩衝作用を有する酸性溶液に接触終了時のめっき鋼板表面の液膜量は15g/m以下であることを特徴とする前記[1]〜[4]のいずれか一項に記載の溶融亜鉛めっき鋼板の製造方法。
[1] After hot-dip galvanizing treatment and temper rolling on the steel sheet, the steel sheet is brought into contact with an acidic solution having a pH buffering action, held for 1 to 60 seconds after completion of contact, and then washed with water to thereby galvanize the surface of the plated steel sheet. In the manufacturing method of the hot dip galvanized steel plate which forms a system oxide layer, the said acidic solution contains an iron masking agent, The manufacturing method of the hot dip galvanized steel plate characterized by the above-mentioned.
[2] The iron masking agent has a logarithm of a complex formation reaction with Fe (II) of 3.0 or more and a logarithm of a complex formation reaction with Fe (II) of Zn ( The method for producing a hot-dip galvanized steel sheet according to [1] above, which is higher than the logarithm of the formation constant of the complex formation reaction with II).
[3] The method for producing a hot-dip galvanized steel sheet according to [1] or [2], wherein the concentration of the iron masking agent is 0.01 to 5 g / L.
[4] The acidic solution having a pH buffering action is at least one of acetate, phthalate, citrate, succinate, lactate, tartrate, borate, phosphate, and sulfate. The method for producing a hot dip galvanized steel sheet according to any one of the above [1] to [3], wherein the solution is an acidic solution having a pH in the range of 1.0 to 5.0. .
[5] The liquid film amount on the surface of the plated steel sheet at the end of contact with the acidic solution having a pH buffering action is 15 g / m 2 or less, according to any one of [1] to [4], Manufacturing method of hot-dip galvanized steel sheet.

本発明において、溶融亜鉛めっき鋼板とは、めっき後に合金化処理を施す鋼板(以下、GAと称する)、合金化処理を施さない鋼板(以下、GIと称する)のいずれも含むものである。   In the present invention, the hot-dip galvanized steel sheet includes both a steel sheet (hereinafter referred to as GA) that is subjected to an alloying treatment after plating and a steel sheet that is not subjected to an alloying process (hereinafter referred to as GI).

本発明によれば、プレス成形時の摺動抵抗が小さく優れたプレス成形性を有する溶融亜鉛めっき鋼板が得られる。さらに、高速での製造条件において亜鉛系酸化物層を形成させる時間が短時間しか確保できない場合においても、プレス成形時の摺動抵抗が小さく優れたプレス成形性を有する溶融亜鉛めっき鋼板を安定して製造することができる。 According to the present invention, a hot dip galvanized steel sheet having a small sliding resistance during press forming and excellent press formability can be obtained. Furthermore, even when the time for forming the zinc-based oxide layer can be ensured only for a short time under high-speed production conditions, the hot-dip galvanized steel sheet having excellent press formability with small sliding resistance during press forming can be stabilized. Can be manufactured.

摩擦係数測定装置を示す概略正面図である。It is a schematic front view which shows a friction coefficient measuring apparatus. 図1中のビード形状・寸法を示す概略斜視図である。It is a schematic perspective view which shows the bead shape and dimension in FIG. 図1中のビード形状・寸法を示す概略斜視図である。It is a schematic perspective view which shows the bead shape and dimension in FIG.

本発明は、溶融亜鉛めっき鋼板を酸性溶液に接触させ、接触終了後1〜60秒間保持し、水洗を行うことにより溶融亜鉛めっき鋼板表面に亜鉛系酸化物層を形成するに際し、前記酸性溶液中に鉄マスキング剤を含有する。このように、鉄マスキング剤を含有する酸性溶液を用いることは、本発明において、重要な要件であり、特徴である。   In the present invention, the hot dip galvanized steel sheet is brought into contact with an acidic solution, held for 1 to 60 seconds after completion of contact, and washed with water to form a zinc-based oxide layer on the hot dip galvanized steel sheet surface. Contains an iron masking agent. Thus, the use of an acidic solution containing an iron masking agent is an important requirement and a feature in the present invention.

酸性溶液中に鉄マスキング剤を含有することにより亜鉛系酸化物層が短時間に形成するメカニズムについては明確ではないが、次のように考えることができる。
通常、溶融亜鉛めっき鋼板を酸性溶液に接触させると、鋼板側からは亜鉛の溶解が生じる。この亜鉛の溶解は、同時に水素発生反応を生じるため、亜鉛の溶解が進行すると、溶液中の水素イオン濃度が減少し、その結果溶液のpHが上昇し、溶融亜鉛めっき鋼板表面に亜鉛を主体とする酸化物層が形成されると考えられる。pHが上昇時には、水素発生反応と共に起こっていた亜鉛の溶解は、溶存酸素の還元反応とともに起こるようになる。前記亜鉛の溶解反応に加え、酸性溶液中では鋼板からの鉄の溶解反応も起こり得る。酸性溶液中に鉄イオン、特にFe(II)が存在すると、Fe(II)を酸化するために溶存酸素が消費され、亜鉛の溶解に消費される溶存酸素の量が減少して亜鉛の溶解速度が低下すると考えられる。
これに対して、鉄マスキング剤を含有する酸性溶液を含有すると、溶けているFe(II)と鉄マスキング剤とが安定な錯体を形成してFe(II)を不活性化することで溶存酸素の消費を抑制することができる。そのため、pH上昇時の亜鉛の溶解を妨げることなく、溶融亜鉛めっき鋼板表面に酸化物層を短時間で形成することができ、良好なプレス成形性を得ることができると考えられる。
The mechanism by which the zinc-based oxide layer is formed in a short time by containing an iron masking agent in the acidic solution is not clear, but can be considered as follows.
Usually, when a hot-dip galvanized steel sheet is brought into contact with an acidic solution, dissolution of zinc occurs from the steel sheet side. Since the dissolution of zinc causes a hydrogen generation reaction at the same time, as the dissolution of zinc proceeds, the hydrogen ion concentration in the solution decreases, and as a result, the pH of the solution increases, and the surface of the galvanized steel sheet is mainly composed of zinc. It is considered that an oxide layer is formed. When the pH rises, the dissolution of zinc, which has occurred with the hydrogen generation reaction, will occur with the reduction reaction of dissolved oxygen. In addition to the zinc dissolution reaction, an iron dissolution reaction from the steel sheet may also occur in the acidic solution. When iron ions, especially Fe (II), are present in an acidic solution, dissolved oxygen is consumed to oxidize Fe (II), and the amount of dissolved oxygen consumed to dissolve zinc decreases, resulting in a dissolution rate of zinc. Is expected to decrease.
On the other hand, when an acidic solution containing an iron masking agent is contained, dissolved Fe (II) and the iron masking agent form a stable complex to deactivate Fe (II), thereby dissolving oxygen. Consumption can be suppressed. Therefore, it is considered that an oxide layer can be formed on the surface of the hot dip galvanized steel sheet in a short time without hindering dissolution of zinc at the time of pH increase, and good press formability can be obtained.

このような鉄マスキング剤としては、Fe(II)との錯形成反応の生成定数の対数が3.0以上を有し、かつ、Fe(II)との錯形成反応の生成定数の対数がZn(II)との錯形成反応の生成定数の対数より高い鉄マスキング剤を用いることが好ましい。本発明の効果が十分に得られることになる。   As such an iron masking agent, the logarithm of the formation constant of the complex formation reaction with Fe (II) is 3.0 or more, and the logarithm of the formation constant of the complex formation reaction with Fe (II) is Zn. It is preferable to use an iron masking agent higher than the logarithm of the formation constant of the complex formation reaction with (II). The effect of the present invention can be sufficiently obtained.

Fe(II)との錯形成反応の生成定数の対数が3.0未満であると、Fe(II)の安定化効果が不十分となり、溶存酸素の消費を抑制できなくなる場合がある。また、Fe(II)との錯形成反応の生成定数の対数がZn(II)との錯形成反応の生成定数の対数よりも低い鉄マスキング剤を用いると、Zn(II)を不活性化してしまい、亜鉛系酸化物層の成膜を阻害してしまう場合がある。   If the logarithm of the formation constant of the complex formation reaction with Fe (II) is less than 3.0, the stabilizing effect of Fe (II) may be insufficient, and the consumption of dissolved oxygen may not be suppressed. In addition, when an iron masking agent having a lower logarithm of a complex formation reaction with Fe (II) than a logarithm of a complex formation reaction with Zn (II) is used, Zn (II) is inactivated. Therefore, the formation of the zinc-based oxide layer may be hindered.

前記鉄マスキング剤の濃度は0.01〜5g/Lであることが好ましい。濃度が0.01g/L未満であると、Fe(II)の安定化効果が不十分となるため、溶存酸素の消費を抑制できなくなる場合がある。一方、5g/Lを超えると、酸化物層中に取込まれる量が多くなり摺動性に影響を及ぼす可能性が考えられる。   The concentration of the iron masking agent is preferably 0.01 to 5 g / L. If the concentration is less than 0.01 g / L, the stabilizing effect of Fe (II) becomes insufficient, and thus consumption of dissolved oxygen may not be suppressed. On the other hand, when it exceeds 5 g / L, the amount taken into the oxide layer increases, which may affect the slidability.

このような鉄マスキング剤としては、ヒスタミン、イノシン、β−フェニルアラニン、ポリ燐酸塩、プロリン、サルコシン、セリン、スレオニン、バリン、アセチルアセトンなどのうち少なくとも1種以上を使用することができる。
なお、参考までに、表1に本発明に適用可能な鉄マスキング剤の一部と、Fe(II)及びZn(II)との錯形成反応の生成定数の対数を示す。
As such an iron masking agent, at least one of histamine, inosine, β-phenylalanine, polyphosphate, proline, sarcosine, serine, threonine, valine, acetylacetone and the like can be used.
For reference, Table 1 shows logarithms of formation constants of complex formation reactions between a part of iron masking agents applicable to the present invention and Fe (II) and Zn (II).

Figure 2013072130
Figure 2013072130

また、本発明で用いる酸性溶液は、pH緩衝作用を有する。pH緩衝作用を持たない酸性溶液を使用すると、溶液のpHが瞬時に上昇し、酸化物層の形成に十分な亜鉛の溶解が得られず、その結果、摺動性の向上に十分な亜鉛系酸化物層が生成しない。これに対して、pH緩衝作用を有する酸性溶液を使用すると、亜鉛が溶解し、水素発生反応が生じても、溶液のpH上昇が緩やかであるため、さらに亜鉛の溶解が進行し、結果的に、摺動性の向上に十分な亜鉛系酸化物が生成する。   The acidic solution used in the present invention has a pH buffering action. If an acidic solution that does not have a pH buffering action is used, the pH of the solution rises instantaneously, and zinc cannot be dissolved sufficiently to form an oxide layer. An oxide layer does not form. On the other hand, when an acidic solution having a pH buffering action is used, even if zinc is dissolved and a hydrogen generation reaction occurs, the pH of the solution gradually increases, so that further dissolution of zinc proceeds. Thus, a zinc-based oxide sufficient for improving the slidability is generated.

酸性溶液のpHが低すぎると、亜鉛の溶解は促進されるが、酸化物が生成しにくくなるため、pHは1.0以上であることが望ましい。一方、pHが高すぎると亜鉛溶解の反応速度が低くなるため、液のpHは5.0以下であることが望ましい。   If the pH of the acidic solution is too low, dissolution of zinc is promoted, but it is difficult to form an oxide. Therefore, the pH is preferably 1.0 or more. On the other hand, if the pH is too high, the reaction rate of zinc dissolution becomes low, so the pH of the solution is desirably 5.0 or less.

pH緩衝作用を有する酸性溶液は、pHが2.0〜5.0の領域においてpH緩衝作用を有するものが好ましい。これは、pHが2.0〜5.0の範囲でpH緩衝作用を有する酸性溶液を使用すると、酸性溶液に接触後、所定時間保持することで、本発明が目的とする酸化物層を安定して得ることができるためである。   The acidic solution having a pH buffering action is preferably one having a pH buffering action in a pH range of 2.0 to 5.0. This is because when an acidic solution having a pH buffering action in a pH range of 2.0 to 5.0 is used, the oxide layer targeted by the present invention is stabilized by holding the acidic solution for a predetermined time after contact. This is because it can be obtained.

このようなpH緩衝作用を有する酸性溶液としては、酢酸ナトリウム(CHCOONa)などの酢酸塩、フタル酸水素カリウム((KOOC))などのフタル酸塩、クエン酸ナトリウム(Na)やクエン酸二水素カリウム(KH)などのクエン酸塩、コハク酸ナトリウム(Na)などのコハク酸塩、乳酸ナトリウム(NaCHCHOHCO)などの乳酸塩、酒石酸ナトリウム(Na)などの酒石酸塩、ホウ酸塩、リン酸塩、硫酸塩のうちの少なくとも1種以上を、前記各成分の含有量を5〜50g/Lの範囲で含有する水溶液を使用することができる。前記濃度が5g/L未満であると、亜鉛の溶解とともに溶液のpH上昇が比較的すばやく生じるため、摺動性の向上に十分な酸化物層を形成することができず、また50g/Lを超えると、亜鉛の溶解が促進され、酸化物層の形成に長時間を有するだけでなく、めっき層の損傷も激しく、本来の防錆鋼板としての役割も失う場合がある。 Examples of such an acidic solution having a pH buffering action include acetates such as sodium acetate (CH 3 COONa), phthalates such as potassium hydrogen phthalate ((KOOC) 2 C 6 H 4 ), sodium citrate (Na Citrates such as 3 C 6 H 5 O 7 ) and potassium dihydrogen citrate (KH 2 C 6 H 5 O 7 ), succinates such as sodium succinate (Na 2 C 4 H 4 O 4 ), and lactic acid At least one of lactate such as sodium (NaCH 3 CHOHCO 2 ), tartrate such as sodium tartrate (Na 2 C 4 H 4 O 6 ), borate, phosphate, sulfate, An aqueous solution containing the component in a range of 5 to 50 g / L can be used. If the concentration is less than 5 g / L, the pH of the solution rises relatively quickly with the dissolution of zinc, so that an oxide layer sufficient for improving the slidability cannot be formed, and 50 g / L is reduced. If it exceeds, dissolution of zinc is promoted, and not only does the formation of the oxide layer take a long time, but also the plating layer is severely damaged, and the original role as a rust-proof steel sheet may be lost.

溶融亜鉛めっき鋼板を酸性溶液に接触させる方法には特に制限はなく、めっき鋼板を酸性溶液に浸漬する方法、めっき鋼板に酸性溶液をスプレーする方法、塗布ロールを介して酸性溶液をめっき鋼板に塗布する方法等がある。最終的に酸性溶液が薄い液膜状で鋼板表面に存在することが望ましい。鋼板表面に存在する液膜量が少ないと、めっき表面に所望厚さの酸化物層を形成することができない。しかし、鋼板表面に存在する酸性溶液の量が多すぎると、亜鉛の溶解が生じても溶液のpHが上昇せず、次々と亜鉛の溶解が生じるのみであり、酸化物層を形成するまでに長時間を有し、めっき層の損傷も激しく、本来の防錆鋼板としての役割も失うことが考えられる。このような観点から、酸性溶液に接触終了時の鋼板表面の液膜量は、15g/m以下に調整することが有効である。一方、下限は1g/m以上が好ましい。液膜量の調整は、絞りロール、エアワイピング等で行うことができる。なお、接触終了時とは、酸性溶液に浸漬する方法の場合は「浸漬終了」、めっき鋼板に酸性溶液をスプレーする方法の場合は「スプレー終了」、塗布ロールを介して酸性溶液を塗布する方法の場合は「塗布終了」を意味する。 There is no particular limitation on the method of bringing the hot dip galvanized steel plate into contact with the acidic solution. The method of immersing the plated steel plate in the acidic solution, the method of spraying the acidic solution onto the plated steel plate, and applying the acidic solution to the plated steel plate via the coating roll. There are ways to do this. Finally, it is desirable that the acidic solution is in the form of a thin liquid film and is present on the steel sheet surface. If the amount of liquid film present on the surface of the steel sheet is small, an oxide layer having a desired thickness cannot be formed on the plating surface. However, if the amount of the acidic solution present on the surface of the steel sheet is too large, the pH of the solution does not increase even if zinc dissolution occurs, and only zinc dissolution occurs one after another. It has a long time, the plating layer is severely damaged, and it is considered that the original role as a rust-proof steel sheet is lost. From such a viewpoint, it is effective to adjust the liquid film amount on the surface of the steel sheet at the end of contact with the acidic solution to 15 g / m 2 or less. On the other hand, the lower limit is preferably 1 g / m 2 or more. The liquid film amount can be adjusted by a squeeze roll, air wiping or the like. In the case of the method of immersing in the acidic solution, “at the end of the contact” is “end of immersing”, in the case of the method of spraying the acidic solution onto the plated steel plate, “end of spraying”, the method of applying the acidic solution via the coating roll In this case, it means “coating end”.

また、酸洗溶液に接触終了後、1〜60秒保持し、水洗までの時間(水洗までの保持時間)は、1〜60秒とする。これは、水洗までの時間が1秒未満であると、溶液のpHが上昇し亜鉛を主体とする酸化物層が形成される前に、酸性溶液が洗い流されるため、摺動性の向上効果が得られない。一方、60秒を超えても、酸化物層の量に変化が見られない。   Moreover, after completion | finish of contact with a pickling solution, it hold | maintains for 1 to 60 seconds, and sets time to water washing (holding time to water washing) to 1 to 60 seconds. This is because, if the time until washing with water is less than 1 second, the acidic solution is washed out before the pH of the solution rises and the oxide layer mainly composed of zinc is formed, so that the effect of improving the slidability is obtained. I can't get it. On the other hand, even if it exceeds 60 seconds, there is no change in the amount of the oxide layer.

以上の条件を満たしていれば、溶融亜鉛めっき鋼板表面に、効率よく安定的に亜鉛系酸化物層を形成することができる。   If the above conditions are satisfied, a zinc-based oxide layer can be efficiently and stably formed on the surface of the hot dip galvanized steel sheet.

調質圧延後、酸性溶液に接触させて亜鉛系酸化物層を形成する前に、アルカリ性溶液に鋼板を接触させてもよい。調質圧延時に圧延ロールとの接触により表層のAl酸化物は破壊されているものの一部残存する場合もある。これに対して、アルカリ性溶液に接触させることで、表層に残存したAl酸化物層を除去して表面をより活性化することが可能となる。アルカリ性溶液に接触させる方法には特に制限はなく、浸漬あるいはスプレーなどで処理することができる。pHが低いと反応が遅く処理に長時間を要するため、pHは10以上であることが望ましい。上記範囲内のpHであれば溶液の種類に制限はなく、例えば、水酸化ナトリウムなどを用いることができる。   After the temper rolling, the steel plate may be brought into contact with the alkaline solution before being brought into contact with the acidic solution and forming the zinc-based oxide layer. During the temper rolling, the Al oxide on the surface layer is destroyed by contact with the rolling roll, but a part of the Al oxide may remain. On the other hand, by making it contact with an alkaline solution, it becomes possible to remove the Al oxide layer remaining on the surface layer and to activate the surface more. There is no restriction | limiting in particular in the method of making it contact with alkaline solution, It can process by immersion or a spray. If the pH is low, the reaction is slow and it takes a long time for the treatment. Therefore, the pH is preferably 10 or more. If it is pH within the said range, there will be no restriction | limiting in the kind of solution, For example, sodium hydroxide etc. can be used.

酸性溶液が水洗後の鋼板表面に残存すると、鋼板コイルが長期保管されたときに錆が発生しやすくなる。係る錆発生を防止する観点から、酸性溶液に接触、保持後、水洗前に、アルカリ性溶液に浸漬あるいはアルカリ性溶液をスプレーするなどの方法でアルカリ性溶液と鋼板を接触させて、鋼板表面に残存している酸性溶液を中和する処理を施してもよい。アルカリ性溶液は、表面に形成された亜鉛系酸化物の溶解を防止するためpHは12以下であることが望ましい。前記pHの範囲内であれば、使用する溶液に制限はなく、例えば、水酸化ナトリウム、リン酸ナトリウムなど使用することができる
本発明における亜鉛系酸化物とは、金属成分として亜鉛を主体とする酸化物、水酸化物であり、鉄、Al等の金属成分を合計量として亜鉛よりも少なく含有する場合や、硫酸、硝酸、塩素等のアニオンを合計量として酸素と水酸基のモル数よりも少なく含有する場合も本発明の亜鉛系酸化物に含まれる。
If the acidic solution remains on the surface of the steel plate after washing with water, rust is likely to occur when the steel plate coil is stored for a long time. From the viewpoint of preventing the occurrence of rust, after contacting and holding the acidic solution, before washing with water, the alkaline solution and the steel plate are contacted by a method such as immersion in an alkaline solution or sprayed with an alkaline solution, and remain on the steel plate surface. You may give the process which neutralizes the acidic solution which exists. The alkaline solution preferably has a pH of 12 or less in order to prevent dissolution of the zinc-based oxide formed on the surface. If it is in the said pH range, there will be no restriction | limiting in the solution to be used, For example, sodium hydroxide, sodium phosphate, etc. can be used. The zinc-type oxide in this invention mainly has zinc as a metal component. Oxides and hydroxides, when the total amount of metal components such as iron and Al is less than zinc, or the total amount of anions such as sulfuric acid, nitric acid, and chlorine is less than the number of moles of oxygen and hydroxyl groups When it contains, it is contained in the zinc-type oxide of this invention.

なお、亜鉛系酸化物層に酸性溶液のpH調整に使用する硫酸イオンなどのアニオン成分が亜鉛系酸化物層に含有される場合もあるが、硫酸イオンなどのアニオン成分や、鉄マスキング剤の成分、pH緩衝作用を有する酸性溶液中に含まれるS、N、P、B、Cl、Na、Mn、Ca、Mg、Ba、Sr、Siなどの不純物、S、N、P、B、Cl、Na、Mn、Ca、Mg、Ba、Sr、Si、O、Cから成る化合物が亜鉛系酸化物層に取り込まれても、本発明の効果が損なわれることはない。   In addition, anionic components such as sulfate ions used for adjusting the pH of the acidic solution in the zinc-based oxide layer may be contained in the zinc-based oxide layer, but anionic components such as sulfate ions and components of the iron masking agent Impurities such as S, N, P, B, Cl, Na, Mn, Ca, Mg, Ba, Sr, Si, S, N, P, B, Cl, Na Even if a compound comprising Mn, Ca, Mg, Ba, Sr, Si, O, and C is incorporated into the zinc-based oxide layer, the effect of the present invention is not impaired.

また、pH緩衝剤として酸性溶液中に含まれるイオンのうち、特に酢酸イオン(生成定数の対数1.9)や酒石酸イオン(生成定数の対数2.7)、リン酸イオン(生成定数の対数2.7)はFe(II)と錯形成し易いが、Fe(II)との錯形成反応の生成定数の対数が3.0以上を有する鉄マスキング剤を使用することで、pH緩衝剤によって本発明の効果が損なわれることはない。好ましくは、Fe(II)との錯形成反応の生成定数の対数が5.0以上を有する鉄マスキング剤を使用することが望ましい。   Among ions contained in an acidic solution as a pH buffering agent, in particular, acetate ion (logarithm of production constant 1.9), tartrate ion (logarithm of production constant 2.7), phosphate ion (logarithm of production constant 2) .7) is easy to complex with Fe (II), but by using an iron masking agent having a logarithm of the formation constant of the complexation reaction with Fe (II) of 3.0 or more, The effect of the invention is not impaired. Preferably, it is desirable to use an iron masking agent having a logarithm of the formation constant of a complex formation reaction with Fe (II) of 5.0 or more.

さらに、Fe(II)との錯形成反応の生成定数の対数がZn(II)との錯形成反応の生成定数の対数より高い鉄マスキング剤を使用することで、亜鉛系酸化物層の成膜反応を抑制することで、本発明の効果が損なわれることはない。   Further, by using an iron masking agent whose logarithm of the complex formation reaction with Fe (II) is higher than the logarithm of the complex formation reaction with Zn (II), a zinc-based oxide layer is formed. By suppressing the reaction, the effect of the present invention is not impaired.

めっき鋼板表面に形成する亜鉛系酸化物層の厚さは10nm以上が好ましい。10nm以上とすることにより、良好な摺動性を示す溶融亜鉛めっき鋼板が得られる。一層の効果を得るために、より好ましくは20nm以上、さらに好ましくは30nm以上である。10nm以上であれば、金型と被加工物の接触面積が大きくなるプレス成形加工において、表層の酸化物層が摩耗した場合でも亜鉛系酸化物層が残存し、摺動性の低下を招くことがない。一方、酸化物層の厚さの上限は特に設けないが、200nmを超えると表面の反応性が低下し、亜鉛系酸化物皮膜の生成量が低下するため、200nm以下とするのが好ましい。   The thickness of the zinc-based oxide layer formed on the surface of the plated steel plate is preferably 10 nm or more. By setting it to 10 nm or more, a hot-dip galvanized steel sheet exhibiting good slidability can be obtained. In order to acquire a further effect, More preferably, it is 20 nm or more, More preferably, it is 30 nm or more. If the thickness is 10 nm or more, the zinc-based oxide layer remains even in the case where the surface oxide layer is worn in the press molding process in which the contact area between the mold and the workpiece becomes large, and the sliding property is lowered. There is no. On the other hand, the upper limit of the thickness of the oxide layer is not particularly provided, but if it exceeds 200 nm, the surface reactivity is lowered and the amount of zinc-based oxide film produced is reduced.

本発明の溶融亜鉛めっき鋼板を製造する際は、めっき浴中にAlが添加されていることが必要であるが、Al以外の添加元素成分は特に限定されない。すなわち、Alの他に、Pb、Sb、Si、Sn、Mg、Mn、Ni、Ti、Li、Cuなどが含有または添加されていても、本発明の効果が損なわれるものではない。   When manufacturing the hot dip galvanized steel sheet of the present invention, it is necessary that Al is added to the plating bath, but the additive element components other than Al are not particularly limited. That is, even if Pb, Sb, Si, Sn, Mg, Mn, Ni, Ti, Li, Cu or the like is contained or added in addition to Al, the effect of the present invention is not impaired.

次に、本発明を実施例により更に詳細に説明する。
冷間圧延後焼鈍した板厚0.7mmの鋼板上に、常法により、溶融亜鉛めっきを施し、次に調質圧延を施した。調質圧延後、表面活性化処理として、pH10、温度50℃のアルカリ性溶液(水酸化ナトリウム水溶液)に3秒浸漬した後水洗する処理を行った。表面活性化処理した後、酸性溶液槽で、酢酸ナトリウム30g/Lを含有し、35℃、pH1.5の酸性溶液に浸漬して引き上げた後、酸性溶液槽出側の絞りロールで鋼板表面に付着させる液膜量を調整した。液膜量は、絞りロールの圧力を変化させることで、調整した。液膜量調整後所定時間放置(保持)した後、pH10、温度50℃のアルカリ性溶液(水酸化ナトリウム水溶液)をスプレーして鋼板表面に残存している酸性溶液の中和処理を行い、その後50℃の温水を鋼板にスプレーして洗浄し、ドライで乾燥し、めっき表面に亜鉛系酸化物層を形成した。一部は、調質圧延のみを行い、調質圧延後、酸性溶液への接触による酸化物形成処理を行わなかった。
Next, the present invention will be described in more detail with reference to examples.
On a steel sheet having a thickness of 0.7 mm annealed after cold rolling, hot dip galvanizing was performed by a conventional method, and then temper rolling was performed. After temper rolling, the surface activation treatment was performed by immersing in an alkaline solution (sodium hydroxide aqueous solution) having a pH of 10 and a temperature of 50 ° C. for 3 seconds and then washing with water. After surface activation treatment, in an acidic solution tank, containing 30 g / L of sodium acetate, immersed in an acidic solution at 35 ° C. and pH 1.5, pulled up, and then applied to the steel sheet surface with a squeeze roll on the acid solution tank outlet side. The amount of liquid film to be adhered was adjusted. The amount of liquid film was adjusted by changing the pressure of the squeeze roll. After leaving (holding) for a predetermined time after adjusting the liquid film amount, an alkaline solution (sodium hydroxide aqueous solution) having a pH of 10 and a temperature of 50 ° C. is sprayed to neutralize the acidic solution remaining on the steel sheet surface, and then 50 The steel sheet was sprayed and washed with hot water at 0 ° C., dried and dried to form a zinc-based oxide layer on the plating surface. Some performed only temper rolling, and after temper rolling, the oxide formation process by contact with an acidic solution was not performed.

以上により得られた溶融亜鉛めっき鋼板に対して、めっき表層の酸化物層膜厚とプレス成形時の摺動特性を調査した。プレス成形時の摺動特性は、摩擦係数によって評価した。   With respect to the hot dip galvanized steel sheet obtained as described above, the oxide layer thickness of the plating surface layer and the sliding characteristics during press forming were investigated. The sliding characteristics during press molding were evaluated by the friction coefficient.

酸化物層の膜厚測定およびプレス成形時の摺動特性調査方法は以下の通りである。
酸化物層の厚さの測定
酸化物層の厚さの測定には蛍光X線分析装置を使用した。測定時の管球の電圧および電流は30kVおよび100mAとし、分光結晶はTAPに設定してO−Kα線を検出した。O−Kα線の測定に際しては、そのピーク位置に加えてバックグラウンド位置での強度も測定し、O−Kα線の正味の強度が算出できるようにした。なお、ピーク位置およびバックグラウンド位置での積分時間は、それぞれ20秒とした。また、適当な大きさに劈開した膜厚96nm、54nmおよび24nmの酸化シリコン皮膜を形成したシリコンウエハーも同時に測定し、測定したO−Kα線の強度と酸化シリコン膜厚から、Zn系酸化物層の厚さを算出した。
The following is a method for investigating the sliding characteristics during the measurement of the oxide layer thickness and press molding.
Measurement of oxide layer thickness An X-ray fluorescence analyzer was used to measure the oxide layer thickness. The tube voltage and current during the measurement were 30 kV and 100 mA, the spectroscopic crystal was set to TAP, and the O-Kα ray was detected. When measuring the O-Kα line, in addition to the peak position, the intensity at the background position was also measured so that the net intensity of the O-Kα line could be calculated. The integration time at the peak position and the background position was 20 seconds, respectively. Further, a silicon wafer on which silicon oxide films having a thickness of 96 nm, 54 nm, and 24 nm cleaved to an appropriate size were simultaneously measured, and the Zn-based oxide layer was determined from the measured O-Kα ray intensity and silicon oxide film thickness. The thickness of was calculated.

摩擦係数の測定方法
プレス成形性を評価するために、各供試材の摩擦係数を以下のようにして測定した。
図1は、摩擦係数測定装置を示す概略正面図である。同図に示すように、供試材から採取した摩擦係数測定用試料1が試料台2に固定され、試料台2は、水平移動可能なスライドテーブル3の上面に固定されている。スライドテーブル3の下面には、これに接したローラ4を有する上下動可能なスライドテーブル支持台5が設けられ、これを押上げることにより、ビード6による摩擦係数測定用試料1への押付荷重Nを測定するための第1ロードセル7が、スライドテーブル支持台5に取付けられている。上記押付力を作用させた状態でスライドテーブル3を水平方向へ移動させるための摺動抵抗力Fを測定するための第2ロードセル8が、スライドテーブル3の一方の端部に取付けられている。なお、潤滑油として、スギムラ化学工業(株)製の防錆洗浄油(プレトンR352L、プレトンは登録商標)を試料1の表面に塗布して試験を行った。
Method for Measuring Friction Coefficient In order to evaluate press formability, the friction coefficient of each test material was measured as follows.
FIG. 1 is a schematic front view showing a friction coefficient measuring apparatus. As shown in the figure, a friction coefficient measurement sample 1 collected from a test material is fixed to a sample table 2, and the sample table 2 is fixed to the upper surface of a slide table 3 that can move horizontally. A slide table support 5 having a roller 4 in contact with the slide table 3 is provided on the lower surface of the slide table 3, and when this is pushed up, a pressing load N applied to the friction coefficient measurement sample 1 by the bead 6. A first load cell 7 is attached to the slide table support 5. A second load cell 8 for measuring a sliding resistance force F for moving the slide table 3 in the horizontal direction in a state where the pressing force is applied is attached to one end of the slide table 3. In addition, as a lubricating oil, a rust preventive cleaning oil (Preton R352L, Preton is a registered trademark) manufactured by Sugimura Chemical Industry Co., Ltd. was applied to the surface of Sample 1 and tested.

図2、図3は使用したビードの形状・寸法を示す概略斜視図である。ビード6の下面が試料1の表面に押し付けられた状態で摺動する。図2に示すビード6の形状は幅10mm、試料の摺動方向長さ12mm、摺動方向両端の下部は曲率半径4.5mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ3mmの平面を有する。図3に示すビード6の形状は幅10mm、試料の摺動方向長さ59mm、摺動方向両端の下部は曲率4.5mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ50mmの平面を有する。   2 and 3 are schematic perspective views showing the shape and dimensions of the beads used. The bead 6 slides with its lower surface pressed against the surface of the sample 1. The bead 6 shown in FIG. 2 has a width of 10 mm, a length of 12 mm in the sliding direction of the sample, and a lower portion at both ends of the sliding direction is formed by a curved surface having a radius of curvature of 4.5 mm. It has a plane with a moving direction length of 3 mm. The bead 6 shown in FIG. 3 has a width of 10 mm, a length of 59 mm in the sliding direction of the sample, and a lower portion at both ends in the sliding direction is formed by a curved surface having a curvature of 4.5 mmR. It has a plane with a direction length of 50 mm.

摩擦係数の測定は以下に示す2条件で行った。
[条件1]
図2に示すビードを用い、押し付け荷重N:400kgf、試料の引き抜き速度(スライドテーブル3の水平移動速度):100cm/minとした。
[条件2]
図3に示すビードを用い、押し付け荷重N:400kgf、試料の引き抜き速度(スライドテーブル3の水平移動速度):20cm/minとした。
供試材とビードとの間の摩擦係数μは、式:μ=F/Nで算出した。
The coefficient of friction was measured under the following two conditions.
[Condition 1]
The bead shown in FIG. 2 was used, the pressing load N was 400 kgf, and the sample drawing speed (horizontal moving speed of the slide table 3) was 100 cm / min.
[Condition 2]
The bead shown in FIG. 3 was used, the pressing load N was 400 kgf, and the sample drawing speed (horizontal moving speed of the slide table 3) was 20 cm / min.
The friction coefficient μ between the test material and the bead was calculated by the formula: μ = F / N.

以上より得られた結果を条件と併せて表2に示す。   The results obtained above are shown in Table 2 together with the conditions.

Figure 2013072130
Figure 2013072130

表2から下記事項が明らかとなった。
No.1は酸性溶液による処理を行っていない比較例である。条件1及び条件2において摩擦係数が高い。
No.7〜21は、鉄マスキング剤であるポリリン酸塩(生成定数の対数3.0)、アセチルアセトン(生成定数の対数5.07)、ヒスタミン(生成定数の対数9.6)を含む酸性溶液を用いた本発明例である。pH緩衝剤である酢酸イオン(生成定数の対数1.9)を含み鉄マスキング剤を含まない酸性溶液を用いたNo.2〜6と比較して、同じ水洗までの時間の場合、いずれの処理においても本発明例の方が酸化物層の膜厚が厚くなっており酸化物層の形成が促進されているのがわかる。さらに、本発明例では、条件1及び条件2において、No.2〜6と比較してほぼ同等以下の摩擦係数を確保することができている。
以上の結果より、本発明例では、優れたプレス成形性を有する溶融亜鉛めっき鋼板を短時間で安定的に製造できることがわかる。
From Table 2, the following matters became clear.
No. 1 is a comparative example in which treatment with an acidic solution is not performed. In conditions 1 and 2, the friction coefficient is high.
No. Nos. 7 to 21 use an acidic solution containing polyphosphate (logarithm of production constant: 3.0), acetylacetone (logarithm of production constant: 5.07), and histamine (logarithm of production constant: 9.6) which are iron masking agents. This is an example of the present invention. No. 1 using an acidic solution containing acetate ions (logarithm of the production constant of 1.9), which is a pH buffer, and no iron masking agent. Compared with 2-6, in the case of the same time until water washing, the thickness of the oxide layer is thicker in the examples of the present invention in any treatment, and the formation of the oxide layer is promoted. Recognize. Further, in the example of the present invention, in conditions 1 and 2, No. Compared with 2-6, the friction coefficient of substantially equal or less can be ensured.
From the above results, it can be seen that in the example of the present invention, a hot-dip galvanized steel sheet having excellent press formability can be stably produced in a short time.

本発明の溶融亜鉛めっき鋼板はプレス成形性に優れることから、自動車車体用途を中心に広範な分野で適用できる。   Since the hot-dip galvanized steel sheet of the present invention is excellent in press formability, it can be applied in a wide range of fields mainly for automobile body applications.

1 摩擦係数測定用試料
2 試料台
3 スライドテーブル
4 ローラ
5 スライドテーブル支持台
6 ビード
7 第1ロードセル
8 第2ロードセル
9 レール
N 押付荷重
F 摺動抵抗力
DESCRIPTION OF SYMBOLS 1 Friction coefficient measurement sample 2 Sample stand 3 Slide table 4 Roller 5 Slide table support stand 6 Bead 7 1st load cell 8 2nd load cell 9 Rail N Pushing load F Sliding resistance force

Claims (5)

鋼板に溶融亜鉛めっき処理を施し、調質圧延を施した後、pH緩衝作用を有する酸性溶液に接触させ、接触終了後1〜60秒保持した後に水洗することによりめっき鋼板表面に亜鉛系酸化物層を形成する溶融亜鉛めっき鋼板の製造方法において、
前記酸性溶液は、鉄マスキング剤を含有することを特徴とする溶融亜鉛めっき鋼板の製造方法。
The steel sheet is subjected to hot dip galvanizing treatment, tempered and rolled, and then brought into contact with an acidic solution having a pH buffering action. In the method for producing a hot-dip galvanized steel sheet forming a layer,
The said acidic solution contains an iron masking agent, The manufacturing method of the hot dip galvanized steel plate characterized by the above-mentioned.
前記鉄マスキング剤は、Fe(II)との錯形成反応の生成定数の対数が3.0以上であり、かつ、Fe(II)との錯形成反応の生成定数の対数がZn(II)との錯形成反応の生成定数の対数より高いことを特徴とする請求項1に記載の溶融亜鉛めっき鋼板の製造方法。   The iron masking agent has a logarithm of complex formation reaction with Fe (II) of 3.0 or more and a logarithm of complex formation reaction with Fe (II) of Zn (II). The method for producing a hot-dip galvanized steel sheet according to claim 1, wherein the production constant is higher than the logarithm of the formation constant of the complex formation reaction. 前記鉄マスキング剤の濃度は0.01〜5g/Lであることを特徴とする請求項1または2に記載の溶融亜鉛めっき鋼板の製造方法。   The method for producing a hot-dip galvanized steel sheet according to claim 1 or 2, wherein the concentration of the iron masking agent is 0.01 to 5 g / L. 前記pH緩衝作用を有する酸性溶液は、酢酸塩、フタル酸塩、クエン酸塩、コハク酸塩、乳酸塩、酒石酸塩、ホウ酸塩、リン酸塩、硫酸塩のうちの少なくとも1種以上を含有し、pHが1.0〜5.0の範囲にある酸性溶液であることを特徴とする請求項1〜3のいずれか一項に記載の溶融亜鉛めっき鋼板の製造方法。   The acidic solution having a pH buffering action contains at least one of acetate, phthalate, citrate, succinate, lactate, tartrate, borate, phosphate and sulfate. And the manufacturing method of the hot dip galvanized steel sheet as described in any one of Claims 1-3 characterized by being an acidic solution whose pH exists in the range of 1.0-5.0. pH緩衝作用を有する酸性溶液に接触終了時のめっき鋼板表面の液膜量は15g/m以下であることを特徴とする請求項1〜4のいずれか一項に記載の溶融亜鉛めっき鋼板の製造方法。 5. The hot dip galvanized steel sheet according to claim 1, wherein the amount of the liquid film on the surface of the plated steel sheet at the end of contact with the acidic solution having a pH buffering action is 15 g / m 2 or less. Production method.
JP2011213750A 2011-09-29 2011-09-29 Method for producing hot-dip galvanized steel sheet Active JP5961967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011213750A JP5961967B2 (en) 2011-09-29 2011-09-29 Method for producing hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011213750A JP5961967B2 (en) 2011-09-29 2011-09-29 Method for producing hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2013072130A true JP2013072130A (en) 2013-04-22
JP5961967B2 JP5961967B2 (en) 2016-08-03

Family

ID=48476878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011213750A Active JP5961967B2 (en) 2011-09-29 2011-09-29 Method for producing hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP5961967B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088551A (en) * 2006-09-08 2008-04-17 Nippon Paint Co Ltd Method of treating surface of metal base performed as pretreatment for cation electrodeposition coating, metal surface treatment composition used therefor, metallic material having excellent sticking property in electrodeposition coating, and method of coating metal base
JP2009068085A (en) * 2007-09-14 2009-04-02 Yamanashi Prefecture Trivalent chromium chemical conversion treatment agent
JP2010077456A (en) * 2008-09-24 2010-04-08 Jfe Steel Corp Hot-dip galvanized steel sheet and method for manufacturing the same
JP2010090401A (en) * 2008-10-03 2010-04-22 Jfe Steel Corp Zn-Al-BASED PLATED STEEL SHEET, AND METHOD FOR MANUFACTURING THE SAME
JP2010111895A (en) * 2008-11-05 2010-05-20 Jfe Steel Corp Method for manufacturing galvanized steel sheet
JP2010248567A (en) * 2009-04-15 2010-11-04 Sumitomo Metal Ind Ltd Surface-treated steel material excellent in corrosion resistance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088551A (en) * 2006-09-08 2008-04-17 Nippon Paint Co Ltd Method of treating surface of metal base performed as pretreatment for cation electrodeposition coating, metal surface treatment composition used therefor, metallic material having excellent sticking property in electrodeposition coating, and method of coating metal base
JP2009068085A (en) * 2007-09-14 2009-04-02 Yamanashi Prefecture Trivalent chromium chemical conversion treatment agent
JP2010077456A (en) * 2008-09-24 2010-04-08 Jfe Steel Corp Hot-dip galvanized steel sheet and method for manufacturing the same
JP2010090401A (en) * 2008-10-03 2010-04-22 Jfe Steel Corp Zn-Al-BASED PLATED STEEL SHEET, AND METHOD FOR MANUFACTURING THE SAME
JP2010111895A (en) * 2008-11-05 2010-05-20 Jfe Steel Corp Method for manufacturing galvanized steel sheet
JP2010248567A (en) * 2009-04-15 2010-11-04 Sumitomo Metal Ind Ltd Surface-treated steel material excellent in corrosion resistance

Also Published As

Publication number Publication date
JP5961967B2 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
JP3807341B2 (en) Method for producing galvannealed steel sheet
JP5884207B2 (en) Zinc-based plated steel sheet and method for producing the same
KR101788950B1 (en) Method for manufacturing galvanized steel sheet
WO2015129283A1 (en) Galvanized steel sheet and method for manufacturing same
JP6551270B2 (en) Method of manufacturing galvanized steel sheet
JP4517887B2 (en) Method for producing hot dip galvanized steel sheet and hot dip galvanized steel sheet
JP2007016266A (en) Method for manufacturing galvannealed steel sheet, and galvannealed steel sheet
JP4529592B2 (en) Process for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet.
JP5648309B2 (en) Method for producing hot dip galvanized steel sheet
JP6992831B2 (en) Manufacturing method of hot-dip galvanized steel sheet
KR20110073573A (en) Galvanized steel sheet and method for manufacturing the same
KR101360802B1 (en) Method for manufacturing galvanized steel sheet
JP5961967B2 (en) Method for producing hot-dip galvanized steel sheet
JP4604712B2 (en) Method for producing hot dip galvanized steel sheet and hot dip galvanized steel sheet
JP5163218B2 (en) Method for producing galvanized steel sheet
JP2005097741A (en) Method for manufacturing galvannealed steel sheet and galvannealed steel sheet
JP5354166B2 (en) Method for producing galvanized steel sheet
JP2010077455A (en) Hot-dip galvannealed steel sheet and method for manufacturing the same
JP2010111895A (en) Method for manufacturing galvanized steel sheet
JP5163217B2 (en) Method for producing galvanized steel sheet
JP2010111894A (en) Method for manufacturing galvanized steel sheet
JP5927995B2 (en) Method for producing galvanized steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160613

R150 Certificate of patent or registration of utility model

Ref document number: 5961967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250