JP2013071990A - 耐熱型熱伝導性グリース - Google Patents

耐熱型熱伝導性グリース Download PDF

Info

Publication number
JP2013071990A
JP2013071990A JP2011211554A JP2011211554A JP2013071990A JP 2013071990 A JP2013071990 A JP 2013071990A JP 2011211554 A JP2011211554 A JP 2011211554A JP 2011211554 A JP2011211554 A JP 2011211554A JP 2013071990 A JP2013071990 A JP 2013071990A
Authority
JP
Japan
Prior art keywords
carbon atoms
hydrocarbon group
mass
heat
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011211554A
Other languages
English (en)
Other versions
JP5687167B2 (ja
Inventor
Mitsunobu Kimura
光伸 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Lubricants Co Ltd
Original Assignee
Cosmo Oil Lubricants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Lubricants Co Ltd filed Critical Cosmo Oil Lubricants Co Ltd
Priority to JP2011211554A priority Critical patent/JP5687167B2/ja
Publication of JP2013071990A publication Critical patent/JP2013071990A/ja
Application granted granted Critical
Publication of JP5687167B2 publication Critical patent/JP5687167B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lubricants (AREA)

Abstract

【課題】 高温における耐熱性に優れる熱伝導性グリースを提供する。
【解決手段】(A)無機粉末充填剤を70〜97質量%、(B)基油を2〜30質量%、(C)2価以上の金属イオンと有機酸とからなる金属せっけんを0.001〜3質量%、(D)アミン系酸化防止剤を0.03〜0.75質量%、及び(E)特定の構造を有する化合物を0.001〜1.0質量%であることを特徴とする熱伝導性グリース。
【選択図】 なし

Description

本発明は、高い熱伝導率を有する熱伝導性グリース用耐熱性向上剤、及びその耐熱性向上剤を含有する、高温下におけるちょう度変化率の少ない耐熱型熱伝導性グリースに関する。
電子機器に使用されている半導体部品の中には、コンピューターのCPU、ペルチェ素子、LED、インバーター等の電源制御用パワー半導体など使用中に発熱をともなう部品がある。
これらの半導体部品を熱から保護し、正常に機能させるためには、発生した熱をヒートスプレッダーやヒートシンク等の放熱部品へ伝導させ放熱する方法がある。熱伝導性グリースは、これら半導体部品と放熱部品を密着させるように両者の間に塗布され、半導体部品の熱を放熱部品に効率よく伝導させるために用いられる。
近年、これら半導体部品を用いる電子機器の性能向上や小型・高密度実装化が急速に進んでおり、半導体の発熱量が増大しているため、このような放熱対策に用いられる熱伝導性グリースには高い熱伝導性が求められるとともにグリース自身の耐熱性も求められている。
熱伝導性グリースは、液状炭化水素やシリコーン油やフッ素油等の基油に、酸化亜鉛、酸化アルミニウムなどの金属酸化物や、窒化ホウ素、窒化ケイ素、窒化アルミニウムなどの無機窒化物や、アルミニウムや銅などの金属粉末等、熱伝導率の高い充填剤が多量に分散されたグリース状組成物である。
本発明者は、既に、無機粉末充填剤の分散性を向上するための表面改質剤として2価以上の金属イオンと有機酸とからなる金属せっけんを配合し、さらにアミン系酸化防止剤を特定量配合することで、高いちょう度を持ち、なおかつ耐熱性に優れた熱伝導性グリースを見出している。(特許文献1参照。)
特開2009−046639号公報
熱伝導性グリースは、コンピューターのCPU等の冷却装置や、ハイブリッド自動車や電気自動車等に搭載される高出力のインバーターに使用されるパワー半導体等の冷却装置における熱接触界面に使用されている。近年、これらのエレクトロニクス機器における半導体素子は、小型化・高性能化に伴い、発熱密度及び発熱量が増大しており、熱伝導性グリースは以前にも増して高温に曝される環境にある。
このような高温の環境で長期に渡り熱伝導性グリースを使用する場合には、熱伝導性グリースの種類によっては大きくちょう度が低下する場合がある。このように、放熱材料として実装使用時にちょう度が大きく低下したり、硬化したりした場合にはクラックやボイドの発生等が起こり、放熱性能が低下する可能性がある。
したがって、半導体ユニットの発熱温度や周囲の環境温度が高温に至る使用状況で長期間に渡り使用されるケースでは、熱伝導性グリースの性能としては、高温下でのちょう度変化率が少ない、耐熱性に優れることが求められている。
本発明の目的は、高温下におけるちょう度変化率の少ない熱伝導性グリースを提供することにある。
そこで、本発明者は、上記課題を達成するために鋭意検討した結果、無機粉末充填剤の分散性を向上するための特定の金属せっけんを特定量配合し、特定の酸化防止剤を特定量配合し、さらに特定の構造を有する化合物を特定量配合することで、無機粉末充填剤を高充填して熱伝導率を高めながら、耐熱性を格段に向上させることができることを見出し、本発明の完成に至った。
すなわち、本発明は、一般式(1)〜(5)で表わされる構造をもつ化合物から選ばれる1種以上の熱伝導性グリース用耐熱性向上剤を提供するものである。
Figure 2013071990
(一般式(1)において、R、Rは、炭素数4〜10の1価の炭化水素基であり、Rは炭素数1〜10の2価の炭化水素基である。)
Figure 2013071990
(一般式(2)において、R、Rは炭素数4〜10のターシャリータイプの炭化水素基であり、R、Rは水素原子または炭素数1〜10の1価の炭化水素基であり、Rは炭素数1〜10の2価の炭化水素基である。)
Figure 2013071990
(一般式(3)において、R、R10、R11、R12、R13は水素原子または炭素数4〜10のターシャリータイプの炭化水素基であり、かつ少なくとも一つは炭素数4〜10のターシャリータイプの炭化水素基であり、R14、R15、R16、R17、R18は水素原子、水酸基または炭素数4〜10のターシャリータイプの炭化水素基であり、かつ少なくとも一つは水酸基である。)
Figure 2013071990
(一般式(4)において、R19、R20、R21、R22、R23、R24、R25、R26は炭素数1〜10の1価の炭化水素基であり、R27、R28は水素原子または炭素数1〜10の1価の炭化水素基であり、かつ少なくとも一つは水素原子であり、R29は炭素数1〜12の2価の炭化水素基である。)
Figure 2013071990
(一般式(5)において、R30、R31、R32、R33、R34は炭素数1〜10の1価の炭化水素基であり、R35、R36は炭素数1〜12の2価の炭化水素基であり、nは1〜20である。)
なお、本発明において、「炭素数4〜10のターシャリータイプの炭化水素基」とは、置換基である炭素数4〜10の炭化水素基の置換基結合部位が第三級炭素原子であるものであり、炭素数4の飽和脂肪族炭化水素基の場合はtert−ブチル基を、炭素数5の飽和脂肪族炭化水素基の場合はtert−ペンチル基を意味する。
また、本発明は、(A)無機粉末充填剤を70〜97質量%、(B)基油を2〜30質量%、(C)2価以上の金属イオンと有機酸とからなる金属せっけんを0.001〜3質量%、及び(D)アミン系酸化防止剤を0.03〜0.75質量%、(E)前記一般式(1)〜(5)で表わされる構造をもつ化合物から選ばれる1種以上の耐熱性向上剤を0.001〜1.0質量%の割合で含有することを特徴とする熱伝導性グリースを提供するものである。
また、本発明は、上記熱伝導性グリースにおいて、(B)成分の基油に含まれるポリアルファオレフィンの割合が5〜100質量%である熱伝導性グリースを提供するものである。
本発明の熱伝導性グリースは、無機粉末充填剤の分散性を向上するための特定の金属せっけんを特定量配合し、特定の酸化防止剤を特定量配合し、さらに一般式(1)〜(5)で表わされる構造をもつ化合物から選ばれる1種以上を特定量配合する事により格段に優れた耐熱性を実現するものである。本発明の熱伝導性グリースを使用することで、高熱を発する電子部品の放熱性を向上でき、特に高温環境に曝される自動車用パワー半導体やLEDの放熱材料として好適である。
本発明に用いられる無機粉末充填剤(A)は、基油より高い熱伝導率を有するものであれば特に限定されないが、金属酸化物、無機窒化物、金属、ケイ素化合物、カーボン材料などの粉末が好適に用いられる。本発明の無機粉末充填剤の種類は1種類であってもよいし、また2種以上を組み合わせて用いることもできる。
上記の無機粉末充填剤は、電気絶縁性を求める場合には、酸化亜鉛、酸化アルミニウム、酸化チタン、窒化アルミニウム、窒化ホウ素、炭化ケイ素、シリカ、ダイヤモンドなどの、半導体やセラミックなどの非導電性物質の粉末が好適に使用でき、酸化亜鉛、酸化アルミニウム、窒化アルミニウム、窒化ホウ素、炭化ケイ素の粉末がより好ましく、酸化亜鉛、酸化アルミニウムの粉末が特に好ましい。これらの無機粉末充填剤をそれぞれ単独で用いてもよいし、2種以上を組み合わせてもよい。また、電気絶縁性を求めず、より高い熱伝導性を求める場合には、アルミニウム、金、銀、銅などの金属粉末や、グラファイト、フラーレン、カーボンナノチューブ、カーボンナノホーンなどの炭素材料粉末が好適に使用でき、金属粉末がより好ましく、アルミニウムの粉末が特に好ましい。また、金属粉末や炭素材料粉末を上記の非導電性物質の粉末と組み合わせて用いることもできる。
また、上記無機粉末充填剤は、細粒のみを用いる場合は平均粒径0.15μm以上3μm未満の無機粉末を用いることが好ましい。平均粒径を0.15μm以上とすることで、無機粉末充填剤の表面を親油化する金属せっけんの量と液体成分の量との割合のバランスがよく、高充填したときにより高いちょう度を得ることができる。一方、平均粒径を3μm未満とすることで、最密充填をしやすくなり、より高い熱伝導率とすることができ、また離油もしづらくなる。また、平均粒径の異なる2種以上の細粒を組み合わせることで、最密充填をしやすくなり、離油しづらくなる。この場合にも、熱伝導率と実装時の観点から、それぞれの細粒の平均粒径は0.15μm以上3μm未満であることが好ましい。平均粒径の異なる細粒を組み合わせて用いる場合、平均粒径の小さい細粒の平均粒径は、平均粒径の大きい細粒の平均粒径に対して60〜10%の平均粒径であることが好ましく、55〜20%の平均粒径であることがより好ましい。また、平均粒径の小さい細粒と平均粒径の大きい細粒の混合割合は、質量比で5:95〜85:15の範囲が好ましい。
更に、細粒と粗粒を組み合わせる場合には、上記の細粒と、平均粒径3〜50μmの粗粒の無機粉末を組み合わせることができる。この場合には、粗粒の平均粒径を3μm以上とすることでより高い熱伝導率を得やすくでき、粗粒の平均粒径を50μm以下とすることで塗膜を薄くし、実装時の放熱性能を一層高めることができる。
無機粉末充填剤を細粒と粗粒の組み合わせとする場合、粗粒としては、平均粒径の異なる2種類以上の粉末の組み合わせとすることもできる。この場合にも、熱伝導率と実装時の放熱性能の観点から、それぞれの粗粒の平均粒径は3〜50μmであることが好ましい。
なお、本発明において、無機粉末充填剤の平均粒径はレーザー回折散乱法(JIS R 1629に準拠)により測定した粒度分布の体積平均径として算出できる。
また、細粒と粗粒の無機粉末充填剤を組み合わせる場合の質量比は、20:80〜85:15の範囲で混合するのが好ましい。粗粒を2種類以上組み合わせる場合には粗粒同士の質量比は特に限定されないが、この場合にも細粒の質量比を無機粉末充填剤のうち20%〜85%の範囲にするのが好ましい。細粒と粗粒の配合比を上記範囲とすることで、無機粉末充填剤の表面を親油化する金属せっけんの量と液体成分の量とのバランスから、高いちょう度を得ることができる。また、粗粒と細粒のバランスが最密充填に適しており、離油もしづらくなる。
無機粉末充填剤の含有率は70〜97質量%であるが、含有率が高いほど熱伝導性に優れ、好ましくは75〜96質量%である。70質量%未満では熱伝導性が低くなったり、離油しやすくなることがある。一方、97質量%を越えるとちょう度が低くなり十分な塗布性を保てなくなるか、熱伝導性グリースが調製できなくなる。
基油(B)としては、種々の基油が使用でき、例えば、鉱油、合成炭化水素油などの炭化水素系基油、エステル系基油、エーテル系基油、リン酸エステル、シリコーン油及びフッ素油などが挙げられ、炭化水素系基油、エステル系基油、エーテル基油が好ましい。離油を防止する点においては、表面張力の低いシリコーン油及びフッ素油は、あまり好ましくない。基油は1種単独で使用しても、2種以上を組み合わせて使用しても良い。
鉱油としては、例えば、鉱油系潤滑油留分を溶剤抽出、溶剤脱ロウ、水素化精製、水素化分解、ワックス異性化などの精製手法を適宜組み合わせて精製したもので、150ニュートラル油、500ニュートラル油、ブライトストック、高粘度指数基油などが挙げられる。鉱油は、高度に水素化精製された高粘度指数基油が好ましい。
合成炭化水素油としては、例えば、エチレンやプロピレン、ブテン、及びこれらの誘導体などを原料として製造されたアルファオレフィンを、単独または2種以上混合して重合したものが挙げられる。アルファオレフィンとしては、炭素数6〜14のものが好ましく挙げられる。
具体的には、1−デセンや1−ドデセンのオリゴマーであるポリアルファオレフィン(PAO)や、1−ブテンやイソブチレンのオリゴマーであるポリブテン、エチレンやプロピレンとアルファオレフィンのコオリゴマー等が挙げられる。また、アルキルベンゼンやアルキルナフタレン等を用いることもできる。
エステル系基油としては、ジエステルやポリオールエステルが挙げられる。
ジエステルとしては、アジピン酸、アゼライン酸、セバシン酸、ドデカン二酸等の二塩基酸のエステルが挙げられる。二塩基酸としては、炭素数4〜36の脂肪族二塩基酸が好ましい。エステル部を構成するアルコール残基は、炭素数4〜26の一価アルコール残基が好ましい。
ポリオールエステルとしては、β位の炭素上に水素原子が存在していないネオペンチルポリオールのエステルで、具体的にはネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトール等のカルボン酸エステルが挙げられる。エステル部を構成するカルボン酸残基は、炭素数4〜26のモノカルボン酸残基が好ましい。
また、上記以外にも、エチレングリコール、プロピレングリコール、ブチレングリコール、2−ブチル−2−エチルプロパンジオール、2,4−ジエチル−ペンタンジオール等の脂肪族二価アルコールと、直鎖または分岐鎖の飽和脂肪酸とのエステルも用いることができる。直鎖または分岐鎖の飽和脂肪酸としては、炭素数4〜30の一価の直鎖または分岐鎖の飽和脂肪酸が好ましい。
エーテル系基油としては、ポリグリコールや(ポリ)フェニルエーテルなどが挙げられる。
ポリグリコールとしては、ポリエチレングリコールやポリプロピレングリコール、及びこれらの誘導体などが挙げられる。
(ポリ)フェニルエーテルとしては、アルキル化ジフェニルエーテルや、モノアルキル化テトラフェニルエーテル、ジアルキル化テトラフェニルエーテル、ペンタフェニルエーテルなどが挙げられる。
リン酸エステルとしては、トリエチルホスフェート、トリブチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート等が挙げられる。
熱伝導性グリースは発熱部に塗布されるため、長時間高温にさらされる。このため、基油としては熱酸化安定性に優れることが望ましい。上記基油の中では、合成系基油が好ましく、合成炭化水素油、エステル系基油、エーテル系基油が好ましい。これらの基油のうち、特に熱酸化安定性に優れるものとして、合成炭化水素油では、ポリアルファオレフィン、エステル系基油では、ポリオールエステル、エーテル系基油では(ポリ)フェニルエーテルが好ましい基油として用いられる。さらにこれらの基油のうち、比較的粘度指数が高く、グリースを調製したときにちょう度が高く塗布性に優れるグリースが調製できるポリアルファオレフィンやポリオールエステルが好ましい基油として用いられる。
基油に含まれるポリアルファオレフィンの含有量は、5質量%〜100質量%であり、好ましくは10質量%〜100質量%である。上記範囲でポリアルファオレフィンを基油中に配合することにより、塗布性に優れるグリースを調製することができる。また、特に優れた塗布性を求めない場合は粘度の高い(ポリ)フェニルエーテルを用いることもできる。
基油の動粘度は、40℃で10mm/s〜1200mm/sであることが好ましい。40℃における動粘度を10mm/s以上とすることで、高温下での基油の蒸発や離油などが抑制される傾向にあるため好ましい。また、40℃における動粘度を1200mm/s以下とすることで高いちょう度を得やすくなるため好ましい。
基油の含有量としては2〜30質量%であり、3〜28質量%が好ましく、3〜25質量%が特に好ましい。含有量が30質量%を超える場合には、ちょう度が高くなりすぎ、高温環境に置かれた場合に熱伝導性グリースが流れ出てしまう場合がある。さらに離油を生じたり、熱伝導性が低下する場合がある。
本発明に用いられる金属せっけん(C)は、無機粉末充填剤の表面に吸着し、基油との親和性を向上させる表面改質剤としての働きを持ち、耐熱性が高いため、金属せっけん(C)を表面改質剤として用いることで熱伝導性グリースの耐熱性を向上させることができる。
本発明に用いられる金属せっけん(C)は、2価以上の金属イオンと有機酸とからなる金属せっけんである。金属せっけん(C)の具体例としては、例えば、単一金属せっけんとしてはカルシウムせっけん、マグネシウムせっけん、アルミニウムせっけん、亜鉛せっけんなどが挙げられ、マグネシウムせっけん、アルミニウムせっけん、亜鉛せっけんが好ましく、亜鉛せっけんが特に好ましい。また、コンプレックス型金属せっけんとしては、カルシウムコンプレックスせっけん、バリウムコンプレックスせっけん、アルミニウムコンプレックスせっけんなどが挙げられる。
これらの金属せっけんのうち、ケン化反応を用いることなく、プレソープの混合法によるグリースへの添加が可能な単一金属せっけんが好ましい。また金属せっけんの有機酸の部分は直鎖またはヒドロキシ基を有する脂肪酸が好ましく、直鎖の飽和脂肪酸がより好ましい。この場合、脂肪酸の炭素数は12〜28が好ましく、より耐熱性を向上させる場合には14〜24が特に好ましい。このような脂肪酸金属せっけんとしてはステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸亜鉛、ステアリン酸アルミニウム、ラウリン酸亜鉛などが挙げられ、ステアリン酸マグネシウム、ステアリン酸亜鉛、ステアリン酸アルミニウムが特に好ましい。
本発明に用いられる金属せっけん(C)は、0.001質量%〜3質量%含有するが、好ましくは0.005質量%〜2質量%であり、更に好ましくは0.01質量%〜1質量%であり、最も好ましくは0.1質量%〜1質量%である。含有量が0.001質量%より少ない場合、無機粉末充填剤の表面を親油化するのに不充分な含有量であるため高いちょう度が得られず、充填率を高くすることが難しい傾向にあり、また高温高湿度の環境に置かれた場合にはちょう度低下が起こったり、凝集して硬化しやすくなる傾向にある。また、含有量が3質量%より多い場合には、金属せっけんが基油中で増ちょう剤としての働きを持つため、グリースが硬くなるか、無機粉末充填剤の充填率を高めた場合にはグリース化できなくなる傾向にある。
本発明に用いられるアミン系酸化防止剤(D)としては、フェニル−α−ナフチルアミン、フェニル−β−ナフチルアミン等のナフチルアミン類、p,p’−ジアルキルジフェニルアミン等のアルキル化ジフェニルアミン類、ジフェニル-p-フェニレンジアミン、ジピリジルアミン類、フェノチアジン類等が好適に用いられる。これらのうち油溶性が高くスラッジを生成しにくいナフチルアミン類とアルキル化ジフェニルアミン類が好ましく、アルキル化ジフェニルアミン類が特に好ましい。
ナフチルアミン類は、フェニル基を有するものが好ましく、フェニル基に1価の炭化水素基を有するものが特に好ましい。1価の炭化水素基の炭素数は、4〜20が好ましく、6〜18がより好ましい。また、1価の炭化水素基はアルキル基が好ましい。
アルキル化ジフェニルアミン類は、モノアルキル化ジフェニルアミン類、ジアルキル化ジフェニルアミン類、トリアルキル化ジフェニルアミン類、テトラアルキル化ジフェニルアミン類などが挙げられるが、ジアルキル化ジフェニルアミン類が好ましい。
また、アルキル化ジフェニルアミン類におけるアルキル基は、炭素数1〜20のアルキル基が好ましく、炭素数3〜14のアルキル基がより好ましく、炭素数4〜12のアルキル基が特に好ましい。
アミン系酸化防止剤は高温におけるラジカル連鎖反応を防止する効果を有し、それ自身の昇華性が低いため、他の酸化防止剤を使用した場合に比較して耐熱性を向上する効果がある。
これらのアミン系酸化防止剤は単独で用いてもよく、2種以上を組み合わせても良い。アミン系酸化防止剤の含有量は0.03〜0.75質量%であり、0.1〜0.6質量%が好ましい。アミン系酸化防止剤の含有量が0.03質量%未満では効果が小さく、0.75質量%より大きくても効果の向上は期待できないばかりか、長期間高温に曝された場合には酸化防止剤自身の劣化物の影響によりグリースが硬くなる傾向にある。
本発明に用いられる(E)成分の耐熱性向上剤は、金属せっけん(C)及びアミン系酸化防止剤(D)と共に用いることで熱伝導性グリースの耐熱性を格段に向上させることができる。
本発明に用いられる(E)成分の耐熱性向上剤は、一般式(1)〜(5)で表わされる構造をもつ化合物が挙げられる。
Figure 2013071990
一般式(1)において、R、Rは、炭素数4〜10のターシャリータイプの炭化水素基であり、更に好ましくは炭素数4〜8のターシャリータイプの炭化水素基である。
一般式(1)において、Rは炭素数1〜10の2価の炭化水素基であり、好ましくは炭素数1〜8の2価の炭化水素基であり、更に好ましくは炭素数1〜5の2価の炭化水素基である。
乃至Rの炭化水素基の種類に制限はないが、好ましいのは飽和炭化水素基である。
Figure 2013071990
一般式(2)において、R、Rは炭素数4〜10のターシャリータイプの炭化水素基であり、好ましくは炭素数4〜8のターシャリータイプの炭化水素基であり、更に好ましくは炭素数4〜6のターシャリータイプの炭化水素基である。また、炭化水素基の種類に制限はないが、好ましいのは飽和炭化水素基である。
一般式(2)において、R、Rは水素原子または炭素数1〜10の1価の炭化水素基であり、好ましくは水素原子または炭素数4〜8のターシャリータイプの炭化水素基であり、更に好ましくは炭素数4〜6のターシャリータイプの炭化水素基である。また、炭化水素基の場合、その種類に制限はないが、好ましいのは飽和炭化水素基である。
一般式(2)において、Rは炭素数1〜10の2価の炭化水素基であり、好ましくは炭素数1〜8の2価の炭化水素基であり、更に好ましくは炭素数1〜5の2価の炭化水素基であり、特に好ましくは炭素数2〜5の2価の炭化水素基である。また、炭化水素基の種類に制限はないが、好ましいのは飽和炭化水素基である。
Figure 2013071990
一般式(3)において、R、R10、R11、R12、R13は水素原子または炭素数4〜10のターシャリータイプの炭化水素基であり、かつ少なくとも一つは炭素数4〜10のターシャリータイプの炭化水素基であり、ターシャリータイプの炭化水素基の場合は、好ましくは炭素数4〜8のターシャリータイプの炭化水素基であり、更に好ましくは炭素数4〜6のターシャリータイプの炭化水素基である。また、炭化水素基の場合、その種類に制限はないが、好ましいのは飽和炭化水素基である。R、R10、R11、R12、R13において、水素原子であるものの数は、2〜4個が好ましく、3〜4個がより好ましい。
一般式(3)において、R14、R15、R16、R17、R18は水素原子、水酸基または炭素数4〜10のターシャリータイプの炭化水素基であり、かつ少なくとも一つは水酸基であり、ターシャリータイプの炭化水素基の場合は、好ましくは炭素数4〜8のターシャリータイプの炭化水素基であり、更に好ましくは炭素数4〜6のターシャリータイプの炭化水素基である。また、炭化水素基の場合、その種類に制限はないが、好ましいのは飽和炭化水素基である。R14、R15、R16、R17、R18において、水素原子であるものの数は、2〜4個が好ましい。
Figure 2013071990
一般式(4)において、R19、R20、R21、R22、R23、R24、R25、R26は炭素数1〜10の1価の炭化水素基であり、好ましくは炭素数1〜8の1価の炭化水素基であり、更に好ましくは炭素数1〜6の1価の炭化水素基である。また、炭化水素基の種類に制限はないが、好ましいのは飽和炭化水素基である。
一般式(4)において、R27、R28は水素原子または炭素数1〜10の1価の炭化水素基であり、かつ少なくとも一つは水素原子であり、好ましくは両方とも水素原子である。R27、R28が1価の炭化水素基の場合は、好ましくは炭素数1〜8の1価の炭化水素基であり、更に好ましくは炭素数1〜6の1価の炭化水素基である。また、炭化水素基の場合、その種類に制限はないが、好ましいのは飽和炭化水素基である。
一般式(4)において、R29は炭素数1〜12の2価の炭化水素基であり、好ましくは炭素数4〜10の2価の炭化水素基であり、更に好ましくは炭素数6〜10の2価の炭化水素基である。また、炭化水素基の種類に制限はないが、好ましいのは飽和炭化水素基である。
Figure 2013071990
一般式(5)において、R30、R31、R32、R33、R34は炭素数1〜10の1価の炭化水素基であり、好ましくは炭素数1〜8の1価の炭化水素基であり、更に好ましくは炭素数1〜6の1価の炭化水素基である。また、炭化水素基の種類に制限はないが、好ましいのは飽和炭化水素基である。
一般式(5)において、R35、R36は炭素数1〜12の2価の炭化水素基であり、好ましくは炭素数1〜8の2価の炭化水素基であり、更に好ましくは炭素数1〜5の2価の炭化水素基である。また、炭化水素基の種類に制限はないが、好ましいのは飽和炭化水素基である。
一般式(5)において、n=1〜20であり、好ましくはn=5〜18であり、より好ましくはn=8〜16である。
(E)成分の耐熱性向上剤は、実施例において記載した熱伝導性グリースの高温放置試験におけるちょう度変化率が、±10%以下の耐熱性の効能を発揮するものが好ましい。その高温放置試験におけるちょう度変化率は、±9%以下がより好ましく、±8%以下がさらに好ましく、±7%以下が特に好ましい。
(E)成分の耐熱性向上剤として、一般式(1)〜(5)のいずれの化合物を用いても良いが、好ましくは一般式(2)〜(5)の化合物であり、より好ましくは一般式(2)、一般式(3)、および一般式(5)の化合物であり、更に好ましくは一般式(2)および一般式(5)の化合物であり、最も好ましくは一般式(5)の化合物である。
(E)成分の耐熱性向上剤の含有量は、0.001質量%〜1.0質量%であり、好ましくは0.005質量%〜1.0質量%であり、より好ましくは0.005質量%〜0.8質量%であり、更に好ましくは0.005質量%〜0.5質量%である。
(E)成分の耐熱性向上剤の含有量を上記範囲とすることで、熱伝導性グリースの耐熱性を向上することができる。この理由として、詳細は判っていないが、熱伝導性グリースの熱履歴により発生するラジカルを(E)成分が補足することが考えられる。
(E)成分の耐熱性向上剤の含有量は、液体成分の含有量に対して0.01質量%〜5質量%の割合であり、0.05質量%〜2質量%がより好ましい。(E)成分の液体成分に対する含有量が0.01質量%より少ないと、優れた耐熱性を得にくくなる、また、(E)成分の液体成分に対する含有量が5質量%を超えると、ちょう度が低くなり、良好な塗布性を得にくくなるため好ましくない。
また、本発明の熱伝導性グリースには必要に応じて、公知の添加剤を適宜配合することができる。これらとしては、例えば、2次酸化防止剤としてはサルファイド、ジサルファイド、トリサルファイド、チオビスフェノールなどのイオウ系酸化防止剤や、アルキルフォスファイト、ZnDTPなどのリン系酸化防止剤等、さび止め剤としてはスルホン酸塩、カルボン酸、カルボン酸塩、コハク酸エステル等、腐食防止剤としてはベンゾトリアゾールおよびその誘導体等の化合物、チアジアゾール系化合物が、増粘剤としてはポリブテン、ポリメタクリレート、オレフィンコポリマー、高粘度のポリアルファオレフィン等、増ちょう剤としてはウレア化合物、ナトリウムテレフタラメート、ポリテトラフルオロエチレン、有機化ベントナイト、シリカゲル、石油ワックス、ポリエチレンワックス等が挙げられる。これらの添加剤の配合量は、通常の配合量であればよい。
本発明の高熱伝導性グリースの製造に関しては、均一に成分を混合できればその方法にはよらない。一般的な製造方法としては、乳鉢、プラネタリーミキサー、2軸式押出機などにより混練りを行い、グリース状にした後、さらに三本ロールにて均一に混練りする方法がある。
以下、実施例により本発明を詳述するが、本発明はこれによって何ら限定されるものではない。
実施例及び比較例に用いた各成分について以下に示す。
(A−1)酸化亜鉛1 平均粒径:0.29μm(レーザー回折散乱法)
(A−2)酸化亜鉛2 平均粒径:0.6μm(レーザー回折散乱法)
(B−1)ポリ−アルファ−オレフィン(1−デセン−オリゴマー) 40℃動粘度:47mm/s
(B−2)ペンタエリスリトールと炭素数8及び10のモノカルボン酸とのエステル 40℃動粘度:32mm/s
(C)ステアリン酸亜鉛
(D)アミン系酸化防止剤 ジオクチルジフェニルアミン
(E−1)1,2−ビス(3,5−ジ−tert−ブチル−4−ヒドロキシヒドロシナモリ)ヒドラジン
(一般式(1)におけるRとRはtert−ブチル基、Rはエチレン基である。)
(E−2)2−[1−(2−ヒドロキシ−3,5−ジ−tert−ペンチルフェニル)エチル]−4,6−ジ−tert−ペンチルフェニルアクリレート
(一般式(2)におけるR、R、R、Rはtert−ペンチル基、Rはメチルメチレン基である。)
(E−3)2,4−ジ−tert−ブチルフェニル−3,5−ジ−tert−ブチル−4−ヒドロキシベンゾエート
(一般式(3)におけるR、R11、R15、R17はtert−ブチル基、R10、R12、R13、R14、R18は水素原子、R16は水酸基である。)
(E−4)4−tert−ブチルフェニルサリシレート
(一般式(3)におけるR11はtert−ブチル基、R、R10、R12、R13、R14、R15、R16、およびR17は水素原子、R18は水酸基である。)
(E−5)ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート
(一般式(4)におけるR19乃至R26のいずれもメチル基、R27とR28は水素原子、R29は−(CH−基である。)
(E−6)コハク酸ジメチルと1−(2−ヒドロキシエチル)−4−ヒドロキシ−2,2,6,6−テトラメチルピペリジンの重縮合物
(一般式(5)におけるR30乃至R33のいずれもメチル基、R35とR36はエチレン基、R34はメチル基、n=14である。)
(E−7)2−tert−ブチル−6−(3−tert−ブチル−2−ヒドロキシ−5−メチルベンジル)−4−メチルフェニルアクリレート
(一般式(2)におけるR、Rはtert−ブチル基、R、Rはメチル基、Rはメチレン基である。)
(E−8)2,2,4,4−テトラヒドロキシベンゾフェノン
(E−9)ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート(一般式(4)におけるR19乃至R28のいずれもメチル基、R29は−(CH−基である。)とメチル(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケートの混合物である。)
なお、表中の液体成分中の(E)の含有量の質量%とは、組成物中を構成する成分のうち、(A)無機粉末充填剤を除いた成分の合計を100とし、そのうちの(E)の占める割合を示したものである。
熱伝導性グリースの調製は、以下のように行った。
基油に酸化防止剤を溶解し、無機粉末充填剤、金属せっけん、および一般式(1)〜(5)で表わされる構造をもつ化合物の耐熱性向上剤とともにプラネタリーミキサーに入れた。120℃〜150℃程度に加熱しながら混練りを行いよく混合し、グリース状とした。その後、三本ロールによる混練りを1〜2回実施して熱伝導性グリースを調製した。
得られた熱伝導性グリースを用いて、以下に示す性能を評価した。
ちょう度は、JIS−K2220に準拠して不混和ちょう度を測定した。ちょう度の値が大きいほど熱伝導性グリースが軟らかくなり、逆に小さいほど硬くなる。
熱伝導率は、京都電子工業(株)製迅速熱伝導率計QTM−500により室温にて測定した。
高温放置試験は、熱伝導性グリース0.25mlを鉄板に挟み、厚さ200μmに薄膜化し、180℃で240時間加熱することにより行った。試験前後のちょう度を簡易的に測定した。ここで、高温放置試験におけるちょう度変化率は以下の式により算出した。
Figure 2013071990
ちょう度変化率の絶対値が小さい程、耐熱性が優れている。
Figure 2013071990

Figure 2013071990



Figure 2013071990




Figure 2013071990
表1〜3から分かるように、実施例1〜13は、200以上の高いちょう度を持ちながら、180℃×240時間の高温放置試験後もちょう度変化が非常に少なく、耐熱性が格段に優れている。
一方、一般式(1)〜(5)で表わされる構造をもつ化合物を含まない比較例1〜4は、180℃×240時間の高温放置試験後のちょう度変化が大きく、耐熱性が劣る。
本発明の耐熱型熱伝導性グリースは、熱対策の必要な電子部品の放熱性を向上でき、特にCPU、パワー半導体、LEDの放熱材料として好適である。
本発明の耐熱型熱伝導性グリースは、熱対策の必要な電子部品の放熱性を向上でき、特にCPU、パワー半導体、LEDの放熱材料として好適である。

Claims (3)

  1. 一般式(1)〜(5)で表わされる構造をもつ化合物から選ばれる1種以上の熱伝導性グリース用耐熱性向上剤。
    Figure 2013071990
    (一般式(1)において、R、Rは、炭素数4〜10の1価の炭化水素基であり、Rは炭素数1〜10の2価の炭化水素基である。)
    Figure 2013071990
    (一般式(2)において、R、Rは炭素数4〜10のターシャリータイプの炭化水素基であり、R、Rは水素原子または炭素数1〜10の1価の炭化水素基であり、Rは炭素数1〜10の2価の炭化水素基である。)
    Figure 2013071990
    (一般式(3)において、R、R10、R11、R12、R13は水素原子または炭素数4〜10のターシャリータイプの炭化水素基であり、かつ少なくとも一つは炭素数4〜10のターシャリータイプの炭化水素基であり、R14、R15、R16、R17、R18は水素原子、水酸基または炭素数4〜10のターシャリータイプの炭化水素基であり、かつ少なくとも一つは水酸基である。)
    Figure 2013071990
    (一般式(4)において、R19、R20、R21、R22、R23、R24、R25、R26は炭素数1〜10の1価の炭化水素基であり、R27、R28は水素原子または炭素数1〜10の1価の炭化水素基であり、かつ少なくとも一つは水素原子であり、R29は炭素数1〜12の2価の炭化水素基である。)
    Figure 2013071990
    (一般式(5)において、R30、R31、R32、R33、R34は炭素数1〜10の1価の炭化水素基であり、R35、R36は炭素数1〜12の2価の炭化水素基であり、nは1〜20である。)
  2. (A)無機粉末充填剤を70〜97質量%、
    (B)基油を2〜30質量%、
    (C)2価以上の金属イオンと有機酸とからなる金属せっけんを0.001〜3質量%、
    (D)アミン系酸化防止剤を0.03〜0.75質量%、
    (E)前記一般式(1)〜(5)で表わされる構造をもつ化合物から選ばれる1種以上の耐熱性向上剤を0.001〜1.0質量%の割合で含有することを特徴とする熱伝導性グリース。
  3. (B)成分の基油に含まれるポリアルファオレフィンの割合が5〜100質量%である請求項2に記載の熱伝導性グリース。
JP2011211554A 2011-09-27 2011-09-27 耐熱型熱伝導性グリース Active JP5687167B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011211554A JP5687167B2 (ja) 2011-09-27 2011-09-27 耐熱型熱伝導性グリース

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011211554A JP5687167B2 (ja) 2011-09-27 2011-09-27 耐熱型熱伝導性グリース

Publications (2)

Publication Number Publication Date
JP2013071990A true JP2013071990A (ja) 2013-04-22
JP5687167B2 JP5687167B2 (ja) 2015-03-18

Family

ID=48476755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011211554A Active JP5687167B2 (ja) 2011-09-27 2011-09-27 耐熱型熱伝導性グリース

Country Status (1)

Country Link
JP (1) JP5687167B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016065161A (ja) * 2014-09-25 2016-04-28 株式会社Adeka 潤滑油用添加剤組成物及びそれを含有する潤滑油組成物
JP2019081841A (ja) * 2017-10-30 2019-05-30 住友金属鉱山株式会社 熱伝導性グリース
JP2020002212A (ja) * 2018-06-26 2020-01-09 住友金属鉱山株式会社 熱伝導性グリース
WO2022054330A1 (ja) * 2020-09-11 2022-03-17 富士高分子工業株式会社 熱伝導性グリース及びその製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160094385A (ko) 2013-12-05 2016-08-09 허니웰 인터내셔날 인코포레이티드 조절된 pH를 갖는 주석(II) 메탄술포네이트 용액
MX2016016984A (es) 2014-07-07 2017-05-03 Honeywell Int Inc Material de interconexion termica con depurador ionico.
CN112080258A (zh) 2014-12-05 2020-12-15 霍尼韦尔国际公司 具有低热阻的高性能热界面材料
US10312177B2 (en) 2015-11-17 2019-06-04 Honeywell International Inc. Thermal interface materials including a coloring agent
CN109072051B (zh) 2016-03-08 2023-12-26 霍尼韦尔国际公司 相变材料
US10501671B2 (en) 2016-07-26 2019-12-10 Honeywell International Inc. Gel-type thermal interface material
US11041103B2 (en) 2017-09-08 2021-06-22 Honeywell International Inc. Silicone-free thermal gel
US10428256B2 (en) 2017-10-23 2019-10-01 Honeywell International Inc. Releasable thermal gel
US11072706B2 (en) 2018-02-15 2021-07-27 Honeywell International Inc. Gel-type thermal interface material
US11373921B2 (en) 2019-04-23 2022-06-28 Honeywell International Inc. Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132253A1 (ja) * 2005-06-07 2006-12-14 Nihon Handa Co., Ltd. 熱伝導性オイル組成物、放熱剤および電子機器
JP2007077244A (ja) * 2005-09-13 2007-03-29 Nsk Ltd グリース組成物及び転がり軸受
JP2009046639A (ja) * 2007-08-22 2009-03-05 Cosmo Sekiyu Lubricants Kk 耐熱型熱伝導性グリース

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132253A1 (ja) * 2005-06-07 2006-12-14 Nihon Handa Co., Ltd. 熱伝導性オイル組成物、放熱剤および電子機器
JP2007077244A (ja) * 2005-09-13 2007-03-29 Nsk Ltd グリース組成物及び転がり軸受
JP2009046639A (ja) * 2007-08-22 2009-03-05 Cosmo Sekiyu Lubricants Kk 耐熱型熱伝導性グリース

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016065161A (ja) * 2014-09-25 2016-04-28 株式会社Adeka 潤滑油用添加剤組成物及びそれを含有する潤滑油組成物
JP2019081841A (ja) * 2017-10-30 2019-05-30 住友金属鉱山株式会社 熱伝導性グリース
JP2020002212A (ja) * 2018-06-26 2020-01-09 住友金属鉱山株式会社 熱伝導性グリース
JP7073939B2 (ja) 2018-06-26 2022-05-24 住友金属鉱山株式会社 熱伝導性グリース
WO2022054330A1 (ja) * 2020-09-11 2022-03-17 富士高分子工業株式会社 熱伝導性グリース及びその製造方法
JP7095194B1 (ja) * 2020-09-11 2022-07-04 富士高分子工業株式会社 熱伝導性グリース及びその製造方法

Also Published As

Publication number Publication date
JP5687167B2 (ja) 2015-03-18

Similar Documents

Publication Publication Date Title
JP5687167B2 (ja) 耐熱型熱伝導性グリース
JP5269366B2 (ja) 耐熱型熱伝導性グリース
JP5944306B2 (ja) 高熱伝導性グリース
JP5489409B2 (ja) 高熱伝導性コンパウンド
JP5577553B2 (ja) 放熱コンパウンド組成物
JP6263042B2 (ja) 基油拡散防止性能を有する熱伝導性グリース
JP4652085B2 (ja) 高熱伝導性コンパウンド
JP7155661B2 (ja) 熱伝導性グリース
JP4667882B2 (ja) 高熱伝導性コンパウンド
JP7379940B2 (ja) 熱伝導性組成物
JP5781407B2 (ja) 熱伝導性コンパウンド
JP2022183767A (ja) 熱伝導性組成物
JP2021080316A (ja) 熱伝導性組成物
JP2022030766A (ja) 熱伝導性グリース
JP7073939B2 (ja) 熱伝導性グリース
JP4841341B2 (ja) 高熱伝導性コンパウンド
JP7351236B2 (ja) 熱伝導性グリース
TW202140677A (zh) 導熱性組成物
JP7379939B2 (ja) 熱伝導性組成物
JP7275797B2 (ja) 熱伝導性基油含有組成物
JP7556302B2 (ja) 熱伝導性グリース
JP6848816B2 (ja) 熱伝導性グリース
JP2023166735A (ja) 熱伝導性グリース及び熱伝導性グリースの製造方法
JP7494700B2 (ja) 熱伝導性グリース
JP7110759B2 (ja) 熱伝導性グリース

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150121

R150 Certificate of patent or registration of utility model

Ref document number: 5687167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250