JP2013060631A - Steel material excellent in toughness of basic material and weld-heat affected zone, and method for manufacturing the same - Google Patents
Steel material excellent in toughness of basic material and weld-heat affected zone, and method for manufacturing the same Download PDFInfo
- Publication number
- JP2013060631A JP2013060631A JP2011199914A JP2011199914A JP2013060631A JP 2013060631 A JP2013060631 A JP 2013060631A JP 2011199914 A JP2011199914 A JP 2011199914A JP 2011199914 A JP2011199914 A JP 2011199914A JP 2013060631 A JP2013060631 A JP 2013060631A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- amount
- less
- toughness
- contained
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
本発明は、橋梁、高層建造物、船舶などの溶接構造物に使用される鋼材に関し、母材の靭性および大入熱溶接したときに熱影響を受ける部位(以下、「溶接熱影響部」または「HAZ」ということがある。)の靭性を改善する技術に関するものである。 The present invention relates to a steel material used for a welded structure such as a bridge, a high-rise building, a ship, etc., toughness of a base material and a part affected by heat when large heat input welding (hereinafter referred to as “welding heat affected zone” or “ It may be referred to as “HAZ”).
溶接構造物の大型化に伴い、板厚が50mm以上の厚鋼板の溶接が不可避となっている。このため溶接施工効率の改善という観点から、50kJ/mm以上の大入熱溶接が指向されている。しかし大入熱溶接を行うと、HAZは高温のオーステナイト領域まで加熱されてから徐冷されるため、HAZ(特に、HAZのうちボンド部付近)の組織は粗大化し、その部分の靭性が劣化しやすいという問題がある。こうしたHAZにおける靭性(以下、「HAZ靭性」ということがある。)を良好に確保することが課題となっている。 With the increase in size of welded structures, it is inevitable to weld thick steel plates having a thickness of 50 mm or more. For this reason, from the viewpoint of improving welding construction efficiency, large heat input welding of 50 kJ / mm or more is directed. However, when high heat input welding is performed, the HAZ is heated to a high temperature austenite region and then gradually cooled, so the structure of the HAZ (particularly, near the bond portion of the HAZ) becomes coarse and the toughness of that portion deteriorates. There is a problem that it is easy. It has been a problem to ensure such toughness in HAZ (hereinafter sometimes referred to as “HAZ toughness”).
大入熱溶接時におけるHAZ靭性の劣化防止技術は、これまで種々提案されている。こうした技術の代表例としては、例えば、特許文献1〜4に、鋼材中に微細なTiNを分散析出させることで、大入熱溶接を行なったときのHAZで生じるオーステナイト粒の粗大化を抑制し、HAZ靭性の劣化を抑えた鋼材が提案されている。しかしこれらの技術では、溶接金属が1400℃以上の高温になると、HAZのうち特に溶接金属に近接した部位(ボンド部)において、溶接時に受ける熱により上記TiNが固溶消失してしまい、HAZ靭性の劣化を十分に抑えることができないという問題がある。 Various HAZ toughness deterioration prevention techniques during high heat input welding have been proposed so far. As a typical example of such a technique, for example, in Patent Documents 1 to 4, fine TiN is dispersed and precipitated in a steel material, thereby suppressing the austenite grain coarsening that occurs in HAZ when high heat input welding is performed. Steel materials that suppress degradation of HAZ toughness have been proposed. However, in these techniques, when the weld metal becomes a high temperature of 1400 ° C. or higher, the TiN dissolves and disappears due to the heat received at the time of welding, particularly in the portion close to the weld metal (bond portion) of the HAZ, and the HAZ toughness There is a problem that deterioration of the film cannot be sufficiently suppressed.
また、特許文献5には、粒径が0.01〜0.1μmの微細なTiNの個数密度を適正化することによって、粒径が0.1μmを超える粗大TiNの生成を抑制してHAZ靭性の改善を図る技術が提案されている。しかし微細なTiNの個数密度を適正化しても充分なHAZ靭性を確保することはできないことが分かった。 Patent Document 5 discloses that HAZ toughness is suppressed by optimizing the number density of fine TiN having a particle size of 0.01 to 0.1 μm to suppress the formation of coarse TiN having a particle size exceeding 0.1 μm. Techniques for improving the above have been proposed. However, it has been found that even if the number density of fine TiN is optimized, sufficient HAZ toughness cannot be ensured.
一方、本出願人は、溶接用鋼中に存在するTiN系介在物の中にNbを積極的に含有させると共にTi/Nb比を制御し、粒径が0.01〜0.25μmの介在物の個数を1mm2あたりで1.0×104個以上とすることによって、幅広い入熱範囲でのHAZ靭性を確保する技術を提案している(例えば、特許文献6)。しかしこの技術によっても溶接時に受ける熱によりTiNが固溶消失してしまうことは避けられず、HAZ靭性が劣化することがあった。 On the other hand, the present applicant actively contains Nb in the TiN inclusions present in the welding steel, controls the Ti / Nb ratio, and includes inclusions having a particle size of 0.01 to 0.25 μm. A technique for securing HAZ toughness in a wide heat input range by setting the number of slabs to 1.0 × 10 4 or more per 1 mm 2 is proposed (for example, Patent Document 6). However, even with this technique, it is unavoidable that TiN dissolves and disappears due to heat received during welding, and the HAZ toughness may deteriorate.
ところで溶接構造物に使用される鋼材には、HAZ靭性の他に、基本特性として鋼材自体の靭性(母材靭性)が良好であることも求められる。そこで本出願人は、母材靭性とHAZ靭性の両方を改善した厚鋼板を特許文献7に提案している。この技術では、鋼板中に含まれるTi含有窒化物の大きさに応じて個数密度を制御し、且つ、島状マルテンサイトの面積率を適切に制御することによって母材靭性とHAZ靭性に優れた厚鋼板を提供している。しかしながら、上記の方法では、顕微鏡観察によりサイズ毎の個数密度を測定しているため、必ずしも精度の高い方法とは言えず、特性にバラツキが生じる恐れがある。 Incidentally, steel materials used for welded structures are required to have good toughness (base material toughness) as a basic characteristic in addition to HAZ toughness. Therefore, the present applicant has proposed a thick steel plate in which both the base metal toughness and the HAZ toughness are improved in Patent Document 7. In this technique, the number density is controlled in accordance with the size of the Ti-containing nitride contained in the steel sheet, and the area ratio of the island-like martensite is appropriately controlled, so that the base metal toughness and the HAZ toughness are excellent. We provide thick steel plates. However, in the above method, since the number density for each size is measured by microscopic observation, the method is not necessarily a highly accurate method, and there is a possibility that characteristics may vary.
本発明は上記の様な事情に着目してなされたものであって、その目的は、母材靭性およびHAZ靭性の両方に優れた鋼材、およびその製造方法を提供することにある。 The present invention has been made paying attention to the above circumstances, and an object thereof is to provide a steel material excellent in both base metal toughness and HAZ toughness, and a method for producing the same.
上記課題を解決することのできた本発明に係る母材および溶接熱影響部の靭性に優れた鋼材とは、鋼中成分が、C:0.03〜0.16%(質量%の意味。以下成分について同じ。)、Si:0.25%以下(0%を含む)、Mn:1〜2.0%、P:0.03%以下(0%を含まない)、S:0.015%以下(0%を含まない)、Al:0.05%以下(0%を含まない)、Ti:0.010〜0.08%、Ca:0.0005〜0.010%およびN:0.0020〜0.020%を含有し、残部が鉄および不可避不純物からなる鋼材である。 The steel material excellent in toughness of the base material and the weld heat-affected zone according to the present invention that has solved the above-mentioned problems means that the component in steel is C: 0.03 to 0.16% (meaning mass%. Same for ingredients), Si: 0.25% or less (including 0%), Mn: 1 to 2.0%, P: 0.03% or less (not including 0%), S: 0.015% Below (not including 0%), Al: not more than 0.05% (not including 0%), Ti: 0.010 to 0.08%, Ca: 0.0005 to 0.010% and N: 0.00. It is a steel material containing 0020 to 0.020%, the balance being iron and inevitable impurities.
そして、鋼材に含まれる全Ti量Qのうち、2.0μmを超えるTi含有介在物として鋼材に含まれるTi量が0.010%以下(0%を含まない)で、且つ0.1μmを超えるTi含有介在物として鋼材に含まれるTi量を全Ti量Qから引いた値Rと、鋼材に含まれる全Ti量Qとの比R/Qが0.30〜0.70である点に要旨を有している。 And among the total Ti amount Q contained in the steel material, the Ti amount contained in the steel material as a Ti-containing inclusion exceeding 2.0 μm is 0.010% or less (excluding 0%) and exceeds 0.1 μm. The gist is that the ratio R / Q between the value R obtained by subtracting the Ti amount contained in the steel material from the total Ti amount Q as the Ti-containing inclusions and the total Ti amount Q contained in the steel material is 0.30 to 0.70. have.
本発明において、上記Ti含有介在物とは、少なくともTiを含む析出物を意味し、TiNや、Tiの一部(原子比で50%以下程度)を他の窒化物形成元素(例えば、Nb、Zr、V等)で置換した複合窒化物などのTi含有窒化物の他、Ti含有酸化物などのTiを含む介在物を意味する。また、Ti含有酸化物は、Ti酸化物(例えば、TiO2)は勿論のこと、Tiの一部(原子比で50%以下程度)を他の酸化物形成元素(例えば、Si、Mn、Al、Ca、Zr、REM等)で置換した複合酸化物をも含む趣旨である。 In the present invention, the Ti-containing inclusion means a precipitate containing at least Ti, and TiN or a part of Ti (at an atomic ratio of about 50% or less) is replaced with other nitride-forming elements (for example, Nb, In addition to Ti-containing nitrides such as complex nitrides substituted with Zr, V, etc.), it means inclusions containing Ti such as Ti-containing oxides. Ti-containing oxides include not only Ti oxides (eg, TiO 2 ) but also part of Ti (at an atomic ratio of about 50% or less) and other oxide-forming elements (eg, Si, Mn, Al). , Ca, Zr, REM, and the like).
上記鋼材は、更に他の元素として、
(a)Ni:1.5%以下(0%を含まない)、Cu:1.5%以下(0%を含まない)、Cr:1.5%以下(0%を含まない)およびMo:1.5%以下(0%を含まない)よりなる群から選ばれる1種以上の元素、
(b)Nb:0.10%以下(0%を含まない)、および/またはV:0.1%以下(0%を含まない)、
(c)B:0.005%以下(0%を含まない)、
(d)Zr:0.02%以下(0%を含まない)、および/またはREM:0.02%以下(0%を含まない)、
等を含んでもよい。
The steel material, as another element,
(A) Ni: 1.5% or less (not including 0%), Cu: 1.5% or less (not including 0%), Cr: 1.5% or less (not including 0%), and Mo: One or more elements selected from the group consisting of 1.5% or less (excluding 0%),
(B) Nb: 0.10% or less (not including 0%), and / or V: 0.1% or less (not including 0%),
(C) B: 0.005% or less (excluding 0%),
(D) Zr: 0.02% or less (not including 0%), and / or REM: 0.02% or less (not including 0%),
Etc. may be included.
上記鋼材は、Ti、N、およびSiが、下記式(1)を満足するように鋼を溶製した後、溶鋼に含まれる介在物を浮上分離することによって鋼に含まれるAl2O3含有介在物(具体的には、Al2O3を80質量%以上含有する介在物)の個数を1mm2あたり10個以下(0個を含む)に制御してから鋳造することによって製造できる。下記式(1)中、[ ]は鋼中の各元素の含有量(質量%)を表す。
[Ti]×[N]≦(1×10-5)/[Si] ・・・(1)
但し、Si=0質量%のときは、TiとNiが、下記式(2)を満足するように鋼を溶製する。
[Ti]×[N]≦1×10-3 ・・・(2)
The steel material contains Al 2 O 3 contained in steel by fusing and separating inclusions contained in the molten steel after melting the steel so that Ti, N, and Si satisfy the following formula (1) It can be manufactured by controlling the number of inclusions (specifically, inclusions containing 80% by mass or more of Al 2 O 3 ) to 10 or less (including 0) per 1 mm 2 . In the following formula (1), [] represents the content (% by mass) of each element in the steel.
[Ti] × [N] ≦ (1 × 10 −5 ) / [Si] (1)
However, when Si = 0% by mass, the steel is melted so that Ti and Ni satisfy the following formula (2).
[Ti] × [N] ≦ 1 × 10 −3 (2)
本発明によれば、鋼材中のTi含有介在物について、従来のように顕微鏡観察によってサイズ毎の個数密度を制御するのではなく、鋼材に含まれる全Ti量Qのうち、サイズが2.0μmを超える粗大なTi含有介在物として鋼材に含まれるTi量を極力低減すると共に、サイズが0.1μmを超えるTi含有介在物として鋼材に含まれるTi量を電解抽出法によって定量し、このTi量を全Ti量Qから引いた値Rと、鋼材に含まれる全Ti量Qとの比R/Qを適切に制御しているため、母材およびHAZの靭性改善をより精度良く実現できる。 According to the present invention, the Ti-containing inclusions in the steel material do not control the number density for each size by microscopic observation as in the past, but the size is 2.0 μm out of the total Ti amount Q contained in the steel material. In addition to reducing the amount of Ti contained in steel as coarse Ti-containing inclusions exceeding as much as possible, the amount of Ti contained in steel as Ti-containing inclusions whose size exceeds 0.1 μm is quantified by electrolytic extraction, and this Ti amount Since the ratio R / Q between the value R obtained by subtracting from the total Ti amount Q and the total Ti amount Q contained in the steel material is appropriately controlled, the toughness of the base material and the HAZ can be improved more accurately.
本発明者らは、鋼材の母材靭性とHAZ靭性の両方を改善するに当たり、従来のように顕微鏡観察に基づいて決定されたTi含有介在物のサイズに応じて個数密度を制御する手法では、観察視野面積がせいぜい300mm2程度と小さいために精度が低く、特性にバラツキが生じることに鑑み、これに代わる、より精度の高い方法を提供するため、検討を行なった。その際、電解抽出と目開き(メッシュ)の異なる複数のメンブレン・フィルター(以下、単にフィルターと呼ぶ場合がある。)による濾別との組み合わせにより、鋼材中の全Ti量をサイズごとに篩い分けして各サイズのTi量(質量濃度)を定量する方法をうまく利用できないかと考え、検討を重ねてきた。 In order to improve both the base metal toughness and the HAZ toughness of the steel, the present inventors have controlled the number density according to the size of the Ti-containing inclusions determined based on microscopic observation as in the prior art. In view of the fact that the observation visual field area is as small as about 300 mm 2 , the accuracy is low, and the characteristics vary, and studies have been conducted to provide a more accurate method instead of this. In this case, the total amount of Ti in the steel material is sieved by size by combination with electrolytic extraction and filtration with a plurality of membrane filters (hereinafter, simply referred to as filters) with different mesh openings (mesh). Thus, it has been studied by considering whether the method of quantifying the amount of Ti (mass concentration) of each size can be successfully used.
その結果、
(ア)所定の電解液で電解抽出後、目開き0.1μmのフィルターを通過したTiを固溶Tiとしたとき、固溶Ti量が鋼材の母材靭性とHAZ靭性の向上に大きな影響を及ぼしていること、
(イ)この固溶Ti量は絶対値として制御するのではなく、鋼材中に含まれる全Ti量とのバランス(具体的には、全Ti量に対する固溶Ti量の比)で制御しないと所望の特性が発揮されないこと、
(ウ)更に、所望の特性を有効に発揮させるためには、上記固溶Ti量の比を制御するだけでは足りず、目開き2.0μmのフィルターを通過しない(フィルター上に残る)サイズが2.0μm超のTi含有介在物に含まれるTi量を適切に制御することも重要であること、
(エ)よって、鋼材の母材靭性とHAZ靭性を向上させるには、上記方法によって算出される全Ti量に対する固溶Ti量の比と、サイズが2.0μmを超えるTi含有介在物として鋼材に含まれるTi量を適切に制御することが極めて重要であること、
を見出し、本発明を完成した。
as a result,
(A) After electrolytic extraction with a predetermined electrolytic solution, when Ti that has passed through a filter having a mesh size of 0.1 μm is used as solute Ti, the amount of solute Ti has a significant effect on the improvement of the base metal toughness and HAZ toughness of the steel. What it is doing,
(B) This solid solution Ti amount is not controlled as an absolute value, but must be controlled by a balance with the total Ti amount contained in the steel material (specifically, the ratio of the solid solution Ti amount to the total Ti amount). The desired properties are not exhibited,
(C) Furthermore, in order to effectively exhibit the desired characteristics, it is not sufficient to control the ratio of the solid solution Ti amount, and the size that does not pass through a filter having a mesh size of 2.0 μm (remains on the filter) It is also important to appropriately control the amount of Ti contained in inclusions containing Ti exceeding 2.0 μm,
(D) Therefore, in order to improve the base metal toughness and the HAZ toughness of the steel material, the ratio of the solid solution Ti amount to the total Ti amount calculated by the above method and the steel material as a Ti-containing inclusion whose size exceeds 2.0 μm. It is extremely important to appropriately control the amount of Ti contained in
The present invention has been completed.
本明細書では、試料中に含まれる全Ti量をQ、電解抽出(詳細は後述する。)後、目開きが0.1μmのフィルターを通過するTi(本発明では、これを固溶Tiとよぶ)の量をRと命名している。上記全Ti量Qは、電解抽出を行なった後、ICP発光分析によって定量した値である。上記固溶Tiの量Rは、電解抽出物を行なった後、目開きが0.1μmのフィルターを用いて濾過したときに、フィルターを通過したTiの量を意味する。現在市販されているフィルターのうち最も目開きが小さいものが0.1μmであり、本発明では、この最小径フィルターを通過するものは、たとえTi含有介在物として存在していても「固溶Ti」とみなした。 In this specification, the total amount of Ti contained in the sample is Q, and after electrolytic extraction (details will be described later), Ti that passes through a filter having an opening of 0.1 μm (in the present invention, this is referred to as solid solution Ti). Is called R. The total Ti amount Q is a value determined by ICP emission analysis after electrolytic extraction. The amount R of the solid solution Ti means the amount of Ti that has passed through the filter when filtered using a filter having an opening of 0.1 μm after the electrolytic extraction. The filter with the smallest mesh size among the filters currently on the market is 0.1 μm. In the present invention, the filter that passes through this minimum diameter filter is “solid solution Ti even if it exists as a Ti-containing inclusion. "
なお、上記のようにして決定される固溶Tiの量Rは、固溶Tiの量を直接測定せず、上記電解抽出の後、目開きが0.1μmのフィルターを用いてフィルターを通過しない(フィルター上に残る)サイズが0.1μm超のTi含有介在物に含まれるTiの量をICP発光分析によって定量し、これを鋼材中に含まれる全Ti量Qから引くことによって間接的に算出している。これは、固溶Tiの量を直接定量分析することは困難なためである。 The amount R of solute Ti determined as described above does not directly measure the amount of solute Ti, and does not pass through the filter using a filter having an opening of 0.1 μm after the electrolytic extraction. Indirectly calculated by quantifying the amount of Ti contained in Ti-containing inclusions with a size exceeding 0.1 μm (remaining on the filter) by ICP emission analysis, and subtracting this from the total Ti amount Q contained in the steel. doing. This is because it is difficult to directly analyze the amount of solute Ti directly.
本明細書において「2.0μm超のTi含有介在物」とは、上記の電解抽出を行なった後、目開きが2.0μmのフィルターを用いて濾過したときに、フィルターを通過しない(フィルター上に残る)ものをいう。従来、粗大なTi含有介在物がHAZ靭性などに悪影響を及ぶすことは知られていたが、本発明者らの検討結果によれば、粗大なTi含有介在物のなかでも特に、上記方法によって分別されるサイズが2.0μm超の粗大なTi含有介在物の量が、特に母材靭性およびHAZ靭性に対して大きな悪影響を及ぼすことが判明した結果、特に、この粗大なTi含有介在物の量を適切に制御した次第である。 In this specification, “inclusions containing Ti exceeding 2.0 μm” means that after performing the above-described electrolytic extraction and filtering using a filter having an opening of 2.0 μm, the filter does not pass through the filter (on the filter). Stuff). Conventionally, it has been known that coarse Ti-containing inclusions have an adverse effect on HAZ toughness and the like, but according to the results of the study by the present inventors, among the coarse Ti-containing inclusions, in particular, by the above method. As a result of the fact that the amount of coarse Ti-containing inclusions whose size to be separated exceeds 2.0 μm has been found to have a particularly bad influence on the base metal toughness and HAZ toughness, in particular, It is up to the amount to be properly controlled.
まず、本発明の鋼材に含まれる全Ti量について説明する。本発明では、鋼材を電解抽出法により溶解し、電解抽出後の抽出残渣を、市販されているなかで目開きが最も小さい0.1μmのメンブレン・フィルターにより濾過し、濾過して得られた抽出残渣をフィルターごと融解してICP発光分析法でTi量を測定する。この方法によれば、鋼材に含まれる全Ti量Qは、図1に示すように、フィルターを通過しないサイズが0.1μmを超えるTi含有介在物として鋼材に含まれるTi量と、フィルターを通過するTi含有介在物に含まれるTi量を含む固溶Ti量との合計量として表される。 First, the total amount of Ti contained in the steel material of the present invention will be described. In the present invention, steel material is dissolved by electrolytic extraction, and the extraction residue after electrolytic extraction is filtered through a 0.1 μm membrane filter having the smallest mesh size among the commercially available extractions. The residue is melted together with the filter, and the Ti content is measured by ICP emission spectrometry. According to this method, the total Ti amount Q contained in the steel material passes through the filter with the Ti amount contained in the steel material as a Ti-containing inclusion whose size that does not pass the filter exceeds 0.1 μm, as shown in FIG. It is expressed as the total amount with the solid solution Ti amount including the Ti amount contained in the Ti-containing inclusions.
そして本発明者らが検討したところ、サイズが0.1μmを超えるTi含有介在物として鋼材に含まれるTi量を全Ti量Qから引いた値Rと、鋼材に含まれる全Ti量Qとの比R/Qを0.30〜0.70の範囲に調整することによって、鋼材の母材靭性およびHAZ靭性を改善できることが明らかとなった。このことは本明細書の実施例で実証している。 And when the present inventors examined, the value R which subtracted the Ti amount contained in steel materials from the total Ti amount Q as Ti containing inclusions whose size exceeds 0.1 μm, and the total Ti amount Q contained in the steel material It was revealed that the base metal toughness and the HAZ toughness of the steel material can be improved by adjusting the ratio R / Q in the range of 0.30 to 0.70. This is demonstrated in the examples herein.
即ち、実施例の表1に示した鋼種Nと表2に示した鋼種dは、成分組成がほぼ同じで、2.0μmを超える粗大なTi含有介在物として鋼材に含まれるTi量もほぼ同じ鋼材である。しかし鋼種dは母材靭性とHAZ靭性が低下しているのに対し、鋼種Nは母材靭性とHAZ靭性の両方が改善されている。同様に、下記表1に示した鋼種Eと下記表2に示した鋼種bについても成分組成と上記Ti量がほぼ同じであるにもかかわらず、鋼種bは母材靭性とHAZ靭性が低下しているのに対し、鋼種Eは母材靭性およびHAZ靭性の両方を改善できている。 That is, the steel type N shown in Table 1 of the example and the steel type d shown in Table 2 have almost the same composition, and the amount of Ti contained in the steel material as coarse Ti-containing inclusions exceeding 2.0 μm is almost the same. It is a steel material. However, steel grade d has reduced base metal toughness and HAZ toughness, whereas steel grade N has improved both base metal toughness and HAZ toughness. Similarly, the steel type b shown in Table 1 below and the steel type b shown in Table 2 below have substantially the same composition and the same Ti content, but the steel type b has reduced base metal toughness and HAZ toughness. On the other hand, Steel E can improve both the base metal toughness and the HAZ toughness.
この理由について検討したところ、鋼種dは添加したTi量(鋼材に含まれる全Ti量)に占める固溶Ti量の割合が高く、鋼種bは添加したTi量に占める固溶Ti量の割合が低く、この固溶Ti量も母材靭性とHAZ靭性の向上に大きく寄与すると推察された。 When this reason was examined, steel type d has a high proportion of the solid solution Ti amount in the added Ti amount (total Ti amount contained in the steel material), and steel type b has a proportion of the solid solution Ti amount in the added Ti amount. Therefore, it was speculated that this solid solution Ti amount contributed greatly to the improvement of the base metal toughness and the HAZ toughness.
こうした結果をふまえて更に検討したところ、鋼材に含まれる全Ti量に対する固溶Ti量の比R/Qが母材靭性とHAZ靭性に影響を及ぼすことが明らかとなった。 Further examination based on these results revealed that the ratio R / Q of the solid solution Ti amount to the total Ti amount contained in the steel material affects the base metal toughness and the HAZ toughness.
ところが、鋼材に含まれる全Ti量に対する固溶Ti量の比R/Qを適切な範囲に制御しただけでは、母材靭性およびHAZ靭性向上効果は不充分であることも明らかとなった。 However, it has also been clarified that the effect of improving the base metal toughness and the HAZ toughness is insufficient only by controlling the ratio R / Q of the solute Ti amount to the total Ti amount contained in the steel material within an appropriate range.
即ち、本発明者らが更に検討したところ、サイズが0.1μmを超えるTi含有介在物のうち、サイズが2.0μmを超えるTi含有介在物として鋼材に含まれるTi量も母材靭性およびHAZ靭性に影響を及ぼすことが判明した。このことも後述する実施例で実証されている。例えば、実施例の表1に示した鋼種Lと表2に示した鋼種a、eは、成分組成がほぼ同じ鋼材で、上記比R/Qはいずれも0.30〜0.70の範囲に制御されているが、鋼種a、eは、サイズが2.0μmを超える粗大なTi含有介在物に含まれるTi量が多くなっているため、母材靭性とHAZ靭性が共に劣化している。これに対し、鋼種Lは、サイズが2.0μmを超える粗大なTi含有介在物に含まれるTi量が本発明で規定する範囲に低減されているため、母材靭性およびHAZ靭性共に良好になっている。 That is, when the present inventors further examined, among Ti-containing inclusions having a size exceeding 0.1 μm, the amount of Ti contained in the steel material as a Ti-containing inclusion having a size exceeding 2.0 μm is also determined by the base material toughness and HAZ. It was found to affect toughness. This is also demonstrated in the examples described later. For example, the steel types L shown in Table 1 of the Examples and the steel types a and e shown in Table 2 are steel materials having substantially the same composition, and the ratio R / Q is in the range of 0.30 to 0.70. Although controlled, the steel types a and e have a large amount of Ti contained in coarse Ti-containing inclusions having a size exceeding 2.0 μm, so both the base metal toughness and the HAZ toughness are deteriorated. On the other hand, in the steel type L, since the amount of Ti contained in coarse Ti-containing inclusions having a size exceeding 2.0 μm is reduced to the range specified in the present invention, both the base metal toughness and the HAZ toughness are improved. ing.
このようにサイズが2.0μmを超える粗大なTi含有介在物として鋼材に含まれるTi量を低減すれば、母材靭性とHAZ靭性の両方を改善できることが分かる。この理由は詳細には不明であるが、次のように考えられる。HAZ靭性改善のためには、微細なTi含有介在物(例えば、TiN析出物)による旧γ粒径の微細化が効果的であり、そのためには多くのTiが必要である。しかし鋼材に含まれるTiが、サイズが2.0μmを超える粗大なTi含有介在物として存在している場合、微細なTi含有介在物(例えば、TiN析出物)の個数が不足し、旧γ粒径の微細化を実現できないばかりでなく、粗大なTi含有介在物自体が破壊起点となって、母材靭性およびHAZ靭性の両方を低下させると考えられる。 Thus, it can be seen that both the base metal toughness and the HAZ toughness can be improved by reducing the amount of Ti contained in the steel material as a coarse Ti-containing inclusion having a size exceeding 2.0 μm. The reason for this is unknown in detail, but is considered as follows. In order to improve the HAZ toughness, it is effective to refine the old γ grain size with fine Ti-containing inclusions (for example, TiN precipitates), and a large amount of Ti is required for this purpose. However, when Ti contained in the steel material exists as coarse Ti-containing inclusions having a size exceeding 2.0 μm, the number of fine Ti-containing inclusions (for example, TiN precipitates) is insufficient, and the old γ grains It is considered that not only the diameter reduction cannot be realized, but also the coarse Ti-containing inclusion itself becomes a fracture starting point, and both the base metal toughness and the HAZ toughness are lowered.
以下、本発明について具体的に説明する。 Hereinafter, the present invention will be specifically described.
《サイズが0.1μmを超えるTi含有介在物として鋼材に含まれるTi量を全Ti量Qから引いた値Rと、鋼材に含まれる全Ti量Qとの比R/Qが0.30〜0.70》
本発明では、鋼材に含まれる全Ti量に対する固溶Ti量の比(以下、固溶Ti比ということがある)を0.30〜0.70とする。上記固溶Ti比が、0.30未満では、熱処理時や溶接時に、TiN粒子のオストワルド成長が顕著になるため、Ti含有窒化物が粗大化し易くなり、HAZ靭性および母材靭性の向上に有効な微細なTi含有窒化物の生成量を確保できなくなる。従って溶接時に金属組織を微細化できないため、母材靭性およびHAZ靭性が低下する。よって上記固溶Ti比は0.30以上、好ましくは0.35以上、より好ましくは0.40以上とする。しかし上記固溶Ti比が0.70を超えて過剰になると固溶Ti量が多くなり過ぎるため、旧γ粒界から生成する変態組織が粗大化し、母材靭性およびHAZ靭性が低下する。従って上記固溶Ti比は0.70以下、好ましくは0.65以下、より好ましくは0.60以下とする。
<< The ratio R / Q of the value R obtained by subtracting the Ti amount contained in the steel material from the total Ti amount Q as the Ti-containing inclusions whose size exceeds 0.1 μm and the total Ti amount Q contained in the steel material is 0.30. 0.70 >>
In the present invention, the ratio of the solute Ti amount to the total Ti amount contained in the steel material (hereinafter sometimes referred to as the solute Ti ratio) is set to 0.30 to 0.70. When the solute Ti ratio is less than 0.30, the Ostwald growth of TiN particles becomes prominent during heat treatment and welding, so that Ti-containing nitrides are likely to be coarsened and effective in improving HAZ toughness and base metal toughness. The amount of fine Ti-containing nitride produced cannot be secured. Accordingly, since the metal structure cannot be refined during welding, the base metal toughness and the HAZ toughness are lowered. Therefore, the solid solution Ti ratio is 0.30 or more, preferably 0.35 or more, more preferably 0.40 or more. However, if the solid solution Ti ratio exceeds 0.70 and becomes excessive, the amount of solid solution Ti becomes too large, so that the transformation structure generated from the old γ grain boundary becomes coarse, and the base metal toughness and the HAZ toughness are lowered. Therefore, the solid solution Ti ratio is 0.70 or less, preferably 0.65 or less, more preferably 0.60 or less.
上記固溶Ti比は、サイズが0.1μmを超えるTi含有介在物として鋼材に含まれるTi量を全Ti量Qから引いた値Rと、鋼材に含まれる全Ti量Qとの比R/Qで示すことができる(図1を参照)。即ち、上記値Rは、鋼材に実際に固溶しているTi量と、目開き0.1μmのフィルターを通り抜けた超微細な介在物に含まれるTi量との合計量を意味しており、本発明では、超微細な介在物に含まれるTi量は、固溶Tiとみなしている。 The solute Ti ratio is a ratio R / R between the value R obtained by subtracting the Ti amount contained in the steel material from the total Ti amount Q as the Ti-containing inclusion having a size exceeding 0.1 μm and the total Ti amount Q contained in the steel material. Q can be indicated (see FIG. 1). That is, the above-mentioned value R means the total amount of Ti amount actually dissolved in the steel material and Ti amount contained in ultrafine inclusions having passed through a filter having an opening of 0.1 μm. In the present invention, the amount of Ti contained in the ultrafine inclusion is regarded as solute Ti.
《サイズが2.0μmを超える粗大なTi含有介在物として鋼材に含まれるTi量について》
本発明では、サイズが2.0μmを超える粗大なTi含有介在物として鋼材に含まれるTi量を0.010%以下(0%を含まない)とする。このTi量が0.010%を超えると、破壊の起点となる粗大なTi含有介在物が多くなるため、母材靭性およびHAZ靭性の低下を引き起こす原因となる。このTi量は少ない方がよく、好ましくは0.0080%以下であり、より好ましくは0.0050%以下である。
<< About the amount of Ti contained in steel as coarse Ti-containing inclusions whose size exceeds 2.0 μm >>
In the present invention, the amount of Ti contained in the steel material as coarse Ti-containing inclusions having a size exceeding 2.0 μm is set to 0.010% or less (excluding 0%). When this Ti amount exceeds 0.010%, coarse Ti-containing inclusions that become the starting point of fracture increase, which causes a decrease in the base metal toughness and HAZ toughness. The amount of Ti should be small, preferably 0.0080% or less, and more preferably 0.0050% or less.
上記2.0μmを超える粗大なTi含有介在物として鋼材に含まれるTi量とは、鋼材から電解抽出法により抽出され、目開きが2.0μmのフィルターを通過しないTi含有介在物に含まれているTi量を意味している。上記Ti含有介在物とは、介在物中にTiを含有するものを全て含む趣旨であり、Tiを含有する窒化物のほか、Tiを含有する酸化物、Tiを含有する炭化物、或いはこれらの複合化合物などを含む意味である。本発明では、後述するように、電解抽出法により抽出した残渣を融解し、ICP発光分析法によりTi量を測定しているため、サイズが2.0μmを超えるTi含有介在物として鋼材に含まれるあらゆる組成の介在物について、Ti量の合計量を測定できる。そしてサイズが2.0μmを超える粗大な介在物に含まれるTi量の合計が、鋼材に対して0.010%以下であれば、母材靭性およびHAZ靭性を向上できる。 The amount of Ti contained in steel as coarse Ti-containing inclusions exceeding 2.0 μm is extracted from the steel by an electrolytic extraction method and contained in Ti-containing inclusions that do not pass through a filter having an opening of 2.0 μm. It means the amount of Ti. The above Ti-containing inclusions include all inclusions containing Ti in the inclusions, in addition to nitrides containing Ti, oxides containing Ti, carbides containing Ti, or a composite thereof It is meant to include compounds and the like. In the present invention, as will be described later, the residue extracted by the electrolytic extraction method is melted, and the Ti amount is measured by the ICP emission analysis method, so that it is included in the steel material as a Ti-containing inclusion having a size exceeding 2.0 μm. The total amount of Ti can be measured for inclusions of any composition. And if the sum total of Ti amount contained in the coarse inclusion whose size exceeds 2.0 micrometers is 0.010% or less with respect to steel materials, base material toughness and HAZ toughness can be improved.
なお、鋼材から抽出する粗大なTi含有介在物の大きさは、サイズが2.0μmを超えるものとする。サイズが2.0μm以下のTi含有介在物については、Ti量の違いによる靭性の影響は殆ど見られなかったからである。 The size of the coarse Ti-containing inclusions extracted from the steel material is assumed to exceed 2.0 μm. This is because, for Ti-containing inclusions having a size of 2.0 μm or less, the influence of toughness due to the difference in Ti amount was hardly observed.
以上の通り、本発明の鋼材は、サイズが2.0μmを超えるTi含有介在物として鋼材に含まれるTi量を0.010%以下とし、固溶Ti比(比R/Q)を0.30〜0.70としているところに特徴がある。 As described above, the steel material of the present invention has a Ti content of 0.010% or less as a Ti-containing inclusion having a size exceeding 2.0 μm and a solid solution Ti ratio (ratio R / Q) of 0.30. It is characterized in that it is set to ~ 0.70.
次に、本発明の鋼材の成分組成について説明する。 Next, the component composition of the steel material of the present invention will be described.
[C:0.03〜0.16%]
Cは、強度を確保するために欠くことのできない元素であり、C量が0.03%未満では強度を確保できない。従ってC量は0.03%以上、好ましくは0.04%以上、より好ましくは0.05%以上である。しかし、C量が過剰になると、硬質な島状マルテンサイト(MA)が多く生成して母材靭性およびHAZ靭性を劣化させる。従ってC量は0.16%以下、好ましくは0.12%以下、より好ましくは0.10%以下に抑える必要がある。
[C: 0.03-0.16%]
C is an element that is indispensable for securing strength. If the amount of C is less than 0.03%, strength cannot be secured. Therefore, the C content is 0.03% or more, preferably 0.04% or more, more preferably 0.05% or more. However, when the amount of C is excessive, a large amount of hard island martensite (MA) is generated, which deteriorates the base metal toughness and the HAZ toughness. Therefore, the C content needs to be suppressed to 0.16% or less, preferably 0.12% or less, more preferably 0.10% or less.
[Si:0.25%以下(0%を含む)]
Siは、固溶強化によって強度を確保するのに有用な元素であるが、Si量が過剰になると、硬質な島状マルテンサイト(MA)が多く生成すると共に、粗大なTi含有介在物が生成して母材靭性およびHAZ靭性が劣化する。従ってSi量は0.25%以下、好ましくは0.2%以下、より好ましくは0.1%以下、更に好ましくは0.08%以下とする。Si量は、0.01%以上含有することが好ましく、より好ましくは0.02%以上、更に好ましくは0.03%以上である。
[Si: 0.25% or less (including 0%)]
Si is an element useful for securing strength by solid solution strengthening, but when the amount of Si is excessive, hard island martensite (MA) is generated and coarse Ti-containing inclusions are generated. As a result, the base metal toughness and the HAZ toughness deteriorate. Accordingly, the Si content is 0.25% or less, preferably 0.2% or less, more preferably 0.1% or less, and still more preferably 0.08% or less. The Si content is preferably 0.01% or more, more preferably 0.02% or more, and still more preferably 0.03% or more.
[Mn:1〜2.0%]
Mnは、強度を確保する上で有用な元素であり、1%以上含有させる必要がある。Mn量は、好ましくは1.2%以上、より好ましくは1.4%以上である。しかし、Mnを2.0%を超えて過剰に含有させると強度が上昇し過ぎて母材靭性およびHAZ靭性が劣化する。従ってMn量は2.0%以下、好ましくは1.8%以下、より好ましくは1.7%以下とする。
[Mn: 1 to 2.0%]
Mn is an element useful for ensuring strength, and needs to be contained by 1% or more. The amount of Mn is preferably 1.2% or more, more preferably 1.4% or more. However, when Mn is contained excessively exceeding 2.0%, the strength is excessively increased and the base metal toughness and the HAZ toughness are deteriorated. Therefore, the Mn content is 2.0% or less, preferably 1.8% or less, more preferably 1.7% or less.
[P:0.03%以下(0%を含まない)]
Pは、不可避不純物元素であり、粒界破壊を起こし易く母材靭性およびHAZ靭性の両方に悪影響を及ぼすため、その量はできるだけ少ないことが好ましい。従って、P量は0.03%以下に抑制する必要があり、好ましくは0.02%以下、より好ましくは0.01%以下とする。しかし、鋼中のP量を0%にすることは工業的に困難であり、通常、0.003%程度は含有している。
[P: 0.03% or less (excluding 0%)]
P is an unavoidable impurity element and easily causes grain boundary fracture. Therefore, P is preferably as small as possible because it adversely affects both the base metal toughness and the HAZ toughness. Therefore, the amount of P needs to be suppressed to 0.03% or less, preferably 0.02% or less, more preferably 0.01% or less. However, it is industrially difficult to reduce the amount of P in steel to 0%, and usually about 0.003% is contained.
[S:0.015%以下(0%を含まない)]
Sは、不可避不純物元素であり、粒界偏析による粒界破壊や粗大硫化物による母材靭性の劣化を招くため、その量はできるだけ少ないことが好ましい。従ってS量は0.015%以下に抑制する必要があり、好ましくは0.010%以下、より好ましくは0.008%以下、更に好ましくは0.005%以下とする。しかし、鋼中のS量を0%にすることは工業的に困難であり、通常、0.0001%程度は含有している。
[S: 0.015% or less (excluding 0%)]
S is an inevitable impurity element, and causes grain boundary fracture due to grain boundary segregation and deterioration of base metal toughness due to coarse sulfides, and therefore the amount is preferably as small as possible. Therefore, the amount of S must be suppressed to 0.015% or less, preferably 0.010% or less, more preferably 0.008% or less, and still more preferably 0.005% or less. However, it is industrially difficult to reduce the amount of S in steel to 0%, and usually about 0.0001% is contained.
[Al:0.05%以下(0%を含まない)]
Alは、脱酸剤として作用するが、過剰に含有すると、鋼中にAl2O3含有介在物を生成し、粗大なTi含有介在物を生成させる原因となり、母材靭性およびHAZ靭性を劣化させる元素である。従ってAl量は0.05%以下、好ましくは0.040%以下、より好ましくは0.030%以下に抑える必要がある。Al量の下限は、例えば、0.0003%である。
[Al: 0.05% or less (excluding 0%)]
Al acts as a deoxidizer, but if it is contained in excess, it will produce Al 2 O 3 containing inclusions in the steel and cause coarse Ti containing inclusions, which will degrade the base metal toughness and HAZ toughness. It is an element to be made. Accordingly, the Al content must be 0.05% or less, preferably 0.040% or less, more preferably 0.030% or less. The lower limit of the Al amount is, for example, 0.0003%.
[Ti:0.010〜0.08%]
Tiは、Nと反応して窒化物を形成し、金属組織を微細化して母材靭性を向上させる元素である。従ってTiは0.010%以上含有させる必要があり、好ましくは0.012%以上、より好ましくは0.015%以上である。しかし過剰に含有すると、粗大なTi含有介在物が多く生成して母材靭性およびHAZ靭性を劣化させる。従ってTi量は0.08%以下、好ましくは0.07%以下、より好ましくは0.06%以下、更に好ましくは0.05%以下とする。
[Ti: 0.010 to 0.08%]
Ti is an element that reacts with N to form a nitride, refines the metal structure, and improves the base material toughness. Therefore, Ti needs to be contained in an amount of 0.010% or more, preferably 0.012% or more, more preferably 0.015% or more. However, when it contains excessively, many coarse Ti containing inclusions will produce | generate and will deteriorate a base material toughness and HAZ toughness. Therefore, the Ti content is 0.08% or less, preferably 0.07% or less, more preferably 0.06% or less, and still more preferably 0.05% or less.
[Ca:0.0005〜0.010%]
Caは、粗大なTi含有介在物が晶出するのを抑制して、母材靭性およびHAZ靭性を向上させる元素である。従ってCaは0.0005%以上、好ましくは0.0008%以上、より好ましくは0.001%以上含有させる必要がある。しかしCa量が過剰になると、粗大なCa含有酸化物が生成して母材靭性が劣化する。従ってCa量は0.010%以下、好ましくは0.008%以下、より好ましくは0.006%以下である。
[Ca: 0.0005 to 0.010%]
Ca is an element that suppresses the crystallization of coarse Ti-containing inclusions and improves the base metal toughness and the HAZ toughness. Therefore, Ca needs to be contained in an amount of 0.0005% or more, preferably 0.0008% or more, more preferably 0.001% or more. However, when the amount of Ca becomes excessive, coarse Ca-containing oxides are generated and the base metal toughness is deteriorated. Therefore, the Ca content is 0.010% or less, preferably 0.008% or less, more preferably 0.006% or less.
[N:0.0020〜0.020%]
Nは、Ti含有窒化物を形成し、ピン止め効果によりオーステナイト粒の粗大化を防止して組織を微細化し、母材靭性およびHAZ靭性を向上させる元素である。また、Ti含有窒化物は、粒内フェライト変態を促進する作用も有しており、組織を微細化して母材靭性およびHAZ靭性を向上させるのに寄与する。こうした効果を発揮させるには、N量は0.0020%以上、好ましくは0.0030%以上、より好ましくは0.0040%以上とする必要がある。しかしN量が過剰になると、固溶N量が増大して歪時効が生じ、母材靭性およびHAZ靭性が劣化する。従ってN量は0.020%以下、好ましくは0.018%以下、更に好ましくは0.016%以下とする。
[N: 0.0020 to 0.020%]
N is an element that forms Ti-containing nitrides, prevents austenite grains from coarsening by the pinning effect, refines the structure, and improves the base metal toughness and HAZ toughness. The Ti-containing nitride also has an action of promoting intragranular ferrite transformation, contributing to refinement of the structure and improvement of the base metal toughness and the HAZ toughness. In order to exert such an effect, the N amount needs to be 0.0020% or more, preferably 0.0030% or more, more preferably 0.0040% or more. However, when the amount of N becomes excessive, the amount of dissolved N increases, strain aging occurs, and the base metal toughness and the HAZ toughness deteriorate. Therefore, the N content is 0.020% or less, preferably 0.018% or less, more preferably 0.016% or less.
本発明の鋼材の基本成分組成は上記の通りであり、残部は鉄および不可避不純物である。不可避不純物としては、原料、資材、製造設備等の状況によって持ち込まれる元素(例えば、Sn、As、Pb等)の混入が許容される。また、更に下記元素を積極的に含有させることも有効であり、含有される成分の種類に応じて鋼材の特性が更に改善される。 The basic component composition of the steel material of the present invention is as described above, and the balance is iron and inevitable impurities. As inevitable impurities, mixing of elements (for example, Sn, As, Pb, etc.) brought in depending on the status of raw materials, materials, manufacturing equipment, etc. is allowed. Moreover, it is also effective to further contain the following elements, and the characteristics of the steel material are further improved according to the types of components contained.
[Ni:1.5%以下(0%を含まない)、Cu:1.5%以下(0%を含まない)、Cr:1.5%以下(0%を含まない)およびMo:1.5%以下(0%を含まない)よりなる群から選ばれる1種以上の元素]
Ni、Cu、CrおよびMoは、いずれも鋼材の高強度化に有効に作用する元素であり、その効果はその含有量が増加するにつれて増大するが、こうした効果を有効に発揮させるには、いずれも0.05%以上含有させることが好ましい。Ni、Cu、CrおよびMoは、いずれの元素もより好ましくは0.10%以上である。しかしこれらの元素の含有量が過剰になると、強度の過大な上昇を招き、母材靭性およびHAZ靭性が却って劣化する。従って上記元素は、いずれも1.5%以下に抑えることが好ましい。Ni、Cu、CrおよびMoは、より好ましくは1.2%以下、更に好ましくは1%以下である。
[Ni: 1.5% or less (not including 0%), Cu: 1.5% or less (not including 0%), Cr: 1.5% or less (not including 0%), and Mo: 1. One or more elements selected from the group consisting of 5% or less (excluding 0%)]
Ni, Cu, Cr, and Mo are all elements that effectively act to increase the strength of steel materials, and the effect thereof increases as the content thereof increases. Is also preferably contained in an amount of 0.05% or more. Ni, Cu, Cr, and Mo are more preferably 0.10% or more for any element. However, when the content of these elements is excessive, the strength is excessively increased, and the base metal toughness and the HAZ toughness are deteriorated. Therefore, it is preferable to suppress the above elements to 1.5% or less. Ni, Cu, Cr and Mo are more preferably 1.2% or less, still more preferably 1% or less.
[Nb:0.10%以下(0%を含まない)、および/またはV:0.1%以下(0%を含まない)]
NbおよびVは、炭窒化物として析出し、オーステナイト粒の粗大化を抑制することによって母材靭性を良好にする元素である。こうした効果を有効に発揮させるには、Nbは0.002%以上含有させることが好ましく、より好ましくは0.005%以上、更に好ましくは0.010%以上である。しかし、Nb量が過剰になると、炭窒化物が粗大化し、母材靭性が却って劣化する。従ってNb量は0.10%以下とすることが好ましく、より好ましくは0.08%以下、更に好ましくは0.06%以下、特に好ましくは0.04%以下である。また、Vは0.002%以上含有させることが好ましく、より好ましくは0.005%以上である。しかしV量が過剰になると粗大な炭窒化物の析出を招き、母材靭性が却って劣化する。従ってV量は0.1%以下とすることが好ましく、より好ましくは0.08%以下である。
[Nb: 0.10% or less (not including 0%) and / or V: 0.1% or less (not including 0%)]
Nb and V are elements that precipitate as carbonitride and improve the base metal toughness by suppressing the coarsening of austenite grains. In order to effectively exhibit such effects, Nb is preferably contained in an amount of 0.002% or more, more preferably 0.005% or more, and further preferably 0.010% or more. However, when the amount of Nb becomes excessive, the carbonitride becomes coarse and the base material toughness deteriorates. Therefore, the Nb content is preferably 0.10% or less, more preferably 0.08% or less, still more preferably 0.06% or less, and particularly preferably 0.04% or less. Moreover, it is preferable to make V contain 0.002% or more, More preferably, it is 0.005% or more. However, when the amount of V is excessive, coarse carbonitride is precipitated, and the base metal toughness is deteriorated. Therefore, the V amount is preferably 0.1% or less, more preferably 0.08% or less.
[B:0.005%以下(0%を含まない)]
Bは、粗大な粒界フェライトの生成を抑制して母材靭性およびHAZ靭性を向上させるのに有効な元素である。こうした効果はその含有量が増加するにつれて増大するが、こうした効果を有効に発揮させるには、0.0005%以上含有させることが好ましい。B量は、より好ましくは0.0010%以上、更に好ましくは0.0013%以上である。しかし、B量が過剰になると、オーステナイト粒界にBNが析出し、母材靭性およびHAZ靭性が劣化する。従ってB量は0.005%以下とすることが好ましく、より好ましくは0.004%以下、更に好ましくは0.003%以下とするのがよい。
[B: 0.005% or less (excluding 0%)]
B is an element effective in suppressing the formation of coarse grain boundary ferrite and improving the base metal toughness and the HAZ toughness. Although such an effect increases as the content increases, in order to effectively exhibit such an effect, it is preferable to contain 0.0005% or more. The amount of B is more preferably 0.0010% or more, and further preferably 0.0013% or more. However, when the amount of B becomes excessive, BN precipitates at the austenite grain boundary, and the base metal toughness and the HAZ toughness deteriorate. Accordingly, the B content is preferably 0.005% or less, more preferably 0.004% or less, and still more preferably 0.003% or less.
[Zr:0.02%以下(0%を含まない)、および/またはREM:0.02%以下(0%を含まない)]
ZrおよびREM(希土類元素)は、酸化物を微細化してHAZ靭性を向上するのに寄与する元素である。こうした効果は、その含有量が増加するにつれて増大するが、こうした効果を有効に発揮させるには、いずれも0.0001%以上含有させることが好ましい。ZrおよびREMは、いずれもより好ましくは0.0005%以上である。しかし過剰に含有させると、酸化物が粗大になって母材靭性およびHAZ靭性を劣化させるため、いずれも0.02%以下に抑えることが好ましい。ZrおよびREMは、より好ましくは0.018%以下、更に好ましくは0.015%以下とする。
[Zr: 0.02% or less (excluding 0%) and / or REM: 0.02% or less (excluding 0%)]
Zr and REM (rare earth elements) are elements that contribute to refinement of oxides to improve HAZ toughness. Such an effect increases as the content thereof increases. However, in order to effectively exhibit such an effect, it is preferable that the content is 0.0001% or more. Both Zr and REM are more preferably 0.0005% or more. However, if excessively contained, the oxide becomes coarse and deteriorates the base metal toughness and the HAZ toughness. Therefore, it is preferable to suppress both to 0.02% or less. Zr and REM are more preferably 0.018% or less, and still more preferably 0.015% or less.
なお、本発明において、REMとは、ランタノイド元素(LaからLuまでの15元素)およびSc(スカンジウム)とY(イットリウム)を含む意味である。これらの元素のなかでも、La、CeおよびYよりなる群から選ばれる少なくとも1種の元素を含有することが好ましく、より好ましくはLaおよび/またはCeを含有するのがよい。 In the present invention, REM means a lanthanoid element (15 elements from La to Lu), Sc (scandium) and Y (yttrium). Among these elements, it is preferable to contain at least one element selected from the group consisting of La, Ce and Y, more preferably La and / or Ce.
次に、本発明の鋼材を製造する方法について説明する。上記のように、サイズが2.0μmを超える粗大なTi含有介在物として鋼材に含まれるTi量を所定量以下に低減し、鋼材中の固溶Ti比を所定の範囲となるように制御するには、Ti、N、およびSiが、下記式(1)を満足するように鋼を溶製した後、溶鋼に含まれる介在物を浮上分離することによって鋼に含まれるAl2O3含有介在物の個数を1mm2あたり10個以下(0個を含む)に制御してから鋳造すればよい。下記式(1)中、[ ]は鋼中の各元素の含有量(質量%)を表す。
[Ti]×[N]≦(1×10-5)/[Si] ・・・(1)
但し、Si=0質量%のときは、TiとNiが、下記式(2)を満足するように鋼を溶製する。
[Ti]×[N]≦1×10-3 ・・・(2)
Next, a method for producing the steel material of the present invention will be described. As described above, the amount of Ti contained in the steel material as a coarse Ti-containing inclusion having a size exceeding 2.0 μm is reduced to a predetermined amount or less, and the solid solution Ti ratio in the steel material is controlled to be within a predetermined range. In which Ti, N, and Si melt the steel so that the following formula (1) is satisfied, and then the inclusions contained in the molten steel are levitated and separated, thereby including Al 2 O 3 -containing inclusions contained in the steel. The casting may be performed after controlling the number of objects to 10 or less (including 0) per 1 mm 2 . In the following formula (1), [] represents the content (% by mass) of each element in the steel.
[Ti] × [N] ≦ (1 × 10 −5 ) / [Si] (1)
However, when Si = 0% by mass, the steel is melted so that Ti and Ni satisfy the following formula (2).
[Ti] × [N] ≦ 1 × 10 −3 (2)
各要件の規定理由は次の通りである。 The reasons for specifying each requirement are as follows.
《Ti、N、およびSiのバランス》
鋼を溶製するにあたっては、Ti、N、およびSiが、下記式(1)を満足するように成分調整する必要がある。下記式(1)において、左辺の[Ti]×[N]は、TiとNの許容溶解度積を示しており、この値が一定値を超えると鋳造時に、サイズが2.0μmを超える粗大なTi含有介在物が生成することが分かった。また、本発明者らが検討したところ、この許容溶解度積は、鋼中のSi量に影響を受けることが明らかとなった。即ち、[Ti]×[N]の値は、鋼中のSi濃度によって変化し、鋼中のSi量が多くなるほど[Ti]×[N]の値は小さくなり、粗大なTi含有介在物の生成が抑制されることが判明した。そのため粗大なTi含有介在物として鋼材に含まれるTi量、および固溶Ti比を適切に制御するには、鋼中のTi、N、およびSi量が、下記式(1)の関係を満足するように成分調整する必要がある。下記式(1)は、本発明者らが種々実験を繰り返して設定した式である。この下記式(1)は、下記式(1a)の通り変形でき、この式(1a)を満足するように成分調整すればよい。下記式(1a)の左辺の値をZ値としたとき、Z値は、好ましくは5×10-6以下、より好ましくは1×10-6以下とする。
[Ti]×[N]≦(1×10-5)/[Si] ・・・(1)
[Ti]×[N]×[Si]≦1×10-5 ・・・(1a)
<< Balance of Ti, N, and Si >>
In melting steel, it is necessary to adjust the components so that Ti, N, and Si satisfy the following formula (1). In the following formula (1), [Ti] × [N] on the left side indicates an allowable solubility product of Ti and N, and if this value exceeds a certain value, the size exceeds 2.0 μm during casting. It was found that Ti-containing inclusions were produced. Further, as a result of studies by the present inventors, it has been clarified that this allowable solubility product is affected by the amount of Si in the steel. That is, the value of [Ti] × [N] varies depending on the Si concentration in the steel, and as the amount of Si in the steel increases, the value of [Ti] × [N] decreases and the coarse Ti-containing inclusions. Production was found to be suppressed. Therefore, in order to appropriately control the amount of Ti contained in the steel material as coarse Ti-containing inclusions and the solid solution Ti ratio, the amounts of Ti, N, and Si in the steel satisfy the relationship of the following formula (1). It is necessary to adjust the components as follows. The following formula (1) is a formula set by the present inventors by repeating various experiments. The following formula (1) can be transformed as the following formula (1a), and the components may be adjusted so as to satisfy the formula (1a). When the value on the left side of the following formula (1a) is the Z value, the Z value is preferably 5 × 10 −6 or less, more preferably 1 × 10 −6 or less.
[Ti] × [N] ≦ (1 × 10 −5 ) / [Si] (1)
[Ti] × [N] × [Si] ≦ 1 × 10 −5 (1a)
なお、Siを添加せず、鋼中のSi含有量が0質量%のときは、鋼を溶製するにあたっては、TiとNが、下記式(2)を満足するように鋼を溶製すればよい。下記式(2)は、上記式(1)に、Si=0.01質量%(後述する実施例におけるSiの最下限値)を代入して算出したものである。
[Ti]×[N]≦1×10-3 ・・・(2)
In addition, when Si is not added and the Si content in the steel is 0% by mass, when melting the steel, the steel is melted so that Ti and N satisfy the following formula (2). That's fine. The following formula (2) is calculated by substituting Si = 0.01% by mass (the lowest limit value of Si in Examples described later) into the above formula (1).
[Ti] × [N] ≦ 1 × 10 −3 (2)
《介在物の浮上分離》
溶製後は、溶鋼に含まれる介在物を浮上分離することによって鋼に含まれるAl2O3含有介在物の個数を1mm2あたり10個以下(0個を含む)に制御してから鋳造する必要がある。Al2O3含有介在物とは、本発明では、Al2O3を80質量%以上含有するAl2O3含有介在物を意味している。Ti含有介在物は、一般に、Al2O3等の酸化物を核として晶出することが知られているが、本発明のような成分組成の鋼では、Al2O3含有介在物を晶出核としてTi含有介在物が形成されると考えられる。これは一般に不均質核生成と呼ばれている。従って溶鋼におけるAl2O3含有介在物の個数密度を小さくすれば、サイズが2.0μmを超えるTi含有介在物として鋼材に含まれるTi量を低減でき、しかも固溶Ti比を適切な範囲に制御できる。
<< Floating separation of inclusions >>
After melting, casting is performed after controlling the number of inclusions containing Al 2 O 3 contained in the steel to 10 or less (including 0) per 1 mm 2 by floating and separating inclusions contained in the molten steel. There is a need. The Al 2 O 3 containing inclusions, in the present invention means a Al 2 O 3 containing inclusions containing Al 2 O 3 less than 80 wt%. Ti-containing inclusions are generally known to crystallize using oxides such as Al 2 O 3 as nuclei, but in steels having a component composition such as the present invention, Al 2 O 3- containing inclusions are crystallized. It is considered that Ti-containing inclusions are formed as nucleation. This is generally called heterogeneous nucleation. Therefore, if the number density of Al 2 O 3 -containing inclusions in molten steel is reduced, the amount of Ti contained in the steel material as Ti-containing inclusions whose size exceeds 2.0 μm can be reduced, and the solid solution Ti ratio is within an appropriate range. Can be controlled.
上記Al2O3含有介在物の個数密度は、観察視野面積1mm2あたり10個以下(0個を含む)とする。上記個数密度が10個/mm2を超えると、Ti含有介在物が粗大化し、固溶Ti量を確保できなくなり、固溶Ti比が0.3を下回って母材靭性およびHAZ靭性が劣化する。上記個数密度は、好ましくは8.0個/mm2以下、より好ましくは6.0個/mm2以下とする。 The number density of the inclusions containing Al 2 O 3 is 10 or less (including 0) per 1 mm 2 of the observation visual field area. When the number density exceeds 10 pieces / mm 2 , the Ti-containing inclusions become coarse, the amount of solid solution Ti cannot be secured, the solid solution Ti ratio is less than 0.3, and the base metal toughness and the HAZ toughness deteriorate. . The number density is preferably 8.0 pieces / mm 2 or less, more preferably 6.0 pieces / mm 2 or less.
上記Al2O3含有介在物の個数密度は、溶鋼に含まれる介在物(主に、酸化物系介在物)を溶鋼から浮上分離することによって調整できる。介在物を浮上分離する方法としては、例えば、LF(Ladle Furnace)等のガス攪拌による精錬装置やRH(Ruhrstahl Hausen)等の還流式真空脱ガス精錬装置を用いて酸化物を凝集、合体させ、Al2O3含有酸化物の浮上分離を促進させることが好ましい。RH式脱ガス精錬装置を用い、還流ガス流量を100〜200Nm3/時間とした場合には、例えば、溶鋼にAlを添加してから還流を停止するまでの時間(還流時間)を5分以上とすることが好ましく、より好ましくは10分以上である。還流時間を長くすることによってAl2O3含有介在物の個数密度を小さくすることができるため好ましいが、生産性が低下するため上限は90分程度である。 The number density of the Al 2 O 3 -containing inclusions can be adjusted by levitating and separating the inclusions (mainly oxide inclusions) contained in the molten steel from the molten steel. Examples of the method for floating and separating inclusions include agglomeration and coalescence of oxides using a refining apparatus using gas stirring such as LF (Ladle Furnace) or a reflux type vacuum degassing refining apparatus such as RH (Ruhrstahl Hausen). It is preferable to promote floating separation of the Al 2 O 3 -containing oxide. When the reflux gas flow rate is set to 100 to 200 Nm 3 / hour using an RH degassing refining apparatus, for example, the time (reflux time) from when Al is added to the molten steel until the reflux is stopped is 5 minutes or more. Preferably, it is 10 minutes or more. Although the number density of Al 2 O 3 containing inclusions can be reduced by increasing the reflux time, it is preferable, but the upper limit is about 90 minutes because the productivity is reduced.
溶鋼に含まれる介在物を浮上分離した後は、常法に従って鋳造し、熱間圧延(必要に応じて冷間圧延)すればよい。具体的には、鋳造時の1400〜1500℃における冷却時間を600秒以内、圧延前加熱条件を1050〜1200℃×2〜5時間、仕上げ圧延終了温度を750℃以上として圧延を実施し、圧延終了後の冷却を平均冷却速度2〜15℃/秒、冷却停止温度を300〜500℃として行なえば良い。 After the inclusions contained in the molten steel are floated and separated, they may be cast according to a conventional method and hot rolled (cold rolled as necessary). Specifically, the rolling is carried out at a cooling time of 1400 to 1500 ° C. during casting within 600 seconds, the pre-rolling heating conditions of 1050 to 1200 ° C. × 2 to 5 hours, and the finish rolling end temperature of 750 ° C. or higher. Cooling after completion may be performed at an average cooling rate of 2 to 15 ° C./second and a cooling stop temperature of 300 to 500 ° C.
本発明の鋼材の形態は特に限定されず、例えば、厚鋼板として使用される。厚鋼板とは、JISで定義されるように、一般に、板厚が3.0mm以上であるものを指す。この厚鋼板は、例えば、橋梁、高層建造物、船舶などの構造物の材料として使用でき、小〜中入熱溶接はもとより大入熱溶接においても、母材靭性およびHAZ靭性に優れたものとなる。本発明の鋼材は、例えば、板厚が50mm以上となるような鋼板に対して、入熱量が50kJ/mm以上の大入熱溶接を行っても良好なHAZ靭性を示すものであるので、この様な厚みの鋼板へ適用することは好ましい態様であるが、板厚は50mm以上のものに限定されず、それ未満となるような鋼板への適用を排除するものではない。 The form of the steel material of this invention is not specifically limited, For example, it is used as a thick steel plate. A thick steel plate generally refers to one having a plate thickness of 3.0 mm or more, as defined by JIS. This steel plate can be used as a material for structures such as bridges, high-rise buildings, ships, etc., and has excellent base metal toughness and HAZ toughness not only in small to medium heat input welding but also in large heat input welding. Become. Since the steel material of the present invention exhibits good HAZ toughness even when a large heat input welding with a heat input of 50 kJ / mm or more is performed on a steel plate having a thickness of 50 mm or more, for example, Although it is a preferable aspect to apply to a steel plate having such a thickness, the plate thickness is not limited to 50 mm or more, and application to a steel plate having a thickness less than that is not excluded.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.
下記表1、表2に示す成分組成の鋼(残部は鉄および不可避不純物)を溶製し、この溶鋼に含まれる介在物を溶鋼から浮上分離してから鋳造してスラブ(断面形状は150mm×250mm)とした後、熱間圧延を行い、板厚80mmの熱延鋼板を得た。 Steels having the composition shown in Tables 1 and 2 (the balance is iron and inevitable impurities) are melted, and inclusions contained in the molten steel are floated and separated from the molten steel, and then cast into a slab (the cross-sectional shape is 150 mm × 250 mm), and then hot-rolled to obtain a hot-rolled steel sheet having a thickness of 80 mm.
熱間圧延は、鋳造時の1400〜1500℃における冷却時間を600秒以内、圧延前加熱条件を1100℃×3時間、仕上げ圧延終了温度を780℃以上として圧延を実施し、圧延終了後、450℃までの冷却を平均冷却速度6℃/秒、冷却停止温度を450℃として行った。 Hot rolling is performed by setting the cooling time at 1400 to 1500 ° C. during casting within 600 seconds, heating conditions before rolling as 1100 ° C. × 3 hours, finishing rolling finish temperature of 780 ° C. or higher, and after completion of rolling, Cooling to 0 ° C. was performed at an average cooling rate of 6 ° C./second and a cooling stop temperature of 450 ° C.
下記表1において、REMはLaを50%程度とCeを25%程度含有するミッシュメタルの形態で添加した。また、下記表1、表2において、「−」は元素を含有していないことを示している。 In Table 1 below, REM was added in the form of a misch metal containing about 50% La and about 25% Ce. In Tables 1 and 2 below, “-” indicates that no element is contained.
下記表1、表2に示したTi量、N量、Si量に基づいて、[Ti]×[N]×[Si]の値(Z値)を算出し、結果を下記表3に示す。なお、下記表1の鋼種Aについては、[Ti]×[N]の値を算出し、算出結果をZ値の欄に示した。また、下記表3において、「αE−β」は、「α×10−β」を意味している。 Based on the Ti amount, the N amount, and the Si amount shown in Tables 1 and 2 below, a value (Z value) of [Ti] × [N] × [Si] is calculated, and the results are shown in Table 3 below. For steel type A in Table 1 below, a value of [Ti] × [N] was calculated, and the calculation result is shown in the Z value column. In Table 3 below, “αE-β” means “α × 10 −β ”.
上記溶鋼に含まれる介在物は、RHでの還流ガス流量を100〜200Nm3/時間とし、Alを添加してから還流ガスを停止するまでの時間(還流時間)を変化させて溶鋼から浮上分離した。下記表3に還流時間を示す。なお、下記表3に示したNo.29とNo.31は、上記溶鋼に含まれる介在物を溶鋼から浮上分離せずに鋳造した例である。 Inclusions contained in the molten steel are separated from the molten steel by changing the flow rate of the reflux gas at RH to 100 to 200 Nm 3 / hour and changing the time (reflux time) from when Al is added until the reflux gas is stopped. did. Table 3 below shows the reflux time. In addition, No. shown in Table 3 below. 29 and No. No. 31 is an example in which the inclusions contained in the molten steel are cast without being floated and separated from the molten steel.
上記介在物を溶鋼から浮上分離した後、鋳造前に、溶鋼中のAl2O3含有介在物の個数密度を次の手順で調べた。 After floating and separating the inclusions from the molten steel, before casting, the number density of the inclusions containing Al 2 O 3 in the molten steel was examined by the following procedure.
[Al2O3含有介在物の個数密度]
カップ状のサンプラー(内径約35mm×高さ約50mm)を用いて連続鋳造用タンディッシュから溶鋼を採取し、空冷にて凝固させた。凝固させて得られた鋼をカップ状サンプラーから取り出し、サンプルの底部から約10mm位置の水平面で切断し、切断面を研磨し、これを介在物観察用サンプルとした。介在物観察用サンプルを、EPMA(Electron Probe X−ray Micro Analyzer;電子プローブX線マイクロアナライザ、日本電子株式会社製「JXA−8500F」)で観察し、円相当直径が0.2μm以上の粒子の個数を測定すると共に、この粒子の成分組成を定量分析した。観察条件は、加速電圧を20kV、試料電流を0.01μA、観察視野は研磨面中央部を中心として1〜5cm2、分析粒子個数を100個以上とし、粒子の成分組成はエネルギー分散型特性X線検出器(EDS)により半定量分析した。分析対象元素は、Al、Mn、Si、Ti、Zr、Ca、La、Ce、Oとし、検出された元素濃度を全て酸化物に換算して規格化した後、Al2O3濃度を求めた。検出された全介在物のうち、Al2O3を80質量%以上含有する介在物をAl2O3含有介在物とした。Al2O3含有介在物の個数を、1mm2あたりに換算して個数密度を求めた。Al2O3含有介在物の個数密度を下記表3に示す。
[Number density of inclusions containing Al 2 O 3 ]
Using a cup-shaped sampler (inner diameter: about 35 mm × height: about 50 mm), molten steel was collected from the tundish for continuous casting and solidified by air cooling. The steel obtained by solidification was taken out from the cup-shaped sampler, cut with a horizontal plane at a position of about 10 mm from the bottom of the sample, the cut surface was polished, and this was used as an inclusion observation sample. The inclusion observation sample was observed with EPMA (Electron Probe X-ray Micro Analyzer; electron probe X-ray microanalyzer, “JXA-8500F” manufactured by JEOL Ltd.), and the equivalent circle diameter was 0.2 μm or more. While measuring the number, the component composition of the particles was quantitatively analyzed. The observation conditions are an acceleration voltage of 20 kV, a sample current of 0.01 μA, an observation field of view of 1 to 5 cm 2 centered on the center of the polished surface, and the number of analysis particles of 100 or more. Semi-quantitative analysis was performed with a line detector (EDS). The analysis target elements were Al, Mn, Si, Ti, Zr, Ca, La, Ce, and O. The detected element concentrations were all converted into oxides and normalized, and then the Al 2 O 3 concentration was obtained. . Among the detected total inclusions, the inclusions containing Al 2 O 3 more than 80 wt% was Al 2 O 3 containing inclusions. The number density of Al 2 O 3 containing inclusions was calculated per 1 mm 2 to determine the number density. Table 3 shows the number density of inclusions containing Al 2 O 3 .
次に、上記のようにして製造した熱延鋼板について、下記の要領で、
(a)鋼材に含まれる全Ti量のうち、サイズが2.0μmを超える粗大なTi含有介在物として鋼材に含まれるTi量、
(b)サイズが0.1μmを超えるTi含有介在物として鋼材に含まれるTi量を全Ti量Qから引いた値Rと、鋼材に含まれる全Ti量Qとの比R/Q(固溶Ti比)、
(c)母材靭性、
(d)母材を溶接したときのHAZ靭性
を測定した。これらの結果を、下記表3に示す。
Next, for the hot rolled steel sheet manufactured as described above, in the following manner,
(A) Of the total amount of Ti contained in the steel material, the amount of Ti contained in the steel material as a coarse Ti-containing inclusion having a size exceeding 2.0 μm,
(B) Ratio R / Q (solid solution) of the value R obtained by subtracting the Ti amount contained in the steel material from the total Ti amount Q as the Ti-containing inclusion having a size exceeding 0.1 μm and the total Ti amount Q contained in the steel material Ti ratio),
(C) base material toughness,
(D) The HAZ toughness when the base material was welded was measured. These results are shown in Table 3 below.
[(a)鋼材に含まれる全Ti量のうち、サイズが2.0μmを超える粗大なTi含有介在物として鋼材に含まれるTi量]
軸心が熱延鋼板の表面から深さt/4位置(tは板厚)を通るように試験片(縦15mm×横15mm×長さ5mm)を各熱延鋼板から切り出し、2%トリエタノールアミン−1%テトラメチルアンモニウムクロリド−メタノール溶液を電解液として、常温で500A/m2以下の電流で電解抽出を行った。電解抽出後、抽出残渣を目開きが2.0μmのメンブレン・フィルターで濾過した。
[(A) Ti amount contained in steel material as coarse Ti-containing inclusions having a size exceeding 2.0 μm out of total Ti amount contained in steel material]
A test piece (length 15 mm × width 15 mm × length 5 mm) is cut from each hot-rolled steel sheet so that the shaft passes through the depth t / 4 position (t is the plate thickness) from the surface of the hot-rolled steel sheet, and 2% triethanol. Electrolytic extraction was performed at room temperature with an electric current of 500 A / m 2 or less using an amine-1% tetramethylammonium chloride-methanol solution as an electrolytic solution. After electrolytic extraction, the extraction residue was filtered through a membrane filter having an opening of 2.0 μm.
次に、濾過してフィルター上に残った抽出残渣(サイズが2.0μmを超える介在物)をフィルターごと白金製るつぼに入れ、ガスバーナーで加熱して灰化した。次いで、アルカリ融剤(炭酸ナトリウムと四ほう酸ナトリウムの混合物)を加え、再度ガスバーナーで加熱して抽出残渣を融解した。次に、18体積%塩酸を加えて融解物を溶液化した後、メスフラスコに移し、純水を加えて50mlにメスアップして分析液を得た。この分析液中のTi濃度をICP発光分析法で測定し、サイズが2.0μmを超えるTi含有介在物として鋼材に含まれるTi量を測定した。測定結果を下記表3に示す。 Next, the extraction residue (inclusions having a size exceeding 2.0 μm) remaining on the filter after filtration was put in a platinum crucible together with the filter, and heated with a gas burner to be incinerated. Next, an alkali flux (a mixture of sodium carbonate and sodium tetraborate) was added and heated again with a gas burner to melt the extraction residue. Next, 18 vol% hydrochloric acid was added to make the melt into a solution, and then the solution was transferred to a measuring flask, and pure water was added to make up to 50 ml to obtain an analysis solution. The Ti concentration in the analysis solution was measured by ICP emission analysis, and the amount of Ti contained in the steel material as a Ti-containing inclusion having a size exceeding 2.0 μm was measured. The measurement results are shown in Table 3 below.
なお、一般に、粗大な介在物ほど、鋼材中へ残留する個数が少なくなるため、介在物調査の常法である研磨サンプルの顕微鏡観察では粗大介在物として存在するTi量を正確に把握することは困難であったが、電解抽出とメンブレン・フィルターによる濾過を組み合わせた本分析手法では、鋼材に含まれ、サイズが2.0μmを超える介在物に含まれるTi量を全量測定できるため、測定誤差が少なく、精度良く測定できる。 In general, the larger the inclusions in the steel material, the smaller the number of residual inclusions in the steel material. Therefore, it is possible to accurately grasp the amount of Ti present as coarse inclusions in a microscopic observation of a polished sample, which is a conventional method for investigation of inclusions. Although it was difficult, with this analysis method that combines electrolytic extraction and filtration with a membrane filter, it is possible to measure the total amount of Ti contained in inclusions with a size exceeding 2.0 μm. It can be measured with little accuracy.
[(b)比R/Q(固溶Ti比)]
上記(a)において、目開きが2.0μmのメンブレン・フィルターを用いて濾過する代わりに、目開きが0.1μmのメンブレン・フィルターを用いて濾過し、サイズが0.1μmを超えるTi含有介在物として鋼材に含まれるTi量を測定した。
[(B) ratio R / Q (solid solution Ti ratio)]
In the above (a), instead of using a membrane filter having an aperture of 2.0 μm, filtration is performed using a membrane filter having an aperture of 0.1 μm, and Ti-containing intervening having a size exceeding 0.1 μm. The amount of Ti contained in the steel as a product was measured.
また、上記(a)において、各熱延鋼板から切り出した試験片に近接した位置から同じ大きさの試験片を別途切り出し、該試験片を全てJIS G1258−1「酸分解−二硫酸カリウム融解法」に準じて溶解し、この溶液中のTi濃度をICP発光分析法で測定し、鋼材に含まれる全Ti量Qを測定した。 Moreover, in said (a), the test piece of the same magnitude | size is cut out separately from the position close | similar to the test piece cut out from each hot-rolled steel plate, and all this test piece is JIS G1258-1 "acid decomposition-potassium disulfate melting method. The Ti concentration in this solution was measured by ICP emission spectrometry, and the total Ti amount Q contained in the steel material was measured.
次に、サイズが0.1μmを超えるTi含有介在物として鋼材に含まれるTi量を全Ti量Qから引いた値Rを求めた。これは固溶Ti量に相当している。この値Rと鋼材に含まれる全Ti量Qとの比R/Qを求めた。求めた比R/Qを下記表3に示す。 Next, a value R obtained by subtracting the Ti amount contained in the steel material as a Ti-containing inclusion having a size exceeding 0.1 μm from the total Ti amount Q was obtained. This corresponds to the solute Ti amount. The ratio R / Q between this value R and the total Ti amount Q contained in the steel material was determined. The obtained ratio R / Q is shown in Table 3 below.
[(c)母材靭性]
各熱延鋼板の表面から深さt/4位置(tは板厚)から、圧延方向にシャルピー衝撃試験片(JIS Z2201の4号試験片)を採取し、JIS Z2242に基づいて−60℃でシャルピー衝撃試験を行い、吸収エネルギー(vE-60)を測定した。このとき3本の試験片について吸収エネルギー(vE-60)を測定し、その最低値を求めた。vE-60の最低値が100J以上のものを母材靭性に優れると評価した。
[(C) Base material toughness]
A Charpy impact test piece (No. 4 test piece of JIS Z2201) is taken in the rolling direction from a depth t / 4 position (t is the plate thickness) from the surface of each hot-rolled steel sheet, and at −60 ° C. based on JIS Z2242. A Charpy impact test was performed and the absorbed energy (vE- 60 ) was measured. At this time, the absorbed energy (vE- 60 ) was measured for the three test pieces, and the minimum value was obtained. Those having a minimum value of vE- 60 of 100 J or more were evaluated as being excellent in base material toughness.
[(d)母材を溶接したときのHAZ靭性]
各熱延鋼板の表面から深さt/4位置(tは板厚)から、圧延方向にシャルピー衝撃試験片(JIS Z2201の4号試験片)を採取し、大入熱溶接を模擬した熱サイクル試験を行い、熱延鋼板(母材)を溶接したときのHAZ靭性を評価した。このとき熱サイクル試験は、上記試験片を1400℃に加熱して60秒間保持した後、800〜500℃の温度範囲を500秒かけて冷却することにより、溶接入熱量が55kJに相当する熱サイクルを与えた。JIS Z2242に基づいて−40℃でシャルピー衝撃試験を行い、吸収エネルギー(vE-40)を測定した。このとき3本の試験片について吸収エネルギー(vE-40)を測定し、その最低値を求めた。vE-40の最低値が100J以上のものをHAZ靭性に優れると評価した。
[(D) HAZ toughness when base metal is welded]
A thermal cycle simulating large heat input welding by collecting Charpy impact test pieces (No. 4 test piece of JIS Z2201) in the rolling direction from the depth t / 4 position (t is the plate thickness) from the surface of each hot-rolled steel plate. A test was conducted to evaluate the HAZ toughness when a hot-rolled steel sheet (base material) was welded. At this time, in the heat cycle test, the test piece is heated to 1400 ° C. and held for 60 seconds, and then the temperature range of 800 to 500 ° C. is cooled over 500 seconds, whereby the heat input corresponding to the welding heat input is 55 kJ. Gave. Based on JIS Z2242, a Charpy impact test was performed at −40 ° C., and the absorbed energy (vE −40 ) was measured. At this time, the absorbed energy (vE- 40 ) was measured for the three test pieces, and the minimum value was obtained. Those having a minimum value of vE- 40 of 100 J or more were evaluated as having excellent HAZ toughness.
また、図2に、[Ti]×[N]×[Si]の値(Z値)とHAZ靭性との関係をグラフに示す。図2では、下記表3に示した発明例(No.1〜25)の結果を◇で、比較例のうちZ値が本発明で推奨する範囲を外れるものの結果(No.26、28、30、31)を■で示した。図2から、Z値とHAZ靭性の間には相関関係があり、Z値を1.0E−05(1.0×10-5)以下に抑えることによって、或いはSiを含有しない場合は(表1の鋼種A)Z値を1.0E−03(1.0×10-3)以下に抑えることによって、HAZ靭性を向上できることがわかる。 FIG. 2 is a graph showing the relationship between the value (Z value) of [Ti] × [N] × [Si] and the HAZ toughness. In FIG. 2, the results of the invention examples (Nos. 1 to 25) shown in Table 3 below are indicated by ◇, and among the comparative examples, the results (Nos. 26, 28, and 30) in which the Z value is outside the range recommended by the present invention. , 31) are indicated by ■. From FIG. 2, there is a correlation between the Z value and the HAZ toughness, and when the Z value is suppressed to 1.0E-05 (1.0 × 10 −5 ) or less, or when Si is not contained (Table It can be seen that the HAZ toughness can be improved by suppressing the steel type A) Z value to 1.0E-03 (1.0 × 10 −3 ) or less.
下記表1〜表3から、次のように考察できる。No.1〜25は、本発明で規定する要件を満足する例であり、成分組成が適切に調整されており、しかも粗大なTi含有介在物として鋼材に含まれるTi量が0.010%以下に抑えられており、且つ鋼材には適量のTiが固溶しているため、母材靭性およびHAZ靭性が良好な鋼板が得られていることが分かる。 From the following Tables 1 to 3, it can be considered as follows. No. 1 to 25 are examples that satisfy the requirements defined in the present invention, the component composition is appropriately adjusted, and the amount of Ti contained in the steel material as coarse Ti-containing inclusions is suppressed to 0.010% or less. It can be seen that a steel sheet having good base metal toughness and HAZ toughness is obtained because an appropriate amount of Ti is dissolved in the steel material.
これに対して、No.26〜46は、本発明で規定するいずれかの要件を外れる例であり、母材靭性およびHAZ靭性の少なくとも一方が劣っている。詳細には、下記の通りである。 In contrast, no. Nos. 26 to 46 are examples that deviate from any requirement defined in the present invention, and at least one of the base material toughness and the HAZ toughness is inferior. Details are as follows.
No.26とNo.30は、[Ti]×[N]×[Si]が1.0×10-5を超えている例であり、サイズが2.0μmを超えるTi含有介在物として鋼材に含まれるTi量が過剰であるため、母材靭性およびHAZ靭性が劣化している。No.27とNo.29は、比R/Qが所定の範囲を外れており、鋼材中の固溶Ti量が多過ぎる例である。そのため母材靭性およびHAZ靭性が劣化している。No.28とNo.31は、[Ti]×[N]×[Si]が1.0×10-5を超えている例であり、サイズが2.0μmを超えるTi含有介在物として鋼材に含まれるTi量が過剰となり、鋼材中の固溶Ti量が少な過ぎるため、比R/Qが所定の範囲を下回っている例である。従って母材靭性とHAZ靭性が劣化している。 No. 26 and no. 30 is an example in which [Ti] × [N] × [Si] exceeds 1.0 × 10 −5 , and the amount of Ti contained in the steel material is excessive as a Ti-containing inclusion whose size exceeds 2.0 μm. Therefore, the base material toughness and the HAZ toughness are deteriorated. No. 27 and No. No. 29 is an example in which the ratio R / Q is out of the predetermined range, and the amount of solute Ti in the steel material is too large. Therefore, the base material toughness and the HAZ toughness are deteriorated. No. 28 and No. 31 is an example in which [Ti] × [N] × [Si] exceeds 1.0 × 10 −5 , and the amount of Ti contained in the steel material is excessive as a Ti-containing inclusion whose size exceeds 2.0 μm. This is an example in which the ratio R / Q is below a predetermined range because the amount of dissolved Ti in the steel material is too small. Therefore, the base material toughness and the HAZ toughness are deteriorated.
No.32〜39、41〜44は、いずれも本発明で規定する成分組成を満足していない例である。No.32は、鋼板中のC含有量が本発明で規定する範囲を超えるものであり、母材靭性およびHAZ靭性が劣化している。母材靭性およびHAZ靭性の劣化は、硬質な島状マルテンサイト(MA)の生成量増加によるものと考えられる。No.33は、鋼板中のSi含有量が本発明で規定する範囲を超えるものであり、母材靭性およびHAZ靭性が劣化している。母材靭性およびHAZ靭性の劣化は、硬質な島状マルテンサイト(MA)の生成量増加によるものと考えられる。No.34は、鋼板中のMn含有量が本発明で規定する範囲を超えるものであり、鋼板の強度が高くなり過ぎたため、母材靭性およびHAZ靭性が劣化している。 No. 32 to 39 and 41 to 44 are examples that do not satisfy the component composition defined in the present invention. No. No. 32 is that in which the C content in the steel sheet exceeds the range specified in the present invention, and the base metal toughness and the HAZ toughness are deteriorated. It is considered that the deterioration of the base metal toughness and the HAZ toughness is due to an increase in the amount of hard island martensite (MA) produced. No. In No. 33, the Si content in the steel sheet exceeds the range specified in the present invention, and the base metal toughness and the HAZ toughness are deteriorated. It is considered that the deterioration of the base metal toughness and the HAZ toughness is due to an increase in the amount of hard island martensite (MA) produced. No. In No. 34, the Mn content in the steel sheet exceeds the range specified in the present invention, and the strength of the steel sheet becomes too high, so that the base metal toughness and the HAZ toughness are deteriorated.
No.35は、鋼板中のP含有量が本発明で規定する範囲を超えるものであり、母材靭性およびHAZ靭性が劣化している。No.36は、鋼板中のS含有量が本発明で規定する範囲を超えるものであり、HAZ靭性は良好であるが、母材靭性が劣化している。No.37は、鋼板中のAl含有量が本発明で規定する範囲を超えるものであり、母材靭性およびHAZ靭性が劣化している。No.38は、鋼板中のTi含有量が本発明で規定する範囲に満たないものであり、HAZ靭性は良好であるが、母材靭性が劣化している。No.39は、鋼板中のTi含有量が本発明で規定する範囲を超えるものであり、母材靭性およびHAZ靭性が劣化している。 No. No. 35 is such that the P content in the steel sheet exceeds the range specified in the present invention, and the base metal toughness and the HAZ toughness are deteriorated. No. No. 36 is that the S content in the steel sheet exceeds the range specified in the present invention, and the HAZ toughness is good, but the base metal toughness is deteriorated. No. In No. 37, the Al content in the steel sheet exceeds the range specified in the present invention, and the base metal toughness and the HAZ toughness are deteriorated. No. No. 38 is one in which the Ti content in the steel sheet is less than the range specified in the present invention, and the HAZ toughness is good, but the base metal toughness is deteriorated. No. In No. 39, the Ti content in the steel sheet exceeds the range specified in the present invention, and the base metal toughness and the HAZ toughness are deteriorated.
No.40は、参考例であり、選択元素として添加するNbの含有量が本発明で規定する範囲を超えるものであり、母材靭性が劣化している。
No.
No.41は、鋼板中のCa含有量が本発明で規定する範囲に満たないものであり、母材靭性およびHAZ靭性が劣化している。No.42は、鋼板中のCa含有量が本発明で規定する範囲を超えるものであり、母材靭性およびHAZ靭性が劣化している。No.43は、鋼板中のN含有量が本発明で規定する範囲に満たないものであり、母材靭性およびHAZ靭性が劣化している。No.44は、鋼板中のN含有量が本発明で規定する範囲を超えるものであり、比R/Qが所定の範囲を下回っており、鋼材中の固溶Ti量が少な過ぎる例である。従って母材靭性およびHAZ靭性が劣化している。 No. No. 41 is one in which the Ca content in the steel sheet is less than the range specified in the present invention, and the base metal toughness and the HAZ toughness are deteriorated. No. No. 42 is such that the Ca content in the steel sheet exceeds the range specified in the present invention, and the base metal toughness and the HAZ toughness are deteriorated. No. No. 43 is the one in which the N content in the steel sheet is less than the range defined in the present invention, and the base metal toughness and the HAZ toughness are deteriorated. No. No. 44 is an example in which the N content in the steel sheet exceeds the range specified in the present invention, the ratio R / Q is below the predetermined range, and the amount of solute Ti in the steel material is too small. Accordingly, the base metal toughness and the HAZ toughness are deteriorated.
No.45とNo.46は、参考例であり、選択元素として添加するNiまたはCuの含有量が本発明で規定する範囲を超えるものであり、母材靭性およびHAZ靭性が劣化している。 No. 45 and no. 46 is a reference example in which the content of Ni or Cu added as a selective element exceeds the range specified in the present invention, and the base metal toughness and the HAZ toughness are deteriorated.
また、No.28、29、31、41は、RHにおいてAlを添加してから還流ガスを停止するまでの時間(還流時間)が短過ぎるため、溶鋼に含まれる介在物を溶鋼から充分に浮上分離できていない。そのため母材靭性とHAZ靭性が劣化している。 No. 28, 29, 31, and 41 are not sufficiently floated and separated from the molten steel because inclusions contained in the molten steel are too short since the time (refluxing time) from when Al is added in RH until the reflux gas is stopped is too short. . Therefore, base material toughness and HAZ toughness are deteriorated.
Claims (6)
C :0.03〜0.16%(質量%の意味。以下成分について同じ。)、
Si:0.25%以下(0%を含む)、
Mn:1〜2.0%、
P :0.03%以下(0%を含まない)、
S :0.015%以下(0%を含まない)、
Al:0.05%以下(0%を含まない)、
Ti:0.010〜0.08%、
Ca:0.0005〜0.010%および
N :0.0020〜0.020%を含有し、
残部が鉄および不可避不純物からなる鋼材であって、
鋼材に含まれる全Ti量Qのうち、
2.0μmを超えるTi含有介在物として鋼材に含まれるTi量が0.010%以下(0%を含まない)で、且つ
0.1μmを超えるTi含有介在物として鋼材に含まれるTi量を全Ti量Qから引いた値Rと、鋼材に含まれる全Ti量Qとの比R/Qが0.30〜0.70であることを特徴とする母材および溶接熱影響部の靭性に優れた鋼材。 Components in steel are C: 0.03 to 0.16% (meaning mass%. The same applies to the following components),
Si: 0.25% or less (including 0%),
Mn: 1 to 2.0%,
P: 0.03% or less (excluding 0%),
S: 0.015% or less (excluding 0%),
Al: 0.05% or less (excluding 0%),
Ti: 0.010 to 0.08%,
Ca: 0.0005 to 0.010% and N: 0.0020 to 0.020%,
The balance is steel made of iron and inevitable impurities,
Of the total Ti amount Q contained in the steel material,
The amount of Ti contained in steel as Ti-containing inclusions exceeding 2.0 μm is 0.010% or less (excluding 0%), and the amount of Ti contained in steel as Ti-containing inclusions exceeding 0.1 μm The ratio R / Q between the value R subtracted from the Ti amount Q and the total Ti amount Q contained in the steel material is 0.30 to 0.70, and is excellent in the toughness of the base material and the weld heat affected zone Steel material.
Ni:1.5%以下(0%を含まない)、
Cu:1.5%以下(0%を含まない)、
Cr:1.5%以下(0%を含まない)および
Mo:1.5%以下(0%を含まない)よりなる群から選ばれる1種以上の元素を含むものである請求項1に記載の鋼材。 The steel material is still another element,
Ni: 1.5% or less (excluding 0%),
Cu: 1.5% or less (excluding 0%),
The steel material according to claim 1, comprising at least one element selected from the group consisting of Cr: 1.5% or less (not including 0%) and Mo: 1.5% or less (not including 0%). .
Nb:0.10%以下(0%を含まない)、および/または
V :0.1%以下(0%を含まない)を含むものである請求項1または2に記載の鋼材。 The steel material is still another element,
The steel material according to claim 1 or 2, wherein Nb: not more than 0.10% (not including 0%) and / or V: not more than 0.1% (not including 0%).
B:0.005%以下(0%を含まない)を含むものである請求項1〜3のいずれかに記載の鋼材。 The steel material is still another element,
B: 0.005% or less (0% is not included) The steel material in any one of Claims 1-3.
Zr :0.02%以下(0%を含まない)、および/または
REM:0.02%以下(0%を含まない)を含むものである請求項1〜4のいずれかに記載の鋼材。 The steel material is still another element,
Zr: 0.02% or less (excluding 0%) and / or REM: 0.02% or less (not including 0%) The steel material according to any one of claims 1 to 4.
Ti、N、およびSiが、下記式(1)を満足するように鋼を溶製した後、溶鋼に含まれる介在物を浮上分離することによって鋼に含まれるAl2O3含有介在物の個数を1mm2あたり10個以下(0個を含む)に制御してから鋳造することを特徴とする母材および溶接熱影響部の靭性に優れた鋼材の製造方法。
[Ti]×[N]≦(1×10-5)/[Si] ・・・(1)
式(1)中、[ ]は鋼中の各元素の含有量(質量%)を表す。
但し、Si=0質量%のときは、TiとNiが、下記式(2)を満足するように鋼を溶製する。
[Ti]×[N]≦1×10-3 ・・・(2) A method for producing the steel material according to any one of claims 1 to 5,
After the steel is melted so that Ti, N, and Si satisfy the following formula (1), the inclusions contained in the steel are levitated and separated, whereby the number of inclusions containing Al 2 O 3 contained in the steel A base material and a method for producing a steel material excellent in toughness of a weld heat affected zone, wherein the steel is cast after being controlled to 10 or less (including 0) per mm 2 .
[Ti] × [N] ≦ (1 × 10 −5 ) / [Si] (1)
In formula (1), [] represents content (mass%) of each element in steel.
However, when Si = 0% by mass, the steel is melted so that Ti and Ni satisfy the following formula (2).
[Ti] × [N] ≦ 1 × 10 −3 (2)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011199914A JP5883257B2 (en) | 2011-09-13 | 2011-09-13 | Steel material excellent in toughness of base metal and weld heat-affected zone, and manufacturing method thereof |
CN201210300959.8A CN102994872B (en) | 2011-09-13 | 2012-08-22 | The steel of the tenacity excellent of mother metal and welding heat affected zone and manufacture method thereof |
KR1020120101036A KR20130029024A (en) | 2011-09-13 | 2012-09-12 | Steel excellent in toughness of base metal and weld-heat affected zone and method for manufacturing the same |
BE201200600A BE1020801A3 (en) | 2011-09-13 | 2012-09-13 | EXCELLENT STEEL IN TERMS OF TENACITY OF THE BASE METAL AND THE AREA AFFECTED BY THE HEAT OF WELDING AND METHOD OF MANUFACTURING THE SAME. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011199914A JP5883257B2 (en) | 2011-09-13 | 2011-09-13 | Steel material excellent in toughness of base metal and weld heat-affected zone, and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013060631A true JP2013060631A (en) | 2013-04-04 |
JP5883257B2 JP5883257B2 (en) | 2016-03-09 |
Family
ID=47137405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011199914A Expired - Fee Related JP5883257B2 (en) | 2011-09-13 | 2011-09-13 | Steel material excellent in toughness of base metal and weld heat-affected zone, and manufacturing method thereof |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5883257B2 (en) |
KR (1) | KR20130029024A (en) |
CN (1) | CN102994872B (en) |
BE (1) | BE1020801A3 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020040190A1 (en) * | 2018-08-24 | 2020-02-27 | 日本製鉄株式会社 | Steel material, forged heat-treated article, and method for manufacturing forged heat-treated article |
WO2022070873A1 (en) * | 2020-09-30 | 2022-04-07 | Jfeスチール株式会社 | Steel sheet |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000319750A (en) * | 1999-05-10 | 2000-11-21 | Kawasaki Steel Corp | High tensile strength steel for large heat input welding excellent in toughness of heat-affected zone |
JP2001098340A (en) * | 1999-09-29 | 2001-04-10 | Nippon Steel Corp | Steel for welding structure excellent in heat-affected zone |
JP3999673B2 (en) * | 2003-01-15 | 2007-10-31 | 株式会社神戸製鋼所 | Welding steel |
CN101213316A (en) * | 2005-08-15 | 2008-07-02 | 株式会社神户制钢所 | Thick steel plate excelling in toughness of large heat input welded joint |
JP4825057B2 (en) * | 2005-09-12 | 2011-11-30 | 株式会社神戸製鋼所 | Steel with excellent toughness of weld heat affected zone and its manufacturing method |
JP4226626B2 (en) * | 2005-11-09 | 2009-02-18 | 新日本製鐵株式会社 | High tensile strength steel sheet with low acoustic anisotropy and excellent weldability, including yield stress of 450 MPa or more and tensile strength of 570 MPa or more, including the central part of the plate thickness, and method for producing the same |
JP4946092B2 (en) * | 2006-02-28 | 2012-06-06 | Jfeスチール株式会社 | High-strength steel and manufacturing method thereof |
JP4950528B2 (en) * | 2006-03-16 | 2012-06-13 | 株式会社神戸製鋼所 | Low yield ratio high strength steel with excellent toughness of heat affected zone and its manufacturing method |
JP4515427B2 (en) * | 2006-09-29 | 2010-07-28 | 株式会社神戸製鋼所 | Steel with excellent toughness and fatigue crack growth resistance in weld heat affected zone and its manufacturing method |
JP4485561B2 (en) * | 2007-10-02 | 2010-06-23 | 株式会社神戸製鋼所 | High tensile steel plate for welding with excellent base metal toughness |
JP5201665B2 (en) * | 2007-11-13 | 2013-06-05 | 株式会社神戸製鋼所 | High strength thick steel plate for welding with excellent toughness of heat affected zone during high heat input welding |
JP5231042B2 (en) * | 2008-02-20 | 2013-07-10 | 株式会社神戸製鋼所 | Steel material excellent in toughness of weld heat-affected zone and method for producing the same |
JP5439887B2 (en) * | 2008-03-31 | 2014-03-12 | Jfeスチール株式会社 | High-strength steel and manufacturing method thereof |
BRPI0913046A2 (en) * | 2008-05-26 | 2020-12-15 | Nippon Steel Corporation | HIGH-RESISTANCE HOT-LAMINATED STEEL SHEET FOR USE IN OIL PIPES, EXCELLENT IN TENACITY AT LOW TEMPERATURE AND PERFORMANCE OF DUCTILE FRACTURE INTERRUPTION AND PRODUCTION METHOD OF THE SAME |
JP5432539B2 (en) * | 2009-01-28 | 2014-03-05 | 株式会社神戸製鋼所 | Steel with excellent toughness in weld heat affected zone |
JP5223706B2 (en) * | 2009-02-03 | 2013-06-26 | 新日鐵住金株式会社 | Steel material excellent in toughness of heat-affected zone with high heat input and manufacturing method thereof |
CN101956132B (en) * | 2009-07-15 | 2012-07-25 | 株式会社神户制钢所 | Steel having excellent toughness in welding heat affected zone, and manufacturing method thereof |
JP2011127220A (en) * | 2009-11-18 | 2011-06-30 | Kobe Steel Ltd | Method for manufacturing steel member excellent in toughness at weld heat-affected zone |
-
2011
- 2011-09-13 JP JP2011199914A patent/JP5883257B2/en not_active Expired - Fee Related
-
2012
- 2012-08-22 CN CN201210300959.8A patent/CN102994872B/en not_active Expired - Fee Related
- 2012-09-12 KR KR1020120101036A patent/KR20130029024A/en not_active Application Discontinuation
- 2012-09-13 BE BE201200600A patent/BE1020801A3/en not_active IP Right Cessation
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020040190A1 (en) * | 2018-08-24 | 2020-02-27 | 日本製鉄株式会社 | Steel material, forged heat-treated article, and method for manufacturing forged heat-treated article |
JPWO2020040190A1 (en) * | 2018-08-24 | 2021-04-08 | 日本製鉄株式会社 | Manufacturing method of steel materials, forged heat-treated products, and forged heat-treated products |
JP7063386B2 (en) | 2018-08-24 | 2022-05-09 | 日本製鉄株式会社 | Manufacturing method of steel materials, forged heat-treated products, and forged heat-treated products |
WO2022070873A1 (en) * | 2020-09-30 | 2022-04-07 | Jfeスチール株式会社 | Steel sheet |
JPWO2022070873A1 (en) * | 2020-09-30 | 2022-04-07 | ||
JP7272471B2 (en) | 2020-09-30 | 2023-05-12 | Jfeスチール株式会社 | steel plate |
Also Published As
Publication number | Publication date |
---|---|
CN102994872A (en) | 2013-03-27 |
JP5883257B2 (en) | 2016-03-09 |
CN102994872B (en) | 2016-02-24 |
BE1020801A3 (en) | 2014-05-06 |
KR20130029024A (en) | 2013-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5201665B2 (en) | High strength thick steel plate for welding with excellent toughness of heat affected zone during high heat input welding | |
JP5202031B2 (en) | Steel material excellent in toughness of weld heat-affected zone and method for producing the same | |
JP5820341B2 (en) | Steel with excellent toughness in weld heat affected zone | |
JP5432539B2 (en) | Steel with excellent toughness in weld heat affected zone | |
JP5576640B2 (en) | Steel with excellent toughness in weld heat affected zone | |
JP5796636B2 (en) | Steel material for large heat input welding | |
JP6665658B2 (en) | High strength steel plate | |
JP6418418B2 (en) | Steel material for large heat input welding | |
JP6048627B2 (en) | Manufacturing method of steel plates for high heat input welding | |
JP5883257B2 (en) | Steel material excellent in toughness of base metal and weld heat-affected zone, and manufacturing method thereof | |
JP5838693B2 (en) | Manufacturing method of steel with excellent high temperature strength | |
KR101082639B1 (en) | High-tensile strength thick steel plate with excellent toughness of weld heat affected zone | |
WO2017183720A1 (en) | Thick steel plate | |
JP4299769B2 (en) | High HAZ toughness steel for high heat input welding with heat input of 20-100 kJ / mm | |
JP5883369B2 (en) | Thick steel plate with excellent toughness in weld heat affected zone | |
JP6809243B2 (en) | Continuously cast steel slabs and their manufacturing methods | |
JP5213517B2 (en) | Steel with excellent weld heat affected zone toughness | |
JP6747032B2 (en) | Thick steel plate | |
JP6662174B2 (en) | Steel plate | |
JP2009287108A (en) | Steel superior in fatigue characteristics for common rail, and common rail | |
JP2021004407A (en) | Steel and method for producing the same | |
KR20090049530A (en) | High-tensile strength thick steel plate for weld with excellent toughness of large heat-input weld heat affected zone | |
JP2003286540A (en) | Thick steel plate showing excellent toughness at heat affected zone in extra-large heat input welding and its manufacturing process | |
JP6086036B2 (en) | Steel plate with excellent weld heat-affected zone toughness and its melting method | |
KR20230051276A (en) | steel plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130902 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140128 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140320 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140715 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140922 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20140930 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20141128 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150907 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160205 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5883257 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |