JP2010090401A - Zn-Al-BASED PLATED STEEL SHEET, AND METHOD FOR MANUFACTURING THE SAME - Google Patents

Zn-Al-BASED PLATED STEEL SHEET, AND METHOD FOR MANUFACTURING THE SAME Download PDF

Info

Publication number
JP2010090401A
JP2010090401A JP2008258323A JP2008258323A JP2010090401A JP 2010090401 A JP2010090401 A JP 2010090401A JP 2008258323 A JP2008258323 A JP 2008258323A JP 2008258323 A JP2008258323 A JP 2008258323A JP 2010090401 A JP2010090401 A JP 2010090401A
Authority
JP
Japan
Prior art keywords
steel sheet
plated steel
based plated
solution
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008258323A
Other languages
Japanese (ja)
Other versions
JP5434036B2 (en
Inventor
Shinji Otsuka
真司 大塚
Daisuke Mizuno
大輔 水野
Hiroshi Kajiyama
浩志 梶山
Yoichi Makisui
洋一 牧水
Naoto Yoshimi
直人 吉見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008258323A priority Critical patent/JP5434036B2/en
Publication of JP2010090401A publication Critical patent/JP2010090401A/en
Application granted granted Critical
Publication of JP5434036B2 publication Critical patent/JP5434036B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Zn-Al-based plated steel sheet having excellent corrosion resistance and excellent press formability. <P>SOLUTION: A surface activation treatment with alkaline solution is applied on a surface of the Zn-Al-based plated steel sheet, and the surface is brought into contact with acid solution containing fluorine (for example, hydrofluoric acid of the predetermined amount is added) and having pH value of 0.5-3.0 and having the pH buffering action. Then, after such a state is kept for 1-60 seconds, water rinsing and drying are performed. An oxide layer containing Zn and Al is formed on the surface of the plated steel sheet. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、耐食性に優れ、プレス成形時の摺動抵抗が小さく優れたプレス成形性を有するZn−Al系めっき鋼板を製造する方法および耐食性とプレス成形性に優れたZn−Al系めっき鋼板に関するものである。   The present invention relates to a method for producing a Zn-Al-based plated steel sheet having excellent corrosion resistance, low sliding resistance during press molding and having excellent press formability, and a Zn-Al-based plated steel sheet excellent in corrosion resistance and press formability. Is.

自動車産業分野においては、防錆力強化を目的として従来からZn系めっき鋼板が用いられている。特に、近年では、自動車の防錆寿命をさらに引き伸ばす動きがあり、自動車用鋼板としての防錆力をさらに強化する必要が生じている。
Zn系めっき鋼板を自動車用鋼板として用いた場合の耐食性は、Zn付着量に大きく依存することが知られており(非特許文献1)、上記状況に対しては、Znめっき量を増加させることが有効である。しかしながら、Zn需要の増大やZn資源の枯渇によるZn価格の高騰から、Zn付着量を増加させることは、鋼材価格の高騰につながる。同時に、安定供給に問題が生じる可能性がある。また、溶接性やプレス成形性などに悪影響を与えると考えられる。
これに対して、その他の耐食性を向上させる手段としては、副資材と呼ばれるワックスやシーラーなどを腐食しやすい部分に塗布することで腐食環境に直接鋼板が晒される事を防ぐ方法がある。この方法は、特に腐食の厳しい部位に使用されている。しかしながら、ワックス等を塗布する方法は、手動で施工されることが多く、コスト増加となる。また、ワックス等に有機溶剤を使用していることが多いため、施工者の健康面の問題や環境負荷が高い問題がある。このような点から、可能な限り省略することが好ましい。
佐々井圭三、CAMP-ISIJ、9(1996)、474.
In the automotive industry field, Zn-based plated steel sheets have been conventionally used for the purpose of enhancing rust prevention. In particular, in recent years, there has been a movement to further extend the antirust life of automobiles, and there is a need to further strengthen the antirust ability of steel sheets for automobiles.
It is known that the corrosion resistance when using Zn-plated steel sheets as automotive steel sheets is greatly dependent on the amount of Zn deposited (Non-patent Document 1). Is effective. However, increasing the amount of Zn deposited due to the increase in Zn demand due to the increase in Zn demand and the depletion of Zn resources leads to an increase in steel prices. At the same time, there may be problems with stable supply. Moreover, it is thought that it has a bad influence on weldability, press formability, etc.
On the other hand, as another means for improving the corrosion resistance, there is a method of preventing the steel sheet from being directly exposed to the corrosive environment by applying a wax or sealer, which is called a secondary material, to a corrosive portion. This method is used particularly in areas where corrosion is severe. However, the method of applying wax or the like is often performed manually, which increases costs. In addition, since organic solvents are often used for wax and the like, there are problems in terms of health of the installer and high environmental burden. From such a point, it is preferable to omit as much as possible.
Shinzo Sasai, CAMP-ISIJ, 9 (1996), 474.

以上の観点から、亜鉛付着量が低く、ワックス等の塗布を可能な限り省略した、高い耐食性を有する防錆鋼板の開発が望まれている。
一方で、自動車車体用途での鋼板はプレス成形を施されて使用に供されるため、プレス成形性に優れていることも望まれる。
In view of the above, it is desired to develop a rust-proof steel sheet having high corrosion resistance that has a low zinc adhesion amount and omits the application of wax or the like as much as possible.
On the other hand, since the steel plate for automobile body use is subjected to press forming and used, it is also desired that the steel plate is excellent in press formability.

本発明は、かかる事情に鑑み、優れた耐食性とプレス成形性を有するZn−Al系めっき鋼板を製造する方法および優れた耐食性とプレス成形性を有するZn−Al系めっき鋼板を提供することを目的とする。   In view of such circumstances, the present invention aims to provide a method for producing a Zn-Al-based plated steel sheet having excellent corrosion resistance and press formability, and a Zn-Al-based plated steel sheet having excellent corrosion resistance and press formability. And

本発明者らは、上記の課題を解決すべく、鋭意研究を重ねた。その結果、以下の知見を得た。   The inventors of the present invention have made extensive studies to solve the above problems. As a result, the following knowledge was obtained.

まず、自動車車体用途に用いる高耐食性鋼板として、Zn系めっき鋼板ではなく、ZnとAlを含有するめっきを付与した鋼板(以下、Zn-Al系めっき鋼板と称す)に着目した。そして、実環境をシミュレート可能な方法でZn-Al系めっき鋼板の自動車車体用途への適用の可否を検討した。
その結果、Zn-Al系めっき鋼板を自動車に適用した場合、高い耐食性が得られることを見出した。
一方で、プレス成形性について検討した結果、自動車に適用するには十分な特性が得られていないことも明らかとなった。このZn-Al系めっき鋼板のプレス成形性は、Zn-Al系めっき鋼板が主に建材分野で用いられプレス成形性がそれほど求められていないこともあり、検討はほとんどなされていなかった。
これらの結果を踏まえて、本発明では、自動車車体用途に用いる高耐食性鋼板としてZn-Al系めっき鋼板を用いることとし、次に、課題であるプレス成形性の向上を検討することにした。
自動車車体用途として用いる場合に問題となるプレス成形性はプレス成形時の摺動性である。この摺動性は、プレスの金型と鋼板表面との間で局部的な凝着が引き起こされ、摩擦係数が高くなることにより劣化すると考えられている。
First, as a highly corrosion-resistant steel plate used for automobile body applications, not a Zn-based plated steel plate, but a steel plate provided with plating containing Zn and Al (hereinafter referred to as a Zn-Al-based plated steel plate) was focused. Then, the possibility of applying Zn-Al-based plated steel sheets to automobile bodies was examined by a method that can simulate the real environment.
As a result, it was found that high corrosion resistance can be obtained when a Zn-Al-based plated steel sheet is applied to an automobile.
On the other hand, as a result of examining the press formability, it became clear that sufficient characteristics for application to automobiles were not obtained. The press formability of this Zn-Al-based plated steel sheet has been hardly studied because Zn-Al-based plated steel sheets are mainly used in the field of building materials and press formability is not so much required.
Based on these results, in the present invention, it was decided to use a Zn-Al-based plated steel sheet as a highly corrosion-resistant steel sheet used for automobile body applications, and then examined improvement of press formability, which is a problem.
The press formability that becomes a problem when used as an automobile body is slidability during press forming. This slidability is considered to be deteriorated by causing local adhesion between the press mold and the steel plate surface and increasing the friction coefficient.

そこで、摺動性を向上させる手法として、Zn-Al系めっき鋼板の表面に酸化物を付与することでプレス金型と鋼板表面との間での凝着を抑制する方法が有効なのではと考え検討を進めた。
まず、特開2002-256448号公報に示されているZn系めっき鋼板に酸化物を付与する方法でZn-Al系めっき鋼板に対して酸化物付与の実験を行った。そうしたところ、摺動性向上に十分な酸化物を付与することが出来ず、プレス成形性向上効果は得られなかった。
Therefore, as a technique to improve the slidability, it is considered effective to suppress the adhesion between the press die and the steel sheet surface by applying an oxide to the surface of the Zn-Al plated steel sheet. We proceeded with the examination.
First, an oxide application experiment was performed on a Zn-Al-based plated steel sheet by a method of applying an oxide to a Zn-based plated steel sheet disclosed in JP-A-2002-256448. As a result, an oxide sufficient for improving the slidability could not be provided, and the effect of improving the press formability could not be obtained.

そこで、発明者らがさらに鋭意検討を重ねた結果、めっき処理後のZn−Al系めっき鋼板をアルカリ性溶液による表面活性化処理を行った後、フッ素を含有しpH緩衝作用を有する酸性溶液に接触させた後、大気中で保持することによりZn-Al系めっき鋼板表面に酸化物が形成し、良好なプレス成形性が得られることを見出した。   Therefore, as a result of further intensive studies by the inventors, the Zn-Al-based plated steel sheet after the plating treatment was subjected to a surface activation treatment with an alkaline solution, and then contacted with an acidic solution containing fluorine and having a pH buffering action. Then, it was found that an oxide was formed on the surface of the Zn—Al-based plated steel sheet by holding it in the air, and good press formability was obtained.

本発明は、以上の知見に基づきなされたものであり、その要旨は以下の通りである。
[1]Zn−Al系めっき鋼板をアルカリ性溶液による表面活性化処理を行った後、酸性溶液に接触させ、接触処理終了後1〜60秒間保持した後、水洗および乾燥を行うことにより、Zn−Al系めっき鋼板表面に酸化物層を形成するZn−Al系めっき鋼板の製造方法において、
前記酸性溶液は、フッ素を含有し、pH緩衝作用を有し、かつpHが0.5〜3.0であることを特徴とするZn−Al系めっき鋼板の製造方法である。
[2]前記[1]において、前記Zn−Al系めっき鋼板は、Alを20〜95mass%含有することが好ましい。
[3]前記[1]または[2]のZn−Al系めっき鋼板の製造方法により製造され、ZnおよびAlを含む酸化物層を鋼板表面に形成したことを特徴とするZn−Al系めっき鋼板である。s
なお、本発明においては、合金化処理を施す、施さないにかかわらず、めっき処理方法によって鋼板にZn−Alをめっきした鋼板を総称してZn−Al系めっき鋼板と呼称する。すなわち、本発明におけるZn−Al系めっき鋼板とは、合金化処理を施していないZn−Alめっき鋼板、合金化処理を施す合金化Zn−Alめっき鋼板いずれも含むものである。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] A Zn-Al-based plated steel sheet is subjected to a surface activation treatment with an alkaline solution, then contacted with an acidic solution, held for 1 to 60 seconds after completion of the contact treatment, and then washed with water and dried to obtain Zn- In the manufacturing method of the Zn-Al system plated steel sheet that forms an oxide layer on the surface of the Al system plated steel sheet,
The acidic solution is a method for producing a Zn—Al-based plated steel sheet, containing fluorine, having a pH buffering action, and having a pH of 0.5 to 3.0.
[2] In the above [1], the Zn-Al-based plated steel sheet preferably contains 20 to 95 mass% Al.
[3] A Zn-Al-based plated steel sheet produced by the method for producing a Zn-Al-based plated steel sheet according to [1] or [2], wherein an oxide layer containing Zn and Al is formed on the surface of the steel sheet. It is. s
In the present invention, regardless of whether or not alloying treatment is performed, a steel plate obtained by plating Zn—Al on a steel plate by a plating method is collectively referred to as a Zn—Al-based plated steel plate. That is, the Zn-Al-based plated steel sheet in the present invention includes both a Zn-Al-plated steel sheet that has not been subjected to alloying treatment and an alloyed Zn-Al-plated steel sheet that has undergone alloying treatment.

本発明によれば、優れた耐食性とプレス成形性を有するZn−Al系めっき鋼板が得られる。そして、本発明の高耐食性の自動車用めっき鋼板を適用することにより、鋼材コストの削減と、副資材の削減によるコスト低減が可能となる。   According to the present invention, a Zn-Al-based plated steel sheet having excellent corrosion resistance and press formability can be obtained. By applying the highly corrosion-resistant automotive plated steel sheet of the present invention, it is possible to reduce the steel material cost and the cost by reducing the auxiliary materials.

本発明では、Zn−Al系めっき鋼板をアルカリ性溶液による表面活性化処理を行った後、酸性溶液に接触させ、接触処理終了後1〜60秒間保持した後、水洗および乾燥を行うことにより、Zn−Al系めっき鋼板表面に酸化物層を形成するに際し、
フッ素を含有し、pH緩衝作用を有し、かつpHが0.5〜3.0の酸性溶液を用いることとする。このように、鋼板を接触処理する溶液として、フッ素を含み、pHを規定した溶液とすることは、本発明において、重要な要件であり、特徴である。これにより、良好なプレス成形性を確保するために十分な酸化物層を鋼板表面に形成させることができる。
なお、接触処理終了後とは、浸漬処理の場合は浸漬工程を終了した後を、スプレー処理の場合はスプレー工程が終了した後を、ロール塗布の場合は塗布工程が終了した後を示すものである。
In the present invention, the Zn-Al-based plated steel sheet is subjected to a surface activation treatment with an alkaline solution, then brought into contact with an acidic solution, held for 1 to 60 seconds after completion of the contact treatment, and then washed with water and dried to obtain Zn. -When forming an oxide layer on the surface of an Al-based plated steel sheet,
An acidic solution containing fluorine, having a pH buffering action, and having a pH of 0.5 to 3.0 is used. Thus, it is an important requirement and a feature in the present invention that a solution containing fluorine and having a defined pH is used as a solution for contacting a steel sheet. As a result, a sufficient oxide layer can be formed on the steel sheet surface to ensure good press formability.
The term “after contact treatment” means that after the immersion process is completed in the case of immersion treatment, after the spray process is completed in the case of spray treatment, and after the application step is completed in the case of roll coating. is there.

本発明で用いるZn−Al系めっき鋼板は、Alを20〜95mass%含有することが好ましい。さらに好ましくは、40〜70mass%である。Alを上記範囲含有することにより耐食性が良好となる。
また、めっき付着量は片面当たり20g/m以上が好ましい。20g/m以上とすると腐食環境に依らず自動車用鋼板として十分な耐食性が得られる。また、70g/m以下とするとコストが増大することがないのでより好ましい。
The Zn-Al-based plated steel sheet used in the present invention preferably contains 20 to 95 mass% Al. More preferably, it is 40-70 mass%. By containing Al in the above range, corrosion resistance is improved.
Further, the plating adhesion amount is preferably 20 g / m 2 or more per one surface. When it is 20 g / m 2 or more, sufficient corrosion resistance is obtained as a steel sheet for automobiles regardless of the corrosive environment. Moreover, since it does not increase cost when it is 70 g / m < 2 > or less, it is more preferable.

このような、酸性溶液に接触前のZn−Al系めっき鋼板表面には、Al酸化物が形成されている。しかし、このAl酸化物をEPMA(Electron Probe Micro-Analysis)にて観察したところ、Al成分が多い部分とAlが少ない部分があり不均一な酸化物形態になっていることがわかった。そして、めっき層表面の酸化物層が不均一に存在しているため、良好な摺動性を安定して得ることはできないと考えられる。   Al oxide is formed on the surface of the Zn—Al-based plated steel sheet before contact with the acidic solution. However, when this Al oxide was observed by EPMA (Electron Probe Micro-Analysis), it was found that there were a portion with a lot of Al component and a portion with a little Al, resulting in a non-uniform oxide form. And since the oxide layer of the plating layer surface exists nonuniformly, it is thought that favorable slidability cannot be obtained stably.

そこで、めっき処理後のZn-Al系めっき鋼板をアルカリ性溶液による表面活性化処理を行った後、酸性溶液と接触させ、その後、鋼板表面に酸性溶液膜が形成された状態で所定時間保持した後、水洗、乾燥することによってめっき表層に新たな酸化物層を形成させた。そうしたところ、この際、形成される新たな酸化物はZnおよびAlを含有する均一な酸化物層であり、主にめっき鋼板表面のプレス成形時にプレス金型と直接接触する部分に形成された。このように均一な酸化物層をめっき層表面に新たに形成することで金型とめっきとの凝着を抑制し、良好なプレス成形性が得られることになる。   Therefore, after the Zn-Al-based plated steel sheet after the plating treatment is subjected to a surface activation treatment with an alkaline solution, it is brought into contact with an acidic solution, and then held for a predetermined time with an acidic solution film formed on the steel plate surface. A new oxide layer was formed on the plating surface layer by washing with water and drying. As a result, the new oxide formed at this time was a uniform oxide layer containing Zn and Al, and was formed mainly in the portion that was in direct contact with the press die during press forming of the surface of the plated steel sheet. By newly forming a uniform oxide layer on the surface of the plating layer in this way, adhesion between the mold and the plating is suppressed, and good press formability can be obtained.

本発明において、酸性溶液に接触させる前に、アルカリ性溶液による表面活性化処理を施すことが必要である。そして、表面活性化処理に用いる薬液はpH11以上であるアルカリ性溶液であることが好ましい。この処理の目的は、Zn−Al系めっき鋼板の表面に形成したAl系酸化物を除去し、表面に新生面を露出させることにより、新生面が露出された部分で反応を活性化させ、ZnおよびAlを必須成分として含む酸化物の生成を容易にするためである。   In the present invention, it is necessary to perform a surface activation treatment with an alkaline solution before contacting with the acidic solution. And it is preferable that the chemical | medical solution used for a surface activation process is an alkaline solution which is pH11 or more. The purpose of this treatment is to remove the Al-based oxide formed on the surface of the Zn-Al-based plated steel sheet and expose the new surface on the surface, thereby activating the reaction in the exposed portion of the new surface, Zn and Al This is for facilitating the formation of an oxide containing as an essential component.

また、この表面活性化処理の前に調質圧延を行ってもよい。さらに、めっき処理後表面活性化処理を行い、調質圧延を行い、その後、酸性溶液に接触させるようにしてもよい。これは、調質圧延の際に使用する調圧ロールなどにより、めっき鋼板表面に存在するAl系酸化物層の一部を破壊することもでき、表面活性化処理を組み合わせることによりAl系酸化物層を効果的に除去できる。   Moreover, you may perform temper rolling before this surface activation process. Furthermore, after the plating treatment, surface activation treatment may be performed, temper rolling may be performed, and then contacted with an acidic solution. This is because it is possible to destroy part of the Al-based oxide layer present on the surface of the plated steel sheet with a pressure-control roll used during temper rolling, and by combining surface activation treatment, the Al-based oxide The layer can be removed effectively.

表面活性化処理に用いる水溶液はpHが11以上、浴温を30℃以上とし、該液との接触時間を1〜30秒とすることが好ましい。1秒以下の場合はAl酸化物を十分溶解できない為、その後に引き続く酸性溶液との反応性を高めることが出来ず、酸化物が十分に形成せず、30秒より多くても構わないが、長時間処理することは生産性を低下するため好ましくない。より好ましくはpH11以上、浴温50℃以上である。上記範囲内のpHであれば溶液の種類に制限はなく、水酸化ナトリウムや水酸化ナトリウム系の脱脂剤などを用いることができる。
表面活性化処理は酸性溶液に接触する前に実施する必要があるが、必要に応じて行われる亜鉛めっき後に行われる調質圧延の前、後いずれで実施しても良い。ただし、調質圧延の後、表面活性化処理を施すと、圧延ロールにより押しつぶされ凸部となった部分でAl系酸化物が機械的に破壊されるため、凸部以外の凹部とAl酸化物の除去量が異なる傾向がある。このため、表面活性化処理後のAl酸化物量が、面内で不均一となり、引き続き行われる酸化処理が不均一となり十分な特性を得られない場合がある。このため、より好ましくはめっき後、表面活性化処理を施し、面内で均一にAl酸化物を適正量除去した後、調質圧延を実施、引き続き酸性溶液に接触させる処理とするプロセスが好ましい。
表面活性化処理の方法については、特に限定しない。浸漬法、スプレー法、ロール塗布法などが挙げられる。
The aqueous solution used for the surface activation treatment preferably has a pH of 11 or more, a bath temperature of 30 ° C. or more, and a contact time with the solution of 1 to 30 seconds. In the case of 1 second or less, since the Al oxide cannot be sufficiently dissolved, the reactivity with the subsequent acidic solution cannot be increased, and the oxide does not form sufficiently and may be longer than 30 seconds. Long-term treatment is not preferable because it reduces productivity. More preferably, the pH is 11 or more and the bath temperature is 50 ° C. or more. If it is pH in the said range, there will be no restriction | limiting in the kind of solution, Sodium hydroxide, a sodium hydroxide type | system | group degreasing agent, etc. can be used.
The surface activation treatment needs to be performed before contact with the acidic solution, but may be performed either before or after temper rolling performed after galvanization performed as necessary. However, if the surface activation treatment is performed after temper rolling, the Al-based oxide is mechanically destroyed at the portion that has been crushed by the rolling roll and becomes a convex portion. There is a tendency for the amount of removal to be different. For this reason, the amount of Al oxide after the surface activation treatment becomes non-uniform in the surface, and the subsequent oxidation treatment becomes non-uniform so that sufficient characteristics may not be obtained. For this reason, it is more preferable to perform a surface activation treatment after plating, remove the appropriate amount of Al oxide uniformly in the surface, perform temper rolling, and subsequently contact with an acidic solution.
The method for the surface activation treatment is not particularly limited. Examples of the method include a dipping method, a spray method, and a roll coating method.

次に、Zn−Al系めっき鋼板に接触させる酸性溶液について説明する。
本発明では、酸性溶液中にフッ素を含有する。鋼板を接触処理する溶液として、フッ素を含有する溶液を使用することにより、酸性溶液に接触前に鋼板表面に形成されたAl酸化物を溶解させることが可能となる。この時、フッ素の含有量は、50〜10000 mass ppmの範囲が好ましい。フッ素の含有量が50mass ppm未満であると、十分なフッ素が供給されずにAl酸化物を溶解するのに不十分である。一方、10000mass ppmを超えると形成される酸化物層に含まれるフッ素濃度が高くなり、その後に行われる化成処理工程で酸化物が溶解したときに処理液を汚染することが懸念される。
なお、フッ素は弗酸やフッ化物として酸性処理液中に添加することが可能である。
Next, the acidic solution brought into contact with the Zn—Al-based plated steel sheet will be described.
In the present invention, the acidic solution contains fluorine. By using a fluorine-containing solution as a solution for contact-treating the steel sheet, it is possible to dissolve the Al oxide formed on the steel sheet surface before contact with the acidic solution. At this time, the fluorine content is preferably in the range of 50 to 10,000 mass ppm. When the fluorine content is less than 50 mass ppm, it is insufficient to dissolve the Al oxide without supplying sufficient fluorine. On the other hand, if the concentration exceeds 10,000 mass ppm, the concentration of fluorine contained in the formed oxide layer becomes high, and there is a concern that the treatment liquid is contaminated when the oxide is dissolved in the chemical conversion treatment step performed thereafter.
Fluorine can be added to the acidic treatment liquid as hydrofluoric acid or fluoride.

また、使用する酸性溶液は、pH2.0〜6.0の領域においてpH緩衝作用を有するものとする。これは、前記pH範囲でpH緩衝作用を有する酸性溶液を使用すると、酸性溶液に接触後、所定時間保持することで、酸性溶液とめっき層の反応によりZnの溶解とZn−Al系酸化物の形成反応が十分に生じ、鋼板表面に酸化物層を安定して得ることができるためである。また、このようなpH緩衝作用の指標として、1リットルの酸性溶液のpHを2.0〜5.0まで上昇させるのに要する1.0mol/l水酸化ナトリウム水溶液の量(リットル)で定義するpH上昇度で評価でき、この値が0.05〜0.5の範囲にあるとよい。PH上昇度が0.05以上とすると、pHの上昇が速やかに生じて酸化物の形成に十分な亜鉛の溶解が得られないということがなく、十分な酸化物層の形成が生じ、一方で、0.5以下とすると、Znの溶解が促進され、酸化物層の形成に長時間を有することも、めっき層の損傷も著しくなることがなく、本来の防錆鋼板としての役割も失うことがないためである。ここで、pH緩衝作用はpHが2.0を超える酸性溶液に対し、pHが2.0〜5.0の範囲でほとんど緩衝性を有しない無機酸を添加してpHを一旦2.0に低下させて評価することとする。   Moreover, the acidic solution to be used shall have a pH buffer action in the range of pH 2.0-6.0. This is because when an acidic solution having a pH buffering action in the above pH range is used, it is maintained for a predetermined time after contact with the acidic solution, so that the dissolution of Zn and the Zn-Al oxide are caused by the reaction between the acidic solution and the plating layer. This is because the formation reaction sufficiently occurs and the oxide layer can be stably obtained on the surface of the steel sheet. In addition, as an index of such pH buffering action, evaluated by the degree of pH increase defined by the amount of 1.0 mol / l sodium hydroxide aqueous solution (liter) required to raise the pH of 1 liter acidic solution to 2.0-5.0 This value is preferably in the range of 0.05 to 0.5. If the pH increase is 0.05 or more, the pH will rise rapidly and there will be no sufficient dissolution of zinc for the formation of oxide, resulting in the formation of a sufficient oxide layer, while 0.5% If the following, the dissolution of Zn is promoted, the formation of the oxide layer has a long time, the damage of the plating layer is not significant, and the original role as a rust-proof steel sheet is not lost. is there. Here, the pH buffering action is evaluated by adding an inorganic acid having almost no buffering property within the pH range of 2.0 to 5.0 to an acidic solution having a pH value exceeding 2.0, and once reducing the pH to 2.0. .

このようなpH緩衝作用を有する酸性溶液としては、酢酸ナトリウム(CH3COONa)などの酢酸塩やフタル酸水素カリウム((KOOC)2C6H4)などのフタル酸塩、クエン酸ナトリウム(Na3C6H5O7)やクエン酸二水素カリウム(KH2C6H5O7)などのクエン酸塩、コハク酸ナトリウム(Na2C4H4O4)などのコハク酸塩、乳酸ナトリウム(NaCH3CHOHCO2)などの乳酸塩、酒石酸ナトリウム(Na2C4H4O6)などの酒石酸塩、ホウ酸塩、リン酸塩が挙げられ、これらのうち少なくとも1種類以上を、前記各成分含有量を5〜50g/lの範囲で含有する水溶液を使用することができる。前記濃度が5g/l未満であると、Znの溶解とともに溶液のpH上昇が比較的すばやく生じるため、摺動性の向上に十分な酸化物層を形成することができず、また50g/lを超えると、Znの溶解が促進され、酸化物層の形成に長時間を有するだけでなく、めっき層の損傷も激しく、本来の防錆鋼板としての役割も失うことが考えられるためである。 Acidic solutions with such pH buffering action include acetates such as sodium acetate (CH 3 COONa), phthalates such as potassium hydrogen phthalate ((KOOC) 2 C 6 H 4 ), sodium citrate (Na Citrates such as 3 C 6 H 5 O 7 ) and potassium dihydrogen citrate (KH 2 C 6 H 5 O 7 ), succinates such as sodium succinate (Na 2 C 4 H 4 O 4 ), and lactic acid Examples thereof include lactate salts such as sodium (NaCH 3 CHOHCO 2 ), tartrate salts such as sodium tartrate (Na 2 C 4 H 4 O 6 ), borate salts, and phosphate salts. An aqueous solution containing each component content in the range of 5 to 50 g / l can be used. When the concentration is less than 5 g / l, the pH of the solution rises relatively quickly with dissolution of Zn, so that an oxide layer sufficient for improving the sliding property cannot be formed, and 50 g / l is reduced. If it exceeds, dissolution of Zn is promoted and not only it takes a long time to form the oxide layer, but also the plating layer is severely damaged, and it is considered that the original role as a rust-proof steel sheet is lost.

また、本発明では、pHを0.5〜3.0とする必要がある。PHが0.5未満では、めっき層の溶解が多く、非生産的である。一方、pHが3.0を超えるとめっき層が溶解しないので酸化膜が形成しない。
なお、上記範囲内にpHを調整する方法は、特に規定しないが、例えば硫酸や硝酸、塩酸などを用いることが出来る。
In the present invention, the pH needs to be 0.5 to 3.0. When the pH is less than 0.5, the plating layer is frequently dissolved and is not productive. On the other hand, if the pH exceeds 3.0, the plating layer does not dissolve, so that no oxide film is formed.
The method for adjusting the pH within the above range is not particularly limited, but for example, sulfuric acid, nitric acid, hydrochloric acid and the like can be used.

溶液の温度については、20〜70℃が好ましい。酸化物層の形成反応は、溶液への接触後、所定時間保持する際に生じるため、保持時の鋼板の温度を20〜70℃の範囲に制御することは有効である。20℃未満であると、酸化物層の生成反応に長時間を有し、生産性の低下を招く。一方、70℃を超える場合には、反応は比較的すばやく進行するが、逆に鋼板表面に処理ムラを発生しやすくなる。   About the temperature of a solution, 20-70 degreeC is preferable. Since the formation reaction of the oxide layer occurs when it is held for a predetermined time after contact with the solution, it is effective to control the temperature of the steel sheet during the holding to a range of 20 to 70 ° C. If it is lower than 20 ° C., the reaction for forming the oxide layer takes a long time, resulting in a decrease in productivity. On the other hand, when it exceeds 70 ° C., the reaction proceeds relatively quickly, but conversely, processing unevenness tends to occur on the surface of the steel sheet.

本発明では、Zn−Al系めっき鋼板表面に接触する溶液にフッ素が含有されていれば、摺動性に優れた酸化物層を安定して形成できるため、溶液中にその他の金属イオンや無機化合物などを不純物として、あるいは故意に含有していても本発明の効果が損なわれるものではない。そして、N、P、B、Cl、Na、Mn、Ca、Mg、Ba、Sr、Siなどが酸化物層中に取り込まれても、本発明の効果が損なわれない限り適用可能である。   In the present invention, if fluorine is contained in the solution in contact with the surface of the Zn-Al-based plated steel sheet, an oxide layer excellent in slidability can be stably formed. Even if a compound or the like is intentionally contained as an impurity, the effect of the present invention is not impaired. Even if N, P, B, Cl, Na, Mn, Ca, Mg, Ba, Sr, Si, or the like is incorporated into the oxide layer, it is applicable as long as the effect of the present invention is not impaired.

なお、Zn-Al系めっき鋼板を前記酸性溶液に接触処理させる方法には特に制限はなく、めっき鋼板を溶液に浸漬する方法、めっき鋼板に溶液をスプレーする方法、塗布ロールを介して溶液をめっき鋼板に塗布する方法等があり、最終的に薄い液膜状で鋼板表面に存在することが望ましい。   In addition, there is no restriction | limiting in particular in the method of making a Zn-Al type plated steel plate contact-treat with the said acidic solution, the method of immersing a plated steel plate in a solution, the method of spraying a solution to a plated steel plate, and plating a solution via a coating roll There is a method of applying to a steel plate, and it is desirable that it is finally in the form of a thin liquid film on the steel plate surface.

亜鉛めっき鋼板を以上からなる酸性溶液に接触させた後に、その溶液が薄い液膜状で鋼板表面に存在することが望ましい。これは、鋼板表面に存在する溶液の量が多いと、Znの溶解が生じても溶液のpHが上昇しにくく、酸化物層を形成するまでに長時間を有するためである。一方、少ないと酸化物形成量が少なくなり、プレス成形性が向上しない。この観点から、鋼板表面に形成する溶液膜の量は、1〜10g/mに調整することが好ましく有効である。また、液膜の乾燥を防ぐために、2〜5g/mとすることがさらに好ましい。なお、溶液膜量の調整は、絞りロール、エアワイピング等で行うことができる。 After the galvanized steel sheet is brought into contact with the acidic solution composed of the above, it is desirable that the solution exists in the form of a thin liquid film on the steel sheet surface. This is because if the amount of the solution existing on the surface of the steel plate is large, the pH of the solution hardly rises even if Zn is dissolved, and it takes a long time to form the oxide layer. On the other hand, if the amount is small, the amount of oxide formation decreases, and the press formability does not improve. From this viewpoint, it is preferable and effective to adjust the amount of the solution film formed on the steel sheet surface to 1 to 10 g / m 2 . Moreover, in order to prevent drying of a liquid film, it is more preferable to set it as 2-5 g / m < 2 >. The amount of the solution film can be adjusted by a squeeze roll, air wiping or the like.

酸性溶液にZn−Al系めっき鋼板を接触後、水洗までの時間(水洗までの保持時間)は、1〜60秒間とする。水洗までの時間が1秒未満であると、十分な酸化物層が形成される前に、溶液が洗い流されるため、摺動性の向上効果が得られない。あるいは、pHが十分上昇しないため、形成される酸化物が少なくなる。一方、60秒を超えた場合の保持時間では生産性を落としてしまう。
1〜60秒間保持した後、水洗および乾燥を行う。
水洗をしないと、鋼板表面に酸性物質が残存するため、腐食することになるため水洗する。
After contacting the Zn—Al-based plated steel sheet with the acidic solution, the time until the water washing (the holding time until the water washing) is 1 to 60 seconds. If the time until washing with water is less than 1 second, the solution is washed out before a sufficient oxide layer is formed, so that the effect of improving the slidability cannot be obtained. Alternatively, since the pH is not sufficiently increased, less oxide is formed. On the other hand, productivity is reduced in the holding time when it exceeds 60 seconds.
After holding for 1 to 60 seconds, washing and drying are performed.
Without washing with water, acidic substances remain on the surface of the steel sheet, so that it corrodes and is washed with water.

以上により、本発明のめっき鋼板の表面には、ZnおよびAlを含む酸化物層が形成されることになる。そして、Zn-Al系めっき表面に形成する酸化物層によって、プレス成形時における金属金型とめっきの直接接触を防ぎ、めっき皮膜の金型への凝着を抑制することが出来るため、摺動時の抵抗、すなわち、摩擦係数を大幅に低減させることが可能となる。   As described above, an oxide layer containing Zn and Al is formed on the surface of the plated steel sheet of the present invention. The oxide layer formed on the Zn-Al plating surface prevents direct contact between the metal mold and the plating during press molding and prevents adhesion of the plating film to the mold. It is possible to significantly reduce the resistance at the time, that is, the friction coefficient.

なお、本発明における酸化物層とは、ZnおよびAlを含んだ酸化物及び/又は水酸化物などからなる層のことである。この酸化物層の平均厚さは、膜厚が既知のシリカ皮膜のO(酸素)の蛍光X線強度により作成した検量線を用いて求めたシリカ換算の膜厚で20nm〜80nmが好ましい、より好ましくは30〜60nmである。酸化物層の平均厚さが20nm未満に薄くなると摺動抵抗を低下させる効果が不十分となる。一方、酸化物層の平均厚さが80nmを越えると、プレス成形中に酸化物層が破壊し摺動抵抗が上昇し、また溶接性が低下する傾向にあるため好ましくない。   The oxide layer in the present invention is a layer made of an oxide and / or hydroxide containing Zn and Al. The average thickness of this oxide layer is preferably 20 nm to 80 nm in terms of silica thickness determined using a calibration curve prepared from the fluorescent X-ray intensity of O (oxygen) of a silica film having a known thickness. Preferably it is 30-60 nm. When the average thickness of the oxide layer is reduced to less than 20 nm, the effect of reducing the sliding resistance becomes insufficient. On the other hand, if the average thickness of the oxide layer exceeds 80 nm, the oxide layer breaks during press molding, the sliding resistance increases, and the weldability tends to decrease.

また、本発明に係るZn-Al系めっき鋼板を製造するに関しては、めっき浴中にZnおよびAlが添加されていることが必要であるが、ZnおよびAl以外の添加元素成分は特に限定されない。すなわち、ZnおよびAlの他にPb、Sb、Si、Sn、Mg、Mn、Ni、Ti、Li、Cuなどが含有または添加されていても、本発明の効果が損なわれない限り適用可能である。   Moreover, regarding the production of the Zn—Al-based plated steel sheet according to the present invention, it is necessary that Zn and Al be added to the plating bath, but the additive element components other than Zn and Al are not particularly limited. That is, even if Pb, Sb, Si, Sn, Mg, Mn, Ni, Ti, Li, Cu, etc. are contained or added in addition to Zn and Al, they are applicable as long as the effects of the present invention are not impaired. .

次に、本発明を実施例により更に詳細に説明する。
板厚0.8mmの冷延鋼板の両面に、片面当たりの付着量が45g/m、Al濃度が0〜100質量%の溶融Zn-Alめっきを施しZn-Al系めっき鋼板を作製した。次いで、得られたZn-Al系めっき鋼板の両面の表面活性化処理として浸漬処理によりアルカリ溶液処理を行った。
引き続き、図1に示す構成の処理設備を用いて酸化物層を形成した。まず、上記により得られたZn-Al系めっき鋼板を、溶液槽2で、表1に示す処理液組成およびpHが異なる30℃の溶液に浸漬した。次いで、絞りロール3で鋼板表面の液膜量を調整した。液膜量の調整は、絞りロールの圧力を変化させることで行った。次いで、洗浄槽5、洗浄槽6を空通しし、洗浄槽7で50℃の温水を鋼板にスプレーして洗浄し、ドライヤ8で乾燥し、めっき鋼板表面にZnおよびAlを含む酸化物層を形成した。
溶液槽2で浸漬処理を行う溶液は、フッ素を添加する目的で弗酸を所定量添加した溶液を使用した。 なお、一部、比較のために、Zn-Al系めっき層ではないめっき層を有するサンプル、アルカリ溶液による表面活性化処理を行わないサンプル、酸性溶液中にフッ素および/または緩衝溶液を含まないサンプル、保持時間無しのサンプルも作製した。
水洗までの保持時間は、絞りロール3で液膜量の調整を行い、洗浄槽7で洗浄開始するまでの時間であり、ラインスピードを変化させることで調整するとともに、一部、絞りロール3出側のシャワー水洗装置4を用いて絞り直後に鋼板を洗浄するものも作製した。
Next, the present invention will be described in more detail with reference to examples.
A cold-rolled steel sheet having a thickness of 0.8 mm was subjected to hot-dip Zn-Al plating with an adhesion amount per side of 45 g / m 2 and an Al concentration of 0 to 100% by mass to produce a Zn-Al-based plated steel sheet. Next, an alkaline solution treatment was performed by dipping treatment as a surface activation treatment on both sides of the obtained Zn-Al-based plated steel sheet.
Subsequently, an oxide layer was formed using a processing facility having the configuration shown in FIG. First, the Zn—Al-based plated steel sheet obtained as described above was immersed in a solution bath 2 at 30 ° C. having different treatment solution compositions and pH values shown in Table 1. Next, the amount of liquid film on the steel sheet surface was adjusted with the drawing roll 3. The liquid film amount was adjusted by changing the pressure of the squeeze roll. Next, the cleaning tank 5 and the cleaning tank 6 are evacuated, the hot water of 50 ° C. is sprayed on the steel sheet in the cleaning tank 7 and washed with a dryer 8, and an oxide layer containing Zn and Al is formed on the plated steel sheet surface. Formed.
The solution to be dipped in the solution tank 2 was a solution to which a predetermined amount of hydrofluoric acid was added for the purpose of adding fluorine. For comparison, in part, a sample with a plating layer that is not a Zn-Al plating layer, a sample that does not undergo surface activation treatment with an alkaline solution, a sample that does not contain fluorine and / or a buffer solution in an acidic solution A sample with no holding time was also prepared.
The holding time until water washing is the time until the liquid film amount is adjusted with the squeezing roll 3 and the cleaning is started in the cleaning tank 7, and is adjusted by changing the line speed. What washed the steel plate immediately after squeezing using the shower water washing apparatus 4 of the side was also produced.

次に、以上のように作製した鋼板について、自動車用外板としてのプレス成形性を簡易的に評価する手法として摩擦係数の測定、および耐食性を評価する目的で赤錆発生面積率の測定を実施した。なお、測定方法は以下の通りである。   Next, with respect to the steel sheet produced as described above, the friction coefficient was measured as a method for simply evaluating the press formability as an automobile outer sheet, and the area ratio of red rust was measured for the purpose of evaluating corrosion resistance. . The measuring method is as follows.

(1)プレス成形性評価試験(摩擦係数測定試験)
プレス成形性を評価するために、各供試材の摩擦係数を以下のようにして測定した。
図2は摩擦係数測定装置を示す概略正面図である。同図に示すように、サンプルから採取した摩擦係数測定用試料11が試料台12に固定され、試料台12は、水平移動可能なスライドテーブル13の上面に固定されている。スライドテーブル13の下面には、これに接したローラ14を有する上下動可能なスライドテーブル支持台15が設けられ、これを押し上げることによりビード16による摩擦係数測定用試料11への押し付け荷重Nを測定するための第1ロードセル17がスライドテーブル支持台15に取り付けられている。上記押し付け力を作用させた状態でスライドテーブル13を水平方向へ移動させるための摺動抵抗力Fを測定するために第2ロードセル18が、スライドテーブル13の一方の端部に取り付けられている。なお、潤滑油としてスギムラ化学社製のプレス用洗浄油プレトンR352Lを摩擦係数測定用試料11の表面に塗布して試験を行った。
図3は使用したビードの形状・寸法を示す概略斜視図である。ビード16の下面が試料11の表面に押し付けられた状態で摺動する。図3に示すビード16の形状は幅10mm、試料の摺動方向長さ69mm、摺動方向両端の下部は曲率4.5mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ60mmの平面を有する。
摩擦係数測定試験は下に示す条件で行った。
図3に示すビードを用い、押し付け荷重N:3923N(400kgf)、試料の引き抜き速度(スライドテーブル13の水平移動速度):20 cm/minとした。
供試材とビードとの間の摩擦係数μは、式:μ=F/Nで算出した。
プレス成形性の評価基準を以下に示す。
○:μが0.15未満
△:μが0.15以上0.2未満
×:μが0.2以上
(2)耐食性評価試験(赤錆発生面積率測定試験)
耐食性は、自動車用鋼板における腐食の厳しい部位である合わせ構造部を模擬し、サンプルを2枚対向させた試験片を作製し、腐食試験に供し、合わせた内部を評価した。各サンプルを100×50mmのサイズに2枚せん断し、せん断により生じるエッジのバリを削除した。その後、同種のサンプルをスポット溶接で2点接合し、耐食性評価用合わせ構造試験片を作製した。本評価方法は、合わせ構造内部の耐食性評価を目的とするため、評価しない、試験片の外側にはポリエステル製粘着テープ(日東電工(株)製リビック(登録商標))でシールを施した。
腐食試験は米国自動車技術者協会規格であるSAE J−2334に規定される腐食試験サイクルを用い、60サイクル実施した。腐食試験後、スポット溶接部をドリルで穴を開け、内部の赤錆発生面積率を評価した。
耐食性の評価基準を以下に示す。
○:赤錆発生面積率が30%未満
△:赤錆発生面積率が30%以上70%未満
×:赤錆発生面積率が70%以上
以上より得られた試験結果を、実験条件と併せて、表1に示す。
(1) Press formability evaluation test (Friction coefficient measurement test)
In order to evaluate the press formability, the friction coefficient of each test material was measured as follows.
FIG. 2 is a schematic front view showing the friction coefficient measuring apparatus. As shown in the figure, a friction coefficient measurement sample 11 collected from a sample is fixed to a sample table 12, and the sample table 12 is fixed to the upper surface of a slide table 13 that can move horizontally. On the lower surface of the slide table 13, there is provided a slide table support base 15 having a roller 14 in contact with the slide table 13 and capable of moving up and down. By pushing up the slide table support base 15, a pressing load N applied to the friction coefficient measurement sample 11 by the bead 16 is measured. A first load cell 17 is attached to the slide table support base 15. A second load cell 18 is attached to one end of the slide table 13 in order to measure the sliding resistance force F for moving the slide table 13 in the horizontal direction with the pressing force applied. In addition, the cleaning oil Preton R352L for press manufactured by Sugimura Chemical Co., Ltd. was applied to the surface of the friction coefficient measurement sample 11 as a lubricant, and the test was performed.
FIG. 3 is a schematic perspective view showing the shape and dimensions of the beads used. The bottom surface of the bead 16 slides while being pressed against the surface of the sample 11. The bead 16 shown in FIG. 3 has a width of 10 mm, a length of 69 mm in the sliding direction of the sample, and a lower portion at both ends of the sliding direction is formed by a curved surface having a curvature of 4.5 mm. It has a plane with a direction length of 60 mm.
The friction coefficient measurement test was conducted under the conditions shown below.
The bead shown in FIG. 3 was used, the pressing load N was 3923N (400 kgf), and the sample drawing speed (horizontal moving speed of the slide table 13) was 20 cm / min.
The coefficient of friction μ between the specimen and the bead was calculated by the formula: μ = F / N.
The evaluation criteria for press formability are shown below.
○: μ is less than 0.15 Δ: μ is 0.15 or more and less than 0.2 ×: μ is 0.2 or more
(2) Corrosion resistance evaluation test (red rust occurrence area ratio measurement test)
Corrosion resistance was obtained by simulating a laminated structure part that is a severely corroded part in an automotive steel sheet, preparing test pieces with two samples facing each other, and subjecting them to a corrosion test, and evaluating the combined interior. Each sample was sheared to a size of 100 × 50 mm to remove edge burrs caused by shearing. Thereafter, two samples of the same type were joined by spot welding to produce a laminated structure test piece for corrosion resistance evaluation. Since this evaluation method is intended to evaluate the corrosion resistance inside the laminated structure, the outer side of the test piece, which is not evaluated, was sealed with a polyester adhesive tape (Nitto Denko's Livic (registered trademark)).
The corrosion test was performed for 60 cycles using a corrosion test cycle defined in SAE J-2334, which is an American Automobile Engineers Association standard. After the corrosion test, the spot welded portion was drilled and the internal red rust occurrence area rate was evaluated.
The evaluation criteria for corrosion resistance are shown below.
○: Red rust generation area ratio is less than 30% △: Red rust generation area ratio is 30% or more and less than 70% ×: Red rust generation area ratio is 70% or more Table 1 shows the test results together with the experimental conditions. Shown in

Figure 2010090401
Figure 2010090401

表1に示す試験結果から下記事項が明らかとなった。
(1)No.1〜18は本発明のZn-Al系めっき鋼板の製造方法によるサンプルであり、プレス成形性および耐食性に優れる。
(2)No.19、20はめっき層がZn-Al系めっき層ではない比較例である。Znが100%のめっき層であるNo.19では耐食性が劣り、Alが100%のめっき層であるNo.20では表面に酸化物層が形成しないためプレス成形性が劣る。
(3)No.21は酸性溶液による処理を行っていない比較例である。摺動性を向上させるのに十分な酸化膜が形成されず、プレス成形性が劣る。
(4)No.22は、pH緩衝作用を有しない酸性溶液を用いた比較例である。プレス成形性が劣る。
(5) No.23は、鋼板表面に溶液膜を形成し、水洗を施すまでの時間(保持時間)が0.4秒と本発明の範囲より短い比較例である。所定の酸化物層が形成しなかったためプレス成形性が劣る。
(6) No.24は、無処理のZn-Al系めっき鋼板である比較例である。耐食性は優れるが、プレス成形性が劣る。
(7) No.25は、アルカリ溶液による表面活性化処理を行っていない比較例である。所定の酸化物層が形成しなかったためプレス成形性が劣る。
From the test results shown in Table 1, the following matters were clarified.
(1) Nos. 1 to 18 are samples obtained by the method for producing a Zn-Al-based plated steel sheet according to the present invention, and are excellent in press formability and corrosion resistance.
(2) Nos. 19 and 20 are comparative examples in which the plating layer is not a Zn-Al plating layer. In No. 19, which is a plating layer containing 100% Zn, the corrosion resistance is inferior, and in No. 20, which is a plating layer containing 100% Al, an oxide layer is not formed on the surface, so that press formability is inferior.
(3) No. 21 is a comparative example in which treatment with an acidic solution is not performed. An oxide film sufficient to improve slidability is not formed, and press formability is inferior.
(4) No. 22 is a comparative example using an acidic solution having no pH buffering action. Press formability is poor.
(5) No. 23 is a comparative example in which the time (holding time) required for forming a solution film on the steel plate surface and washing with water is 0.4 seconds, which is shorter than the range of the present invention. Since a predetermined oxide layer was not formed, press formability is inferior.
(6) No. 24 is a comparative example which is an untreated Zn—Al-based plated steel sheet. Corrosion resistance is excellent, but press formability is inferior.
(7) No. 25 is a comparative example in which the surface activation treatment with an alkaline solution is not performed. Since a predetermined oxide layer was not formed, press formability is inferior.

プレス成形性に優れることから、自動車車体用途を中心に広範な分野で適用できる。   Since it is excellent in press formability, it can be applied in a wide range of fields, mainly for automobile body applications.

実施例で使用した酸化物層形成処理設備の要部を示す図。The figure which shows the principal part of the oxide layer formation processing equipment used in the Example. 摩擦係数測定装置を示す概略正面図。The schematic front view which shows a friction coefficient measuring apparatus. 図2中のビード形状・寸法を示す概略斜視図。The schematic perspective view which shows the bead shape and dimension in FIG.

符号の説明Explanation of symbols

1 洗浄槽
2 溶液槽
3 絞りロール
4 シャワー水洗装置
5 洗浄槽
6 洗浄槽
7 洗浄槽
8 ドライヤ
S 鋼板
11 摩擦係数測定用試料
12 試料台
13 スライドテーブル
14 ローラ
15 スライドテーブル支持台
16 ビード
17 第1ロードセル
18 第2ロードセル
19 レール
N 押付荷重
F 摺動抵抗力
DESCRIPTION OF SYMBOLS 1 Washing tank 2 Solution tank 3 Squeezing roll 4 Shower water washing apparatus 5 Washing tank 6 Washing tank 7 Washing tank 8 Dryer S Steel plate 11 Friction coefficient measurement sample 12 Sample stand 13 Slide table 14 Roller 15 Slide table support stand 16 Bead 17 First Load cell 18 Second load cell 19 Rail N Pressing load F Sliding resistance

Claims (3)

Zn−Al系めっき鋼板をアルカリ性溶液による表面活性化処理を行った後、酸性溶液に接触させ、接触処理終了後1〜60秒間保持した後、水洗および乾燥を行うことにより、Zn−Al系めっき鋼板表面に酸化物層を形成するZn−Al系めっき鋼板の製造方法において、
前記酸性溶液は、フッ素を含有し、pH緩衝作用を有し、かつpHが0.5〜3.0であることを特徴とするZn−Al系めっき鋼板の製造方法。
After surface activation treatment of the Zn-Al-based plated steel sheet with an alkaline solution, it is brought into contact with an acidic solution, held for 1 to 60 seconds after completion of the contact treatment, and then washed with water and dried, thereby performing Zn-Al-based plating. In the method for producing a Zn-Al-based plated steel sheet that forms an oxide layer on the steel sheet surface,
The method for producing a Zn-Al-based plated steel sheet, wherein the acidic solution contains fluorine, has a pH buffering action, and has a pH of 0.5 to 3.0.
前記Zn−Al系めっき鋼板は、Alを20〜95mass%含有することを特徴とする請求項1に記載のZn−Al系めっき鋼板の製造方法。   2. The method for producing a Zn-Al-based plated steel sheet according to claim 1, wherein the Zn-Al-based plated steel sheet contains 20 to 95 mass% of Al. 請求項1または2に記載のZn−Al系めっき鋼板の製造方法により製造され、ZnおよびAlを含む酸化物層を鋼板表面に形成したことを特徴とするZn−Al系めっき鋼板。   A Zn-Al-plated steel sheet produced by the method for producing a Zn-Al-based plated steel sheet according to claim 1 or 2, wherein an oxide layer containing Zn and Al is formed on the steel sheet surface.
JP2008258323A 2008-10-03 2008-10-03 Zn-Al-based plated steel sheet and method for producing the same Active JP5434036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008258323A JP5434036B2 (en) 2008-10-03 2008-10-03 Zn-Al-based plated steel sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008258323A JP5434036B2 (en) 2008-10-03 2008-10-03 Zn-Al-based plated steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010090401A true JP2010090401A (en) 2010-04-22
JP5434036B2 JP5434036B2 (en) 2014-03-05

Family

ID=42253394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008258323A Active JP5434036B2 (en) 2008-10-03 2008-10-03 Zn-Al-based plated steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP5434036B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013072130A (en) * 2011-09-29 2013-04-22 Jfe Steel Corp Method for manufacturing hot-dip galvanized steel sheet
WO2017154495A1 (en) * 2016-03-11 2017-09-14 Jfeスチール株式会社 Method for producing galvanized steel plate
JP2020158879A (en) * 2019-03-19 2020-10-01 Jfeスチール株式会社 Manufacturing method of hot-dip galvanized steel sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003004A (en) * 2002-04-18 2004-01-08 Jfe Steel Kk Hot-dip galvanized steel sheet showing excellent press formability and its manufacturing process
JP2006233280A (en) * 2005-02-25 2006-09-07 Jfe Steel Kk Hot dip galvanized steel sheet-manufacturing method, and hot dip galvanized steel sheet
JP2007238976A (en) * 2006-03-06 2007-09-20 Nippon Parkerizing Co Ltd Non-chromate aqueous surface treating agent for surface treatment of metallic material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003004A (en) * 2002-04-18 2004-01-08 Jfe Steel Kk Hot-dip galvanized steel sheet showing excellent press formability and its manufacturing process
JP2006233280A (en) * 2005-02-25 2006-09-07 Jfe Steel Kk Hot dip galvanized steel sheet-manufacturing method, and hot dip galvanized steel sheet
JP2007238976A (en) * 2006-03-06 2007-09-20 Nippon Parkerizing Co Ltd Non-chromate aqueous surface treating agent for surface treatment of metallic material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013072130A (en) * 2011-09-29 2013-04-22 Jfe Steel Corp Method for manufacturing hot-dip galvanized steel sheet
WO2017154495A1 (en) * 2016-03-11 2017-09-14 Jfeスチール株式会社 Method for producing galvanized steel plate
JP2017160506A (en) * 2016-03-11 2017-09-14 Jfeスチール株式会社 Manufacturing method of galvanized steel plate
KR20180110073A (en) 2016-03-11 2018-10-08 제이에프이 스틸 가부시키가이샤 Manufacturing method of galvanized steel sheet
CN108713071A (en) * 2016-03-11 2018-10-26 杰富意钢铁株式会社 The manufacturing method of zinc-based metal plated steel sheet
EP3428315A4 (en) * 2016-03-11 2019-01-16 JFE Steel Corporation Method for producing galvanized steel plate
US10443116B2 (en) 2016-03-11 2019-10-15 Jfe Steel Corporation Method for manufacturing zinc-based coated steel sheet
KR102150365B1 (en) * 2016-03-11 2020-09-01 제이에프이 스틸 가부시키가이샤 Manufacturing method of galvanized steel sheet
CN108713071B (en) * 2016-03-11 2020-11-06 杰富意钢铁株式会社 Method for producing galvanized steel sheet
JP2020158879A (en) * 2019-03-19 2020-10-01 Jfeスチール株式会社 Manufacturing method of hot-dip galvanized steel sheet
JP6992831B2 (en) 2019-03-19 2022-02-15 Jfeスチール株式会社 Manufacturing method of hot-dip galvanized steel sheet

Also Published As

Publication number Publication date
JP5434036B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
JP3807341B2 (en) Method for producing galvannealed steel sheet
KR101788950B1 (en) Method for manufacturing galvanized steel sheet
JP5354165B2 (en) Method for producing galvanized steel sheet
WO2015129282A1 (en) Galvanized steel sheet and method for manufacturing the same
WO2015129283A1 (en) Galvanized steel sheet and method for manufacturing same
JP2010077456A (en) Hot-dip galvanized steel sheet and method for manufacturing the same
JP5434036B2 (en) Zn-Al-based plated steel sheet and method for producing the same
JP4517887B2 (en) Method for producing hot dip galvanized steel sheet and hot dip galvanized steel sheet
JP6551270B2 (en) Method of manufacturing galvanized steel sheet
JP2007016266A (en) Method for manufacturing galvannealed steel sheet, and galvannealed steel sheet
JP4529592B2 (en) Process for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet.
JP5347295B2 (en) Zinc-based plated steel sheet and method for producing the same
JP4525252B2 (en) Method for producing galvannealed steel sheet
JP5593601B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
TWI460306B (en) Fabrication method of hot dip galvanized steel sheet
JP5386842B2 (en) Zinc-based plated steel sheet and method for producing the same
JP6992831B2 (en) Manufacturing method of hot-dip galvanized steel sheet
WO2010070943A1 (en) Galvanized steel sheet and method for manufacturing the same
JP4998658B2 (en) Method for producing galvannealed steel sheet
JP4604712B2 (en) Method for producing hot dip galvanized steel sheet and hot dip galvanized steel sheet
JP5354166B2 (en) Method for producing galvanized steel sheet
KR20060033811A (en) Hot dip zinc plated steel sheet and method for production thereof
JP5163218B2 (en) Method for producing galvanized steel sheet
JP5163217B2 (en) Method for producing galvanized steel sheet
JP5927995B2 (en) Method for producing galvanized steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R150 Certificate of patent or registration of utility model

Ref document number: 5434036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250