JP2013068214A - 密閉型圧縮機 - Google Patents

密閉型圧縮機 Download PDF

Info

Publication number
JP2013068214A
JP2013068214A JP2012063351A JP2012063351A JP2013068214A JP 2013068214 A JP2013068214 A JP 2013068214A JP 2012063351 A JP2012063351 A JP 2012063351A JP 2012063351 A JP2012063351 A JP 2012063351A JP 2013068214 A JP2013068214 A JP 2013068214A
Authority
JP
Japan
Prior art keywords
piston
groove
hermetic compressor
discharge hole
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012063351A
Other languages
English (en)
Other versions
JP6065192B2 (ja
Inventor
Masakazu Yamaoka
正和 山岡
Yasushi Hayashi
康司 林
Makoto Katayama
誠 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012063351A priority Critical patent/JP6065192B2/ja
Priority to US13/460,141 priority patent/US9518571B2/en
Priority to CN2012101417234A priority patent/CN102777348A/zh
Publication of JP2013068214A publication Critical patent/JP2013068214A/ja
Application granted granted Critical
Publication of JP6065192B2 publication Critical patent/JP6065192B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0005Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • F04B39/1066Valve plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/02Piston machines or pumps characterised by having positively-driven valving the valving being fluid-actuated
    • F04B7/0208Piston machines or pumps characterised by having positively-driven valving the valving being fluid-actuated the distribution member forming both the inlet and discharge distributor for one single pumping chamber
    • F04B7/0216Piston machines or pumps characterised by having positively-driven valving the valving being fluid-actuated the distribution member forming both the inlet and discharge distributor for one single pumping chamber and having an oscillating movement

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)

Abstract

【課題】ピストンの上死点位置における圧縮室の残留作動流体の重量を低減し、吸入行程時の残留作動流体の再膨張を減らし、体積効率を上げることで効率を向上することができる、密閉型圧縮機を提供することを目的とする。
【解決手段】電動要素と圧縮要素が収容されている密閉容器を備え、圧縮要素は、圧縮室形成するシリンダブロックと、ピストン122と、圧縮室内外を連通する吐出孔が形成されているバルブプレートと、を備え、ピストン122におけるバルブプレートと対向する先端面162には、先端面162の外周縁部から先端面162における吐出孔との対向位置に向かって延びる所定幅の第1の溝168が設けられ、第1の溝168の先端部は、先端面162における吐出孔との対向位置に位置し、かつ、傾斜するように形成されている。
【選択図】図3

Description

本発明は、冷蔵庫等の冷凍サイクル装置、又は空気圧縮機等に使用される密閉型圧縮機に関するものである。
近年、地球環境保護のため、省エネルギー化への要求はますます強まってきており、冷蔵庫やその他の冷凍サイクル装置に用いられる圧縮機や、工業分野等に使用される空気圧縮機などにおいても、高効率化が強く要望されている。
従来、この種の密閉型圧縮機としては、シリンダ内を往復運動するピストンの上面に凹部を形成し、圧縮機の効率を改善したものが知られている(例えば、特許文献1参照)。
図22は、上記特許文献1に記載された従来の密閉型圧縮機の縦断面図、図23は、従来の密閉型圧縮機のピストンの先端面側からの平面図、図24は、従来の密閉型圧縮機のピストン上部とバルブプレート部の要部拡大断面図である。
図22、図23、及び図24に示すように、圧縮機は、密閉容器1内において、底部にオイル2を貯留するとともに作動流体4が充填され、さらに圧縮機本体6が収納されている。圧縮機本体6は、サスペンションスプリング8によって、密閉容器1内に弾性的に支持されている。
圧縮機本体6は、電動要素10と、この電動要素10により回転駆動される圧縮要素12とから構成されている。圧縮要素12は、電動要素10の下方に配設され、電動要素10は、ステータ14およびロータ16を有している。
圧縮要素12は、主軸20と偏芯軸18とを備えたクランクシャフト22と、圧縮室24を形成するシリンダ26と、主軸20を支持する軸受部28を一体に形成したシリンダブロック30と、シリンダ26内を摺動可能なピストン32と、シリンダ26の端面を封止するバルブプレート34と、バルブプレート34に備えられ圧縮室24の内外を連通する吸入孔(図示せず)及び吐出孔36をそれぞれ開閉する吸入バルブ38と、吐出バルブ40と、偏芯軸18とピストン32を連結する連結手段42と、を備えている。
また、バルブプレート34の反圧縮室24側には、バルブプレート34を覆うシリンダヘッド44が配置され、バルブプレート34とシリンダヘッド44によりヘッド空間46が形成されている。
クランクシャフト22の主軸20は、シリンダブロック30の軸受部28に回転自在に軸支されるとともに、ロータ16が固定されている。
また、図23及び図24に示すように、ピストン32の上面(先端面)48には凹部50が形成され、ピストン32の移動方向から見て、凹部50は少なくとも一部が吐出孔36の一部と重なり、上面48の凹部50以外の面52は平坦で、かつ、バルブプレート34の内側の面と平行をなしている。
次に、従来の密閉型圧縮機の動作について説明する。
密閉型圧縮機は、ステータ14に電流を流して磁界を発生させ、主軸20に固定されたロータ16を回転させることで、クランクシャフト22が回転し、偏芯軸18に取り付けられた連結手段42を介して、ピストン32がシリンダ26内を往復運動し、吸入、圧縮、吐出行程の一連のサイクルを繰り返す。
吸入行程において、ピストン32がシリンダ26の容積が増加する方向に動作すると、圧縮室24内の作動流体4が膨張し、圧縮室24内の圧力が吸入圧力を下回ると、圧縮室24内の圧力と冷凍サイクル低圧側(図示せず)の圧力との差により、吸入バルブ38が開き始め、冷凍サイクルから戻った温度の低い作動流体4が、吸入孔(図示せず)を経て圧縮室24内に流入する。
そして、圧縮行程において、ピストン32の動作が、圧縮室24の容積が最も大きくなる下死点の位置から圧縮室24内の容積が減少する方向に転じると、圧縮室24内の圧力は上昇し、圧縮室24内の圧力と冷凍サイクル低圧側(図示せず)の圧力との差によって、吸入バルブ38が閉じ、圧縮室24は閉塞される。
その後、ピストン32がさらに圧縮室24の容積を減少させる方向に動作すると、作動流体4は圧縮され、所定の圧力まで昇圧される。
吐出行程において、圧縮室24内の作動流体4の圧力が上昇し、バルブプレート34とシリンダヘッド44により形成されているヘッド空間46内部の圧力より高くなると、圧力差によって吐出バルブ40が開き始め、圧縮室24内部の作動流体4は、吐出孔36を通過し、ヘッド空間46に流出する。その後、作動流体4は、ヘッド空間46から吐出マフラー(図示せず)を経由し、冷凍サイクルの高圧側(図示せず)に放出される。
ピストン32がバルブプレート34と最も接近し、圧縮室24の容積が最小になる上死点に位置するとき、ピストン32とバルブプレート34の間には両者の干渉を回避するため、クリアランスが存在し、圧縮室24には微小な容積が残在する。すなわち、この微小な容積には作動流体4が残留し、吐出されないため、吸入行程では、この残留する作動流体4と新たに吸入孔(図示せず)を経て圧縮室24へ流入する作動流体4がともに混合され、圧縮されることとなる。
ピストン32の上面48には凹部50が形成されているため、ピストン32が上死点に位置するとき、バルブプレート34と凹部50との間の空間のクリアランスは広がり、ピストン32の上面48から空間を横切り、吐出孔36へ作動流体4が流れる通過断面積を広く確保することができる。
その結果、吐出孔36へ流れる作動流体4の流れを改善することができ、ピストン32が上死点に位置するときの、バルブプレート34とピストン32の上面48とのクリアランスの距離を狭くし、この空間の容積を低減することで、圧縮機の体積効率を改善することができる。
また、ピストンの先端面に突起を設け、ピストンが上死点に位置した時、前記突起がバルブプレートの吐出孔に侵入し、圧縮室内に残留する作動流体の量を極力少なくする構成も知られている(例えば、特許文献2参照)。
特公平8−6689号公報 特開2010−90705号公報
しかしながら、上記特許文献1に記載される従来の構成では、ピストン32が圧縮室24の容積を減少方向に移動する圧縮行程において、ピストン32の上面48および凹部50の近傍では、作動流体4の流れが、凹部50の中央の方向への流れとなるため、作動流体4の流れが凹部50の中央部で互いに交差するものとなる。
その結果、作動流体4が圧縮される際の圧縮室24内部の作動流体4の流れが乱れ、これに伴って吐出孔36へ流れる作動流体4の流れが阻害されていた。
したがって、上記従来の構成は、ピストン32が上死点に位置するとき、ピストン32とバルブプレート34の間の空間容積に残留する作動流体4の重量が増えてしまい、残留した作動流体4が吸入行程で再膨張し、体積効率が低下するという課題を有していた。
また、上記特許文献2に記載される構成は、圧縮機の効率を向上させる効果が期待できるものの、突起に向かって流れる作動流体の流れに乱れが生じ、改善の余地が残される構成である。
本発明は、上記従来の課題を解決するもので、圧縮室内の作動流体の流れを改善し、ピストンの上死点位置における、圧縮室の残留作動流体の重量を低減することで、吸入行程時の残留作動流体の再膨張を減らし、体積効率を上げることで密閉型圧縮機の効率を向上することを目的とする。
上記従来の課題を解決するために、本発明の密閉型圧縮機は、ピストンにおける前記バルブプレートと対向する先端面に、前記先端面の外周縁部から前記先端面における吐出孔との対向位置に向かって延びる所定幅の第1の溝を設け、前記第1の溝の先端部は、前記先端面における吐出孔との対向位置に位置し、かつ、傾斜するように形成されている。
この構成により、前記ピストンが下死点から上死点へ移動する圧縮行程時において、ピストンの移動に伴う圧縮室の容積の減少により、圧縮室内部の作動流体は圧縮され、吐出孔から吐出される流れとなる。
この時、圧縮室の内周面近く(ピストン先端面の外周縁部)に位置する作動流体は、前記第1の溝に沿いながら吐出孔との対向位置へと流れ、突起の平面に沿って吐出孔へ向かう流れが生成されることで、圧縮室の内周面近くでの残留を抑制するという作用を有する。
本発明の密閉型圧縮機は、ピストンの上死点位置における、圧縮室内の作動流体の残留量を低減することで残留作動流体の再膨張量を減らし、体積効率を向上させ、圧縮機の効率を向上させることができる。
図1は、本発明の実施の形態1における密閉型圧縮機の縦断面図である。 図2は、同実施の形態1における密閉型圧縮機の圧縮要素の分解斜視図である。 図3は、同実施の形態1における密閉型圧縮機の圧縮要素を構成するピストンの斜視図である。 図4は、同実施の形態1における密閉型圧縮機のピストンの平面図である。 図5は、同実施の形態1における密閉型圧縮機のピストンの図3に示すA―A線による縦断面図である。 図6は、同実施の形態1における密閉型圧縮機の要部拡大断面図である。 図7は、同実施の形態1における密閉型圧縮機の動作を説明する模式図である。 図8は、同実施の形態1における密閉型圧縮機の第1の溝の幅と深さと成績係数COPの関係を示す特性図である。 図9は、同実施の形態1における密閉型圧縮機の圧縮行程における作動流体の流れを説明する模式図である。 図10は、同実施の形態1における密閉型圧縮機のピストンに設けた突起(側壁)の突出角度θと成績係数COPの関係を示す特性図である。 図11(A)は、実施の形態1における密閉型圧縮機の作動流体挙動を示す流速ベクトル図である。 図11(B)は、実施の形態1における密閉型圧縮機のピストンの正面図である。 図12は、本発明の実施の形態2における密閉型圧縮機の圧縮要素を構成するピストンの斜視図である。 図13は、同実施の形態2における密閉型圧縮機のピストンの平面図である。 図14は、同実施の形態2における密閉型圧縮機のピストンの図12に示すA―A線による縦断面図である。 図15は、同実施の形態2における密閉型圧縮機の外周縁部の深さと成績係数COPの関係を示す特性図である。 図16は、密閉型圧縮機におけるピストンの概略構成を示す斜視図である。 図17は、本発明の実施の形態3における密閉型圧縮機の圧縮要素を構成するピストンの斜視図である。 図18は、同実施の形態3における密閉型圧縮機のピストンの図17に示すA―A線による縦断面図である。 図19は、本発明の実施の形態4における密閉型圧縮機の圧縮要素を構成するピストンの斜視図である。 図20は、本発明の実施の形態5における密閉型圧縮機の圧縮要素を構成するピストンの斜視図である。 図21は、同実施の形態5における密閉型圧縮機のピストンの図20に示すA―A線による縦断面図である。 図22は、上記特許文献1に記載された従来の密閉型圧縮機の縦断面図である。 図23は、従来の密閉型圧縮機のピストンの先端面側からの平面図である。 図24は、従来の密閉型圧縮機のピストン上部とバルブプレート部の要部拡大断面図である。
本発明に係る密閉型圧縮機は、電動要素と、電動要素によって駆動される圧縮要素と、電動要素と圧縮要素が収容されている密閉容器と、を備え、圧縮要素は、圧縮室を形成するシリンダブロックと、圧縮室内を往復運動するピストンと、圧縮室の開口端を閉塞するように配置され、かつ、圧縮室内外を連通する吐出孔が形成されているバルブプレートと、を備え、ピストンにおけるバルブプレートと対向する先端面には、先端面の外周縁部から先端面における吐出孔との対向位置に向かって延びる所定幅の第1の溝が設けられ、第1の溝の先端部は、先端面における吐出孔との対向位置に位置し、かつ、傾斜するように形成されている。
この構成により、ピストンが下死点から上死点へ動作する圧縮行程時において、前記吐出孔から離れた圧縮室の内周面近く(ピストン先端面の外周縁部)に位置する作動流体を、第1の溝によってピストンの先端面における吐出孔との対向位置へ導き、第1の溝の先端部によって吐出孔へと効率的に導くことができる。
また、本発明に係る密閉型圧縮機では、ピストンの先端面は円形状に形成されており、第1の溝の幅が、ピストンの直径の10%以上、かつ、30%以下であってもよい。
また、本発明に係る密閉型圧縮機では、ピストンにおけるバルブプレートと対向する先端面には、先端面の外周縁部から先端面における吐出孔との対向位置に向かって延びる所定幅の第2の溝がさらに設けられていて、第2の溝の基端部は、第1の溝の基端部から最も離れた位置に位置し、第2の溝の先端部は、先端面における吐出孔との対向位置に位置し、かつ、傾斜するように形成されていてもよい。
また、本発明に係る密閉型圧縮機では、ピストンにおけるバルブプレートと対向する先端面には、突起が設けられていて、突起は、ピストンが上死点に位置するときにバルブプレートの吐出孔へ挿入するように形成されていてもよい。
これにより、ピストンが(略)上死点位置となった状態における作動流体の残留空間容積を、吐出孔部の容積も含めて低減させることができる。
その結果、ピストンの(略)上死点位置において、ピストンとバルブプレートの間のクリアランス容積内に残留する作動流体の重量を減少させることができ、吸入行程における残留作動流体の再膨張量を抑え、体積効率を向上させることができる。また、作動流体が圧縮室の内周面近くに滞留することに起因した過圧縮を抑制することで、圧縮機に入力される電力量を低減し、効率を向上させた密閉型圧縮機を提供することができる。
また、本発明に係る密閉型圧縮機では、第1の溝と第2の溝が互いに連通するように形成され、第1の溝及び第2の溝の少なくとも一方の溝の底面には、突起が設けられ、突起は、ピストンが上死点に位置するときにバルブプレートの吐出孔へ挿入するように形成されていてもよい。
これにより、ピストンが(略)上死点位置となった状態における作動流体の残留空間容積を、吐出孔部の容積も含めて低減させることができる。
その結果、ピストンの(略)上死点位置において、ピストンとバルブプレートの間のクリアランス容積内に残留する作動流体の重量を減少させることができ、吸入行程における残留作動流体の再膨張量を抑え、体積効率を向上させることができる。また、作動流体が圧縮室の内周面近くに滞留することに起因した過圧縮を抑制することで、圧縮機に入力される電力量を低減し効率を向上させた密閉型圧縮機を提供することができる。
また、かかる構成とすることにより、作動流体を、突起を挟む両側から前記吐出孔へ導くことができる。その結果、ピストンの(略)上死点位置において、ピストンとバルブプレートの間のクリアランス容積内に残留する作動流体のさらなる減少と、作動流体が圧縮室の内周面近くに滞留することに起因した過圧縮をさらに抑制することができる。したがって、圧縮機に入力される電力量をさらに低減し、密閉型圧縮機の効率を向上することができる。
また、本発明に係る密閉型圧縮機では、突起が、作動流体の通流方向に対向する面が平面になるように形成されていてもよい。
かかる構成とすることにより、第1の溝に沿って流れ、吐出孔へ向かう作動流体を効率よく吐出孔へ導くことができ、吐出行程にある作動流体の圧縮室内への残留量をさらに減少することができ、密閉型圧縮機における効率を、さらに向上することができる。
また、本発明に係る密閉型圧縮機では、突起は、該突起を構成する1対の側壁が、第1の溝の延伸方向に対して、平行となるように形成されていてもよい。
かかる構成とすることにより、第1の溝に沿って流れる作動流体の流れの乱れを抑え、作動流体の吐出孔への導きを円滑にすることができる。
また、本発明に係る密閉型圧縮機では、突起は、該突起におけるピストンの先端面から突出する平面とピストンの先端面とのなす角度θが、90°以上、かつ、110°以下となるように形成されていてもよい。
また、本発明に係る密閉型圧縮機では、突起は、その軸心が、吐出孔の軸心と一致するように形成されていてもよい。
かかる構成とすることにより、例えば、突起が、吐出孔の軸心方向から見て、左右対称に形成されていて、作動流体の通路となる第1の溝が突起を軸に左右対称に形成されていれば、作動流体の流れをより円滑化することができ、さらに効率を向上させた密閉型圧縮機を提供することができる。
なお、第1の溝が、突起を軸に左右対称に形成されているとは、完全に左右対称でなくてもよく、本発明の作用効果を奏する範囲内であれば、第1の溝が突起を軸に左右対称に形成されていなくてもよい。例えば、第1の溝は、本発明の作用効果を奏する範囲で、流体の通流方向(第1の溝の基端部から先端部の方向)から見て、突起の左側の底面の幅、又は深さが、突起の右側の底面の幅、又は深さよりも小さくてもよい。また、例えば、第1の溝は、本発明の作用効果を奏する範囲で、流体の通流方向(第1の溝の基端部から先端部の方向)から見て、突起の左側の底面の幅、又は深さが、突起の右側の底面の幅、又は深さよりも大きくてもよい。
また、本発明に係る密閉型圧縮機では、第1の溝は、ピストンの先端面における吐出孔との対向位置を通る直径に沿って形成され、ピストンの先端面の外周縁部のうち、ピストンの先端面における吐出孔との対向位置から遠い方の外周縁部に基端部が位置していてもよい。
また、本発明に係る密閉型圧縮機では、第1の溝は、その先端部を構成する傾斜面とピストンの先端面とのなす角度θが、90°以上、かつ、110°以下となるように形成されていてもよい。
また、本発明に係る密閉型圧縮機では、突起は、第1の溝の先端部を構成する傾斜面に沿って、ピストンの先端面から突出するように形成されていてもよい。
また、本発明に係る密閉型圧縮機では、第1の溝は、その幅が、2mm以上、かつ、6mm以下であり、先端部以外の部分の深さが、20μm以上、かつ、60μm以下であってもよい。
また、本発明に係る密閉型圧縮機では、第1の溝は、その基端部から先端部に向かうにつれて浅くなるように、底面が傾斜するように形成されていてもよい。
また、本発明に係る密閉型圧縮機では、第1の溝は、基端部の深さが、10μm以上、かつ、500μm以下であってもよい。
かかる構成とすることにより、第1の溝の深さを最適化することで、さらに効率を向上させた密閉型圧縮機を提供することができる。
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、全ての図面において、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、全ての図面において、本発明を説明するために必要となる構成要素を抜粋して図示しており、その他の構成要素については図示を省略している場合がある。さらに、本発明は以下の実施の形態に限定されない。
(実施の形態1)
図1は、本発明の実施の形態1における密閉型圧縮機の縦断面図、図2は、同実施の形態1における密閉型圧縮機の圧縮要素の分解斜視図、図3は、同実施の形態1における密閉型圧縮機の圧縮要素を構成するピストンの斜視図、図4は、同実施の形態1における密閉型圧縮機のピストンの平面図、図5は、同実施の形態1における密閉型圧縮機のピストンの図3に示すA―A線による縦断面図、図6は、同実施の形態1における密閉型圧縮機の要部拡大断面図である。
図1から図6に示すように、密閉容器101は底部にオイル102を貯留し、さらに作動流体104として、冷媒が封入されている。冷媒としては、例えば地球温暖化係数の低い炭化水素系のR600a等が挙げられる。
また、密閉容器101は、鉄板の絞り成型によって形成されていて、吸入管106及び吐出管108を備えている。吸入管106は、密閉容器101を貫通するように設けられていて、その上流端が冷凍サイクルの低圧側(図示せず)に接続され、その下流端が密閉容器101内に連通している。吐出管108は、密閉容器101を貫通するように設けられていて、その上流端が吐出マフラー(図示せず)と連通し、その下流端が冷凍サイクルの高圧側(図示せず)に接続されている。
また、密閉容器101内には、圧縮要素110と、この圧縮要素110を駆動する電動要素112と、を備える圧縮機本体114が収納されている。圧縮機本体114は、サスペンションスプリング116によって、密閉容器101に対して弾性的に支持されている。
圧縮要素110は、クランクシャフト118、シリンダブロック120、ピストン122、連結手段124等で構成されている。クランクシャフト118は、主軸130と偏芯軸127とで構成されている。なお、ピストン122は、円筒状に形成されていて、金型成型により製造される。
電動要素112は、シリンダブロック120の下方にボルト(図示せず)によって固定されたステータ132と、ステータ132の内側に配置され、主軸130に焼き嵌めて、固定されたロータ135と、で構成されている。
シリンダブロック120には、圧縮室138を形成するシリンダ140と主軸130を回転自在に軸支する軸受部142が一体に形成されている。
また、図2に示すように、シリンダ140の端面には、吸入バルブ150、バルブプレート148、及びシリンダヘッド152が、この順で配置されていて、ヘッドボルト154によって、シリンダ140の端面を封止するように固定されている。バルブプレート148には、圧縮室138内外を連通する吸入孔144と吐出孔146が設けられている。吸入バルブ150は、吸入孔144を開閉するように構成されている。また、シリンダヘッド152は、バルブプレート148を覆うように構成されている。
また、バルブプレート148におけるシリンダヘッド152と対向する面には、吐出孔146を開閉する吐出バルブ158が固定されている。そして、バルブプレート148とシリンダヘッド152によりヘッド空間160が形成されている。また、図1に示すように、バルブプレート148とシリンダヘッド152の間には、吸入マフラー156が把持されて固定されている。
さらに、ピストン122におけるバルブプレート148と対向するピストン122の先端面162には、帯状(直線状)の第1の溝168が設けられている。図3、図4に示すように、第1の溝168は、吐出孔146から最も離間したピストン122の外周縁部164から先端面162おける吐出孔146との対向位置に向かって、かつ直径方向に延びるように形成されていて、その中心軸Xがピストンの軸心166を通るように設けられている。第1の溝168の先端部は、先端面162の外周縁であって、外周縁部164から最も離れた位置に位置していて、第2の溝の基端部と一致する。また、第1の溝168の形状は、後述する実験結果に基づき、幅が2mmから6mmの範囲、深さが20μmから60μmの範囲としている。なお、本実施の形態1においては、第1の溝168と第2の溝とが連通しているため、第1の溝168と第2の溝を区別せずに、説明する。
第1の溝168は、底面と1対の側壁から形成されていて、その深さは、略一定である。そして、第1の溝168の底面には、ピストン122の移動方向から見て、吐出孔146と重なる部分に、突起170が設けられている。突起170は、ピストン122が上死点に位置するときにバルブプレート148の吐出孔146へ挿入するように形成されている。換言すると、突起170は、ピストン122の移動方向から見て、吐出孔146よりも内方に位置するように、形成されている。なお、突起170は、ピストン122と一体的に形成されている。
さらに、バルブプレート148に設けられた吐出孔146は、図6に示すように、ピストン122の突起170が容易に入り込める大きさに形成されている。また、吐出孔146は、圧縮室軸心172よりも外周側に偏心させた位置の吐出孔軸心174に設けられている。
したがって、突起軸心175の位置は、突起170がピストン122の往復動時に吐出孔146を出没する位置に設けられているため、吐出孔軸心174と略一致しており、圧縮室軸心172及び該圧縮室軸心172と(略)一致したピストン軸心166よりも外周側に偏心した位置にある。
図3、図4に示すように、突起170は、ピストン122の先端面162と平行な面による断面形状が矩形となる形状、すなわち、直方体(切頭四角錐形状を含む)を基調とした形状であり、四つの平面(以下、側壁と称す)177a、177b、177c、177dと天面177eを有している。そして、突起170の、面積が大きい側壁177a、177cと、これらと隣り合う面積が小さい側壁177b、177dとは、略90°(90°を含む)で交差している。したがって、突起170は、ピストン軸心166に対して直角な天面177eが略長方形(長方形を含む)の形状となっている。
また、突起170の天面177eと、突起170におけるピストン122の先端面162との接続面(以下、突起170の底面という)と、の面積比(天面177e/突起170の底面)は、作動流体を吐出孔146への流れを形成させる観点から、20%以上であることが好ましく、50%以上であることがより好ましい。また、突起170の天面177eと底面との面積比は、作業流体の吐出孔146への流れを阻害させないようにする観点から、100%以下であることが好ましく、75%以下であることがより好ましい。
また、突起170の底面と吐出孔146の開口との面積比(突起170の底面/吐出孔146の開口)は、作動流体を吐出孔146への流れを形成させる観点から、30%以上であることが好ましく、作業流体の吐出孔146への流れを阻害させないようにする観点から、60%以下であることが好ましい。
さらに、突起170の四つの側壁177a、177b、177c、177dとピストン122の先端面162とで形成される角度θは、図5に示すように、略110°(110°を含む)に設定されている。この角度θは、ピストン122と突起170が金型成型されることから若干金型の抜き勾配(角度)を含んでおり、その抜き勾配は任意に設定することができる。かかることから、後述する実験結果に基づき、角度θを、90°以上、かつ、110°以下と定義している。
また、突起170の四つの側壁177a、177b、177c、177dにおける面積の大きい一つの側壁177aは、図4に示すように、ピストン軸心(中心)166側に面し、面積の小さい一対の側壁177c、177dは、第1の溝168を形成する側壁と略平行に位置している。
さらに、突起170の高さHは、図6に示すように、バルブプレート148の厚さhより若干低く設定されている。より詳しくは、ピストン122が上死点に位置するときに、突起170の天面177eが、バルブプレート148の内面から、バルブプレート148の厚さhの65〜75%の高さ位置にあるように、突起170の高さHとバルブプレート148の厚さhが設定されている。
次に、上記構成からなる密閉型圧縮機の動作及び作用を説明する。
密閉型圧縮機は、ステータ132に電流を流して磁界を発生させ、主軸130に固定されたロータ135を回転させることで、クランクシャフト118が回転する。これに伴い、偏芯軸127に回転自在に取り付けられた連結手段124を介して、ピストン122がシリンダ140内を往復運動する。
そして、このピストン122の往復運動に伴い、作動流体104は吸入マフラー156を介して圧縮室138内へ吸入され、圧縮された後、吐出孔146から吐出され、ヘッド空間160を経て冷凍サイクル(図示せず)へと流れる。
次に、図7を参照しながら圧縮機本体114による作動流体104の吸入、圧縮、吐出行程について説明する。図7は、同実施の形態1における密閉型圧縮機の動作を説明する模式図で、(a)は吸入行程の途中を、(b)は吸入行程の終了(下死点近傍)を、(c)は圧縮行程の途中を、(d)は吐出行程(上死点近傍)をそれぞれ示している。
吸入行程において、図7(a)に示すように、ピストン122が圧縮室138の容積を増加する矢印x方向に動作することにより、圧縮室138内の作動流体104が膨張し、圧縮室138内の圧力が低下する。そして、圧縮室138内の圧力が、吸入マフラー156内の圧力を下回ると、圧縮室138内の圧力と吸入マフラー156内の圧力との差により、吸入バルブ150が開く。これに伴い、冷凍サイクルから戻った温度の低い作動流体104が、吸入管106から密閉容器101内に一旦開放され、その後、吸入マフラー156を経て、圧縮室138内に流入する。
その後、圧縮行程において、図7(b)に示すようにピストン122の動作が、下死点から圧縮室138の容積が減少する矢印y方向に転じると、圧縮室138内の圧力は上昇し、圧縮室138内の圧力と吸入マフラー156内の圧力との差によって、吸入バルブ150が閉じる。これに伴い、圧縮室138は閉塞され、ピストン122がさらに圧縮室138の容積が減少する方向に動作することで、図7(c)に示すように、作動流体104は圧縮され、所定の圧力にまで昇圧される。
そして、吐出行程において、圧縮室138内の作動流体104の圧力が上昇し、バルブプレート148とシリンダヘッド152により形成されているヘッド空間160内部の圧力より高くなると、図7(d)に示すように、圧力差によって吐出バルブ158が開き始める。その結果、圧縮室138内部の作動流体104は、吐出孔146を通過し、ヘッド空間160へ流出する。
そして、作動流体104は、ヘッド空間160から吐出マフラー(図示せず)を経由し、吐出管108より冷凍サイクルの高圧側(図示せず)へと流れる。
圧縮室138内部の圧力が、ヘッド空間160内の圧力を下回ると、吐出バルブ158は閉じ、これに伴って圧縮室138は閉塞され、ピストン122が下死点方向に移動して再び吸入行程に移行する。
ピストン122の上死点位置において、ピストン122とバルブプレート148の間には、両者の干渉を回避するためのクリアランスが形成されており、圧縮室138には微小な容積が残在する。
すなわち、この微小な容積によって圧縮室138の内部には作動流体104が残留することとなる。この残留した作動流体104は吐出されないため、吸入行程では、この残留する作動流体104と新たに吸入マフラー156から吸入孔144を経て流入する作動流体104が混合され、圧縮されることとなる。
したがって、従来の構成であると、上述の如く圧縮室138の内周面近くに残留した作動流体104の再膨張により、期待できる圧縮効率の向上には限界があった。
しかしながら、本実施の形態1における圧縮機では、ピストン122の先端面162に第1の溝168を設け、しかも、この第1の溝168を、吐出孔146から最も離間したピストン122の外周縁部164上の位置から先端面162における吐出孔146との対向位置に向かって、ピストン122の直径の範囲で延出させた構成としているため、圧縮室138の内周面近くに位置し、かつ圧縮された作動流体104を可能な限り吐出孔146から吐出させることができ、従来以上の作用効果が期待できる。
また、本実施の形態1における圧縮機では、吐出孔146に対応した位置に、突起170を設けることにより、ピストン122とバルブプレート148の間のクリアランスをより小さくすることで、圧縮室138内に残存する作動流体104をより少なくすることができる。
そして、本発明者らは、第1の溝168の形状が、圧縮効率に影響することを実験的に見出した。具体的には、溝の幅及び深さが異なるピストン122で成績係数COPを測定し、第1の溝168の形状が、圧縮効率に影響することを見出した。以下、図8を参照しながら、第1の溝168の形状と圧縮効率との関係について、説明する。図8は、同実施の形態1における密閉型圧縮機の第1の溝の幅と深さと成績係数COPの関係を示す特性図である。
図8に示すように、第1の溝168を、幅が2mmから6mm、深さが20μmから60μmの範囲で形成した時に、第1の溝168を具備しない構成と比較して、圧縮機の成績係数COPを向上させることができ、作動流体104の流れが効率的に突起170へと導かれることを確認した。
ここで、圧縮、吐出行程における、圧縮室138内部の作動流体104の流れについて、図9を参照しながら説明する。図9は、同実施の形態1における密閉型圧縮機の圧縮行程における作動流体の流れを説明する模式図で、(a)は圧縮開始直前(吸入終了直前、下死点近傍)を、(b)は圧縮途中の行程を、(c)は吐出行程をそれぞれ示している。
図9の(a)に示すように、圧縮開始直前状態からピストン122が矢印y方向へ始動し、圧縮室138内の圧力が吸入マフラー156内の圧力を上回り、吸入バルブ150が閉じると、図9の(b)に示すように、圧縮室138内は閉塞される。そして、さらにピストン122が上死点方向、すなわち、圧縮室138の容積が減少する方向に動作すると、作動流体104は圧縮される。
このとき、圧縮室138内の作動流体104の流れは、ピストン122の先端面162付近において、ピストン122の先端面162に形成された第1の溝168により、矢印Yで示すように、第1の溝168の底面に沿って、圧縮室138の内周面から吐出孔146方向に向かう流れが発生する。
そして、ヘッド空間160の圧力よりも圧縮室138内部の圧力が高くなり、図9の(c)に示すように、吐出バルブ158が開くと、吐出孔146近傍の作動流体104は、矢印Y1で示すように速やかに吐出孔146方向へ流れ、そして、吐出孔146を通過してヘッド空間160へ吐出される。
一方、吐出孔146から離れた図4のZで示す領域(圧縮室13の内周面近く)の作動流体104は、図9の(c)の矢印Y2で示すように矢印Y1で示す流れ等の影響を受け、一部は圧縮室138の内周面側に向かう流れとなり、従来の圧縮機の構成では、吐出孔146からの吐出が遅くなるものと推測される。
しかしながら、本実施の形態1における圧縮機では、第1の溝168が設けられているため、矢印Y3で示すように、圧縮室138の内周面近くに位置する作動流体104は、第1の溝168によって一定の流れが形成され、突起170側へと導かれるものと推測される。
その結果、ピストン122が上死点近傍へ到達することにより、先端面162とバルブプレート148とのクリアランスが小さくなり、吐出孔146へ向かうための流路が狭くなっても、領域Zに残留する作動流体104は、ピストン122の先端面162の第1の溝168を流れる作動流体104の流れ(矢印Y3)に誘引され、スムーズに吐出孔146から排出されるものと推測される。
したがって、残留する作動流体104の重量を減らし、再膨張量を抑制することで、体積効率の向上を図ることができる。
さらに、ピストン122の領域Zにおける作動流体104は、上述の如くピストン122の先端面162に形成された第1の溝168によって生成される作動流体104の流れに伴い、ピストン122の領域Zに滞留することなく、スムーズに吐出孔146からヘッド空間160へ排出されるため、作動流体104の滞留により発生するピストン122の先端面162の外周縁部164を主要部とする局部的な圧力上昇が緩和され、必要以上に圧力が上昇してしまう過圧縮も減らすことができ、圧縮機に入力される電力量の低減と圧縮機効率の向上を図ることができる。
また、上述の如く、圧縮室138の内周面近くに位置する作動流体104は、ピストン122の先端面162に設けた第1の溝168を流れる作動流体104の流れに誘引され、吐出孔146から吐出される流れとなるため、ピストン122とバルブプレート148のクリアランスをより狭くすることができ、ピストン122の上死点位置における圧縮室138の容積をさらに小さく設定することができる。このことは、残留する作動流体104の許容する重量をさらに減少させ、再膨張(量)を抑え、体積効率をさらに向上することが期待できる。
さらに、本発明者らは、突起170におけるピストン122の先端面162と少なくとも側壁177aが形成する角度θによっても影響することを実験的に見出した。
以下、ピストン122の突起170の形状に伴う作用効果について、図10を参照しながら説明する。
図10は、同実施の形態1における密閉型圧縮機のピストンに設けた突起(側壁)の突出角度θと成績係数COPの関係を示す特性図である。横軸は、ピストン122の突起170における吸入孔144に最も近い側壁177aとピストン122の先端面162とがなす角度θ(図5参照)であり、縦軸は、成績係数COPである。
ピストン122の突起170は、ピストンの先端面162と略平行な断面形状が略長方形で、突起170における吸入孔144に最も近い側壁177aとピストン122の先端面162がなす角度をθとしたとき、図10に示す通り、90°≦θ≦110°の範囲、好ましくは、95°≦θ≦110°で、効率が高くなることを実験的に確認した。
次に、図10に示す角度θの実験結果について推察する。突起170の形状を長方形(略直方体)形状とした場合、ピストン122の突起170の四つの側壁177a、177b、177c、177dにおいて、面積が広い側壁177aのピストン122の先端面162との角度θを、90°≦θ≦110°とすることで、作動流体104が、突起170の側壁177aと隣接する側壁177c、177dへ効率的に回り込むものと推察する。
具体的には、図6に示すように、作動流体104は突起170に衝突する。しかし、突起170を、平面である四つの側壁177a、177b、177c、177dを有し、かつ直方体を基調とする形状とし、さらに突起軸心175を、吐出孔軸心174と略一致するように配置したことにより、吐出孔146へ流れ込む作動流体104の乱れた流れを、一定の方向、すなわち吐出孔146の軸方向へと導く作用が伴う。特に、吸入孔144の方向に面し、面積が広い側壁177aにおけるピストン122の先端面162となす角度θを、90°≦θ≦110°の範囲とすることで、突起170の側壁177aと衝突する作動流体104は、吐出孔146方向に誘導された流れ成分が多くなると考えられる。
すなわち、作動流体104は第1の溝168によって一定の流れが形成され、突起170の側壁177a(177b、177c、177d)に衝突した作動流体104は、吐出孔146への流れがより一層整流され、その流れに誘引されて周辺の作動流体104も吐出孔146に向かって流れるため、圧縮室138内に溜まり込む作動流体104の量が減少し、吸入行程開始直前における溜まり混んだ作動流体104の再膨張を低減する。その結果、圧縮機の成績係数COPの向上に効果が現れたと推察する。
この実験結果は、ピストン122が上死点に位置した時に形成される空間(デッドボリューム)の容積や吐出孔146の形状及びピストン122の突起170の形状以外に、突起170の四つの側壁177a、177b、177c、177dの中で、吐出孔軸心174に最も近い側壁177aとピストン122の先端面162のなす角度θが効率に影響することを裏付けている。
なお、図10の実験は、一つの側壁177aの角度θについてのみの考察である。しかし、残る三つの側壁177b、177c、177dの角度θも同様に、上述の90°≦θ≦110°の範囲内に設定することにより、成績係数COPをさらに向上する作用効果が期待できる。
また、側壁177aにおけるピストン122の先端面162となす角度θを90°より小さくすると、吐出孔146への流れが阻害され成績係数COPは低下する。
また、吐出行程において、吐出孔146内部に突起170が嵌入し、ピストン122の上死点位置における吐出孔146の容積も含めた圧縮室138の容積を低減させることができるので、さらに残留する作動流体の重量を低減することで再膨張量を減らし、より体積効率を向上させることができることは言うまでもない。
また、吐出孔146を、ピストン122の先端面162の中央部に位置する構成とした場合においても、作動流体104が滞留するピストン122の外周縁部164から吐出孔146の対向位置に向かって延びるように第1の溝168を設けることにより、同様の効果が期待できる。
さらに、突起軸心175を、吐出孔軸心174と略一致するように形成しているので、作動流体104の流れ阻害を低減でき、体積効率をさらに向上することができる。以下、図11(A)及び図11(B)を参照しながら説明する。図11(A)は、実施の形態1における密閉型圧縮機の作動流体挙動を示す流速ベクトル図である。図11(B)は、実施の形態1における密閉型圧縮機のピストンの正面図である。
図11(A)に示すように、突起軸心175を、吐出孔軸心174と略一致するように形成し、突起170を第1の溝168の延伸方向に対して、互いに対向する面を対称となるように形成することで、圧縮工程における作動流体104の流速を矢印Zに示すように双方で均一化でき、突起170に沿って整流された流れとなることで、作動流体104の流れ阻害を低減でき、体積効率をさらに向上することができる。
また、図11(B)に示すように、突起170が、吐出孔146の軸心方向から見て、左右対称に形成されていて、作動流体の通路となる第1の溝168が突起170を軸に左右対称に形成されていれば、作動流体の流れをより円滑化することができ、体積効率をさらに向上することができる。
なお、第1の溝168が、突起170を軸に左右対称に形成されているとは、完全に左右対称でなくてもよく、本発明の作用効果を奏する範囲内であれば、第1の溝168が突起170を軸に左右対称に形成されていなくてもよい。例えば、第1の溝168は、本発明の作用効果を奏する範囲で、流体の通流方向(第1の溝168の基端部168Bから先端部168Aの方向)から見て、突起170の左側の底面の幅、又は深さが、突起170の右側の底面の幅、又は深さよりも小さくてもよい。また、例えば、第1の溝168は、本発明の作用効果を奏する範囲で、流体の通流方向(第1の溝168の基端部168Bから先端部168Aの方向)から見て、突起170の左側の底面の幅、又は深さが、突起170の右側の底面の幅、又は深さよりも大きくてもよい。
(実施の形態2)
図12は、本発明の実施の形態2における密閉型圧縮機の圧縮要素を構成するピストンの斜視図である。図13は、同実施の形態2における密閉型圧縮機のピストンの平面図である。図14は、同実施の形態2における密閉型圧縮機のピストンの図12に示すA―A線による縦断面図である。図15は、同実施の形態2における密閉型圧縮機の外周縁部の深さと成績係数COPの関係を示す特性図である。
図12及び図13に示すように、本発明の実施の形態2における密閉型圧縮機は、実施の形態1における密閉型圧縮機と基本的構成は同じであるが、第1の溝168の構成が異なる。
具体的には、第1の溝168の底面が、ピストン122の先端面162における吐出孔146との対向位置から外周縁部164に向かうにつれてバルブプレート148から離間する傾斜面を形成している。第1の溝168の形状は、後述する実験結果に基づき、幅W(図13参照)を5mm、外周縁部(基端部)164の深さL(図14参照)を10μmから500μmの範囲としている。なお、本実施の形態2では、第1の溝168は、その基端部から先端部に至るまで、一定の傾斜角度となるように、底面が形成されている。このため、第1の溝168の先端部の深さは、該第1の溝168の底面が傾斜面となる深さに設定される。
次に、第1の溝168の基端部の深さと、圧縮効率との関係について説明する。図15は、実施の形態2における密閉型圧縮機の第1の溝の基端部の深さと成績係数COPの関係を示す特性図である。
図15に示すように、第1の溝168を、幅が5mm、第1の溝168の先端部の深さを一定にし、第1の溝168の基端部の深さが10μmから500μmに形成した時に作動流体104の流れが効率的に突起170へと導かれることが示唆された。したがって、上述したように、第1の溝168の基端部の深さLは、10μm以上、かつ、500μm以下とするのが好適である。
このように構成された本実施の形態2における密閉型圧縮機であっても、実施の形態1における密閉型圧縮機と同様の作用効果を奏する。なお、本実施の形態2においては、第1の溝168の底面が傾斜していることから、作動流体104は、当該傾斜をガイドにして吐出孔146に向けてより滑らかな流れになると推測する。
また、本実施の形態2においては、第1の溝168の基端部の深さLは、10μm以上、かつ、500μm以下が好適であるとしたが、実施の形態1の実験結果を踏まえて、20μm以上、かつ、500μm以下であってもよい。
また、本実施の形態2においては、第1の溝168の先端部の深さを一定にする形態を採用したが、これに限定されず、本発明の作用効果を奏する範囲で、第1の溝168の先端部の深さを一定にしない形態を採用してもよい。ここで、図16は、密閉型圧縮機におけるピストンの概略構成を示す斜視図であり、第1の溝168の先端部の深さを一定にしない形態の一例である。なお、図16においては、一部を省略している。
図16に示すように、第1の溝168の先端部の深さを一定にしない形態としては、流体の通流方向(第1の溝168の基端部から先端部の方向)から見て、突起170の左側の底面の深さが、突起170の右側の底面の深さよりも大きい形態が例示される。
さらに、本実施の形態2においては、第1の溝168の先端部の深さを一定にする形態を採用したが、これに限定されず、本発明の作用効果を奏する範囲で、第1の溝168の基端部の深さを一定にしない形態を採用してもよい。
(実施の形態3)
図17は、本発明の実施の形態3における密閉型圧縮機の圧縮要素を構成するピストンの斜視図である。図18は、同実施の形態3における密閉型圧縮機のピストンの図17に示すA―A線による縦断面図である。
図17及び図18に示すように、本発明の実施の形態3における密閉型圧縮機は、実施の形態1における密閉型圧縮機と基本的構成は同じであるが、第1の溝168の構成が異なり、突起170が設けられていない点が異なる。
具体的には、第1の溝168は、先端面162の外周縁部164から該先端面162における吐出孔146の対向位置に向かって直線的に延びるように、帯状に形成されていて、先端部168Aが傾斜している。また、第1の溝168は、先端部168Aが、先端面162における吐出孔146の対向位置に位置するように形成されている。さらに、第1の溝168の基端部168Bは、先端面162における吐出孔146の対向位置から、直径方向において、最も離れた先端面162の外周縁部に位置する。
第1の溝168の幅は、作動流体104を吐出孔146に向けて流れやすくする観点から、ピストン122の先端面162の直径の10%以上であることが好ましく、同様の観点から2mm以上であってもよい。また、第1の溝168の幅は、該第1の溝168内を作動流体104が流れやすくする観点から、30%以下であることが好ましく、6mm以下であってもよい。また、第1の溝168の深さは、上述したように、20μm以上、かつ、60μm以下の間で一定であることが好ましい。
そして、図18に示すように、第1の溝168は、先端部168Aを構成する傾斜面と先端面162とのなす角度θが、90°以上、かつ、110°以下であることが好ましく、95°以上、かつ、110°以下であることがより好ましい。このように規定することで、上記実施の形態1で示したように、作動流体104を吐出孔146に向けて流れやすくすることができる。すなわち、第1の溝168の基端部168Bから先端部168Aに向かって通流した作動流体104が、先端部168Aを構成する傾斜面により、吐出孔146に向かってより流れやすくなる。このため、圧縮室138内に残存する作動流体104を少なくすることができる。
したがって、このように構成された本実施の形態3における密閉型圧縮機であっても、実施の形態1における密閉型圧縮機と同様の作用効果を奏する。
(実施の形態4)
図19は、本発明の実施の形態4における密閉型圧縮機の圧縮要素を構成するピストンの斜視図である。
図19に示すように、本発明の実施の形態4における密閉型圧縮機は、実施の形態1における密閉型圧縮機と基本的構成は同じであるが、第1の溝168及び突起170の構成が異なる。具体的には、本実施の形態4における密閉型圧縮機の第1の溝168は、実施の形態3における密閉型圧縮機の第1の溝168と同様に構成されている。このため、第1の溝168の詳細な説明は省略する。
また、本実施の形態4における密閉型圧縮機の突起170は、先端面162における吐出孔146との対向位置に設けられている点が、実施の形態1における密閉型圧縮機の突起170と異なる点である。なお、突起170は、実施の形態1と同様に、ピストン122が上死点に位置するときに、バルブプレート148の吐出孔146へ挿入するように形成されている。
このように構成された本実施の形態4における密閉型圧縮機であっても、実施の形態1における密閉型圧縮機と同様の作用効果を奏する。
(実施の形態5)
図20は、本発明の実施の形態5における密閉型圧縮機の圧縮要素を構成するピストンの斜視図である。図21は、同実施の形態5における密閉型圧縮機のピストンの図20に示すA―A線による縦断面図である。
図20及び図21に示すように、本発明の実施の形態5における密閉型圧縮機は、実施の形態1における密閉型圧縮機と基本的構成は同じであるが、第1の溝168の構成が異なり、突起170が設けられていない点と第2の溝169が設けられている点が異なる。
具体的には、本実施の形態5における密閉型圧縮機の第1の溝168は、実施の形態3における密閉型圧縮機の第1の溝168と同様に構成されている。このため、第1の溝168の詳細な説明は省略する。
また、第2の溝169は、先端面162の外周縁部164から該先端面162における吐出孔146の対向位置に向かって延びるように、帯状に形成されていて、先端部169Aが傾斜している。また、第2の溝169は、先端部169Aが、先端面162における吐出孔146の対向位置に位置するように形成されている。さらに、第2の溝169の基端部169Bは、第1の溝168の基端部168Bから最も離れた位置に位置している。換言すると、第2の溝169は、先端面162における吐出孔146の対向位置を挟んで、第1の溝168と対向するように設けられている。
第2の溝169の幅は、作動流体104を吐出孔146に向けて流れやすくする観点から、ピストン122の先端面162の直径の10%以上であることが好ましく、同様の観点から2mm以上であってもよい。また、第2の溝169の幅は、該第2の溝169内を作動流体104が流れやすくする観点から、30%以下であることが好ましく、6mm以下であってもよい。また、第2の溝169の深さは、上述したように、20μm以上、かつ、60μm以下であることが好ましい。なお、第1の溝168の幅と第2の溝169の幅は、同じ寸法で形成されていてもよく、異なる寸法で形成されていてもよい。同様に、第1の溝168の幅と第2の溝169の深さは、同じ寸法で形成されていてもよく、異なる寸法で形成されていてもよい。
そして、図21に示すように、第2の溝169は、先端部169Aを構成する傾斜面と先端面162とのなす角度θ1が、90°以上、かつ、110°以下であることが好ましく、95°以上、かつ、110°以下であることがより好ましい。このように規定することで、上記実施の形態1で示したように、作動流体104を吐出孔146に向けて流れやすくすることができる。すなわち、第2の溝169の基端部169Bから先端部169Aに向かって通流した作動流体104が、先端部169Aを構成する傾斜面により、吐出孔146に向かってより流れやすくなる。このため、圧縮室138内に残存する作動流体104を少なくすることができる。
したがって、このように構成された本実施の形態5における密閉型圧縮機であっても、実施の形態1における密閉型圧縮機と同様の作用効果を奏する。
上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。したがって、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の形態を当業者に教示する目的で提供されたものである。本発明の要旨を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。また、上記実施形態に開示されている複数の構成要素の適宜な組合せにより種々の発明を形成できる。
以上のように、本発明にかかる密閉型圧縮機は、体積効率の向上、圧縮機効率の向上が図れるため、家庭用電気冷蔵庫に限らず、エアーコンディショナー、自動販売機又はその他の冷凍装置、さらに空気圧縮機等の工業用圧縮機等に広く適用できる。
1 密閉容器
2 オイル
4 作動流体
6 圧縮機本体
8 サスペンションスプリング
10 電動要素
12 圧縮要素
13 圧縮室
14 ステータ
16 ロータ
18 偏芯軸
20 主軸
22 クランクシャフト
24 圧縮室
26 シリンダ
28 軸受部
30 シリンダブロック
32 ピストン
34 バルブプレート
36 吐出孔
38 吸入バルブ
40 吐出バルブ
42 連結手段
44 シリンダヘッド
46 ヘッド空間
48 上面
50 凹部
52 面
101 密閉容器
102 オイル
104 作動流体
106 吸入管
108 吐出管
110 圧縮要素
112 電動要素
114 圧縮機本体
116 サスペンションスプリング
118 クランクシャフト
120 シリンダブロック
122 ピストン
124 連結手段
127 偏芯軸
130 主軸
132 ステータ
135 ロータ
138 圧縮室
140 シリンダ
142 軸受部
144 吸入孔
146 吐出孔
148 バルブプレート
150 吸入バルブ
152 シリンダヘッド
154 ヘッドボルト
156 吸入マフラー
158 吐出バルブ
160 ヘッド空間
162 先端面
164 外周縁部
166 ピストン軸心
168 第1の溝
168A 先端部
168B 基端部
169 第2の溝
169A 先端部
169B 基端部
170 突起
172 圧縮室軸心
174 吐出孔軸心
175 突起軸心
177a 側壁
177b 側壁
177c 側壁
177d 側壁
177e 天面

Claims (15)

  1. 電動要素と、
    前記電動要素によって駆動される圧縮要素と、
    前記電動要素と前記圧縮要素が収容されている密閉容器と、を備え、
    前記圧縮要素は、圧縮室を形成するシリンダブロックと、前記圧縮室内を往復運動するピストンと、前記圧縮室の開口端を閉塞するように配置され、かつ、前記圧縮室内外を連通する吐出孔が形成されているバルブプレートと、を備え、
    前記ピストンにおける前記バルブプレートと対向する先端面には、前記先端面の外周縁部から前記先端面における吐出孔との対向位置に向かって延びる所定幅の第1の溝が設けられ、
    前記第1の溝の先端部は、前記先端面における吐出孔との対向位置に位置し、かつ、傾斜するように形成されている、密閉型圧縮機。
  2. 前記ピストンの先端面は円形状に形成されており、
    前記第1の溝の幅が、前記ピストンの直径の10%以上、かつ、30%以下である、請求項1に記載の密閉型圧縮機。
  3. 前記ピストンにおける前記バルブプレートと対向する先端面には、前記先端面の外周縁部から前記先端面における吐出孔との対向位置に向かって延びる所定幅の第2の溝がさらに設けられていて、
    前記第2の溝の基端部は、前記第1の溝の基端部から最も離れた位置に位置し、前記第2の溝の先端部は、前記先端面における吐出孔との対向位置に位置し、かつ、傾斜するように形成されている、請求項1又は2に記載の密閉型圧縮機。
  4. 前記ピストンにおける前記バルブプレートと対向する先端面には、突起が設けられていて、
    前記突起は、前記ピストンが上死点に位置するときに前記バルブプレートの吐出孔へ挿入するように形成されている、請求項1〜3のいずれか1項に記載の密閉型圧縮機。
  5. 前記第1の溝と前記第2の溝が互いに連通するように形成され、
    前記第1の溝及び前記第2の溝の少なくとも一方の溝の底面には、突起が設けられ、
    前記突起は、前記ピストンが上死点に位置するときに前記バルブプレートの吐出孔へ挿入するように形成されている、請求項3に記載の密閉型圧縮機。
  6. 前記突起は、作動流体の通流方向に対向する面が平面になるように形成されている、請求項4又は5に記載の密閉型圧縮機。
  7. 前記突起は、該突起を構成する1対の側壁が、前記第1の溝の延伸方向に対して、平行となるように形成されている、請求項5に記載の密閉型圧縮機。
  8. 前記突起は、該突起における前記ピストンの先端面から突出する平面と前記ピストンの先端面とのなす角度θが、90°以上、かつ、110°以下となるように形成されている、請求項4〜7のいずれか1項に記載の密閉型圧縮機。
  9. 前記突起は、その軸心が、前記吐出孔の軸心と一致するように形成されている、請求項4〜8のいずれか1項に記載の密閉型圧縮機。
  10. 前記第1の溝は、前記ピストンの先端面における前記吐出孔との対向位置を通る直径に沿って形成され、前記ピストンの先端面の外周縁部のうち、前記ピストンの先端面における前記吐出孔との対向位置から遠い方の前記外周縁部に基端部が位置する、請求項1〜9のいずれか1項に記載の密閉型圧縮機。
  11. 前記第1の溝は、その先端部を構成する傾斜面と前記ピストンの先端面とのなす角度θが、90°以上、かつ、110°以下となるように形成されている、請求項1〜4のいずれか1項に記載の密閉型圧縮機。
  12. 前記突起は、前記第1の溝の先端部を構成する傾斜面に沿って、前記ピストンの先端面から突出するように形成されている、請求項11に記載の密閉型圧縮機。
  13. 前記第1の溝は、その幅が、2mm以上、かつ、6mm以下であり、前記先端部以外の部分の深さが、20μm以上、かつ、60μm以下である、請求項11に記載の密閉型圧縮機。
  14. 前記第1の溝は、その基端部から前記先端部に向かうにつれて浅くなるように、底面が傾斜するように形成されている、請求項1又は4に記載の密閉型圧縮機。
  15. 前記第1の溝は、前記基端部の深さが、10μm以上、かつ、500μm以下である、請求項14に記載の密閉型圧縮機。
JP2012063351A 2011-05-09 2012-03-21 密閉型圧縮機 Active JP6065192B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012063351A JP6065192B2 (ja) 2011-05-09 2012-03-21 密閉型圧縮機
US13/460,141 US9518571B2 (en) 2011-05-09 2012-04-30 Sealed compressor
CN2012101417234A CN102777348A (zh) 2011-05-09 2012-05-09 密闭型压缩机

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2011103985 2011-05-09
JP2011103985 2011-05-09
JP2011195811 2011-09-08
JP2011195811 2011-09-08
JP2012063351A JP6065192B2 (ja) 2011-05-09 2012-03-21 密閉型圧縮機

Publications (2)

Publication Number Publication Date
JP2013068214A true JP2013068214A (ja) 2013-04-18
JP6065192B2 JP6065192B2 (ja) 2017-01-25

Family

ID=47122402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012063351A Active JP6065192B2 (ja) 2011-05-09 2012-03-21 密閉型圧縮機

Country Status (3)

Country Link
US (1) US9518571B2 (ja)
JP (1) JP6065192B2 (ja)
CN (1) CN102777348A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015155674A (ja) * 2014-02-21 2015-08-27 パナソニックIpマネジメント株式会社 密閉型圧縮機

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6065192B2 (ja) * 2011-05-09 2017-01-25 パナソニックIpマネジメント株式会社 密閉型圧縮機
CN104334884B (zh) * 2012-04-19 2016-10-19 三菱电机株式会社 密闭式压缩机和具有该密闭式压缩机的蒸汽压缩式制冷循环装置
USD836701S1 (en) * 2016-09-13 2018-12-25 Fedex Corporate Services, Inc. Camera mount housing
USD831097S1 (en) * 2016-09-13 2018-10-16 Fedex Corporate Services, Inc. Camera mount housing
EP3523537B1 (de) * 2016-10-07 2024-05-01 BITZER Kühlmaschinenbau GmbH Halbhermetischer kältemittelverdichter
JP6876463B2 (ja) * 2017-02-24 2021-05-26 株式会社前川製作所 圧縮機用ピストン、圧縮機及びヒートポンプユニット
NO20220232A1 (en) * 2022-02-22 2023-08-23 Heaten As Improved compressor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58195086A (ja) * 1982-05-10 1983-11-14 Toshiba Corp 密閉形圧縮機におけるスコツチヨ−ク部のスライド
JPH0424627U (ja) * 1990-06-22 1992-02-27
JPH0518358A (ja) * 1991-07-09 1993-01-26 Hitachi Ltd 密閉形圧縮機
JPH06323251A (ja) * 1993-05-19 1994-11-22 Hitachi Ltd 密閉形電動圧縮機
JP2000170658A (ja) * 1998-12-09 2000-06-20 Toyota Autom Loom Works Ltd 圧縮機
US20040253131A1 (en) * 2003-06-13 2004-12-16 Lg Electronics Inc. Compressor
JP2005214080A (ja) * 2004-01-29 2005-08-11 Hitachi Ltd 往復動機械
JP2010090705A (ja) * 2008-10-03 2010-04-22 Panasonic Corp 冷媒圧縮機
JP2012021471A (ja) * 2010-07-15 2012-02-02 Panasonic Corp 往復式圧縮機

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5149254A (en) 1991-06-06 1992-09-22 White Consolidated Industries, Inc. Refrigeration compressor having a contoured piston
US5816783A (en) 1993-05-19 1998-10-06 Hitachi, Ltd. Electrically driven hermetic compressor
US5346373A (en) * 1993-06-17 1994-09-13 White Consolidated Industries, Inc. Refrigeration compressor having a spherical discharge valve
KR100774485B1 (ko) 2005-08-26 2007-11-08 엘지전자 주식회사 압축기
CN201096070Y (zh) 2007-08-07 2008-08-06 上海扎努西电气机械有限公司 减小余隙容积的制冷压缩机活塞
JP5533061B2 (ja) * 2009-06-12 2014-06-25 パナソニック株式会社 密閉型圧縮機および冷凍装置
USD633529S1 (en) * 2010-03-15 2011-03-01 Panasonic Corporation Piston for compressor
JP6065192B2 (ja) * 2011-05-09 2017-01-25 パナソニックIpマネジメント株式会社 密閉型圧縮機

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58195086A (ja) * 1982-05-10 1983-11-14 Toshiba Corp 密閉形圧縮機におけるスコツチヨ−ク部のスライド
JPH0424627U (ja) * 1990-06-22 1992-02-27
JPH0518358A (ja) * 1991-07-09 1993-01-26 Hitachi Ltd 密閉形圧縮機
JPH06323251A (ja) * 1993-05-19 1994-11-22 Hitachi Ltd 密閉形電動圧縮機
JP2000170658A (ja) * 1998-12-09 2000-06-20 Toyota Autom Loom Works Ltd 圧縮機
US20040253131A1 (en) * 2003-06-13 2004-12-16 Lg Electronics Inc. Compressor
JP2005214080A (ja) * 2004-01-29 2005-08-11 Hitachi Ltd 往復動機械
JP2010090705A (ja) * 2008-10-03 2010-04-22 Panasonic Corp 冷媒圧縮機
JP2012021471A (ja) * 2010-07-15 2012-02-02 Panasonic Corp 往復式圧縮機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015155674A (ja) * 2014-02-21 2015-08-27 パナソニックIpマネジメント株式会社 密閉型圧縮機

Also Published As

Publication number Publication date
US9518571B2 (en) 2016-12-13
US20120288382A1 (en) 2012-11-15
CN102777348A (zh) 2012-11-14
JP6065192B2 (ja) 2017-01-25

Similar Documents

Publication Publication Date Title
JP6065192B2 (ja) 密閉型圧縮機
US10711773B2 (en) Linear compressor
EP3343033B1 (en) Linear compressor
JP2014040827A (ja) 圧縮機
JP5617402B2 (ja) 往復式圧縮機およびこれを用いた冷蔵庫
KR101990401B1 (ko) 리니어 압축기
JP5533061B2 (ja) 密閉型圧縮機および冷凍装置
JP2008223605A (ja) 密閉型圧縮機
JP5828136B2 (ja) 密閉型圧縮機
KR20070101440A (ko) 밀폐형 압축기
JP2013057284A (ja) 密閉型圧縮機
JP6321400B2 (ja) 密閉型圧縮機
JP2015140737A (ja) 密閉型圧縮機及びそれを用いた冷蔵庫
JP2009293546A (ja) 密閉形圧縮機、およびこれを用いた冷蔵庫又はルームエアコン
JP5386906B2 (ja) 冷媒圧縮機
JP2012159071A (ja) 密閉型圧縮機および冷凍装置
KR102494949B1 (ko) 리니어 압축기
JP2014015883A (ja) 密閉型圧縮機
US20220090590A1 (en) Linear compressor
KR101788597B1 (ko) 밀폐형 압축기
KR100451240B1 (ko) 왕복동식 압축기의 스프링 지지구조
JP2013124641A (ja) 圧縮機
JP2012102610A (ja) 密閉型圧縮機および冷凍装置
JP2014080946A (ja) 密閉型圧縮機および冷蔵庫
KR20060083641A (ko) 밀폐형 압축기

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141003

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161207

R151 Written notification of patent or utility model registration

Ref document number: 6065192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250