JP2009287108A - Steel superior in fatigue characteristics for common rail, and common rail - Google Patents

Steel superior in fatigue characteristics for common rail, and common rail Download PDF

Info

Publication number
JP2009287108A
JP2009287108A JP2008143321A JP2008143321A JP2009287108A JP 2009287108 A JP2009287108 A JP 2009287108A JP 2008143321 A JP2008143321 A JP 2008143321A JP 2008143321 A JP2008143321 A JP 2008143321A JP 2009287108 A JP2009287108 A JP 2009287108A
Authority
JP
Japan
Prior art keywords
inclusions
steel
less
common rail
rem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008143321A
Other languages
Japanese (ja)
Other versions
JP5245544B2 (en
Inventor
Taro Hirokado
太朗 廣角
Hajime Saito
肇 齋藤
Michikuni Aono
通匡 青野
Atsushi Aoki
淳 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008143321A priority Critical patent/JP5245544B2/en
Publication of JP2009287108A publication Critical patent/JP2009287108A/en
Application granted granted Critical
Publication of JP5245544B2 publication Critical patent/JP5245544B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel for a common rail, which is superior in fatigue strength while securing machinability, and to provide a common rail made from the steel. <P>SOLUTION: The steel for the common rail comprises, by mass%, 0.3 to 0.5% C, 0.05 to 0.5% Si, 0.3 to 1.5% Mn, 0.01 to 0.1% Al, 0.003 to 0.02% Ti, 0.4 to 1.5% Cr, 0.1 to 1.5% Mo, 0.003 to 0.015% N, 0.0003 to 0.01% REM and 0.01 to 0.03% Bi, 0.0015% or less S, 0.035% or less P and 0.003% or less O, and the balance substantially Fe with unavoidable impurities. The common rail is made from the steel, contains sulfide-based inclusions of which the mean value of ratios of the lengths L to the widths D is 4.5 or less in the longitudinal cross-section, and has each of sulfide-based inclusions, nitride-based inclusions and oxide-based inclusions finely dispersed therein. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、自動車などの燃料噴射システム部品として使用される疲労特性の優れたコモンレール用鋼、およびその鋼からなるコモンレールに関するものである。   The present invention relates to a common rail steel having excellent fatigue characteristics used as a fuel injection system component for automobiles and the like, and a common rail made of the steel.

コモンレールは、例えばディーゼルエンジン用の燃料噴射システムの部品として使用され(例えば、特許文献1および特許文献2参照)、高圧燃料を蓄圧するパイプ状中空本体部と、該中空本体部と交差する通孔を有して高圧燃料を流出入するパイプ接続部から構成されている。   The common rail is used, for example, as a part of a fuel injection system for a diesel engine (see, for example, Patent Document 1 and Patent Document 2), a pipe-shaped hollow main body for accumulating high-pressure fuel, and a through-hole that intersects the hollow main body It has a pipe connection part that flows in and out of high-pressure fuel.

コモンレールは、パイプ接続部が、高圧燃料により高応力が繰り返し付加され、疲労破壊を起こし易いが、熱間圧延や熱間鍛造の熱間加工により伸長した硫化物系介在物の伸長方向とパイプ接続部に生じる引張応力の方向とが交差していることが一因と考えられている。   In the common rail, the pipe connection part is repeatedly subjected to high stress by high-pressure fuel and easily causes fatigue failure, but the extension direction of sulfide inclusions extended by hot working of hot rolling or hot forging and pipe connection One reason is considered to be that the direction of the tensile stress generated in the part intersects.

一般に、降伏応力以上の応力が負荷されると鋼材が変形するが、降伏応力以下の応力であっても、繰り返し負荷されると鋼材が破壊される、いわゆる金属疲労という現象が知られている。鋼材が使用されている多くの部品はこのような応力環境下にあるため、鋼材の疲労強度を向上することは極めて重要である。疲労強度を改善する最もオーソドックスな方法は鋼材の強度を上げるという方法であるが、近年、鋼中の介在物が疲労強度に悪影響を及ぼすことが明らかになり、介在物、特にMnSなど硫化物系介在物の種類や大きさ、密度などの影響を詳細に研究し、その制御技術が開発されてきている。   In general, a steel material is deformed when a stress higher than the yield stress is applied, but a phenomenon called so-called metal fatigue is known in which a steel material is destroyed when repeatedly applied even if the stress is lower than the yield stress. Since many parts in which steel materials are used are under such a stress environment, it is extremely important to improve the fatigue strength of the steel materials. The most orthodox method for improving fatigue strength is to increase the strength of steel, but in recent years it has become clear that inclusions in steel have an adverse effect on fatigue strength, and inclusions, especially sulfides such as MnS The effects of the type, size, density, etc. of inclusions have been studied in detail, and their control technology has been developed.

コモンレールとしては、例えば、上記特許文献1においては、Mn硫化物系介在物の長さと幅の比を一定値以下に小さくすることにより製品の疲労特性を向上させる技術が示されている。また、上記特許文献2においては、TiNを利用してその周りにMnSを析出させて硫化物系介在物を微細化し、これによりBi金属介在物も微細化して被削性を向上させる技術が示されている。   As a common rail, for example, the above-mentioned Patent Document 1 discloses a technique for improving the fatigue characteristics of a product by reducing the ratio of the length and width of Mn sulfide inclusions to a certain value or less. Patent Document 2 discloses a technique for improving machinability by using TiN to precipitate MnS around it to refine sulfide inclusions, thereby miniaturizing Bi metal inclusions. Has been.

特許第3934511号公報Japanese Patent No. 3934511 特開2005−154886号公報JP 2005-154886 A

しかしながら、昨今においては、部品の高寿命化、或いは軽量化のため、さらなる疲労強度の向上が求められている。そこで、本発明は、被削性を確保しつつ、疲労強度に優れたコモンレール用鋼と、その鋼からなるコモンレールを提供することを課題とする。   However, in recent years, further improvement in fatigue strength has been demanded in order to increase the service life or weight of components. Then, this invention makes it a subject to provide the steel for common rails which was excellent in fatigue strength, and the common rail which consists of the steel, ensuring machinability.

昨今においては、溶銑および溶鋼の脱硫技術が発達し、製品中のSを質量%で0.0015%以下と極めて低い濃度に安定して抑えることができるようになった。すなわち、硫化物系介在物だけでなく、TiNのような窒化物系介在物、Al23のような酸化物系介在物による悪影響がコモンレールの性能を改善する上で見逃せなくなってきているが、前に述べた2つの発明はTiNのような窒化物系介在物、Al23のような酸化物系介在物の制御による製品性能の改善策に関して解決を与えていない。
本発明者らは鋭意研究した結果、コモンレール用鋼溶製中にREMを適量添加することにより、
(1) 硫化物系介在物の平均粒径を小さくし、アスペクト比(長さ/幅)を下げられる
(2) 窒化物系介在物の平均粒径を小さくできる
(3) 酸化物系介在物の平均粒径を小さくできる
という3つの効果を同時に発現させられることを見出し、前記課題が解決できることを知見し、本発明を完成した。
なお、硫化物系介在物とは、純粋なMnSや(Mn、REM)Sが主体であるが、その他に酸化物を核として析出したMnS、(Mn、REM)S、あるいは(Mn,REM)Sを主体として含有し、Fe、Ca、Ti、Zr、Mg、等の硫化物がMnSと固溶したり、結合したりして共存している介在物を指す。また、窒化物系介在物とは、TiNやAlNを指す。また、酸化物系介在物とは、Al23や(Al、REM)23が主体であるが、一部介在物においては(Al、REM)(O、S)のようないわゆるオキシサルファイドの形をとるものも存在した。これらの介在物中のSはOと比較して十分低濃度だったため、ここではSを含まないものと区別せず酸化物系介在物と称することとした。
In recent years, desulfurization technology of hot metal and molten steel has been developed, and S in the product can be stably suppressed to an extremely low concentration of 0.0015% or less by mass%. In other words, not only the sulfide inclusions but also the nitride inclusions such as TiN and the oxide inclusions such as Al 2 O 3 have been adversely affected to improve the performance of the common rail. The two inventions described above do not provide a solution for improving product performance by controlling nitride inclusions such as TiN and oxide inclusions such as Al 2 O 3 .
As a result of intensive studies, the inventors have added an appropriate amount of REM during the melting of common rail steel,
(1) The average particle size of sulfide inclusions can be reduced to reduce the aspect ratio (length / width) (2) The average particle size of nitride inclusions can be reduced (3) Oxide inclusions The inventors have found that the three effects of reducing the average particle size of the particles can be expressed simultaneously, and have found that the above problems can be solved, thereby completing the present invention.
The sulfide inclusions are mainly pure MnS and (Mn, REM) S, but MnS, (Mn, REM) S, or (Mn, REM) precipitated with oxide as a nucleus. It contains inclusions containing S as a main component, and sulfides such as Fe, Ca, Ti, Zr, Mg, etc. coexist in solid solution with or bonded to MnS. Further, the nitride-based inclusion refers to TiN or AlN. The oxide inclusions are mainly Al 2 O 3 and (Al, REM) 2 O 3, but some inclusions are so-called oxy such as (Al, REM) (O, S). Some also took the form of sulfide. Since S in these inclusions was sufficiently low in concentration as compared with O, it was herein referred to as an oxide inclusion without being distinguished from those not containing S.

本発明の要旨は、以下のとおりである。   The gist of the present invention is as follows.

(1) 質量%で、
C:0.3〜0.5%、
Si:0.05〜0.5%、
Mn:0.3〜1.5%、
Al:0.01〜0.1%、
Ti:0.003〜0.02%、
Cr:0.4〜1.5%、
Mo:0.1〜1.5%、
N:0.003〜0.015%、
REM:0.0003〜0.01%、
Bi:0.01〜0.03%
を含有し、
S:0.0015%以下、
P:0.035%以下、
O:0.003%以下
に制限し、
残部が実質的にFeおよび不可避不純物からなることを特徴とするコモンレール用鋼。
(1) In mass%,
C: 0.3-0.5%
Si: 0.05 to 0.5%,
Mn: 0.3 to 1.5%,
Al: 0.01 to 0.1%,
Ti: 0.003 to 0.02%,
Cr: 0.4 to 1.5%,
Mo: 0.1 to 1.5%,
N: 0.003 to 0.015%,
REM: 0.0003 to 0.01%
Bi: 0.01-0.03%
Containing
S: 0.0015% or less,
P: 0.035% or less,
O: limited to 0.003% or less,
A steel for common rails characterized in that the balance substantially consists of Fe and inevitable impurities.

(2) さらに、質量%で、
Mg:0.0002〜0.01%、
Ca:0.0005〜0.01%、
Zr:0.0005〜0.02%、
Te:0.0002〜0.005%
のうちの1種または2種以上を含有することを特徴とする上記(1)記載のコモンレール用鋼。
(2) Furthermore, in mass%,
Mg: 0.0002 to 0.01%,
Ca: 0.0005 to 0.01%,
Zr: 0.0005 to 0.02%,
Te: 0.0002 to 0.005%
The common rail steel according to (1) above, which contains one or more of the above.

(3) 上記(1)または(2)に記載の鋼からなり、L断面において、長さ(L)と幅(D)の比(L/D)の平均値が4.5以下かつ円相当径0.01〜5.0μmである硫化物系介在物が5×101〜1×104個/mm2分散し、円相当径5.0μmを超える硫化物系介在物が5×101個/mm2以下であり、円相当径0.002〜0.5μmの窒化物系介在物が1×103〜1×106個/mm2分散し、円相当径0.5μmを超える窒化物系介在物が2×102個/mm2以下であり、さらに円相当径0.01〜5.0μmの酸化物系介在物が5×101〜1×104個/mm2分散し、円相当径5.0μmを超える酸化物系介在物が5×101個/mm2以下であることを特徴とするコモンレール。 (3) Made of the steel described in (1) or (2) above, the average value of the ratio (L / D) of length (L) to width (D) is 4.5 or less and equivalent to a circle in the L cross section 5 × 10 1 to 1 × 10 4 pieces / mm 2 of sulfide inclusions having a diameter of 0.01 to 5.0 μm are dispersed, and 5 × 10 1 of sulfide inclusions having an equivalent circle diameter exceeding 5.0 μm. pieces / mm 2 or less, the nitride inclusions equivalent circle diameter 0.002~0.5μm is 1 × 10 3 ~1 × 10 6 cells / mm 2 were dispersed nitride exceeding circle equivalent diameter 0.5μm -based inclusions is not more 2 × 10 2 pieces / mm 2 or less, further oxide inclusions equivalent circle diameter 0.01~5.0μm is 5 × 10 1 ~1 × 10 4 pieces / mm 2 dispersed The common rail is characterized in that the number of oxide inclusions having an equivalent circle diameter exceeding 5.0 μm is 5 × 10 1 pieces / mm 2 or less.

なお、L断面とは、圧延や鍛造等の圧縮加工による延伸方向断面をいう。   The L cross section refers to a cross section in the stretching direction by a compression process such as rolling or forging.

本発明によれば、被削性を確保し、疲労強度、耐久性に優れたコモンレール用鋼を得ることができ、そして、この鋼は被削性が良好であるのでコモンレールの製造が容易となり、また製造したコモンレールは疲労特性に優れ、高寿命のコモンレールとすることができるという顕著な効果を奏する。   According to the present invention, it is possible to obtain a steel for common rail that secures machinability and is excellent in fatigue strength and durability, and since this steel has good machinability, it becomes easy to manufacture the common rail, Further, the manufactured common rail has excellent fatigue characteristics, and has a remarkable effect that it can be a long-life common rail.

まず、本発明者らが鋭意検討の結果見出したREMを適量添加することによる、
(1) 硫化物系介在物の平均粒径を小さくし、アスペクト比(長さ/幅)を下げられる
(2) 窒化物系介在物の平均粒径を小さくできる
(3) 酸化物系介在物の平均粒径を小さくできる
という3つの効果と本発明の介在物の形態、分布に関する規定理由について述べる。
First, by adding an appropriate amount of REM found by the present inventors as a result of intensive studies,
(1) The average particle size of sulfide inclusions can be reduced to reduce the aspect ratio (length / width) (2) The average particle size of nitride inclusions can be reduced (3) Oxide inclusions Three reasons that the average particle diameter of the inclusions can be reduced and the reason for the definition regarding the form and distribution of the inclusions of the present invention will be described.

質量%で0.4%のC、1.0%のMn、0.001%のS、0.05%のAl、0.01%のTi、0.001%のOを含む溶鋼を2つのるつぼに分け、片方にのみ0.0035%のREMを添加し、鋳型内で凝固させた。このように得られた2つの鋼塊を通常の条件で熱間圧延し、厚さ15〜40mm、幅80mmの鋼板を作製した。   Two molten steels containing 0.4% C, 1.0% Mn, 0.001% S, 0.05% Al, 0.01% Ti, 0.001% O by mass% Divided into crucibles, 0.0035% REM was added to only one and solidified in the mold. The two steel ingots thus obtained were hot-rolled under normal conditions to produce a steel plate having a thickness of 15 to 40 mm and a width of 80 mm.

析出物の分散状態は、以下のように測定した。鋼板ごとに厚さの中心付近から、L方向(熱間圧延による延伸方向)に20mm角の試験片を採取し、この試験片のL断面を走査型電子顕微鏡(SEM)を用いて1000〜100000倍の倍率で少なくとも1000μm2以上の領域にわたって観察し、対象となる大きさの粒子を測定し円相当径に換算するとともに、観察された個数と被験面積から単位面積(mm2)当たりの個数に換算した。なお、本発明内に記載の粒子径は断りのない限り円相当径を指すものとする。 The dispersion state of the precipitate was measured as follows. For each steel plate, a 20 mm square test piece is collected in the L direction (stretching direction by hot rolling) from the vicinity of the center of the thickness, and the L cross section of this test piece is 1000 to 100,000 using a scanning electron microscope (SEM). Observe over a region of at least 1000 μm 2 at double magnification, measure particles of the target size, convert to equivalent circle diameter, and change the number per unit area (mm 2 ) from the observed number and test area Converted. In addition, unless otherwise indicated, the particle diameter as described in this invention shall point out an equivalent circle diameter.

対象となる硫化物系介在物、窒化物系介在物、酸化物系介在物のうち少なくとも20個以上について付属の波長分散型分光法(WDS)を用いて組成を分析し、酸化物の平均組成を求めた。この時、酸化物組成の分析値に地鉄のFeが検出される場合は、分析値からFeを除外して酸化物の平均組成を求めた。   Analyze the composition of the target sulfide inclusions, nitride inclusions and oxide inclusions using the attached wavelength dispersive spectroscopy (WDS), and determine the average composition of the oxides. Asked. At this time, in the case where Fe was detected as the analysis value of the oxide composition, the average composition of the oxide was determined by excluding Fe from the analysis value.

(1) 硫化物系介在物
REMを含有する水準の硫化物系介在物の長さ(L)と幅(D)の比(L/D)の平均値は2.8、REMを含有しない水準のL/Dの平均値は3.7となり、REMを含有する硫化物系介在物のL/Dが小さくなることがわかった。REMはSとの親和力が大きく、MnSより硬質なREM−Sを形成したことが理由と考えられる。
(1) Sulfide inclusions The average value of the ratio (L / D) of the length (L) to the width (D) of sulfide inclusions at a level containing REM is 2.8, the level not containing REM The average value of L / D was 3.7, indicating that the L / D of sulfide inclusions containing REM was reduced. REM has a large affinity with S, and it is considered that REM-S harder than MnS was formed.

硫化物系介在物は、熱間加工により伸長形状になり、これが引張応力方向とある角度で交差すると、切欠き作用が起こり、あたかも表面欠陥のような作用として働くものと推定される。本発明では、硫化物系介在物の平均L/Dが4.5を超えると耐久比が大きく低下するため、硫化物系介在物のL/Dの平均値を4.5以下とした。   It is presumed that sulfide inclusions become elongated due to hot working, and when this intersects the tensile stress direction at a certain angle, a notch action occurs, which acts as if it is a surface defect. In the present invention, when the average L / D of sulfide inclusions exceeds 4.5, the durability ratio is greatly reduced. Therefore, the average value of L / D of sulfide inclusions is set to 4.5 or less.

平均L/Dは、REMの添加、さらには後述するMg、Ca、Zrの添加の他、鋼塊、鋳片からの減面率によって制御される。   The average L / D is controlled not only by addition of REM, but also by addition of Mg, Ca, and Zr, which will be described later, as well as by the area reduction rate from the steel ingot and slab.

また、硫化物系介在物の平均粒径を調査した結果、REMを含有する微細な硫化物系介在物が多く見られることを見出した。その粒子径は円相当径で0.01〜5.0μmであった。   Moreover, as a result of investigating the average particle diameter of sulfide inclusions, it was found that many fine sulfide inclusions containing REM were found. The particle diameter was 0.01 to 5.0 μm in terms of equivalent circle diameter.

REMを添加することにより硫化物系介在物の平均粒径が小さくなる現象に関しては検討中であるが、以下の機構が推定される。すなわち、REMを添加しない場合に主たる構成物となるMnSより融点の高いREM−Sが溶鋼段階に存在することで、硫化物系介在物同士の衝突による凝集がおこりづらくなり、結果として硫化物系介在物が粒子径0.01〜5.0μmと細粒化される。なお、REMを添加しない水準においては5.0μmを超える粗大な硫化物系介在物がREMを添加した水準と比較して多く残存していた。この硫化物系介在物の組成はほぼ純粋なMnSであり、溶鋼中にて凝集合体して粗大化したものと推定される。   The phenomenon of reducing the average particle size of sulfide inclusions by adding REM is under investigation, but the following mechanism is presumed. That is, REM-S having a melting point higher than that of MnS, which is a main component when REM is not added, is present in the molten steel stage, so that aggregation due to collision between sulfide inclusions is less likely to occur, and as a result, sulfide-based Inclusions are refined to a particle size of 0.01 to 5.0 μm. In addition, in the level which does not add REM, the coarse sulfide type inclusion exceeding 5.0 micrometers remained large compared with the level which added REM. The composition of the sulfide inclusions is almost pure MnS, which is presumed to be agglomerated and coarsened in the molten steel.

硫化物系介在物は脱硫処理において不可避的に発生する介在物である。粒子径5.0μmを超えるものはL/Dによらず少量でも疲労寿命に不利となり、5×101個/mm2を超えるとその影響が大きくなるため好ましくない。よって上限を5×101個/mm2とする。粒子径0.01〜5.0μmのものに関しても低減するほど疲労強度に有利となるが、5×101個/mm2未満ではその効果はほぼ飽和し、さらなる低減はコストの増大を招き好ましくない。よって下限を5×101個/mm2とする。また、1×104個/mm2を超えると疲労寿命に及ぼす影響が大きくなるため好ましくない。よって上限を1×104個/mm2とする。 Sulfide inclusions are inclusions that are inevitably generated in the desulfurization treatment. A particle size exceeding 5.0 μm is not preferable because it is disadvantageous for fatigue life even if it is in a small amount regardless of L / D, and if it exceeds 5 × 10 1 particles / mm 2 , the effect becomes large. Therefore, the upper limit is 5 × 10 1 pieces / mm 2 . The smaller the particle size of 0.01 to 5.0 μm, the more advantageous the fatigue strength. However, when the particle size is less than 5 × 10 1 particles / mm 2 , the effect is almost saturated, and further reduction leads to an increase in cost. Absent. Therefore, the lower limit is 5 × 10 1 pieces / mm 2 . On the other hand, if it exceeds 1 × 10 4 pieces / mm 2 , the effect on the fatigue life is increased, which is not preferable. Therefore, the upper limit is set to 1 × 10 4 pieces / mm 2 .

(2) 窒化物系介在物
鋼中に析出している窒化物系介在物を詳細に観察したところ、微小な酸化物を核生成サイトとして析出している窒化物系介在物、特にTiNが頻度高く存在することを見いだした。そのような微小な酸化物として、REMを含み、さらにTiとAlのいずれか1種類以上を含む酸化物(以後、TiあるいはAlが含まれずともTi−Al−REM酸化物と呼ぶ)であることを見出した。窒化物系介在物を含めたその粒子径は0.002〜0.5μmであった。
(2) Nitride inclusions Nitride inclusions precipitated in the steel were observed in detail. The frequency of nitride inclusions, particularly TiN, which precipitates fine oxides as nucleation sites. I found it high. As such a minute oxide, it is an oxide containing REM and further containing at least one of Ti and Al (hereinafter referred to as Ti-Al-REM oxide even if Ti or Al is not contained). I found. The particle size including nitride inclusions was 0.002 to 0.5 μm.

すなわち、Ti−Al−REM酸化物が鋼中に存在することで、それら酸化物が存在しない場合に比較して窒化物系介在物が析出するサイトが増加し、窒化物系介在物の析出個数が増加する。その結果として窒化物系介在物が粒子径0.002〜0.5μmと細粒化される。なお、REMを添加しない水準においては0.5μmを超える粗大な窒化物系介在物がREMを添加した水準と比較して多く残存していた。   That is, the presence of Ti-Al-REM oxide in steel increases the number of sites where nitride inclusions precipitate, compared to the case where these oxides do not exist, and the number of nitride inclusions deposited. Will increase. As a result, the nitride inclusions are refined to a particle size of 0.002 to 0.5 μm. In addition, in the level where REM was not added, a large amount of coarse nitride inclusions exceeding 0.5 μm remained as compared with the level where REM was added.

窒化物系介在物は0.5μmを超える粗大なものが2×102個/mm2を超えて存在すると疲労強度に悪影響がある。よって上限を2×102個/mm2とする。逆に、本発明で多数観察されるような0.002〜0.5μmの微細な粒子であれば適正な数の分散により結晶粒粗大化抑制効果を発現させることができる。しかし1×103個/mm2未満であるとその効果が得られない。よって下限を1×103個/mm2とする。また、1×106個/mm2を超えると疲労強度や母材の靭性に悪影響が出る。よって上限を1×106個/mm2とする。 Nitride inclusions larger than 0.5 μm are present in excess of 2 × 10 2 pieces / mm 2 , which adversely affects fatigue strength. Therefore, the upper limit is set to 2 × 10 2 pieces / mm 2 . On the contrary, if it is a fine particle of 0.002 to 0.5 μm as observed in the present invention, the effect of suppressing the coarsening of crystal grains can be expressed by an appropriate number of dispersions. However, if it is less than 1 × 10 3 pieces / mm 2 , the effect cannot be obtained. Therefore, the lower limit is set to 1 × 10 3 pieces / mm 2 . On the other hand, when it exceeds 1 × 10 6 pieces / mm 2 , the fatigue strength and the toughness of the base material are adversely affected. Therefore, the upper limit is set to 1 × 10 6 pieces / mm 2 .

酸化物系介在物
REMを添加しない場合、Al23を主な成分とする酸化物系介在物が生成する。Al23は凝集力が大きく、クラスター状の粗大酸化物系介在物を形成しやすい。しかし、Alより強い脱酸力を有するREMの添加により、一部のAl23が還元され、(REM、 Al)23なる酸化物系介在物が生成する。本実験により観察された酸化物系介在物の粒径は、REM添加水準は0.01〜5.0μmであったが、REMを添加しない水準においては5.0μmを超える粗大な酸化物系介在物がREMを添加した水準と比較して多く残存していた。メカニズムは不明であるが、REMを含有する酸化物系介在物はREMを含有しない酸化物系介在物と比較して微細に分散する傾向があり、コモンレールの疲労強度向上に有利に作用する。
Oxide inclusions When REM is not added, oxide inclusions containing Al 2 O 3 as a main component are generated. Al 2 O 3 has a large cohesive force and tends to form cluster-like coarse oxide inclusions. However, by adding REM having a stronger deoxidizing power than Al, a part of Al 2 O 3 is reduced, and an oxide inclusion of (REM, Al) 2 O 3 is generated. The particle size of the oxide inclusions observed in this experiment was 0.01 to 5.0 μm at the REM addition level, but coarse oxide inclusions exceeding 5.0 μm at the level where REM was not added. A large amount of the product remained in comparison with the level to which REM was added. Although the mechanism is unknown, the oxide inclusions containing REM tend to be finely dispersed as compared with the oxide inclusions not containing REM, which advantageously works to improve the fatigue strength of the common rail.

酸化物系介在物は脱硫処理において不可避的に発生する介在物である。粒子径5.0μmを超えるものは少量でも疲労寿命に不利となり、5×101個/mm2を超えるとその影響が大きくなるため好ましくない。よって上限を5×101個/mm2とする。粒子径0.01〜5.0μmのものに関しても低減するほど疲労強度に有利となるが、5×101個/mm2未満ではその効果はほぼ飽和し、さらなる低減はコストの増大を招き好ましくない。よって下限を5×101個/mm2とする。また、1×104個/mm2を超えると疲労寿命に及ぼす影響が大きくなるため好ましくない。よって上限を1×104個/mm2とする。 Oxide inclusions are inclusions that are inevitably generated in the desulfurization treatment. If the particle diameter exceeds 5.0 μm, even a small amount is disadvantageous for the fatigue life, and if it exceeds 5 × 10 1 particles / mm 2 , the influence is increased, which is not preferable. Therefore, the upper limit is 5 × 10 1 pieces / mm 2 . The smaller the particle size of 0.01 to 5.0 μm, the more advantageous the fatigue strength. However, when the particle size is less than 5 × 10 1 particles / mm 2 , the effect is almost saturated, and further reduction leads to an increase in cost. Absent. Therefore, the lower limit is 5 × 10 1 pieces / mm 2 . On the other hand, if it exceeds 1 × 10 4 pieces / mm 2 , the effect on the fatigue life is increased, which is not preferable. Therefore, the upper limit is set to 1 × 10 4 pieces / mm 2 .

次に、本発明の鋼成分組成の規定理由について述べる。
単位はいずれも質量%である。
Next, the reason for defining the steel component composition of the present invention will be described.
All units are mass%.

C:0.3〜0.5%
Cは静的強度だけでなく、疲労強度、靭性、延性に影響する最も基本的な元素である。Cが0.3%未満では静的強度および疲労強度が不十分である。よって下限を0.3%とする。また、0.5%を超えると靭性が劣化する。よって上限を0.5%とする。
C: 0.3-0.5%
C is the most basic element that affects not only static strength but also fatigue strength, toughness, and ductility. When C is less than 0.3%, static strength and fatigue strength are insufficient. Therefore, the lower limit is set to 0.3%. On the other hand, if it exceeds 0.5%, the toughness deteriorates. Therefore, the upper limit is 0.5%.

Si:0.05〜0.5%
SiはCに次いで固溶強化能が大きい重要な元素である。Siが0.05%未満では十分な強度を得ることができない。よって下限を0.05%とする。また、0.5%を超えると靭性や加工性を著しく劣化させる元素でもある。よって、上限を0.5%とする。
Si: 0.05-0.5%
Si is an important element having the highest solid solution strengthening ability after C. If Si is less than 0.05%, sufficient strength cannot be obtained. Therefore, the lower limit is made 0.05%. Further, if it exceeds 0.5%, it is also an element that significantly deteriorates toughness and workability. Therefore, the upper limit is 0.5%.

Mn:0.3〜1.5%
Mnは焼入れ性を向上させ、冷却速度が不十分な場合でも部品の内部まで硬度を確保するのに重要な元素である。Mnが0.3%未満では必要な強度が確保できない。よって下限を0.3%とする。また、1.5%を超えると靭性および加工性が劣化する。よって上限を1.5%とする。
Mn: 0.3 to 1.5%
Mn is an important element for improving the hardenability and ensuring the hardness of the part even when the cooling rate is insufficient. If Mn is less than 0.3%, the required strength cannot be ensured. Therefore, the lower limit is set to 0.3%. Moreover, when it exceeds 1.5%, toughness and workability will deteriorate. Therefore, the upper limit is 1.5%.

Al:0.01〜0.1%
Alは脱酸目的で用いられる必須元素であり、またAlNを生成して結晶粒の粗大化を抑制する効果がある。Alが0.01%未満ではこの効果が得られにくく、結晶粒の粗大化は靭性劣化をもたらすだけでなく、部品の一部に粗大粒が発生することは機械的性質が不均一になるので望ましくない。よって下限を0.01%とする。また、0.1%を超えると、鋳造中にノズル詰まりが発生したり、鋼中に残存する酸化物系介在物が性能を劣化させたりするなどの不具合が生じやすい。よって上限を0.1%とする。
Al: 0.01 to 0.1%
Al is an essential element used for deoxidation purposes, and has an effect of suppressing the coarsening of crystal grains by generating AlN. If the Al content is less than 0.01%, this effect is difficult to obtain. The coarsening of the crystal grains not only deteriorates the toughness, but the generation of coarse grains in a part of the part makes the mechanical properties non-uniform. Not desirable. Therefore, the lower limit is made 0.01%. On the other hand, if it exceeds 0.1%, nozzle clogging is likely to occur during casting and oxide inclusions remaining in the steel tend to deteriorate the performance. Therefore, the upper limit is made 0.1%.

Ti:0.003〜0.02%
TiはAl同様窒化物を生成する元素であるが、熱的安定性に優れ、より高温まで結晶粒粗大化抑制効果を持続させる。Tiが0.003%未満ではこの効果が得られにくいため、下限を0.003%とする。また、0.02%を超えると、本発明で述べるREM添加による窒化物微細化効果が飽和し、TiN自体が粗大に成長しやすくなり、疲労強度を低下させる原因となる。よって上限を0.02%とする。
Ti: 0.003-0.02%
Ti is an element that forms a nitride like Al, but has excellent thermal stability and maintains the effect of suppressing grain coarsening up to a higher temperature. If Ti is less than 0.003%, this effect is difficult to obtain, so the lower limit is made 0.003%. On the other hand, if it exceeds 0.02%, the effect of refining nitride due to the addition of REM described in the present invention is saturated, TiN itself tends to grow coarsely, and causes a reduction in fatigue strength. Therefore, the upper limit is made 0.02%.

Cr:0.4〜1.5%
CrはMnと同様、鋼の焼入れ性を向上する有用な元素である。0.4%未満ではこの効果が十分得られない。よって下限を0.4%とする。また、1.5%を超えると効果がほぼ飽和するため、コストの増大を招いて好ましくない。よって上限を1.5%とする。
Cr: 0.4 to 1.5%
Cr, like Mn, is a useful element that improves the hardenability of steel. If it is less than 0.4%, this effect cannot be sufficiently obtained. Therefore, the lower limit is set to 0.4%. On the other hand, if it exceeds 1.5%, the effect is almost saturated. Therefore, the upper limit is 1.5%.

Mo:0.1〜1.5%
Moはその炭窒化物を微細に析出させることにより、焼戻し時に鋼を硬化させる、いわゆる2次硬化を起こす元素であり、疲労強度を改善に有効である。また、焼入れ性向上効果も大きい。0.1%未満では十分な効果が得られない。よって下限を0.1%とする。また、1.5%を超えると焼き入れ熱処理時に未溶解の炭化物が残存しやすくなり、靭性を劣化させる。よって上限を1.5%とする。
Mo: 0.1 to 1.5%
Mo is an element that causes so-called secondary hardening by hardening the steel during tempering by finely precipitating the carbonitride, and is effective in improving fatigue strength. In addition, the effect of improving hardenability is great. If it is less than 0.1%, a sufficient effect cannot be obtained. Therefore, the lower limit is 0.1%. On the other hand, if it exceeds 1.5%, undissolved carbide tends to remain during the quenching heat treatment, and the toughness is deteriorated. Therefore, the upper limit is 1.5%.

N:0.003〜0.015%
NはTiN、AlN等の窒化物系介在物を生成し、結晶粒粗大化抑制効果を発現させる。0.003%未満ではこの効果が十分に得られない。よって下限を0.003%とする。また、0.015%を超えると窒化物系介在物の粗大化を招き、疲労強度を低下させる原因となるため好ましくない。また、熱間延性を低下させ、鋳造時あるいは圧延時に表面疵の要因となる。よって上限を0.015%とする。鋼材清浄性の観点から、0.01%以下とするとさらに望ましい。
N: 0.003 to 0.015%
N produces nitride inclusions such as TiN and AlN, and exhibits the effect of suppressing grain coarsening. If it is less than 0.003%, this effect cannot be sufficiently obtained. Therefore, the lower limit is made 0.003%. On the other hand, if it exceeds 0.015%, the nitride inclusions become coarse and cause a decrease in fatigue strength. Moreover, it reduces hot ductility and becomes a factor of surface defects during casting or rolling. Therefore, the upper limit is made 0.015%. From the viewpoint of steel material cleanliness, it is more desirable to be 0.01% or less.

REM:0.0003〜0.01%
REMは本発明において最も重要な元素であり、硫化物系介在物のアスペクト比低下、窒化物系介在物の微細化、酸化物系介在物の微細化効果を持つ。0.0003%未満ではこれらの効果が十分に得られない。よって下限を0.0003%とするが、0.001%以上であればさらに望ましい。また、0.01%を超えると鋼の清浄性を低下させ、母材の靭性を劣化させる。よって上限を0.01%とする。なお、ここでREMとはLaやCe等の希土類元素を表すが、そのうちの任意の1種類、あるいは2種類以上のREMを用いることができる。
REM: 0.0003 to 0.01%
REM is the most important element in the present invention, and has the effect of reducing the aspect ratio of sulfide inclusions, the refinement of nitride inclusions, and the refinement of oxide inclusions. If it is less than 0.0003%, these effects cannot be sufficiently obtained. Therefore, the lower limit is set to 0.0003%, but 0.001% or more is more desirable. On the other hand, if it exceeds 0.01%, the cleanliness of the steel is lowered and the toughness of the base material is deteriorated. Therefore, the upper limit is made 0.01%. In addition, although REM represents rare earth elements, such as La and Ce here, arbitrary 1 type or 2 types or more of them can be used.

Bi:0.01〜0.03%
Biは鋼材の被削性を向上させる効果がある。本発明では疲労強度改善を志向し、後述するようにSを低位に抑制しているため、同じく被削性向上効果のあるMnSが十分に生成しない。コモンレールは燃料噴射用の細長い孔を必要とする場合が多く、Bi添加により被削性を確保することが必須となる。十分な被削性を得るためには0.01%未満では効果がなく、下限を0.01%とする。また、0.03%を超えると被削性向上はさらに期待できるものの熱間延性が極端に劣化し、製造が困難になる。よって上限を0.03%とする。
Bi: 0.01-0.03%
Bi has the effect of improving the machinability of the steel material. In the present invention, since fatigue strength is aimed at and S is suppressed to a low level as described later, MnS having an effect of improving machinability is not sufficiently generated. The common rail often requires an elongated hole for fuel injection, and it is essential to ensure machinability by adding Bi. In order to obtain sufficient machinability, if less than 0.01%, there is no effect, and the lower limit is made 0.01%. On the other hand, if it exceeds 0.03%, the machinability can be further improved, but the hot ductility is extremely deteriorated and the production becomes difficult. Therefore, the upper limit is made 0.03%.

S:0.0015%以下
本発明においてSの低位制御は非常に重要である。Sが0.0015%を超えると、REMによる硫化物系介在物改質効果が十分に発揮されず、粗大化しやすくなるためコモンレールの性能を劣化させる。0.0015%以下に制限する。0.0010%以下とするとさらに望ましい。
S: 0.0015% or less In the present invention, low-level control of S is very important. If S exceeds 0.0015%, the effect of modifying sulfide inclusions by REM is not sufficiently exhibited and it becomes easy to coarsen, so the performance of the common rail is deteriorated. Limited to 0.0015% or less. More preferably, it is 0.0010% or less.

P:0.035%以下
Pは鋼に添加する元素の中でも最も粒界に偏析しやすく、かつ粒界を脆弱にする元素である。本発明では極力低減したほうが望ましい。特に、0.035%を超えると粒界破壊が著しくなるため、Pの上限を0.035%とする。0.015%以下とするとさらに望ましい。
P: 0.035% or less Among elements added to steel, P is an element that is most easily segregated at the grain boundary and weakens the grain boundary. In the present invention, it is desirable to reduce as much as possible. In particular, if it exceeds 0.035%, grain boundary fracture becomes remarkable, so the upper limit of P is made 0.035%. It is further desirable that the content be 0.015% or less.

O:0.003%以下
Oは溶鋼中に含まれる元素で、主にAlやREMにより脱酸される。Oが0.003%を超えると鋼の清浄性を劣化させ、母材の靭性を劣化させる。よって上限を0.003%とする。鋼材清浄性の観点から、0.001%以下とするとさらに望ましい。
O: 0.003% or less O is an element contained in molten steel and is mainly deoxidized by Al or REM. If O exceeds 0.003%, the cleanliness of the steel is deteriorated and the toughness of the base material is deteriorated. Therefore, the upper limit is made 0.003%. From the viewpoint of steel material cleanliness, 0.001% or less is more desirable.

本発明においては、製品に求める特性を発現させるため、さらに以下の元素を1種または2種以上を溶鋼に添加しても良い。   In the present invention, one or more of the following elements may be added to the molten steel in order to develop the characteristics required for the product.

Mg:0.0002〜0.01%
MgはREM同様、Al23を改質し、酸化物系介在物粗大化を抑制する効果がある。また、硫化物系介在物にも作用し、アスペクト比を低下させる効果がある。しかし、0.0002%未満ではこれらの効果が見られないため、下限を0.0002%とする。また、0.01%を超えるとMgOを主成分とする粗大なクラスター状酸化物系介在物を形成し、疲労破壊の基点となって好ましくない。よって上限を0.01%とする。
Mg: 0.0002 to 0.01%
Mg, like REM, modifies Al 2 O 3 and has the effect of suppressing oxide inclusion coarsening. It also acts on sulfide inclusions and has the effect of reducing the aspect ratio. However, if the content is less than 0.0002%, these effects cannot be seen, so the lower limit is made 0.0002%. On the other hand, if it exceeds 0.01%, coarse cluster-like oxide inclusions mainly composed of MgO are formed, which is not preferable as a base point of fatigue fracture. Therefore, the upper limit is made 0.01%.

Ca:0.0005〜0.01%
CaはREM同様、Alを改質し、酸化物系介在物粗大化を抑制する効果がある。また、硫化物系介在物にも作用し、アスペクト比を低下させる効果がある。しかし、0.0005%未満ではこれらの効果が見られないため、下限を0.0005%とする。また、0.01%を超えるとCaO−Al23を主成分とする、硫化物系介在物同様伸長性に富んだ酸化物系介在物を形成し、疲労破壊の基点となって好ましくない。よって上限を0.01%とする。
Ca: 0.0005 to 0.01%
Ca, like REM, modifies Al 2 O 3 and has the effect of suppressing oxide inclusion coarsening. It also acts on sulfide inclusions and has the effect of reducing the aspect ratio. However, since these effects are not seen at less than 0.0005%, the lower limit is made 0.0005%. On the other hand, if it exceeds 0.01%, an oxide-based inclusion having CaO-Al 2 O 3 as a main component and having high extensibility as well as a sulfide-based inclusion is formed, which is not preferable as a starting point for fatigue fracture. . Therefore, the upper limit is made 0.01%.

Zr:0.0005〜0.02%
Zrは硫化物系介在物に作用し、アスペクト比を低下させる効果がある。しかし、0.0005%未満ではこれらの効果が見られないため、下限を0.0005%とする。しかし0.02%を超えると、硬質のクラスター状酸化物系介在物を発生させ、鋼の清浄性ならびに疲労強度に悪影響を及ぼす。よって上限を0.02%とする。
Zr: 0.0005 to 0.02%
Zr acts on sulfide inclusions and has the effect of reducing the aspect ratio. However, since these effects are not seen at less than 0.0005%, the lower limit is made 0.0005%. However, if it exceeds 0.02%, hard clustered oxide inclusions are generated, which adversely affects the cleanliness and fatigue strength of the steel. Therefore, the upper limit is made 0.02%.

Te:0.0002〜0.005%
Teは主にMnTeの化合物の形で存在し、MnS近傍に存在してアスペクト比の低下に寄与する。
しかし、0.0002%未満ではこれらの効果が見られないため、下限を0.0002%とする。反面、熱間延性を大きく劣化させ、0.005%を超えると鋳片の表面疵やブレークアウトが頻発するなど連続鋳造での製造が困難になる。よって上限を0.005%とする。
Te: 0.0002 to 0.005%
Te exists mainly in the form of a compound of MnTe and exists in the vicinity of MnS and contributes to a decrease in aspect ratio.
However, if the content is less than 0.0002%, these effects cannot be seen, so the lower limit is made 0.0002%. On the other hand, the hot ductility is greatly deteriorated, and if it exceeds 0.005%, it is difficult to produce by continuous casting because the surface flaw and breakout of the slab frequently occur. Therefore, the upper limit is made 0.005%.

上記成分の他、本発明の効果が損なわれない範囲で、V、Nb、Ni等を添加することができる。   In addition to the above components, V, Nb, Ni and the like can be added as long as the effects of the present invention are not impaired.

以下に本発明を実施例によってさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

表1に示した化学成分(残部はFeおよび不可避不純物)で、鋼材を試作した。1〜10が本発明鋼、11〜32が比較鋼である。試作鋼は転炉溶製し、転炉出鋼時にSi、Mnによる脱酸を、取鍋精錬にて真空脱ガス処理時にその他の元素による脱酸および脱硫およびその他の成分調整を行った。なお、Bi、Ca、Mg、Teは蒸気圧が高いことを考慮し、ワイヤーを用いた添加を連続鋳造開始5分前以内とした。この溶鋼を連続鋳造により200mm厚鋳片に鋳造し、一旦室温まで冷却した後1170℃に加熱して熱間圧延を行い、板厚15〜35mm、幅80mmの鋼板とし、鋼板の厚さ中心付近からC方向に15mm角、長さ80mmの角棒を採取した。   A steel material was prototyped with the chemical components shown in Table 1 (the balance being Fe and inevitable impurities). 1-10 are invention steels and 11-32 are comparative steels. The prototype steel was melted in the converter, and deoxidized with Si and Mn at the time of steel leaving the converter, and deoxidation and desulfurization with other elements and other components were adjusted during vacuum degassing with ladle refining. Note that Bi, Ca, Mg, and Te were added within 5 minutes before the start of continuous casting in consideration of the high vapor pressure. This molten steel is cast into a 200 mm thick slab by continuous casting, once cooled to room temperature, heated to 1170 ° C. and hot-rolled to obtain a steel plate with a plate thickness of 15 to 35 mm and a width of 80 mm, near the thickness center of the steel plate A square bar of 15 mm square and 80 mm length was collected in the C direction.

Figure 2009287108
Figure 2009287108

さらに各角棒の前記鋼板でのL断面の内の厚み方向断面(該角棒の長手方向との直角断面)において介在物観察用サンプルを採取した。   Further, an inclusion observation sample was taken in a thickness direction cross section (a cross section perpendicular to the longitudinal direction of the square bar) of the L cross sections of the steel bars of each square bar.

介在物の大きさ、個数は走査型電子顕微鏡(SEM)を用いて調査した。硫化物系介在物、0.5μmを超える窒化物系介在物、および酸化物系介在物に関しては約5000倍の倍率で少なくとも10000μm2以上の領域にわたって写真撮影し、この写真を元に各介在物の大きさ(円相当径に変換)と個数を測定し、被験面積から単位面積(mm2)当たりの個数に換算した。さらに、0.01〜5.0μmの硫化物系介在物に関してはそれぞれのL/Dを測定し、平均値(相加平均)を求めた。0.002〜0.5μmの窒化物系介在物に関しては微細かつ多量に分散していたため、倍率を約20000倍とし、少なくとも250μm2以上の領域にわたって写真撮影し、この写真を元に各介在物の大きさ(円相当径に変換)と個数を測定し、被験面積から単位面積(mm2)当たりの個数に換算した。 The size and number of inclusions were examined using a scanning electron microscope (SEM). For sulfide inclusions, nitride inclusions exceeding 0.5 μm, and oxide inclusions, a photograph was taken over an area of at least 10,000 μm 2 at a magnification of about 5000 times, and each inclusion was based on this photograph. The size (converted to the equivalent circle diameter) and the number were measured and converted from the test area to the number per unit area (mm 2 ). Furthermore, regarding the sulfide type inclusions of 0.01 to 5.0 μm, each L / D was measured, and an average value (arithmetic average) was obtained. Since the nitride inclusions of 0.002 to 0.5 μm were finely dispersed in a large amount, the magnification was set to about 20000 times, and a photograph was taken over an area of at least 250 μm 2 or more. The size (converted to the equivalent circle diameter) and the number were measured and converted from the test area to the number per unit area (mm 2 ).

L/Dは断面の中心付近にある100個程度の硫化物系介在物を撮影し、その写真を画像処理装置で読み取り、それぞれのL/Dを求め、それらの平均値を計算した。   As for L / D, about 100 sulfide inclusions in the vicinity of the center of the cross section were photographed, the photograph was read with an image processing device, each L / D was obtained, and an average value thereof was calculated.

析出物の分散状態は、対象となる硫化物系介在物、窒化物系介在物、酸化物系介在物のうち少なくとも30個以上について付属の波長分散型分光法(WDS)を用いて組成を分析し、酸化物の平均組成を求めた。この時、酸化物組成の分析値に地鉄のFeが検出される場合は、分析値からFeを除外して酸化物の平均組成を求めた。   The dispersion state of the precipitate is analyzed for the composition using the attached wavelength dispersion spectroscopy (WDS) for at least 30 of the sulfide inclusions, nitride inclusions, and oxide inclusions of interest. Then, the average composition of the oxide was determined. At this time, in the case where Fe of ground iron was detected in the analytical value of the oxide composition, the average composition of the oxide was determined by excluding Fe from the analytical value.

同時に、各角棒を850〜960℃に加熱後、焼入れ、530〜660℃で焼戻した。その後、これらの角棒から引張試験片と小野式回転曲げ疲労試験片を作製し、耐久比(疲労限界/引張強さ)を求めた。さらに同じ角棒から被削性試験片を作成し、ドリル穿孔試験に供した。ドリル穿孔試験は累積穴深さ1000mmまで切削可能な最高の切削速度(いわゆるVL1000、単位:m/min)で被削性を評価する方法であり、数値が大きいほど被削性が良好であることを示す。
以上の結果を表2に示す。
At the same time, each square bar was heated to 850 to 960 ° C, quenched, and tempered at 530 to 660 ° C. Thereafter, tensile test pieces and Ono-type rotary bending fatigue test pieces were produced from these square bars, and the durability ratio (fatigue limit / tensile strength) was determined. Further, a machinability test piece was prepared from the same square bar and subjected to a drill drilling test. The drilling test is a method for evaluating machinability at the highest cutting speed (so-called VL1000, unit: m / min) that can cut to a cumulative hole depth of 1000 mm. The larger the value, the better the machinability. Indicates.
The results are shown in Table 2.

Figure 2009287108
Figure 2009287108

鋼種1〜10は本発明コモンレールの鋼であり、本発明範囲を満たしていて、いずれも十分な耐久比を持っている。一方、比較例鋼の11〜26、28〜30は本発明範囲を満たしておらず、本発明鋼ほどの十分な耐久比もしくは被削性を持っておらず、比較例鋼の27は製造が困難となった。   Steel types 1 to 10 are steels of the present invention common rail, satisfy the scope of the present invention, and all have a sufficient durability ratio. On the other hand, 11 to 26 and 28 to 30 of the comparative example steel do not satisfy the scope of the present invention, and do not have a sufficient durability ratio or machinability as the steel of the present invention. It became difficult.

比較例11、12はMnに関するものである。比較例11はMnが過少であったため、強度が劣化したために耐久比が劣化した例である。また、比較例12はMnが過大であったため、靭性を劣化させ耐久比を満足しなかった例である。   Comparative Examples 11 and 12 relate to Mn. Comparative Example 11 is an example in which the durability ratio deteriorates because the strength deteriorates because Mn is too small. Further, Comparative Example 12 is an example in which Mn was excessive, so that the toughness was deteriorated and the durability ratio was not satisfied.

比較例13、14はSに関するものであり、いずれも過大であったため、硫化物系介在物が過多となり耐久比が劣化した例である。   Comparative Examples 13 and 14 are related to S, both of which are excessive, so that the sulfide inclusions are excessive and the durability ratio is deteriorated.

比較例15、16はAlに関するものである。比較例15はAlが過少であったため、0.002〜0.5μmの窒化物系介在物を十分量生成できず、耐久比が劣化した例である。また、比較例16はAlが過大であったため、鋼中に5.0μmを超えるクラスター状酸化物系介在物を過剰に生成させ、耐久比を劣化させた例である。   Comparative Examples 15 and 16 relate to Al. Comparative Example 15 is an example in which since Al was too small, a sufficient amount of 0.002 to 0.5 μm nitride inclusions could not be generated, and the durability ratio deteriorated. Further, Comparative Example 16 is an example in which since Al was excessive, cluster-like oxide inclusions exceeding 5.0 μm were excessively generated in the steel to deteriorate the durability ratio.

比較例17、18はTiに関するものである。比較例17はTiが過少であったため、0.002〜0.5μmの窒化物系介在物を十分量生成できず、耐久比が劣化した例である。また、比較例18はTiが過大であったため、鋼中に0.5μmを超える窒化物系介在物を過剰に生成させ、耐久比を劣化させた例である。   Comparative Examples 17 and 18 relate to Ti. Comparative Example 17 is an example in which since Ti was excessive, a sufficient amount of nitride inclusions of 0.002 to 0.5 μm could not be generated, and the durability ratio deteriorated. Further, Comparative Example 18 is an example in which Ti was excessive, so that nitride inclusions exceeding 0.5 μm were excessively generated in the steel and the durability ratio was deteriorated.

比較例19、20はOに関するものであり、いずれも過大であったため、0.5μmを超える酸化物系介在物が過多となり耐久比が劣化した例である。   Since Comparative Examples 19 and 20 are related to O and both are excessive, oxide-based inclusions exceeding 0.5 μm are excessive and the durability ratio is deteriorated.

比較例21、22はNに関するものである。比較例21はNが過少であったため、0.002〜0.5μmの窒化物系介在物を十分量生成できず、耐久比が劣化した例である。また、比較例22はNが過大であったため、鋼中に0.5μmを超える窒化物系介在物を過剰に生成させ、耐久比を劣化させた例である。また、鋳片に表面疵が発生しており、これもNが課題であることが原因と考えられる。   Comparative Examples 21 and 22 relate to N. Comparative Example 21 is an example in which N was too small to generate a sufficient amount of nitride inclusions of 0.002 to 0.5 μm and the durability ratio deteriorated. Further, Comparative Example 22 is an example in which N is excessive, so that nitride inclusions exceeding 0.5 μm are excessively generated in the steel and the durability ratio is deteriorated. Moreover, surface flaws are generated in the slab, and this is also considered to be caused by N being a problem.

比較例23、24、25はREMに関するものである。比較例23はREMが過少であり、Mg、Caなどの硫化物系介在物展伸抑制効果を持つ元素も含有しないため、L/Dが4.5を超え、さらに硫化物系介在物の微細化効果、窒化物系介在物の微細化効果、酸化物系介在物の微細化効果がいずれも得られず、耐久比が大きく劣化した例である。比較例24はZr添加により硫化物系介在物の伸長は抑制できているものの、窒化物系介在物の核生成サイトとなるTi−Al−REM酸化物が十分量存在しないため、窒化物系介在物の微細分散に至らず、また酸化物系介在物の微細化もなされなかったために耐久比が劣化した例である。また、比較例25はREMが過大であったため、5.0μmを超える酸化物系介在物を過剰に生成させ、耐久比を劣化させた例である。   Comparative Examples 23, 24, and 25 relate to REM. In Comparative Example 23, REM is too small and does not contain an element having an effect of suppressing the expansion of sulfide inclusions such as Mg and Ca. Therefore, L / D exceeds 4.5, and the sulfide inclusions are fine. This is an example in which the durability ratio is greatly deteriorated because neither the effect of refining, the effect of refining nitride inclusions, or the effect of refining oxide inclusions can be obtained. In Comparative Example 24, although the elongation of sulfide inclusions can be suppressed by addition of Zr, since a sufficient amount of Ti-Al-REM oxide serving as a nucleation site of nitride inclusions does not exist, nitride inclusions are present. This is an example in which the durability ratio was deteriorated because the fine dispersion of the object was not achieved and the oxide inclusions were not refined. In Comparative Example 25, since REM was excessive, oxide inclusions exceeding 5.0 μm were excessively generated to deteriorate the durability ratio.

比較例26、27はBiに関するものである。比較例26はBiが過少であり、十分な耐久比が得られているものの、十分な被削性が得られなかった例である。また、比較例鋼の27はBiが過大であり、分塊圧延段階で大きなクラックが生じたため、サンプルを採取することができなかった例である。   Comparative Examples 26 and 27 relate to Bi. Comparative Example 26 is an example in which Bi was insufficient and a sufficient durability ratio was obtained, but sufficient machinability was not obtained. Further, Comparative Steel No. 27 is an example in which Bi was excessive and a large crack was generated in the block rolling stage, so that a sample could not be collected.

比較例鋼の28、29、30は化学成分が本発明範囲内であるが、圧延での減面率が大きすぎ、粒子径0.01〜5.0μmの硫化物系介在物の平均L/Dが本発明範囲を超えたため、耐久比が劣化した例である。   The comparative steels 28, 29 and 30 have chemical components within the scope of the present invention, but the reduction in rolling area is too large, and the average L / L of sulfide inclusions having a particle diameter of 0.01 to 5.0 μm This is an example in which the durability ratio deteriorated because D exceeded the range of the present invention.

Claims (3)

質量%で、
C:0.3〜0.5%、
Si:0.05〜0.5%、
Mn:0.3〜1.5%、
Al:0.01〜0.1%、
Ti:0.003〜0.02%、
Cr:0.4〜1.5%、
Mo:0.1〜1.5%、
N:0.003〜0.015%、
REM:0.0003〜0.01%、
Bi:0.01〜0.03%
を含有し、
S:0.0015%以下、
P:0.035%以下、
O:0.003%以下
に制限し、
残部が実質的にFeおよび不可避不純物からなることを特徴とするコモンレール用鋼。
% By mass
C: 0.3-0.5%
Si: 0.05 to 0.5%,
Mn: 0.3 to 1.5%,
Al: 0.01 to 0.1%,
Ti: 0.003 to 0.02%,
Cr: 0.4 to 1.5%,
Mo: 0.1 to 1.5%,
N: 0.003 to 0.015%,
REM: 0.0003 to 0.01%
Bi: 0.01-0.03%
Containing
S: 0.0015% or less,
P: 0.035% or less,
O: limited to 0.003% or less,
A steel for common rails characterized in that the balance substantially consists of Fe and inevitable impurities.
さらに、質量%で、
Mg:0.0002〜0.01%、
Ca:0.0005〜0.01%、
Zr:0.0005〜0.02%、
Te:0.0002〜0.005%
のうちの1種または2種以上を含有することを特徴とする請求項1記載のコモンレール用鋼。
Furthermore, in mass%,
Mg: 0.0002 to 0.01%,
Ca: 0.0005 to 0.01%,
Zr: 0.0005 to 0.02%,
Te: 0.0002 to 0.005%
The common rail steel according to claim 1, wherein one or more of them are contained.
請求項1または2に記載の鋼からなり、L断面において、長さ(L)と幅(D)の比(L/D)の平均値が4.5以下かつ円相当径0.01〜5.0μmである硫化物系介在物が5×101〜1×104個/mm2分散し、円相当径5.0μmを超える硫化物系介在物が5×101個/mm2以下であり、円相当径0.002〜0.5μmの窒化物系介在物が1×103〜1×106個/mm2分散し、円相当径0.5μmを超える窒化物系介在物が2×102個/mm2以下であり、さらに円相当径0.01〜5.0μmの酸化物系介在物が5×101〜1×104個/mm2分散し、円相当径5.0μmを超える酸化物系介在物が5×101個/mm2以下であることを特徴とするコモンレール。 It consists of steel of Claim 1 or 2, Comprising: In the L section, the average value of ratio (L / D) of length (L) and width (D) is 4.5 or less, and equivalent circle diameter 0.01-5 sulfide inclusions is .0μm is 5 × 10 1 ~1 × 10 4 cells / mm 2 were dispersed, sulfide inclusions exceeding a circle equivalent diameter 5.0μm is 5 × 10 1 cells / mm 2 or less Yes, nitride inclusions having an equivalent circle diameter of 0.002 to 0.5 μm are dispersed 1 × 10 3 to 1 × 10 6 pieces / mm 2 , and nitride inclusions having an equivalent circle diameter of more than 0.5 μm are 2 × 10 and 2 or / mm 2 or less, further oxide inclusions equivalent circle diameter 0.01~5.0μm is 5 × 10 1 to 1 × 10 4 pieces / mm 2 were dispersed, equivalent circle diameter 5. A common rail characterized in that oxide inclusions exceeding 0 μm are 5 × 10 1 pieces / mm 2 or less.
JP2008143321A 2008-05-30 2008-05-30 Common rail with excellent fatigue characteristics Active JP5245544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008143321A JP5245544B2 (en) 2008-05-30 2008-05-30 Common rail with excellent fatigue characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008143321A JP5245544B2 (en) 2008-05-30 2008-05-30 Common rail with excellent fatigue characteristics

Publications (2)

Publication Number Publication Date
JP2009287108A true JP2009287108A (en) 2009-12-10
JP5245544B2 JP5245544B2 (en) 2013-07-24

Family

ID=41456605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008143321A Active JP5245544B2 (en) 2008-05-30 2008-05-30 Common rail with excellent fatigue characteristics

Country Status (1)

Country Link
JP (1) JP5245544B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013121930A1 (en) 2012-02-15 2013-08-22 新日鐵住金株式会社 Rolled rod steel for hot forging, hot-forged roughly shaped material, and common rail and process for producing same
US20150191808A1 (en) * 2012-10-19 2015-07-09 Nippon Steel & Sumitomo Metal Corporation Case hardening steel with excellent fatigue properties
CN114555849A (en) * 2019-10-16 2022-05-27 日本制铁株式会社 Steel wire

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001131684A (en) * 1999-11-04 2001-05-15 Kobe Steel Ltd Steel for machine structure excellent in treatment of chip
JP2002241890A (en) * 2001-02-20 2002-08-28 Nippon Steel Corp High toughness non-refining steel for hot forging
JP2003183770A (en) * 2001-10-01 2003-07-03 Sumitomo Metal Ind Ltd Steel for machine structure and manufacturing method therefor
JP2004083986A (en) * 2002-08-26 2004-03-18 Nippon Steel Corp Steel having excellent fatigue property and steel part produced from the steel
JP2005054216A (en) * 2003-08-08 2005-03-03 Jfe Steel Kk Steel material superior in machinability and fatigue characteristics, and manufacturing method therefor
JP2005154886A (en) * 2003-10-28 2005-06-16 Daido Steel Co Ltd Free-cutting steel and fuel injection system component using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001131684A (en) * 1999-11-04 2001-05-15 Kobe Steel Ltd Steel for machine structure excellent in treatment of chip
JP2002241890A (en) * 2001-02-20 2002-08-28 Nippon Steel Corp High toughness non-refining steel for hot forging
JP2003183770A (en) * 2001-10-01 2003-07-03 Sumitomo Metal Ind Ltd Steel for machine structure and manufacturing method therefor
JP2004083986A (en) * 2002-08-26 2004-03-18 Nippon Steel Corp Steel having excellent fatigue property and steel part produced from the steel
JP2005054216A (en) * 2003-08-08 2005-03-03 Jfe Steel Kk Steel material superior in machinability and fatigue characteristics, and manufacturing method therefor
JP2005154886A (en) * 2003-10-28 2005-06-16 Daido Steel Co Ltd Free-cutting steel and fuel injection system component using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013121930A1 (en) 2012-02-15 2013-08-22 新日鐵住金株式会社 Rolled rod steel for hot forging, hot-forged roughly shaped material, and common rail and process for producing same
EP2816131A4 (en) * 2012-02-15 2016-03-23 Nippon Steel & Sumitomo Metal Corp Rolled rod steel for hot forging, hot-forged roughly shaped material, and common rail and process for producing same
US9951403B2 (en) 2012-02-15 2018-04-24 Nippon Steel & Sumitomo Metal Corporation Hot-forged section material and common rail
US9994943B2 (en) 2012-02-15 2018-06-12 Nippon Steel & Sumitomo Metal Corporation Rolled steel bar for hot forging, hot-forged section material, and common rail and method for producing the same
US20150191808A1 (en) * 2012-10-19 2015-07-09 Nippon Steel & Sumitomo Metal Corporation Case hardening steel with excellent fatigue properties
US9809875B2 (en) * 2012-10-19 2017-11-07 Nippon Steel & Sumitomo Metal Corporation Case hardening steel with excellent fatigue properties
CN114555849A (en) * 2019-10-16 2022-05-27 日本制铁株式会社 Steel wire
CN114555849B (en) * 2019-10-16 2022-11-01 日本制铁株式会社 Steel wire

Also Published As

Publication number Publication date
JP5245544B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
JP6210155B2 (en) Rail vehicle wheel and method for manufacturing rail vehicle wheel
US7264684B2 (en) Steel for steel pipes
KR101486680B1 (en) High strength hot rolled steel sheet having excellent toughness and method for manufacturing the same
KR101830023B1 (en) Spring steel and method for producing same
JP6729823B2 (en) Method of manufacturing wear-resistant steel
JP6711434B2 (en) Abrasion resistant steel plate and manufacturing method thereof
JP4363403B2 (en) Steel for line pipe excellent in HIC resistance and line pipe manufactured using the steel
KR20130105941A (en) High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe
JP5708431B2 (en) Steel sheet excellent in toughness of weld heat-affected zone and method for producing the same
JP2009299137A (en) High strength steel sheet having excellent stretch flange formability and fatigue property, and method for refining molten metal thereof
JP4900127B2 (en) Induction hardening steel and manufacturing method thereof
JP2003213366A (en) Steel having excellent toughness in base metal and large -small heat input weld heat-affected zone
JP4041413B2 (en) Machine structural steel having excellent chip disposal and manufacturing method thereof
JP5223706B2 (en) Steel material excellent in toughness of heat-affected zone with high heat input and manufacturing method thereof
JP2005105322A (en) Thick steel plate excellent in toughness of welded joint subjected to large heat input welding, and its production method
JP5245544B2 (en) Common rail with excellent fatigue characteristics
JP2007254767A (en) Welded joint of high-tensile strength thick steel plate
JP6551632B1 (en) Low alloy high strength seamless steel pipe for oil well
JPH1161351A (en) High hardness martensite-based stainless steel superior in workability and corrosion resistance
JP4289756B2 (en) High strength metastable austenitic stainless steel wire
KR101851245B1 (en) Ferritic stainless steel having excellent low temperature toughness of welded joint
JP2009179844A (en) High tensile strength thick steel plate having excellent toughness in weld heat affected zone
JPWO2019180957A1 (en) Rolled H-section steel and manufacturing method thereof
JP6551631B1 (en) Low alloy high strength seamless steel pipe for oil well
JP5030695B2 (en) High carbon steel excellent in break separation and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

R151 Written notification of patent or utility model registration

Ref document number: 5245544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350