KR20110073573A - Galvanized steel sheet and method for manufacturing the same - Google Patents

Galvanized steel sheet and method for manufacturing the same Download PDF

Info

Publication number
KR20110073573A
KR20110073573A KR1020117010906A KR20117010906A KR20110073573A KR 20110073573 A KR20110073573 A KR 20110073573A KR 1020117010906 A KR1020117010906 A KR 1020117010906A KR 20117010906 A KR20117010906 A KR 20117010906A KR 20110073573 A KR20110073573 A KR 20110073573A
Authority
KR
South Korea
Prior art keywords
zinc
steel sheet
galvanized steel
steel plate
aqueous solution
Prior art date
Application number
KR1020117010906A
Other languages
Korean (ko)
Inventor
요이치 마키미즈
히로시 가지야마
사카에 후지타
나오토 요시미
마사히코 타다
히로유키 마스오카
카츠야 호시노
마사야스 나고시
Original Assignee
제이에프이 스틸 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008319131A external-priority patent/JP5354165B2/en
Application filed by 제이에프이 스틸 가부시키가이샤 filed Critical 제이에프이 스틸 가부시키가이샤
Publication of KR20110073573A publication Critical patent/KR20110073573A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/53Treatment of zinc or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer

Abstract

아연계 도금 강판의 제조 방법은, 강판에 아연계 도금을 시행하고, 그 표면에, 아연 이온 농도로서 5∼100g/l의 범위에서 아연 이온을 함유하고, pH가 4∼6이고, 액온(liquid temperature)이 20∼70℃인 수용액을 접촉시키고, 이어서 1∼60초간 유지한 후, 수세·건조를 행한다. 아연을 포함하는 용액으로서는, 예를 들면, 아연의 황산염을 포함하는 것이 바람직하다. 이상의 방법에 의해, 강판 표면에, 평균 두께가 10nm 이상이고, 아연을 주체로 하여 포함하는 산화물층이 형성되어, 우수한 프레스 성형성을 갖는 아연 도금 강판을, 단시간에 그리고 안정적으로 제조할 수 있다.In the method for producing a galvanized steel sheet, the galvanizing is applied to the steel sheet, the surface contains zinc ions in the range of 5 to 100 g / l as the zinc ion concentration, the pH is 4 to 6, and the liquid temperature (liquid). The aqueous solution having a temperature of 20 to 70 ° C is brought into contact with each other and then held for 1 to 60 seconds, followed by washing with water and drying. As a solution containing zinc, it is preferable to contain the sulfate of zinc, for example. By the above method, the oxide layer which has an average thickness of 10 nm or more and consists mainly of zinc on the steel plate surface is formed, and can produce a galvanized steel sheet which has the outstanding press formability in a short time and stably.

Description

아연계 도금 강판 및 그 제조 방법{GALVANIZED STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME}Galvanized steel sheet and its manufacturing method {GALVANIZED STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME}

본 발명은, 프레스 성형시의 미끄럼 저항(sliding resistance)이 작고 우수한 프레스 성형성을 갖는 아연계 도금 강판을 안정되게 제조하는 방법 및 우수한 프레스 성형성을 갖는 아연계 도금 강판에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for stably producing a zinc-based plated steel sheet having a small sliding resistance at the time of press molding and having excellent press formability, and a zinc-based plated steel sheet having excellent press formability.

아연계 도금 강판은, 자동차 차체 용도를 중심으로 광범위한 분야에서 널리 이용되고 있다. 그러한 용도로의 아연계 도금 강판은, 프레스 성형이 시행되어 사용에 제공된다. 그러나, 아연계 도금 강판은, 냉연 강판에 비하여 프레스 성형성이 떨어진다는 결점을 갖는다. 이는 프레스 금형에서의 아연계 도금 강판의 미끄럼 저항이 냉연 강판에 비하여 큰 것이 원인이다. 즉, 금형과 비드(bead)에서의 미끄럼 저항이 큰 부분에서 아연계 도금 강판이 프레스 금형에 유입되기 어려워져, 강판의 파단(fracture)이 일어나기 쉽다.Zinc-based galvanized steel sheet is widely used in a wide range of fields, mainly for automotive body applications. The zinc-based galvanized steel sheet for such a use is press-formed and provided for use. However, the zinc-based galvanized steel sheet has a disadvantage in that press formability is inferior to that of a cold rolled steel sheet. This is because the sliding resistance of the galvanized steel sheet in the press die is larger than that of the cold rolled steel sheet. That is, the zinc-based galvanized steel sheet is less likely to flow into the press mold at a portion where the sliding resistance between the mold and the bead is large, and fracture of the steel sheet is likely to occur.

여기에서, 아연계 도금 강판 중에서도 특히, 용융 아연 도금 처리 후에 합금화 처리를 시행하는 합금화 용융 아연 도금 강판은, 합금화 처리를 시행하지 않는 용융 아연 도금 강판과 비교하여 용접성 및 도장성이 우수한 점에서, 자동차 차체 용도로서는 보다 적합하게 이용되고 있다.Here, among galvanized steel sheets, an alloyed hot dip galvanized steel sheet which is subjected to an alloying treatment after hot dip galvanizing is particularly excellent in weldability and paintability in comparison with a hot dip galvanized steel sheet not subjected to alloying treatment. As a vehicle body use, it is used more suitably.

합금화 용융 아연 도금 강판은, 강판에 아연 도금을 시행한 후, 가열 처리를 행하여, 강판 중의 Fe와 도금층 중의 Zn이 확산되어 합금화 반응이 발생함으로써, Fe-Zn 합금상(phase)을 형성시킨 것이다. 이 Fe-Zn 합금상은, 통상, Γ상, δ1상, ζ상으로 이루어지는 피막(coating film)이며, Fe 농도가 낮아짐에 따라, 즉, Γ상→δ1상→ζ상의 순서로, 경도 그리고 융점이 저하되는 경향이 있다. 이 때문에, 미끄럼성(slidability)의 관점에서는, 고경도이고, 융점이 높아 응착(adhesion)이 일어나기 어려운 고(高)Fe 농도의 피막이 유효하고, 프레스 성형성을 중시하는 합금화 용융 아연 도금 강판은, 피막 중의 평균 Fe 농도가 조금 높게 제조되어 있다.An alloyed hot-dip galvanized steel sheet forms a Fe-Zn alloy phase by galvanizing a steel plate, heat-processing, and spreading Fe in a steel plate and Zn in a plating layer, and generating an alloying reaction. This Fe-Zn alloy phase is usually a coating film composed of a Γ phase, a δ 1 phase, and a ζ phase, and as the Fe concentration decreases, that is, in the order of the Γ phase → δ 1 phase → ζ phase, hardness and Melting point tends to be lowered. For this reason, an alloyed hot-dip galvanized steel sheet which has a high hardness, a high Fe coating film having high melting point and hardly adhersion, is effective in view of slipability, and which emphasizes press formability, The average Fe concentration in a film is manufactured a little high.

그러나, 고Fe 농도의 피막에서는, 도금-강판 계면에 딱딱하고 무른 Γ상이 형성되기 쉬워, 가공시에 계면으로부터 박리되는 현상, 소위 파우더링(powdering)이 발생하기 쉬운 문제를 지니고 있다.However, in the coating of high Fe concentration, a hard and soft Γ phase is easily formed at the plating-steel plate interface, which causes a phenomenon of peeling from the interface during processing, so-called powdering.

상기의 문제를 해결하는 방법으로서, 특허문헌 1 및 특허문헌 2에는, 아연계 도금 강판의 표면에 전해 처리, 침지 처리, 도포 산화 처리, 또는 가열 처리를 시행함으로써, ZnO를 주체로 하는 산화막을 형성시켜 용접성, 가공성을 향상시키는 기술이 개시되어 있다.As a method for solving the above problems, Patent Document 1 and Patent Document 2 form an oxide film mainly composed of ZnO by subjecting the surface of the zinc-based plated steel sheet to an electrolytic treatment, an immersion treatment, a coating oxidation treatment, or a heat treatment. The technique which improves weldability and workability is disclosed.

그러나, 특허문헌 1 및 2의 기술을 합금화 용융 아연 도금 강판에 적용한 경우, 합금화 용융 도금 강판은 Al 산화물이 존재함으로써, 표면의 반응성이 뒤떨어진다. 그리고 표면의 요철이 크기 때문에 프레스 성형성의 개선 효과를 안정되게 얻을 수 없다. 즉, 표면의 반응성이 낮기 때문에, 전해 처리, 침지 처리, 도포 산화 처리 및 가열 처리 등을 행해도, 소정의 피막을 표면에 형성하는 것은 곤란하고, 반응성이 낮은 부분, 즉, Al 산화물량이 많은 부분에서는 막두께가 얇아져 버린다. 또한, 표면의 요철이 크기 때문에, 프레스 성형시에 프레스 금형과 직접 접촉하는 것은 표면의 볼록부가 되지만, 볼록부 중 막두께가 얇은 부분과 금형과의 접촉부에서의 미끄럼 저항이 커져, 프레스 성형성의 개선 효과가 충분히는 얻어지지 않는다.However, when the technique of patent documents 1 and 2 is applied to an alloyed hot-dip galvanized steel sheet, an alloy oxide hot-dip steel sheet is inferior in surface reactivity because an Al oxide exists. And since the surface unevenness is large, the improvement effect of press formability cannot be obtained stably. That is, since surface reactivity is low, even if it carries out electrolytic treatment, immersion treatment, application | coating oxidation process, heat processing, etc., it is difficult to form a predetermined | prescribed film on the surface, and it is a part with low reactivity, ie, a part with many amounts of Al oxides. The film thickness becomes thinner. In addition, since the unevenness of the surface is large, the direct contact with the press die at the time of press molding becomes the convex portion of the surface, but the sliding resistance at the contact portion between the thin film thickness of the convex portion and the mold is increased, thereby improving press formability. The effect is not sufficiently obtained.

그래서, 특허문헌 3에서는, 강판을 용융 아연 도금 후, 가열 처리에 의해 합금화하고, 추가로 조질 압연(temper rolling)을 시행한 후에, pH 완충 작용을 갖는 산성 용액과 접촉시켜, 1∼30초 유지(holding)하고, 수세(水洗)함으로써, 도금 표층에 산화물층을 형성시키는 기술을 개시하고 있다.Then, in patent document 3, after hot-dip galvanizing, the steel plate is alloyed by heat processing, and temper rolling is further performed, and it contacts with the acidic solution which has a pH buffer effect, and hold | maintains for 1 to 30 second. The technique which forms an oxide layer in a plating surface layer by holding and washing with water is disclosed.

마찬가지로 합금화 처리를 시행하지 않는 용융 아연 도금 강판의 표면 평탄부에 균일하게 산화물층을 형성시키는 수법으로서, 특허문헌 4에서는, 조질 압연 후의 용융 아연 도금 강판을 pH 완충 작용을 갖는 산성 용액과 접촉시키고, 그 후, 강판 표면에 산성 용액의 액막이 형성된 상태에서 소정 시간 유지한 후 수세, 건조하는 방법이 개시되어 있다.Similarly, in the method of forming an oxide layer uniformly on the surface flat part of the hot-dip galvanized steel plate which does not perform alloying process, in patent document 4, the hot-dip galvanized steel plate after temper rolling is contacted with the acidic solution which has a pH buffering effect, Thereafter, a method of washing with water and drying after holding for a predetermined time in a state where a liquid film of an acidic solution is formed on a steel sheet surface is disclosed.

일본공개특허공보 소53-60332호Japanese Laid-Open Patent Publication No. 53-60332 일본공개특허공보 평2-190483호Japanese Patent Application Laid-Open No. 2-190483 일본공개특허공보 2003-306781호Japanese Laid-Open Patent Publication No. 2003-306781 일본공개특허공보 2004-3004호Japanese Laid-Open Patent Publication No. 2004-3004

상기 특허문헌 3 및 4에 개시되어 있는 기술을 적용한 경우, 종래의 제조 조건에 있어서는 양호한 프레스 성형성을 얻을 수 있다. 그러나, 최근에는, 생산성 향상을 위해 보다 단시간에 보다 두꺼운 산화막을 생성시키는 제조 방법의 개발이 요망되고 있어, 이러한 조건에서 행한 경우, 특허문헌 3, 4에 개시되는 기술로는 충분한 산화막이 형성되지 않고, 양호한 프레스 성형성을 얻을 수 없는 경우가 있다.When the technique disclosed by the said patent documents 3 and 4 is applied, favorable press formability can be obtained in conventional manufacturing conditions. However, in recent years, development of the manufacturing method which produces | generates a thicker oxide film in a shorter time for the improvement of productivity is desired, and when it is performed on such conditions, the technique disclosed by patent documents 3, 4 does not form sufficient oxide film. And good press formability may not be obtained.

본 발명은, 이러한 사정을 감안하여, 우수한 프레스 성형성을 갖는 아연계 도금 강판을 단시간에서도 안정적으로 제조하는 것이 가능한 제조 방법 및 우수한 프레스 성형성을 갖는 아연계 도금 강판을 제공하는 것을 목적으로 한다.In view of such circumstances, an object of the present invention is to provide a production method capable of stably producing a zinc-based galvanized steel sheet having excellent press formability and a zinc-based galvanized steel sheet having excellent press formability.

본 발명자들은, 상기의 과제를 해결하기 위해 예의 연구를 거듭했다. 그 결과, 이하의 인식을 얻었다.MEANS TO SOLVE THE PROBLEM The present inventors earnestly researched in order to solve the said subject. As a result, the following recognition was obtained.

특허문헌 3 및 4의 기술에 사용되는 산성 용액은, 아연의 용해를 촉진할 목적으로 pH 완충 작용을 갖고 있다. 그 때문에, pH의 상승이 지연되어, 산화물층의 형성이 지연되고 있는 점을 생각할 수 있다. 그리고, 산화물층을 형성하는 아연을 도금 피막으로부터 용출된 아연으로 보충하기 위해, 산화막의 생성 시간에 아연의 용출 시간이 포함된다. 그 결과, 단시간에 두꺼운 산화막을 생성시키는 것이 곤란해져 있다고 생각할 수 있다.The acidic solution used for the technique of patent documents 3 and 4 has a pH buffering effect in order to accelerate dissolution of zinc. Therefore, it can be considered that the rise of pH is delayed and the formation of the oxide layer is delayed. And in order to supplement zinc which forms an oxide layer with the zinc eluted from the plating film, the elution time of zinc is included in the formation time of an oxide film. As a result, it can be considered that it is difficult to produce a thick oxide film in a short time.

그래서, 본 발명자들은 산화막을 생성시키는 수용액 중에 아연 이온을 미리 함유시킴으로써 아연의 용출 시간을 생략하여 보다 단시간에 산화막을 생성시키는 기술을 고안했다. 그러나, 단순히 수용액 중에 아연 이온을 미리 함유시키는 것만으로는 산화막의 형성은 촉진되지 않았다. 특히, 특허문헌 3 및 4의 실시예에 나타나는 pH2에서는 처리액 중에 아연을 함유시켜도 산화막의 형성은 촉진되지 않았다.Thus, the present inventors devised a technique of generating an oxide film in a shorter time by eliminating zinc elution time by containing zinc ions in advance in an aqueous solution for producing an oxide film. However, the formation of the oxide film was not promoted simply by containing zinc ions in advance in the aqueous solution. In particular, at pH 2 shown in the Example of patent documents 3 and 4, even if it contained zinc in a process liquid, formation of the oxide film was not accelerated.

이 이유는, 특허문헌 3 및 4의 기술에서는, 아연이 용출될 때에 동시에 일어나는 수소 이온의 환원으로 표면 근방의 pH가 상승하여 아연 산화물이 생성되기 쉬운 환경으로 되어 있는 데 대하여, 단순히 수용액 중에 아연 이온을 함유시킨 것만으로는 표면 근방의 pH의 상승이 일어나지 않고 아연 산화물이 생성되기 쉬운 환경이 형성되지 않기 때문이라고 생각된다.The reason for this is that in the technique of Patent Documents 3 and 4, since the pH near the surface rises due to the reduction of hydrogen ions simultaneously occurring when the zinc is eluted, the zinc oxide is easily generated. It is considered that the addition of only does not increase the pH in the vicinity of the surface and does not form an environment in which zinc oxide is easily formed.

그래서, 본 발명자들은, 수용액의 pH를 아연 산화물이 생성되기 쉬운 pH4∼6으로 하는 기술을 고안했다. 그리고, 처리액의 pH를 4∼6으로 함으로써, 도금 피막의 아연이 근소하게 용출하여 일어나는 표면 pH의 미소한 상승에 의해 아연이 수산화물로서 생성되는 것을 발견했다.Therefore, the present inventors devised a technique in which the pH of the aqueous solution is set to pH 4 to 6 in which zinc oxide is easily produced. Then, by setting the pH of the treatment liquid to 4 to 6, it was found that zinc is produced as a hydroxide due to a slight increase in the surface pH caused by the slight elution of zinc in the plated coating film.

본 발명은, 이상의 인식에 기초하여 이루어진 것으로, 그 요지는 이하와 같다.This invention is made | formed based on the above recognition, The summary is as follows.

[1] 강판에 아연계 도금을 시행한 후, 강판을 수용액에 접촉 처리하고, 접촉 처리 종료 후 1∼60초간 유지한 후, 수세·건조를 행함으로써, 강판 표면에 산화물층을 형성하는 아연계 도금 강판의 제조 방법에 있어서, 강판을 접촉 처리하는 상기 수용액은, 아연 이온 농도로서 5∼100g/l의 범위에서 아연 이온을 함유하고, pH가 4∼6이고, 액온(liquid temperature)이 20∼70℃인 것을 특징으로 하는 아연계 도금 강판의 제조 방법.[1] After applying zinc-based plating to the steel sheet, the steel sheet is subjected to contact treatment with an aqueous solution, held for 1 to 60 seconds after the completion of the contact treatment, followed by washing with water and drying to form an oxide layer on the surface of the steel sheet. In the manufacturing method of a plated steel plate, the said aqueous solution which carries out contact treatment of a steel plate contains zinc ion in the range of 5-100 g / l as zinc ion concentration, pH is 4-6, liquid temperature is 20- It is 70 degreeC, The manufacturing method of the galvanized steel plate.

[2] 상기 [1]에 있어서, 상기 수용액 중에는, 아연의 황산염을 포함하는 것을 특징으로 하는 아연계 도금 강판의 제조 방법.[2] The method for producing a galvanized steel sheet according to the above [1], wherein the aqueous solution contains a sulfate of zinc.

[3] 상기 [1] 또는 [2]에 있어서, 상기 수용액에 접촉 후에 강판 표면에 형성하는 액막이 5∼30g/㎡인 것을 특징으로 하는 아연계 도금 강판의 제조 방법.[3] The method for producing a galvanized steel sheet according to the above [1] or [2], wherein a liquid film formed on the surface of the steel sheet after contact with the aqueous solution is 5 to 30 g / m 2.

[4] 상기 [1]∼[3]의 어느 하나에 기재된 아연계 도금 강판의 제조 방법에 의해 제조되고, 금속 성분으로서는 아연을 주체로 하여 포함하는 산화물층을 강판 표면에 평균 두께 10nm 이상 형성한 것을 특징으로 하는 아연계 도금 강판.[4] An oxide layer containing zinc mainly as a metal component is produced by the method for producing a galvanized steel sheet according to any one of the above [1] to [3], and an average thickness of 10 nm or more is formed on the surface of the steel sheet. Galvanized steel sheet, characterized in that.

또한, 본 발명에 있어서, 아연계 도금 강판이란, 아연을 주성분으로 하는 피막을 표면에 형성시킨 도금 강판이며, 용융 아연 도금 강판(간략히 GI 강판이라고 칭함), 합금화 용융 아연 도금 강판(간략히 GA 강판이라고 칭함), 전기 아연 도금 강판(간략히 EG 강판이라고 칭함), 증착 아연 도금 강판이나 Fe, Al, Ni, MgCo 등의 합금 원소를 함유하는 합금 아연 도금 강판 등이 포함된다.In addition, in this invention, a zinc-based galvanized steel plate is a plated steel plate in which the film containing zinc as a main component was formed in the surface, and it is a hot-dip galvanized steel plate (abbreviately called GI steel plate), an alloyed hot dip galvanized steel plate (it is simply called GA steel plate) ), An electrogalvanized steel sheet (abbreviatedly referred to as EG steel sheet), an evaporated galvanized steel sheet, or an alloy galvanized steel sheet containing alloy elements such as Fe, Al, Ni, and MgCo.

도 1은 실시예에서 사용한 산화물층 형성 처리 설비의 요부(要部)를 나타내는 도면이다.
도 2는 마찰 계수 측정 장치를 나타내는 개략 정면도이다.
도 3은 도 2 중의 비드 형상·치수를 나타내는 개략 사시도이다.
도 4는 도 2 중의 비드 형상·치수를 나타내는 개략 사시도이다.
도 5는 산화막 두께로의 아연 이온 농도의 영향을 나타내는 도면이다.
BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the principal part of the oxide layer forming treatment equipment used in the Example.
2 is a schematic front view showing a friction coefficient measuring device.
It is a schematic perspective view which shows the bead shape and dimension in FIG.
It is a schematic perspective view which shows the bead shape and dimension in FIG.
5 is a diagram showing the effect of zinc ion concentration on the oxide film thickness.

(발명을 실시하기 위한 최량의 형태)Best Mode for Carrying Out the Invention [

본 발명은, 강판에 아연계 도금을 시행한 후, 강판을 수용액에 접촉 처리하고, 접촉 처리 종료 후 1∼60초간 유지한 후, 수세·건조를 행함으로써, 아연계 도금 강판 표면에 산화물층을 형성할 때에 있어서, 상기 수용액으로서, 아연 이온 농도로서 5∼100g/l의 범위에서 아연 이온을 함유하고, pH가 4∼6이고, 액온을 20∼70℃로 한다. 이와 같이, 강판을 접촉 처리하는 수용액으로서, 소정의 농도의 아연 이온을 포함하고, pH와 액온을 규정한 수용액으로 하는 것은, 본 발명에 있어서 중요한 요건이며 특징이다. 이에 따라, 양호한 프레스 성형성을 확보하기 위해 충분한 산화물층을 단시간에 형성시킬 수 있다.According to the present invention, after the zinc-based plating is applied to the steel sheet, the steel sheet is subjected to contact treatment with an aqueous solution, held for 1 to 60 seconds after the completion of the contact treatment, and then washed with water and dried to form an oxide layer on the surface of the galvanized steel sheet. In forming, as said aqueous solution, zinc ion is contained in the range of 5-100 g / l as zinc ion concentration, pH is 4-6 and liquid temperature is 20-70 degreeC. Thus, it is an important requirement and characteristic in this invention to make the aqueous solution which contact-processes a steel plate containing zinc ion of predetermined density | concentration, and prescribed | regulated pH and liquid temperature. Thereby, sufficient oxide layer can be formed in a short time in order to ensure favorable press formability.

또한, 접촉 처리 종료 후란, 침지 처리의 경우는 침지 공정이 종료된 후를, 스프레이 처리의 경우는 스프레이 공정이 종료된 후를, 롤 도포(roll coating)의 경우는 도포 공정이 종료된 후를 나타내는 것이다.After the end of the contact treatment, in the case of the immersion treatment, after the immersion process is finished, in the case of the spray treatment, the spray process is finished, and in the case of roll coating, it indicates after the coating process is finished. will be.

강판을 접촉 처리하는 수용액으로서, 아연 이온을 함유하는 수용액을 사용함으로써, 아연의 용출 시간을 생략하는 것이 가능해진다. 이때, 아연 이온은 아연 이온 농도로서, 5∼100g/l의 범위로 한다. 아연 이온 농도가 5g/l 미만이면, 충분한 아연이 공급되지 않아 산화물층의 형성이 일어나지 않게 된다. 한편, 100g/l를 초과하면 형성되는 산화물층에 포함되는 황산 농도가 높아져, 그 후에 행해지는 화성 처리 공정에서 산화물이 용해되었을 때에 처리액을 오염시키는 것이 우려된다.By using the aqueous solution containing zinc ion as an aqueous solution which carries out contact treatment of a steel plate, it becomes possible to omit the elution time of zinc. At this time, zinc ion is zinc ion concentration and it is set as the range of 5-100 g / l. If the zinc ion concentration is less than 5 g / l, sufficient zinc is not supplied and the formation of the oxide layer does not occur. On the other hand, when it exceeds 100 g / l, the sulfuric acid concentration contained in the oxide layer formed becomes high, and when an oxide dissolves in the chemical conversion treatment process performed after that, it is feared to contaminate a process liquid.

안정된 아연 화합물을 산화물층으로서 형성시키기 위해서는, 아연 이온을 황산염으로서 첨가하는 것이 바람직하다. 황산염으로서 첨가한 경우, 형성되는 산화물층에 황산 이온이 취입되어, 산화물층을 안정시키는 효과가 있다고 생각된다.In order to form a stable zinc compound as an oxide layer, it is preferable to add zinc ions as a sulfate. When it adds as a sulfate, it is thought that sulfate ion is blown into the oxide layer formed and it has an effect which stabilizes an oxide layer.

또한, 전술한 바와 같이, 단순히 처리액 중에 아연 이온을 미리 함유시키는 것만으로는 산화막의 형성은 촉진되지 않는다. 그래서, 본 발명에서는, pH를 아연 산화물이 생성되기 쉬운 pH4∼6으로 할 필요가 있다. 처리액의 pH를 4∼6으로 하면, 도금 피막의 아연이 근소하게 용출되어 일어나는 표면 pH의 미소한 상승에 의해 아연이 수산화물로서 생성된다. 이들 결과로서, 아연 용출 시간을 생략하고, 그리고, 아연 산화물의 생성이 가능해진다. pH가 6을 초과하는 경우에는 수용액 중에서 아연 이온은 침전(수산화물의 형성)되어, 강판 표면에 산화물로서 형성되지 않게 된다. 또한, pH가 4 미만의 경우는, 위에 적은 바와 같이, pH 상승의 지연에 의한 산화물층의 형성에 저해가 된다.As described above, the formation of the oxide film is not promoted by simply containing zinc ions in the treatment liquid in advance. Therefore, in this invention, it is necessary to make pH into pH 4-6 which zinc oxide is easy to produce | generate. When the pH of the treatment liquid is set to 4 to 6, zinc is generated as a hydroxide due to the slight increase in the surface pH caused by the slight elution of zinc in the plated film. As a result of these, zinc elution time is omitted, and zinc oxide can be produced. When the pH exceeds 6, zinc ions are precipitated (formation of hydroxides) in the aqueous solution and are not formed as oxides on the surface of the steel sheet. In addition, when pH is less than 4, as mentioned above, it inhibits formation of the oxide layer by delay of pH rise.

수용액의 온도에 대해서는 20∼70℃로 한다. 산화물층의 형성 반응은, 수용액으로의 접촉 후, 소정 시간 유지할 때에 발생하기 때문에, 유지시의 판온(sheet temperature)을 20∼70℃의 범위로 제어하는 것은 유효하다. 20℃ 미만이면, 산화물층의 생성 반응에 장시간이 걸려 생산성의 저하를 초래한다. 한편, 70℃를 초과하는 경우에는, 반응은 비교적 빠르게 진행되지만, 반대로 강판 표면에 처리 불균일을 발생시키기 쉬워진다.About the temperature of aqueous solution, you may be 20-70 degreeC. Since the formation reaction of an oxide layer occurs when it maintains for a predetermined time after contact with aqueous solution, it is effective to control the sheet temperature at the time of holding | maintenance to the range of 20-70 degreeC. If it is less than 20 degreeC, it will take a long time for the formation reaction of an oxide layer, and a fall of productivity will be caused. On the other hand, when it exceeds 70 degreeC, although reaction advances comparatively fast, on the contrary, it becomes easy to produce a processing nonuniformity on the steel plate surface.

특허문헌 3 및 4에서 이용되는 수용액은 산성인 것과, pH 완충 작용을 갖는 것을 특징으로 하고 있다. 그러나, 본 발명은 아연 이온을 포함하는 수용액을 사용하기 때문에, 수용액의 pH를 높게 하여 아연의 용해를 충분히 일으키지 않아도, 충분한 산화물층을 형성시킬 수 있다. 또한, pH의 상승이 신속하게 일어나는 편이 산화물의 형성에는 유리하다고 생각된다. 그런 까닭에, pH 완충 작용은 반드시 필수는 아니다.The aqueous solutions used in Patent Documents 3 and 4 are acidic and have a pH buffering action. However, in the present invention, since an aqueous solution containing zinc ions is used, a sufficient oxide layer can be formed without raising the pH of the aqueous solution sufficiently to cause dissolution of zinc. In addition, it is considered that it is advantageous for the formation of an oxide that a rise in pH occurs quickly. Therefore, pH buffering is not necessarily necessary.

본 발명에서는, 강판 표면에 접촉하는 수용액 중에는 아연을 함유하고 있으면, 미끄럼성이 우수한 산화물층을 안정되게 형성할 수 있기 때문에, 수용액 중에 그 외의 금속 이온이나 무기 화합물 등을 불순물로서, 혹은 고의로 함유하고 있어도 본 발명의 효과가 손상되는 것은 아니다. 그리고, N, P, B, Cl, Na, Mn, Ca, Mg, Ba, Sr, Si 등이 산화물층 중에 취입되어도, 본 발명의 효과가 손상되지 않는 한 적용 가능하다.In the present invention, since the oxide layer excellent in slipperiness can be stably formed when the aqueous solution in contact with the surface of the steel sheet contains zinc, other metal ions, inorganic compounds and the like are contained in the aqueous solution as impurities or intentionally. Even if it does not impair the effect of this invention. And even if N, P, B, Cl, Na, Mn, Ca, Mg, Ba, Sr, Si or the like is blown into the oxide layer, it is applicable as long as the effects of the present invention are not impaired.

아연계 도금 강판을 이상으로 이루어지는 수용액에 접촉시킨 후에, 그 수용액이 얇은 액막 형상으로 강판 표면에 존재하는 것이 바람직하다. 이는, 강판 표면에 존재하는 수용액의 양이 많으면, 아연의 용해가 발생해도 수용액의 pH가 상승하기 어려워, 산화물층을 형성하기까지 장시간이 거리기 때문이다. 이 관점에서, 강판 표면에 형성하는 수용액막의 양은, 30g/㎡ 이하로 조정하는 것이 바람직하고 유효하다. 또한, 액막의 건조를 막을 목적으로 5g/㎡ 이상의 액막량이 적합하다. 이상으로부터, 바람직하게는 상기 수용액에 접촉 후에 강판 표면에 형성하는 액막은 5∼30g/㎡로 한다. 또한, 수용액막량의 조정은, 스퀴즈롤(squeeze roll), 에어와이핑(air wiping) 등으로 행할 수 있다.After contacting a zinc-based galvanized steel sheet with the aqueous solution which consists of more than one, it is preferable that this aqueous solution exists in the shape of a thin liquid film on the steel plate surface. This is because if the amount of the aqueous solution present on the surface of the steel sheet is large, the pH of the aqueous solution hardly rises even when dissolution of zinc occurs, and it takes a long time to form an oxide layer. From this viewpoint, it is preferable and effective to adjust the quantity of the aqueous solution film formed on the steel plate surface to 30 g / m <2> or less. Moreover, the liquid film amount of 5 g / m <2> or more is suitable for the purpose of preventing drying of a liquid film. As mentioned above, Preferably, the liquid film formed on the steel plate surface after contact with the said aqueous solution shall be 5-30 g / m <2>. In addition, the amount of the aqueous solution film can be adjusted by squeeze roll, air wiping, or the like.

또한, 수용액에 침지 후, 수세까지의 시간(수세까지의 유지 시간)은, 1∼60초간으로 한다. 수세까지의 시간이 1초 미만이면, 충분한 산화물층이 형성되기 전에, 수용액이 씻겨 내려가기 때문에 미끄럼성의 향상 효과를 얻을 수 없다. 한편, 60초를 초과한 경우의 유지 시간에서는 생산성을 떨어뜨려 버린다. 단시간에서도 안정적으로 제조하는 것을 본 발명의 목적으로 하기 때문에, 본 발명의 효과를 충분히 발휘하는 점에서 유지 시간은 60초 이하로 한다.In addition, after immersion in aqueous solution, time to water washing (holding time until water washing) shall be 1 to 60 second. If the time until washing with water is less than 1 second, since the aqueous solution is washed away before a sufficient oxide layer is formed, a slippery improvement effect cannot be obtained. On the other hand, productivity will fall in the holding time when it exceeds 60 second. Since it is an object of the present invention to manufacture stably even in a short time, the holding time is 60 seconds or less in view of sufficiently exhibiting the effects of the present invention.

이상으로부터, 본 발명의 도금 강판의 표면에는, 금속 성분으로서 아연을 주체로 하여 포함하고, 평균 두께가 10nm 이상의 산화물층을 얻어지게 된다.As mentioned above, the surface of the coated steel plate of this invention mainly contains zinc as a metal component, and the oxide layer of 10 nm or more of average thickness is obtained.

또한, 아연을 주체로 한다는 것은, 금속 성분으로서는 아연을 50질량% 이상 포함하는 것이다.In addition, the main component of zinc is 50 mass% or more of zinc as a metal component.

또한, 본 발명에 있어서의 산화물층이란, 금속 성분으로서 아연을 주체로 하여 포함한 산화물 및/또는 수산화물 등으로 이루어지는 층을 말한다. 이 산화물층의 평균 두께가 10nm 이상일 것이 필요하다. 산화물층의 평균 두께가 10nm 미만으로 얇아지면 미끄럼 저항을 저하시키는 효과가 불충분해진다. 한편, 아연을 필수 성분으로서 포함하는 산화물층의 평균 두께가 100nm를 초과하면, 프레스 가공 중에 피막이 파괴되어 미끄럼 저항이 상승하고, 또한 용접성이 저하되는 경향이 있기 때문에 바람직하지 않다.In addition, the oxide layer in this invention means the layer which consists of an oxide, a hydroxide, etc. which mainly contained zinc as a metal component. It is necessary that the average thickness of this oxide layer is 10 nm or more. When the average thickness of the oxide layer becomes thinner than 10 nm, the effect of lowering the sliding resistance is insufficient. On the other hand, when the average thickness of the oxide layer containing zinc as an essential component exceeds 100 nm, it is unpreferable because a film breaks during press work and a skid resistance rises and weldability tends to fall.

또한, 아연계 도금 강판을, 아연을 포함하는 수용액에 접촉 처리시키는 방법에는 특별히 제한은 없고, 도금 강판을 수용액에 침지하는 방법, 도금 강판에 수용액을 스프레이하는 방법, 도포 롤을 개재하여 수용액을 도금 강판에 도포하는 방법 등이 있으며, 최종적으로 얇은 액막 형상으로 강판 표면에 존재하는 것이 바람직하다.In addition, there is no restriction | limiting in particular in the method of contact-processing a zinc-based galvanized steel plate in the aqueous solution containing zinc, The method of immersing a galvanized steel plate in aqueous solution, the method of spraying an aqueous solution in a plated steel plate, and plating an aqueous solution through an application | coating roll. The method of apply | coating to a steel plate etc., It is preferable to exist in the surface of a steel plate finally in the shape of a thin liquid film.

또한 본 발명에 따른 합금화 용융 아연 도금 강판을 제조하는 것에 관해서는, 도금욕(plating bath) 중에 Al이 첨가되어 있을 것이 필요하지만, Al 이외의 첨가 원소 성분은 특별히 한정되지 않는다. 즉, Al 외에 Pb, Sb, Si, Sn, Mg, Mn, Ni, Ti, Li, Cu 등이 함유 또는 첨가되어 있어도, 본 발명의 효과가 손상되지 않는 한 적용 가능하다.In addition, about manufacturing the alloyed hot-dip galvanized steel sheet which concerns on this invention, although Al needs to be added in the plating bath, additional element components other than Al are not specifically limited. That is, even if Al contains or adds Pb, Sb, Si, Sn, Mg, Mn, Ni, Ti, Li, Cu, etc., it is applicable as long as the effect of this invention is not impaired.

실시예Example

다음으로, 본 발명을 실시예에 의해 더욱 상세하게 설명한다.Next, an Example demonstrates this invention further in detail.

판두께 0.8mm의 냉연 강판 상에, 편면당 부착량이 45g/㎡, Al 농도가 0.20질량%의 용융 아연 도금을 시행한 후에, 조질 압연을 행한 GI 강판을 제작했다. 또한, 판두께 0.8mm의 냉연 강판 상에, 상법(常法)의 합금화 용융 아연 도금법에 의해, 편면당 도금 부착량이 45g/㎡, Fe 농도가 10질량%, Al 농도가 0.20질량%의 도금 피막을 형성하고, 추가로 조질 압연을 행한 GA 강판을 제작했다. 또한, 판두께 0.8mm의 냉연 강판 상에, 상법의 상기 아연 도금법에 의해, 편면당 도금 부착량이 30g/㎡의 도금 피막을 갖는 EG 강판을 작성했다.After the hot-dip galvanizing of 45 g / m <2> and Al concentration of 0.20 mass% on the cold-rolled steel plate of 0.8 mm of plate | board thickness, GI steel plate which carried out temper rolling was produced. Further, on a cold rolled steel sheet with a plate thickness of 0.8 mm, a plating coating amount of 45 g / m 2, single-sided Fe concentration of 10 mass%, and Al-concentration of 0.20 mass% by single-alloyed hot-dip galvanizing method. To form a GA steel sheet further subjected to temper rolling. Moreover, on the cold-rolled steel plate of 0.8 mm of plate | board thickness, the EG steel plate which has a plating film of 30 g / m <2> of plating adhesion amounts per single side was produced by the said galvanizing method of the conventional method.

이어서, 도 1에 나타내는 구성의 처리 설비를 이용하여 산화물층을 형성했다. 우선, 상기에 의해 얻어진 GI 강판, GA 강판 및 EG 강판 등의 강판(S)을, 용액조(2)에서, 표 1-1 및 표 1-2에 나타내는 처리액 조성, 온도 및 pH가 상이한 수용액에 침지했다. 이어서, 스퀴즈롤(3)로 강판 표면의 액막량을 조정했다. 액막량의 조정은, 스퀴즈롤의 압력을 변화시킴으로써 행했다. 이어서, 세정조(5), 세정조(6)를 그냥 통과시켜, 세정조(7)에서 50℃의 온수를 강판에 스프레이하여 세정하고, 드라이어(8)로 건조하여, 도금 표면에 산화물층을 형성했다. 또한, 용액조(2) 전에 세정조(1)를 설치할 수 있다.Next, the oxide layer was formed using the processing apparatus of the structure shown in FIG. First, an aqueous solution in which steel sheets S such as GI steel sheet, GA steel sheet and EG steel sheet obtained by the above are treated in the solution tank 2 as shown in Tables 1-1 and 1-2, Immerse in Next, the liquid film amount of the steel plate surface was adjusted with the squeeze roll 3. The liquid film amount was adjusted by changing the pressure of the squeeze roll. Subsequently, the washing tank 5 and the washing tank 6 are simply passed through, the washing tank 7 is sprayed and washed with hot water at 50 ° C. on a steel sheet, dried with a dryer 8, and an oxide layer is applied to the plating surface. Formed. Moreover, the washing tank 1 can be provided before the solution tank 2.

용액조(2)에서 침지 처리를 행하는 수용액은, 아연 이온을 첨가할 목적으로 황산아연 7수화물을 소정량 첨가한 수용액을 사용했다. 또한, 일부, 비교를 위해 아세트산 나트륨 20g/l를 포함하는 용액을 황산으로 pH를 조정한 용액도 이용했다.The aqueous solution which immersed in the solution tank 2 used the aqueous solution which added the predetermined amount of zinc sulfate heptahydrate for the purpose of adding zinc ion. In addition, the solution which adjusted the pH with sulfuric acid for the solution containing 20 g / l sodium acetate for some comparison was also used.

수세까지의 유지 시간은, 스퀴즈롤(3)로 액막량의 조정을 행하고, 세정조(7)에서 세정 개시하기까지의 시간이며, 라인 스피드를 변화시킴으로써 조정함과 함께, 일부, 스퀴즈롤(3) 출측의 샤워 수세 장치(4)를 이용하여 스퀴즈(squeeze) 직후에 강판을 세정하는 것도 제작했다.The holding time until the washing with water is the time until the liquid film amount is adjusted with the squeeze roll 3 and the washing starts in the washing tank 7, and by adjusting the line speed, the squeeze roll 3 is partially adjusted. ) The steel plate was wash | cleaned immediately after a squeeze using the shower washing | cleaning apparatus 4 of the exit side.

다음으로, 이상과 같이 제작한 강판에 대해서, 자동차용 외판으로서 충분한 외관을 갖는지 판정함과 함께, 프레스 성형성을 간이적으로 평가하는 수법으로서 마찰 계수의 측정 및, 실제의 성형성을 보다 상세하게 시뮬레이트(simulate)할 목적으로 구두 장출 시험(spherical head bulging test)을 실시했다. 또한, 측정 방법은 이하와 같다.Next, with respect to the steel sheet produced as described above, it is judged whether it has a sufficient external appearance as a vehicle exterior plate, and the measurement of a friction coefficient and the actual formability are explained in more detail as a method of easily evaluating press formability. A spherical head bulging test was conducted for the purpose of simulating. In addition, the measuring method is as follows.

(1) 프레스 성형성 평가 시험(마찰 계수 측정 시험)(1) Press formability evaluation test (friction coefficient measurement test)

프레스 성형성을 평가하기 위해, 각 공시재(供試材)의 마찰 계수를 이하와 같이 하여 측정했다.In order to evaluate press formability, the friction coefficient of each test material was measured as follows.

도 2는 마찰 계수 측정 장치를 나타내는 개략 정면도이다. 동(同) 도면에 나타내는 바와 같이, 공시재로부터 채취한 마찰 계수 측정용 시료(11)가 시료대(12)에 고정되고, 시료대(12)는, 수평 이동 가능한 슬라이드 테이블(13)의 상면에 고정되어 있다. 슬라이드 테이블(13)의 하면에는, 이것에 접한 롤러(14)를 갖는 상하동 가능한 슬라이드 테이블 지지대(15)가 설치되고, 이것을 밀어올림으로써 비드(16)에 의한 마찰 계수 측정용 시료(11)로의 밀어붙임 하중(N)을 측정하기 위한 제1 로드 셀(17)이 슬라이드 테이블 지지대(15)에 부착되어 있다. 상기 밀어붙임력을 작용시킨 상태에서 슬라이드 테이블(13)을 레일(19)을 따라서 수평 이동시키기 위한 미끄럼 저항력(F)을 측정하기 위해 제2 로드 셀(18)이, 슬라이드 테이블(13)의 한쪽의 단부에 부착되어 있다. 또한, 윤활유로서 스기무라카가쿠 가부시키가이샤 제조의 프레스용 세정유 프레톤(preton) R352L을 마찰 계수 측정용 시료(11)의 표면에 도포하여 시험을 행했다.2 is a schematic front view showing a friction coefficient measuring device. As shown in the same figure, the friction coefficient measurement sample 11 taken from the specimen is fixed to the sample stage 12, and the sample stage 12 is the upper surface of the slide table 13 which is horizontally movable. It is fixed at. On the lower surface of the slide table 13, an up-and-down movable slide table support 15 having a roller 14 in contact with the slide table 13 is provided, which is pushed up to the sample 11 for friction coefficient measurement by the bead 16 by pushing it up. The first load cell 17 for measuring the sticking load N is attached to the slide table support 15. In order to measure the sliding resistance F for horizontally moving the slide table 13 along the rail 19 in the state where the pushing force is applied, the second load cell 18 has one side of the slide table 13. It is attached to the end of the. In addition, Sugimura Kagaku Co., Ltd. washing oil preton R352L manufactured by Sugimura Chemical Co., Ltd. was applied to the surface of the friction coefficient measurement sample 11 and tested.

도 3과 도 4는 사용한 비드의 형상·치수를 나타내는 개략 사시도이다. 비드(16)의 하면이 시료(11)의 표면에 밀어붙여진 상태로 미끄럼한다. 도 3에 나타내는 비드(16)의 형상은 폭 10mm, 시료의 미끄럼 방향 길이 12mm, 미끄럼 방향 양단의 하부는 곡률 4.5mmR의 곡면으로 구성되고, 시료가 밀어붙여지는 비드 하면은 폭 10mm, 미끄럼 방향 길이 3mm의 평면을 갖는다. 도 4에 나타내는 비드(16)의 형상은 폭 10mm, 시료의 미끄럼 방향 길이 69mm, 미끄럼 방향 양단의 하부는 곡률 4.5mmR의 곡면으로 구성되고, 시료가 밀어붙여지는 비드 하면은 폭 10mm, 미끄럼 방향 길이 60mm의 평면을 갖는다.3 and 4 are schematic perspective views showing the shape and dimensions of the used beads. The lower surface of the bead 16 slides while being pushed against the surface of the sample 11. The shape of the bead 16 shown in FIG. 3 is 10 mm in width, 12 mm in the sliding direction length of a sample, and the lower part of both ends of a sliding direction consists of a curved surface of curvature 4.5 mmR, and the lower surface of the bead to which a sample is pushed is 10 mm in width, and a sliding direction length Have a plane of 3 mm. The shape of the bead 16 shown in FIG. 4 is 10 mm in width, 69 mm in the sliding direction length of a sample, and the lower part of both ends of a sliding direction consists of a curved surface of curvature 4.5 mmR, and the lower surface of the bead to which a sample is pushed is 10 mm in width, and a sliding direction length It has a plane of 60 mm.

마찰 계수 측정 시험은 아래에 나타내는 2조건으로 행했다.The friction coefficient measurement test was performed under the two conditions shown below.

[조건 1][Condition 1]

도 3에 나타내는 비드를 이용하고, 밀어붙임 하중(N): 400kgf, 시료의 인발 속도(슬라이드 테이블(13)의 수평 이동 속도): 100cm/min로 했다.Using the bead shown in FIG. 3, the pushing load N was 400 kgf and the drawing speed (horizontal movement speed of the slide table 13) of a sample was 100 cm / min.

[조건 2][Condition 2]

도 4에 나타내는 비드를 이용하고, 밀어붙임 하중(N): 400kgf, 시료의 인발 속도(슬라이드 테이블(13)의 수평 이동 속도): 20cm/min로 했다.Using the bead shown in FIG. 4, the pushing load N was 400 kgf, and the drawing speed (horizontal movement speed of the slide table 13) of a sample was 20 cm / min.

공시재와 비드와의 사이의 마찰 계수(μ)는, 식: μ=F/N으로 산출했다.The friction coefficient (μ) between the specimen and the beads was calculated by the formula: μ = F / N.

(2) 구두 장출 시험(2) oral ejaculation test

200×200mm 사이즈의 공시재에 대하여, 150mmφ의 펀치를 사용하여, 액압 벌지(bulge) 시험기에 의해 장출 성형을 행하고, 파단이 발생했을 때의 최대 성형 높이를 측정했다. 이때, 재료의 유입을 저지할 목적으로 100Ton의 주름 프레스력(wrinkle pressing force) 가하고, 펀치가 접촉하는 면에만 윤활유를 도포했다. 사용한 윤활유는, 전술한 마찰 계수 측정 시험과 동일한 것이다.The test piece of 200x200 mm size was elongated by the hydraulic bulge tester using the punch of 150 mm (phi), and the maximum shaping | molding height at the time of breakage was measured. At this time, a wrinkle pressing force of 100 Ton was applied for the purpose of preventing the inflow of the material, and lubricating oil was applied only to the surface where the punch contacted. The used lubricant is the same as the friction coefficient measurement test mentioned above.

(3) 산화물층의 두께(산화막 두께)의 측정(3) Measurement of thickness (oxide film thickness) of oxide layer

막두께가 96nm의 열산화 SiO2막이 형성된 Si 웨이퍼를 참조 물질로서 이용하고, 형광 X선 분석 장치로 O·Kα X선을 측정함으로써, SiO2 환산의 산화층의 평균 두께를 구했다. 분석 면적은 30mmφ이다.The film thickness using a Si wafer thermal oxidation SiO 2 film is formed of 96nm as a reference material, and by measuring the O · Kα X-rays of the fluorescent X-ray analyzer, was determined in terms of the average thickness of the SiO 2 layer. The analysis area is 30 mmφ.

이상으로부터 얻어진 시험 결과를 표 1-1 및 표 1-2에 나타낸다.The test results obtained from the above are shown in Table 1-1 and Table 1-2.

(표 1-1)Table 1-1

Figure pct00001
Figure pct00001

(표 1-2)Table 1-2

Figure pct00002
Figure pct00002

표 1-1 및 표 1-2에 나타내는 시험 결과로부터 하기 사항이 분명해졌다.The following matters became clear from the test results shown in Table 1-1 and Table 1-2.

(1) No.1, 47 및 60은 용액에 의한 처리를 행하고 있지 않기 때문에, 평탄부에 미끄럼성을 향상시키는 데에 충분한 산화막이 형성되지 않고, 마찰 계수가 높다.(1) Since Nos. 1, 47, and 60 are not treated with a solution, an oxide film sufficient to improve the sliding property is not formed in the flat portion, and the friction coefficient is high.

(2) No.2∼4, No.48∼50 및 No.61∼63은 pH 완충 작용을 갖는 산성 용액을 이용한 비교예이다. 30초 이상에서는 마찰 계수가 낮고, 최대 형성 높이도 높아져 있기는 하지만, 10초의 처리에서는 충분한 마찰 계수의 저하 및 최대 성형 높이의 향상을 충족하고 있지 않다.(2) Nos. 2 to 4, Nos. 48 to 50, and Nos. 61 to 63 are comparative examples using an acidic solution having a pH buffering action. Although the coefficient of friction is low and the maximum formation height is high at 30 seconds or more, the treatment of 10 seconds does not satisfy the reduction of the sufficient friction coefficient and the improvement of the maximum molding height.

(3) No.5∼7은, pH 완충 작용을 갖는 산성 용액을 이용한 비교예이다. 높은 마찰 계수를 나타내고 있다.(3) Nos. 5 to 7 are comparative examples using an acidic solution having a pH buffering action. High friction coefficient is shown.

(4) No.8∼10, No.51∼53 및 No.64∼66은, 아연 이온을 함유하고 있지만, 그 양이 본 발명의 범위보다도 적은 비교예이다. 30초 이상에서는 마찰 계수가 낮고, 최대 형성 높이도 높아져 있기는 하지만, 10초의 처리에서는 충분한 마찰 계수의 저하 및 최대 성형 높이의 향상을 충족하고 있지 않다.(4) Nos. 8 to 10, Nos. 51 to 53, and Nos. 64 to 66 contain zinc ions, but the amounts thereof are comparative examples having a smaller amount than the scope of the present invention. Although the coefficient of friction is low and the maximum formation height is high at 30 seconds or more, the treatment of 10 seconds does not satisfy the reduction of the sufficient friction coefficient and the improvement of the maximum molding height.

(5) No.11∼13, No.54∼56 및 No.67∼69는, 아연 이온을 함유한 용액에서의 처리를 행한 본 발명예로, 마찰 계수가 저하되고, 최대 성형 높이도 증가되어 있다. 또한, No.14∼16 및 No.44∼46은 No.11∼13과 동일한 처리 조건으로 액 중의 아연 이온 농도를 증가시킨 본 발명예이다. 마찰 계수가 저위(低位) 안정화되고, 최대 성형 높이도 더욱 증가되어 있다. 마찬가지로 No.57∼59 및 No.70∼72는 No.54∼56과 동일한 처리 조건으로 액 중의 아연 이온 농도를 증가시킨 본 발명예이다. 마찰 계수가 저위 안정화되고, 최대 성형 높이도 더욱 증가되어 있다.(5) Nos. 11 to 13, Nos. 54 to 56, and Nos. 67 to 69 are examples of the present invention which have been treated in a solution containing zinc ions, and the friction coefficient is lowered and the maximum molding height is also increased. have. Nos. 14 to 16 and Nos. 44 to 46 are examples of the present invention in which the zinc ion concentration in the liquid is increased under the same treatment conditions as in Nos. 11 to 13. The friction coefficient is low stabilized, and the maximum molding height is further increased. Similarly, Nos. 57 to 59 and Nos. 70 to 72 are examples of the present invention in which the zinc ion concentration in the liquid is increased under the same treatment conditions as those of Nos. 54 to 56. The friction coefficient is low stabilized, and the maximum molding height is further increased.

(6) No.17∼22는, 강판 표면에 용액막을 형성하고, 수세를 시행하기까지의 시간을 변화시킨 예이다. 유지 없이 수세를 행한 No.17에서는 근소하게 마찰 계수가 저하할 뿐인데 대하여, 1초 이상의 유지 시간이 되는 No.18∼22는, 마찰 계수는 저하되고, 장출성도 안정 향상되고 있다.(6) No. 17-22 are the examples which changed the time until the solution film was formed in the steel plate surface and water washing was performed. In No. 17 which washed with water without holding, the friction coefficient only slightly decreased, whereas in Nos. 18 to 22, which had a holding time of 1 second or more, the friction coefficient was lowered, and the elongation property was also stably improved.

(7) No.23∼40은, 처리액 온도를 변화시킨 예이지만, 처리액 온도가 낮은 No.23∼25는, 그 이외의 예와 비교하여, 마찰 계수 및 최대 성형 높이의 향상 효과가 충분하지 않다. 한편, No.32∼34는, 처리액 온도가 높은 예이며, 마찰 계수나 최대 성형 높이의 향상 효과는 충분하지만, 처리 불균일이 많이 보여, 자동차용 외판으로서 양호한 외관을 나타내지 않았다.(7) Nos. 23 to 40 are examples in which the treatment liquid temperature was changed, but Nos. 23 to 25 having a low treatment liquid temperature had sufficient effects of improving the friction coefficient and the maximum molding height in comparison with the other examples. Not. On the other hand, Nos. 32 to 34 are examples where the treatment liquid temperature is high, and the effect of improving the coefficient of friction and the maximum molding height is sufficient, but there are many treatment unevennesses, and they do not exhibit a good appearance as an automotive exterior plate.

(8) No.35∼40은, No.20∼22에 대하여, 액막 형성량을 변화시킨 본 발명예이다. 수세까지의 유지 시간이 동일한 것으로 비교하면, 액막량이 많은 경우에는, 충분한 마찰 계수의 저하 및 최대 성형 높이의 향상이 얻어지고 있기는 하지만, 액막량이 적은 경우에 비하면 약간 마찰 계수가 높고 최대 성형 높이도 낮아져 있다.(8) No. 35-40 is the example of this invention which changed the liquid film formation quantity with respect to No.20-22. Compared with the same retention time until water washing, when the amount of the liquid film is large, a sufficient reduction in the friction coefficient and an improvement in the maximum molding height are obtained. However, the friction coefficient is slightly higher than the case where the liquid film amount is small. Lowered.

(9) No.41∼43은 pH가 본 발명의 범위보다도 낮은 처리액을 이용한 비교예이지만, No.20∼22와 비교하여 마찰 계수의 저하의 효과는 인정되지 않고, 최대 성형 높이의 향상도 볼 수 없다.(9) Although Nos. 41 to 43 are comparative examples using a treatment liquid having a pH lower than the range of the present invention, the effect of lowering the friction coefficient is not recognized as compared with Nos. 20 to 22, and the degree of improvement in the maximum molding height is also observed. Can't see

도 5는, 표 1-1 및 표 1-2의 No.8∼22 및 No.44∼46을 이용하여, 산화막 두께로의 아연 이온 농도의 영향을 나타낸 도면이다. 도 5에 의하면, 아연의 농도가 5g/l 이상이면 유지 시간이 짧은 경우(예를 들면, 10초)라도 산화막 두께가 충분히 두껍게 형성되어, 유지 시간이 짧은 경우에 산화막 두께가 얇아진다는 본 발명의 과제가 해결되어 있는 것을 알 수 있다.FIG. 5 is a diagram showing the effect of zinc ion concentration on the oxide film thickness using Nos. 8 to 22 and Nos. 44 to 46 of Tables 1-1 and 1-2. According to Fig. 5, when the concentration of zinc is 5 g / l or more, the oxide film thickness is sufficiently thick even if the holding time is short (for example, 10 seconds), and the oxide film thickness becomes thin when the holding time is short. It can be seen that the problem is solved.

본 발명에 의하면, 단시간의 제조 조건에 있어서도, 공간 절약적이고, 프레스 성형시의 미끄럼 저항이 작고 우수한 프레스 성형성을 갖는 아연계 도금 강판을 안정되게 제조할 수 있다. 그리고, 예를 들면, 성형 하중이 높고 다이 골링(die galling)을 발생시키기 쉬운 고강도 아연계 도금 강판을 제조할 때에 있어서도, 프레스 성형시의 미끄럼 저항이 작고, 우수한 프레스 성형성을 가질 수 있다. 프레스 성형성이 우수한 점에서, 자동차 차체 용도를 중심으로 광범위한 분야에서 적용할 수 있다.According to the present invention, a zinc-based galvanized steel sheet can be stably manufactured even in a short time production condition, which is space-saving, has low sliding resistance during press molding, and has excellent press formability. And, for example, even when producing a high strength galvanized steel sheet which has a high molding load and is easy to generate die galling, the slip resistance at the time of press molding is small, and excellent press formability can be obtained. In view of excellent press formability, the present invention can be applied to a wide range of fields mainly on automobile body applications.

Claims (4)

강판에 아연계 도금을 시행한 후, 수용액에 접촉 처리하고, 접촉 처리 종료 후 1∼60초간 유지한 후, 수세(水洗)·건조를 행함으로써, 강판 표면에 산화물층을 형성하는 아연계 도금 강판의 제조 방법에 있어서, 아연계 도금 강판을 접촉 처리하는 상기 수용액은, 아연 이온 농도로서 5∼100g/l의 범위로 아연 이온을 함유하고, pH가 4∼6이고, 액온(liquid temperature)이 20∼70℃인 것을 특징으로 하는 아연계 도금 강판의 제조 방법.The zinc-based galvanized steel sheet which forms an oxide layer on the surface of a steel plate by performing zinc-plating on a steel plate, carrying out a contact treatment with aqueous solution, holding for 1 to 60 seconds after completion | finish of a contact process, and performing water washing and drying. In the production method of the above, the aqueous solution for contact-treating the galvanized steel sheet contains zinc ions in the range of 5 to 100 g / l as zinc ion concentration, has a pH of 4 to 6, and a liquid temperature of 20 It is -70 degreeC, The manufacturing method of the galvanized steel plate characterized by the above-mentioned. 제1항에 있어서,
상기 수용액 중에는, 아연의 황산염을 포함하는 것을 특징으로 아연계 도금 강판의 제조 방법.
The method of claim 1,
In the said aqueous solution, the sulfate of zinc is contained, The manufacturing method of the zinc-based galvanized steel plate.
제1항 또는 제2항에 있어서,
상기 수용액에 접촉 후에 강판 표면에 형성하는 액막이 5∼30g/㎡인 것을 특징으로 하는 아연계 도금 강판의 제조 방법.
The method according to claim 1 or 2,
A liquid film formed on the surface of a steel sheet after contact with the aqueous solution is 5 to 30 g / m 2.
제1항 내지 제3항 중 어느 한 항에 기재된 아연계 도금 강판의 제조 방법에 의해 제조되고, 금속 성분으로서는 아연을 주체로 하여 포함하는 산화물층을 강판 표면에 평균 두께 10nm 이상 형성한 것을 특징으로 하는 아연계 도금 강판.It is manufactured by the manufacturing method of the zinc-based galvanized steel plate in any one of Claims 1-3, The oxide layer which consists mainly of zinc as a metal component was formed in the steel plate surface on the average thickness 10 nm or more, It is characterized by the above-mentioned. Galvanized steel sheet.
KR1020117010906A 2008-12-16 2009-04-22 Galvanized steel sheet and method for manufacturing the same KR20110073573A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2008-319131 2008-12-16
JP2008319131A JP5354165B2 (en) 2008-01-30 2008-12-16 Method for producing galvanized steel sheet

Publications (1)

Publication Number Publication Date
KR20110073573A true KR20110073573A (en) 2011-06-29

Family

ID=42269468

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020117010906A KR20110073573A (en) 2008-12-16 2009-04-22 Galvanized steel sheet and method for manufacturing the same

Country Status (6)

Country Link
EP (1) EP2366812B1 (en)
KR (1) KR20110073573A (en)
CN (1) CN102216493A (en)
CA (1) CA2742354C (en)
TW (1) TWI516638B (en)
WO (1) WO2010070942A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200045533A (en) * 2017-10-12 2020-05-04 아르셀러미탈 Metal sheet processing method and metal sheet treated by this method
KR20200045532A (en) * 2017-10-12 2020-05-04 아르셀러미탈 Metal sheet processing method and metal sheet treated by this method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011001140A1 (en) * 2011-03-08 2012-09-13 Thyssenkrupp Steel Europe Ag Flat steel product, method for producing a flat steel product and method for producing a component
KR20150014517A (en) * 2012-07-18 2015-02-06 제이에프이 스틸 가부시키가이샤 Method for producing steel sheet having excellent chemical conversion properties and galling resistance

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043428B2 (en) 1976-11-10 1985-09-27 新日本製鐵株式会社 Alloyed galvanized iron plate with excellent weldability
JPH02190483A (en) 1989-01-19 1990-07-26 Nippon Steel Corp Galvanized steel sheet having superior press formability
FR2783256B1 (en) * 1998-09-15 2000-10-27 Lorraine Laminage ANODIC TREATMENT OF ZINC PLATED STEEL SHEET IN AQUEOUS SOLUTIONS CONTAINING SULPHATES
JP3346338B2 (en) * 1999-05-18 2002-11-18 住友金属工業株式会社 Galvanized steel sheet and method for producing the same
KR100608556B1 (en) * 2000-04-24 2006-08-08 제이에프이 스틸 가부시키가이샤 Method for Production of Galvannealed Sheet Steel
JP3807341B2 (en) * 2002-04-18 2006-08-09 Jfeスチール株式会社 Method for producing galvannealed steel sheet
JP4329387B2 (en) 2002-04-18 2009-09-09 Jfeスチール株式会社 Hot-dip galvanized steel sheet with excellent press formability and manufacturing method thereof
KR100707255B1 (en) * 2003-04-18 2007-04-13 제이에프이 스틸 가부시키가이샤 Hot-dip galvanized steel sheet having excellent press formability and method for producing the same
EP1666624B1 (en) * 2003-08-29 2017-06-07 JFE Steel Corporation Hot dip zinc plated steel sheet and method for production thereof
FR2864552B1 (en) * 2003-12-24 2006-07-21 Usinor SURFACE TREATMENT WITH HYDROXYSULFATE
KR20110136905A (en) * 2006-05-02 2011-12-21 제이에프이 스틸 가부시키가이샤 Method of manufacturing hot dip galvannealed steel sheet and hot dip galvannealed steel sheet
JP5239570B2 (en) * 2007-09-04 2013-07-17 Jfeスチール株式会社 Galvanized steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200045533A (en) * 2017-10-12 2020-05-04 아르셀러미탈 Metal sheet processing method and metal sheet treated by this method
KR20200045532A (en) * 2017-10-12 2020-05-04 아르셀러미탈 Metal sheet processing method and metal sheet treated by this method

Also Published As

Publication number Publication date
CA2742354C (en) 2014-02-25
WO2010070942A1 (en) 2010-06-24
TWI516638B (en) 2016-01-11
CA2742354A1 (en) 2010-06-24
EP2366812B1 (en) 2019-08-14
TW201024461A (en) 2010-07-01
EP2366812A1 (en) 2011-09-21
CN102216493A (en) 2011-10-12
EP2366812A4 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
JP3807341B2 (en) Method for producing galvannealed steel sheet
JP5239570B2 (en) Galvanized steel sheet
KR101878222B1 (en) Galvanized steel sheet and method for producing the same
JP2007297686A (en) Hot dip galvannealed steel sheet manufacturing method, and hot dip galvannealed steel sheet
JP5354165B2 (en) Method for producing galvanized steel sheet
JP4655788B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
KR20110073573A (en) Galvanized steel sheet and method for manufacturing the same
CN108713071B (en) Method for producing galvanized steel sheet
JP5347295B2 (en) Zinc-based plated steel sheet and method for producing the same
JP4529592B2 (en) Process for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet.
KR101360802B1 (en) Method for manufacturing galvanized steel sheet
JP4525252B2 (en) Method for producing galvannealed steel sheet
JP5386842B2 (en) Zinc-based plated steel sheet and method for producing the same
WO2011121910A1 (en) Method of manufacture for molten zinc-plated sheet steel
JP5163218B2 (en) Method for producing galvanized steel sheet
JP4998658B2 (en) Method for producing galvannealed steel sheet
JP4604712B2 (en) Method for producing hot dip galvanized steel sheet and hot dip galvanized steel sheet
JP5354166B2 (en) Method for producing galvanized steel sheet
JP5163217B2 (en) Method for producing galvanized steel sheet
JP5961967B2 (en) Method for producing hot-dip galvanized steel sheet

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
E902 Notification of reason for refusal
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20131023

Effective date: 20140912