JP2004083986A - Steel having excellent fatigue property and steel part produced from the steel - Google Patents

Steel having excellent fatigue property and steel part produced from the steel Download PDF

Info

Publication number
JP2004083986A
JP2004083986A JP2002245734A JP2002245734A JP2004083986A JP 2004083986 A JP2004083986 A JP 2004083986A JP 2002245734 A JP2002245734 A JP 2002245734A JP 2002245734 A JP2002245734 A JP 2002245734A JP 2004083986 A JP2004083986 A JP 2004083986A
Authority
JP
Japan
Prior art keywords
steel
sulfide
less
fatigue
based inclusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002245734A
Other languages
Japanese (ja)
Other versions
JP3934511B2 (en
Inventor
Hajime Saito
齋藤 肇
Manabu Kubota
久保田 学
Hiroshi Hirata
平田 浩
Hideo Kanisawa
蟹澤 秀雄
Seiji Ito
伊藤 誠司
Tatsuro Ochi
越智 達朗
Shuji Ozawa
小澤 修司
Takeshi Kawamoto
河本 剛
Motohide Mori
森 元秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toyota Motor Corp
Original Assignee
Nippon Steel Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Toyota Motor Corp filed Critical Nippon Steel Corp
Priority to JP2002245734A priority Critical patent/JP3934511B2/en
Publication of JP2004083986A publication Critical patent/JP2004083986A/en
Application granted granted Critical
Publication of JP3934511B2 publication Critical patent/JP3934511B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide steel which has excellent fatigue properties, and is suitable for a steel part having a part in which tensile stress is produced in an open face not parallel to Mn sulfide inclusions elongated by rolling or forging, and to provide a steel part produced from the steel. <P>SOLUTION: The steel having excellent fatigue properties comprises, by mass, ≤0.01% (inclusive of 0%) S and >0.01 to 0.10% Al. The average value of the ratio (L/D) between the length (L) and the width (D) of Mn sulfide inclusions observed in the L-cross section of the steel is ≤4.5. The steel part is produced from the steel. The steel part has an open face not parallel to the elongating direction of Mn sulfide inclusions elongated by compressive working such as rolling and forging, and has a part in which tensile stress is produced in the open face. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、自動車や産業機械などの部品に使用される疲労特性の優れた鋼とその鋼から作製した鋼部品に関るものであり、より詳しくは、圧延や鍛造などの圧縮加工によって伸長したMn硫化物系介在物の伸長方向に平行でない開放面に引張応力が生じる部分を有する鋼部品に適した疲労特性の優れた鋼とその鋼から作成した鋼部品に関するものである。
【0002】
【従来の技術】
一般に、降伏応力以上の応力が負荷されると鋼材が変形するが、降伏応力以下の応力であっても、繰り返し、負荷されると鋼材が破壊される、いわゆる金属疲労という現象が知られている。鋼材が使用されている多くの部品はこのような応力環境下にあるため、鋼材の疲労強度を向上することは極めて重要である。疲労強度を上げる最もオーソドックスな方法は鋼材の強度を上げるという方法であるが、近年、鋼中の介在物が疲労強度に悪影響を及ぼすことが明らかになり、介在物の種類や大きさ、密度などの影響を詳細に研究し、その制御技術が開発されてきている。
【0003】
例えば、鋼材加工後の酸化物系介在物のアスペクト比が3.0以上のものを60%以上含ませることにより転動疲労を向上させる技術が特開平4−168247号公報に開示されている。また、特開平2−270935号公報においては、直径20μm以上の酸化物系介在物と窒化物系介在物を鋼1gあたり14個以下とすることにより歯車用肌焼鋼の疲労強度を向上させる技術が開示されている。また、浸炭用鋼のMnSを制御したものに特開平5−25586号公報および特開平7−188853号公報がある。前者は特定量のCaを添加することによりMnSの長さを短くすることで疲労強度を向上する技術であり、後者はMgを添加することにより、MnSの長さを短くすることで疲労強度を向上する技術であり、一定の成果をおさめてきた。
【0004】
【発明が解決しようとする課題】
しかしながら、昨今においては、部品の軽量化のために鋼材の大きさを小さくしても同等の強度を得る必要性から、より疲労強度の優れた鋼材が要求されている。例えば、ディーゼルエンジンに最近使用されるようになった、特にコモンレールのような部品においては、図4に示すように、加工によって伸長したMn硫化物系介在物4が、分岐穴6によって形成される開放面2に対してほぼ垂直方向に交差し、かつ該開放面には分岐穴の円周方向に繰り返しの引張応力がかかるため、せっかく鋼材を高強度化しても伸長した介在物が破壊起点になり、引張強さに見合った疲労強度が得られない。
【0005】
本発明は、圧延や鍛造などの圧縮加工によって伸長したMn硫化物系介在物の伸長方向に平行でない開放面に引張応力が生じる部分を有する鋼部品に適した疲労特性の優れた鋼と該鋼から作製した鋼部品を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明者らは、実験を重ね鋭意研究した結果、鋼のS含有量を低減し、Mn硫化物系介在物のアスペクト比(長さ/幅)を低下させるMg等と、さらにAlとを適量添加し、かつ平均アスペクト比を一定値以下に制御することにより前記課題が解決できることを知見し、本発明を完成した。
【0007】
なお、Mn硫化物系介在物とは、純粋なMnSや酸化物を核として析出したMnSの他に、MnSを主体として含み、Fe、Ca、Ti、Zr、Mg、REM等の硫化物がMnSと固溶したり、結合して共存している介在物や、MnSを主体として含み、MnTeのようにS以外の元素がMnと化合物を形成してMnSと固溶したり、結合して共存している介在物が含まれるものであり、化学式では、(Mn,X)(S,Y)(ここで、X:Mn以外の硫化物形成元素、Y:S以外でMnと結合する元素)として表記できるものである。
【0008】
本発明の要旨は以下のとおりである。
(1) 質量%で、
S:0.01%以下(0%を含む)、
Al:0.01%超〜0.1%、
を含有し、
Mg:0.0002〜0.01%、かつMg/S≧0.05、
Ca:0.0005〜0.01%、かつCa/S≧0.05、
Zr:0.0005〜0.02%、かつZr/S≧0.05、
Te:0.0002〜0.005%、かつTe/S≧0.05、
REM:0.0005〜0.01%、かつREM/S≧0.05
の内の1種または2種以上を含有し、鋼のL断面において観察されるMn硫化物系介在物の長さ(L)と幅(D)の比(L/D)の平均値が4.5以下であることを特徴とする疲労特性の優れた鋼。
【0009】
(2) 鋼が、質量%で、
C:0.3〜0.5%、
Si:0.5%以下、
Mn:0.3〜1.5%、
P:0.035%以下(0%を含む)
を含有することを特徴とする上記(1)記載の疲労特性の優れた鋼。
【0010】
(3) 質量%で、
S:0.02%以下(0%を含む)、
Al:0.01%超〜0.1%、
を含有し、
Cr:0.4〜1.5%、
Mo:0.1%〜1.5%、
V:0.1%超〜0.6%
の内の1種または2種以上を含有し、
さらに、
Mg:0.0002〜0.01%、かつMg/S≧0.05、
Ca:0.0005〜0.01%、かつCa/S≧0.05、
Zr:0.0005〜0.02%、かつZr/S≧0.05、
Te:0.0002〜0.005%、かつTe/S≧0.05、
REM:0.0005〜0.01%、かつREM/S≧0.05
の内の1種または2種以上を含有し、鋼のL断面において観察されるMn硫化物系介在物の長さ(L)と幅(D)の比(L/D)の平均値が4.5以下であることを特徴とする疲労特性の優れた鋼。
【0011】
(4) 鋼が、質量%で、
C:0.3〜0.5%、
Si:0.5%以下、
Mn:0.3〜1.5%、
P:0.035%以下(0%を含む)
を含有することを特徴とする上記(3)記載の疲労特性の優れた鋼。
【0012】
(5) 上記(1)乃至(4)の内のいずれかに記載の鋼から作製した鋼部品であって、圧延や鍛造などの圧縮加工によって伸長したMn硫化物系介在物の伸長方向と平行でない開放面を有し、かつ該開放面に引張応力が生じる部分を有することを特徴とする鋼部品。
【0013】
(6) 鋼部品がコモンレールであることを特徴とする上記(5)記載の鋼部品。
【0014】
【発明の実施の形態】
以下に本発明を詳細に説明する。
まず、本発明のきっかけとなった実験結果をもとにMn硫化物系介在物の形態を鋼のL断面(圧延や鍛造等の圧縮加工による延伸方向断面)において、Mn硫化物系介在物の長さ(L)と幅(D)の比(L/D)の平均値を4.5以下とした理由について述べる。
【0015】
質量%で0.4%のCおよび0.006%のSを含む鋼の成分を調整した鋼塊を、減面率を調整するために種々の大きさに切断加工した後、通常の条件で熱間圧延し、種々のL/Dの形態を持つMn硫化物系介在物を有する厚さ15〜40mm、幅80mmの鋼板を作製した。各鋼板毎に厚さの中心付近から、L方向(圧延による延伸方向に平行)、C方向(同左方向に直角)、X方向(同左方向に対し45度方向)の3種類の方向の14mm角、長さ80mmの角棒の試験片を各々採取した。
【0016】
Mn硫化物系介在物のL/Dは以下のようにして測定した。C方向に採取した角棒の前記鋼板でのL断面の内の厚み方向断面(該角棒の長手方向との直角断面)において鏡面研磨し、断面の中心付近にある100個程度のMn硫化物系介在物を光学顕微鏡で撮影し、その写真を画像処理装置で読み取り、L/Dを求めた後、100個のL/Dの平均値を計算した。この値で以って、同一鋼板から採取したL方向およびX方向採取の角棒の平均L/Dの代表値とした。
【0017】
これら角棒を850℃〜960℃の温度から焼入れ、520℃〜660℃の温度で焼き戻し処理した後、引張試験片と小野式回転曲げ疲労試験片に機械加工し、引張試験と小野式回転曲げ疲労試験を行ない、耐久比(疲労限界/引張強さ)を調べた。
【0018】
図1に示すように、C方向とX方向に採取した試験片の耐久比はMn硫化物系介在物の平均L/Dによって大きく異なり、平均L/Dが4.5を超えると、耐久比が大きく低下することがわかった。一方、L方向に採取した試験片の耐久比は平均L/Dの値にほとんど影響されない。
【0019】
この理由の詳細は未だ不明であるが、Mn硫化物系介在物のような硫化物は熱間加工により伸長形状になり、これが試験片の表面(開放面)にある角度で交差すると、切欠き作用が起こり、あたかも表面傷のような作用として働くものと推定される。小野式回転曲げ疲労試験においては、試験片表面には引張応力が作用するため、試験片表面に切欠き作用をするものがあれば、疲労強度が劣化するものと推察される。
【0020】
上記の実験結果から、本発明では、Mn硫化物系介在物の長さ(L)と幅(D)の比(L/D)の平均値を4.5以下とした。
【0021】
平均L/Dは、後述するMg等のMn硫化物系介在物のアスペクト比(L/D)を低下させる元素の添加、鋼塊または鋳片からの減面率によって制御される。
【0022】
ここで、Mn硫化物系介在物の大きさの測定方法は、鋼の中心付近をL断面において鏡面研磨し、直径または厚さの中心付近にある100個程度のMn硫化物系介在物を光学顕微鏡で撮影し、その写真を画像処理装置で読み取り、平均のL/Dを求める。
【0023】
次にS量の限定理由を述べる。
試験鋼1群として、質量%でC:0.42%、S:0.001%〜0.025%を含有し、その他の成分を調整した鋼塊を溶解し、熱間圧延し、L断面において2.5〜3.5程度の範囲の平均L/Dの形態を持つMn硫化物系介在物を有する直径85mmφの棒鋼を作製した。また、試験鋼2群として、質量%でC:0.42%、Cr:1%、Mo:0.55%、V:0.41%、S:0.001%〜0.025%を含有し、その他の成分を調整した鋼塊を溶解し、熱間圧延し、試験鋼1群と同様にL断面において2.5〜3.5程度の範囲の平均L/Dの形態をもつMn硫化物系介在物を有する直径85mmφの棒鋼を作製した。ここで、Mn硫化物系介在物の大きさの測定方法は、各棒鋼の直径中心付近をL断面において鏡面研磨し、直径の中心付近にある100個程度のMn硫化物系介在物を光学顕微鏡で撮影し、その写真を画像処理装置で読み取り、平均のL/Dを求めた。これら棒鋼から引張試験片と小野式回転曲げ疲労試験片をC方向(圧延による延伸方向に直角)から採取した。次にこれらを900℃〜960℃の温度から焼入れ、580℃〜660℃の温度で焼き戻し処理した後、引張試験と小野式回転曲げ疲労試験を行ない、耐久比(疲労限界/引張強さ)を調べた。
【0024】
試験鋼1群および試験鋼2群の耐久比の実験結果を図2に示す。試験鋼1群の場合は、S量が0.01%超から耐久比の低下が著しくなる。この実験結果からSは0.01%以下(0%を含む)に制限する。一方、試験鋼2群の場合はS量0.02%超からの耐久比の劣化が顕著である。理由は今のところ不明であるが、CrやMo、Vといった元素を含有する鋼の場合には、S量を0.02%までは疲労強度がある程度の値を保持できるものと推定される。従って、これら元素を含有する鋼の場合のS量は0.02%以下(0%を含む)に制限する。好ましくは0.01%以下である。
【0025】
次にその他の化学成分の限定理由について述べる。
Al:0.01%超〜0.1%、
Alは脱酸元素として必須元素であり、またAlNを形成し、結晶粒の粗大化を防止する働きがある。結晶粒の粗大化は靭性の劣化を引き起こすだけでなく、部品の一部に粗大粒が発生することは機械的性質が不均一になるので好ましくない。Alは最低0.01%超は必要である。一方、0.1%超では、連続鋳造時のノズル詰まりが激しくなるので、上限を0.10%とする。
【0026】
Mg:0.0002〜0.01%、かつMg/S≧0.05
Ca:0.0005〜0.01%、かつCa/S≧0.05
Zr:0.0005〜0.02%、かつZr/S≧0.05
Te:0.0002〜0.005%、かつTe/S≧0.05
REM:0.0005〜0.01%、かつREM/S≧0.05
本発明鋼においては、Mg、Ca、Zr、Te、REMの内の1種または2種以上を添加する。これらは、Mn硫化物系介在物のアスペクト比(L/D)を低下させる働きがある有用な元素である。
【0027】
Mgは0.0002%未満の場合およびS量に対して質量%比率でMg/S<0.05なるMg量の場合ではアスペクト比の低下効果は見られず、一方、0.01%超ではクラスター状介在物ができて疲労破壊の起点となる。従って、Mgは0.0002〜0.01%、かつMg/S≧0.05とする。Caは0.0005%未満の場合およびS量に対して質量%比率でCa/S<0.05なるCa量の場合ではアスペクト比の低下効果はなく、一方、0.01%超ではクラスター状介在物ができて疲労破壊の起点となる。従って、Caは0.0005〜0.01%、かつCa/S≧0.05とする。Zrは0.0005%未満およびS量に対して質量%比率でZr/S<0.05なるZr量の場合ではアスペクト比の低下効果はなく、0.02%超ではクラスター状介在物ができて疲労破壊の起点となる。よって、Zrは0.0005〜0.02%、かつZr/S≧0.05とする。Teは、0.0002%未満およびS量に対して質量%比率でTe/S<0.05なるTe量の場合ではアスペクト比の低下効果はなく、0.005%超では、連続鋳造での製造が困難となる。よって、Teは0.0002〜0.005%、かつTe/S≧0.05とする。REMは0.0005%未満およびS量に対して質量%比率でREM/S<0.05なるREM量の場合ではアスペクト比の低下効果はなく、一方、0.01%超の添加はアスペクト比低下効果が低減し、かつ高価な元素であるため経済性を考慮して、REMの含有量は0.0005〜0.01%、かつREM/S≧0.05とする。
【0028】
C:0.3〜0.5%
Cは静的強度は言うに及ばず、疲労強度、靭性、延性に影響する最も基本的な元素である。Cが0.3%未満では静的強度および疲労強度が不十分であり、また、0.5%超では靭性が劣化する。従って、Cは0.3〜0.5%とする。
【0029】
Si:0.5%以下
SiはCに次いで固溶強化能が大きい重要な元素であるが、一方で靭性や加工性を著しく劣化させる元素でもある。0.5%超では、靭性の劣化が著しくなる。よって、Siは0.5%以下に制限する。
【0030】
Mn:0.3〜1.5%
Mnは焼入れ性を向上させ、冷却速度が不十分な場合でも部品の心部まで硬度を確保するのに重要な元素である。0.3%未満では、必要な強度が確保できない。また、1.5%超では靭性および加工性が劣化するので、Mnは0.3〜1.5%とする。
【0031】
P:0.035%以下(0%を含む)
Pは鋼に添加する元素の中でも最も粒界に偏析しやすく、かつ粒界を脆弱にする元素である。本発明では極力低減したほうが好ましい。特に0.035%超では、粒界破壊が著しくなる。従って、Pは0.035%以下に制限する。遅れ破壊が問題となる環境で使用される場合には0.015%以下に制限することが好ましい。
【0032】
Cr:0.4〜1.5%
CrはMnと同様、鋼の焼入れ性を向上する有用な元素である。Mnのみでは焼入れ性が不十分な場合、部品の心部まで硬度を確保する場合に有用な添加元素である。0.4%未満では前記作用に効果が小さく、また、1.5%超では、添加量あたりの効果が落ち、むしろ他の元素を添加することで前記作用を得るほうが有利となる。従って、Crは0.4%〜1.5%とする。
【0033】
Mo:0.1%〜1.5%
MoはMoの炭窒化物を微細に析出させることにより、焼き戻し時に鋼を硬化させる、いわゆる二次硬化を起こす元素である。析出硬化により疲労強度を増加させる働きや、MnやCrと同様、焼入れ性を上げる元素である。0.1%未満では十分な効果が得られず、また、1.5%超の量を添加すると焼入れ熱処理時に末溶解の炭化物が残存し、靭性を劣化させる。従ってMoは0.1%〜1.5%とする。
【0034】
V:0.1%超〜0.6%
VもMoと同様、微細な炭窒化物を析出させることで、焼き戻し時に鋼を硬化させる、いわゆる二次硬化を起こす元素である。微細な炭窒化物による結晶粒の微細化をもたらし、靭性を上げる作用や、析出硬化による疲労強度のさらなる向上をもたらす元素である。0.1%以下では十分な効果が得られず、また、0.6%超の量を添加すると焼入れ熱処理時に末溶解の炭化物が残存し、かえって靭性を劣化させる。従ってVは0.1%超〜0.6%とする。
【0035】
本発明鋼は部品の製造工程において、焼入・焼戻処理をして使用されるので、圧延の条件のうち、加熱温度、仕上げ温度といったパラメーターは、あまり強度に影響しない。部品製造工程中における焼入れの溶体化温度は830℃以上が推奨されるが、特にVやMoを多量に添加する場合には、なるべく、VやMoの炭窒化物を溶体化することが好ましいので、溶体化温度としては880℃以上が好ましい。また、焼き戻し温度は、450℃以上が推奨されるが、高温戻しによる靭性の向上を図る場合等は、550℃以上にすることが好ましい。
【0036】
次に、本発明鋼から作製した疲労特性の優れた鋼部品について、図3(a)、(b)、(c)に基づいて説明する。鋼部品1の鋼中には、圧延や鍛造などの加工によって伸長したMn硫化物系介在物4が存在する。図3(a)および(b)は、この伸長したMn硫化物系介在物4が開放面2(部品の表面や穴の内表面)に平行でない、ある角度で交差している場合を示しているが、このような開放面2に引張応力3が生じる部分を有する部品に本発明鋼を適用することにより疲労特性に優れた鋼部品が得られるものである。それに対して、図3(c)に示すように、開放面2に引張応力3が生じていても、開放面2に対してMn硫化物系介在物4が平行な方向を向いている場合には、本発明鋼を適用しても疲労特性の向上が期待できない。
以上の作用効果は、前述のとおりである。
【0037】
次に、上記鋼部品の一例として、ディーゼルエンジンに使用されるコモンレールを図4によって説明する。コモンレールは燃料の軽油を圧送するポンプとインジェクターとの中間に位置する部品であって、軽油を蓄圧するパイプ状の容器である。本管レール穴5がコモンレールの主なるパイプであり、軽油を蓄圧する役割を有する。本管レール穴5には該穴に垂直に開口する分岐穴6が数個開口され、該穴6を通って各インジェクターに軽油が圧送される。エンジンの作動に伴ない、軽油が周期的に圧送される際に、コモンレール内の軽油の圧力も周期的に高圧化される。本管レール穴5および分岐穴6には周期的に周方向の引張応力が生じることになる。コモンレールは、通常、圧延された棒鋼の長手方向に沿って作製されるから、圧延によって伸長したMn硫化物系介在物4が分岐穴6の内面にほぼ直角に交差することになる。分岐穴は開放面であるから、該部分はまさに、図3(a)に示した状況となる。このようなコモンレールに本発明鋼を適用することにより疲労特性が著しく向上する。
【0038】
以下に本発明を実施例によってさらに詳細に説明するが、これらの実施例は本発明を限定する性質のものではなく、前記、後記の趣旨に徴して設計変更することはいずれも本発明の技術的範囲に含まれるものである。
【0039】
【実施例1】
表1に示す11種類の化学組成の鋼を溶製し、それらの鋼塊から種々の大きさの鋼塊に減面率を調整するために切断加工し、分塊圧延した鋼片を1200℃に加熱し、熱間圧延し、900℃で仕上げ、厚さ15〜35mm、幅80mmの種々の厚さの鋼板を作製し、鋼板の厚さ中心付近からC方向に15mm角、長さ80mmの角棒を採取した。
【0040】
各角棒の前記鋼板でのL断面の内の厚み方向断面(該角棒の長手方向との直角断面)を鏡面研磨し、断面の中心付近にある100個程度のMn硫化物系介在物を光学顕微鏡で撮影し、その写真を画像処理装置で読み取り、長さ(L)と幅(D)の比(L/D)を求め、それらの平均値を計算した。
【0041】
これらの棒を850〜960℃に加熱後、焼入れ、530〜660℃で焼戻した。その後、これらの角棒から引張試験片と小野式回転曲げ疲労試験片を作製した。
【0042】
【表1】

Figure 2004083986
【0043】
これらの試験片を用いて、引張試験および小野式回転曲げ疲労試験を行ない、耐久比(疲労限界/引張強さ)を求めた。
以上の結果を表2に示す。
【0044】
【表2】
Figure 2004083986
【0045】
試番1〜8は本発明鋼であり、いずれも十分な耐久比をもっている。一方、比較鋼の試番9はMg、Ca、Zr、Te、REMが本発明範囲に満たないため、また、試番11はSが本発明範囲を超えているため、Mn硫化物系介在物の平均L/Dが本発明範囲を超えて大きくなり、耐久比が劣化した例である。試番10は、化学成分は本発明範囲内であるが、圧延での減面率が大きすぎ、Mn硫化物系介在物の平均L/Dが本発明範囲を超えて大きくなったため、耐久比が劣化した例である。また、試番12はAlが本発明範囲よりも少ないため、結晶粒径が粗大化し、耐久比が劣化した例である。
【0046】
【実施例2】
さらに、本発明鋼の優位性を確認するため、実際の部品による試験を実施した。表3に示す10種類の化学組成の鋼を溶製し、分塊圧延した鋼片を1170℃に加熱し、熱間圧延し、880℃で仕上げて、45mmφの棒鋼とした。該棒鋼の中心付近のL断面を鏡面研磨し、直径の中心付近にある100個程度のMn硫化物系介在物を光学顕微鏡で撮影し、その写真を画像処理装置で読み取り、長さ(L)と幅(D)の比(L/D)を求め、それらの平均値を計算した。次いで、この棒鋼を加工して、図4に示す、棒鋼の長手方向に沿ったコモンレールを、長さ320mm、本管レール穴径7mmφ、5つの分岐穴の径1mmφ(コモンレール1)、長さ310mm、本管レール穴径6.5mmφ、5つの分岐穴の径1.4mmφ(コモンレール2)、長さ300mm、本管レール穴径6mmφ、5つの分岐穴の径1.9mmφ(コモンレール3)の3種類作製した。これらのコモンレールを830〜950℃に加熱後、焼入れ、530〜660℃で焼戻した。
【0047】
【表3】
Figure 2004083986
【0048】
その後、これらのコモンレールの1つの本管レール穴と5つの分岐穴をすべてシールし、残る1つの本管レール穴から、ポンプで周期的に圧力を変化させるように軽油を圧入した。疲労限界に対応するものとして10回の繰り返す周期的圧力変化に(亀裂が入らずに)耐える軽油の最大の圧力(MPa)をコモンレールの疲労限特性値として評価した。
以上の結果を表4に示す。
【0049】
【表4】
Figure 2004083986
【0050】
試番13〜18は本発明鋼であり、いずれもコモンレールの疲労限特性値が高い。一方、比較鋼の試番19はMg、Ca、Zr、Te、REMが本発明範囲に満たないため、Mn硫化物系介在物の平均L/Dが本発明範囲を超えて大きくなり、Mn硫化物系介在物が疲労破壊の起点となり、疲労限特性値が劣化した例である。試番20はZrが本発明範囲を超えて、クラスター状介在物が疲労破壊の起点となり疲労限特性値が劣化した例である。試番21はSが本発明範囲を超えたために疲労限特性値が劣化した例である。試番22はAl添加量が本発明範囲よりも少ないため、結晶粒が粗大化し、疲労限特性値が劣化した例である。
【0051】
【発明の効果】
以上の結果から、本発明によれば、鋼の成分を最適にすること等によりMn硫化物系介在物の平均L/Dが適正値以下に制御され、圧延や鍛造などの圧縮加工によって伸長したMn硫化物系介在物に平行でない開放面を有し、かつ該開放面に引張応力が生じる部分を有する鋼部品に適する優れた疲労特性を有する鋼と、該鋼から作製した部品が提供され、産業上の効果が極めて顕著な発明であるといえる。
【図面の簡単な説明】
【図1】Mn硫化物系介在物の平均L/Dと耐久比との関係を表わす図である。
【図2】S含有量と耐久比との関係を表わす図である。
【図3】Mn硫化物系介在物の存在状態を表す図で、(a)は部品においてMn硫化物系介在物の伸長した方向と開放面とが直角な場合を表わす図で、(b)は部品においてMn硫化物系介在物の伸長した方向と開放面とが斜角な場合を表わす図で、(c)は部品においてMn硫化物系介在物の伸長した方向と開放面とが平行な場合を表わす図である。
【図4】コモンレールの概略縦断面を示し、Mn硫化物系介在物の伸長方向を示す図である。
【符号の説明】
1 鋼材
2 開放面
3 負荷応力の方向
4 伸長したMn硫化物系介在物
5 本管レール穴
6 分岐穴
7 コモンレール長さ
8 本管レール穴径
9 分岐穴径[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a steel having excellent fatigue properties used for parts such as automobiles and industrial machines, and a steel part produced from the steel, and more particularly, to a steel that has been elongated by compression processing such as rolling or forging. The present invention relates to a steel having excellent fatigue characteristics suitable for a steel part having a portion where a tensile stress is generated on an open surface that is not parallel to the direction of extension of Mn sulfide-based inclusions, and a steel part made from the steel.
[0002]
[Prior art]
In general, a steel material is deformed when a stress equal to or higher than the yield stress is applied. However, even if the stress is equal to or lower than the yield stress, the steel material is broken when repeatedly applied, so-called a phenomenon called metal fatigue. . Since many parts in which steel is used are in such a stress environment, it is extremely important to improve the fatigue strength of the steel. The most orthodox method of increasing fatigue strength is to increase the strength of steel.In recent years, however, it has become clear that inclusions in steel have a negative effect on fatigue strength. The effects of the above have been studied in detail, and control techniques have been developed.
[0003]
For example, Japanese Patent Application Laid-Open No. 4-168247 discloses a technique for improving rolling contact fatigue by including 60% or more of oxide-based inclusions having an aspect ratio of 3.0 or more after steel material processing. Further, Japanese Patent Application Laid-Open No. 2-270935 discloses a technique for improving the fatigue strength of case hardening steel for gears by reducing the number of oxide-based inclusions and nitride-based inclusions having a diameter of 20 μm or more to 14 or less per 1 g of steel. Is disclosed. JP-A-5-25586 and JP-A-7-188853 control MnS of carburizing steel. The former is a technique for improving fatigue strength by adding a specific amount of Ca to shorten the length of MnS, and the latter is a technique for adding Mg to shorten the length of MnS to reduce fatigue strength. It is a technology that improves and has achieved certain results.
[0004]
[Problems to be solved by the invention]
However, in recent years, there is a need for steel materials having more excellent fatigue strength because it is necessary to obtain the same strength even if the size of the steel material is reduced in order to reduce the weight of parts. For example, in a part recently used for a diesel engine, particularly a part such as a common rail, a Mn sulfide-based inclusion 4 elongated by machining is formed by a branch hole 6 as shown in FIG. Since it intersects with the open surface 2 in a direction substantially perpendicular to the open surface, and a repeated tensile stress is applied to the open surface in the circumferential direction of the branch hole, even if the steel material is strengthened at all, the elongated inclusions may become the fracture starting points. And a fatigue strength commensurate with the tensile strength cannot be obtained.
[0005]
The present invention relates to a steel having excellent fatigue properties suitable for a steel part having a portion where a tensile stress is generated on an open surface that is not parallel to the direction of elongation of Mn sulfide-based inclusions elongated by a compression process such as rolling or forging, and the steel. It is an object of the present invention to provide steel parts manufactured from
[0006]
[Means for Solving the Problems]
The present inventors have conducted extensive experiments and conducted extensive studies. As a result, an appropriate amount of Mg or the like, which reduces the S content of steel and reduces the aspect ratio (length / width) of Mn sulfide-based inclusions, and further, Al The inventors have found that the above problem can be solved by adding and controlling the average aspect ratio to a certain value or less, and completed the present invention.
[0007]
The Mn sulfide-based inclusions include MnS as a main component in addition to pure MnS and MnS precipitated with an oxide as a nucleus, and sulfides such as Fe, Ca, Ti, Zr, Mg, and REM contain MnS. Inclusions that form a solid solution with or combine with MnS, and elements other than S, such as MnTe, form compounds with Mn and form solid compounds with MnS or coexist with MnS. In the chemical formula, (Mn, X) (S, Y) (where, X: a sulfide-forming element other than Mn, Y: an element that binds to Mn other than S) It can be expressed as
[0008]
The gist of the present invention is as follows.
(1) In mass%,
S: 0.01% or less (including 0%),
Al: more than 0.01% to 0.1%,
Containing
Mg: 0.0002-0.01%, and Mg / S ≧ 0.05,
Ca: 0.0005 to 0.01%, and Ca / S ≧ 0.05,
Zr: 0.0005 to 0.02%, and Zr / S ≧ 0.05;
Te: 0.0002-0.005%, and Te / S ≧ 0.05,
REM: 0.0005-0.01%, and REM / S ≧ 0.05
And the average value of the ratio (L / D) of the length (L) to the width (D) of the Mn sulfide-based inclusions observed in the L section of the steel is 4 A steel having excellent fatigue properties, characterized by being not more than 0.5.
[0009]
(2) steel in mass%
C: 0.3-0.5%,
Si: 0.5% or less,
Mn: 0.3-1.5%,
P: 0.035% or less (including 0%)
The steel according to (1), which has excellent fatigue characteristics.
[0010]
(3) In mass%,
S: 0.02% or less (including 0%),
Al: more than 0.01% to 0.1%,
Containing
Cr: 0.4 to 1.5%,
Mo: 0.1% to 1.5%,
V: more than 0.1% to 0.6%
Containing one or more of the following,
further,
Mg: 0.0002-0.01%, and Mg / S ≧ 0.05,
Ca: 0.0005 to 0.01%, and Ca / S ≧ 0.05,
Zr: 0.0005 to 0.02%, and Zr / S ≧ 0.05;
Te: 0.0002-0.005%, and Te / S ≧ 0.05,
REM: 0.0005-0.01%, and REM / S ≧ 0.05
And the average value of the ratio (L / D) of the length (L) to the width (D) of the Mn sulfide-based inclusions observed in the L section of the steel is 4 A steel having excellent fatigue properties, characterized by being not more than 0.5.
[0011]
(4) steel in mass%
C: 0.3-0.5%,
Si: 0.5% or less,
Mn: 0.3-1.5%,
P: 0.035% or less (including 0%)
The steel according to the above (3), which has excellent fatigue properties.
[0012]
(5) A steel part produced from the steel according to any one of the above (1) to (4), which is parallel to the elongation direction of the Mn sulfide-based inclusion elongated by a compression process such as rolling or forging. A steel part, characterized by having an open surface which is not satisfactorily, and having a portion where a tensile stress is generated on the open surface.
[0013]
(6) The steel part according to the above (5), wherein the steel part is a common rail.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
First, based on the experimental results that triggered the present invention, the form of the Mn sulfide-based inclusion was changed in the L section of the steel (cross section in the stretching direction by compression processing such as rolling or forging). The reason why the average value of the ratio (L / D) of the length (L) to the width (D) is set to 4.5 or less will be described.
[0015]
A steel ingot containing components of 0.4% C and 0.006% S in mass% was cut into various sizes in order to adjust the reduction in area, and then cut under ordinary conditions. Hot rolling was performed to produce steel plates having a thickness of 15 to 40 mm and a width of 80 mm having Mn sulfide-based inclusions having various L / D shapes. From the vicinity of the center of the thickness of each steel plate, 14 mm square in three directions of L direction (parallel to the stretching direction by rolling), C direction (perpendicular to the left direction), and X direction (45 degrees to the left direction). , And 80 mm long test pieces of square bars were collected.
[0016]
L / D of the Mn sulfide-based inclusion was measured as follows. A mirror bar is polished in a thickness direction cross section (a cross section perpendicular to the longitudinal direction of the square bar) of the L cross section of the square bar sampled in the C direction, and about 100 Mn sulfides near the center of the cross section The system inclusion was photographed with an optical microscope, and the photograph was read by an image processing device to determine the L / D, and then the average value of 100 L / Ds was calculated. This value was used as a representative value of the average L / D of the square bars sampled from the same steel plate in the L and X directions.
[0017]
After quenching these square bars from a temperature of 850 ° C. to 960 ° C. and tempering them at a temperature of 520 ° C. to 660 ° C., they are machined into tensile test pieces and Ono-type rotating bending fatigue test pieces, and a tensile test and Ono-type rotating A bending fatigue test was performed to examine a durability ratio (fatigue limit / tensile strength).
[0018]
As shown in FIG. 1, the durability ratio of the test pieces taken in the C direction and the X direction greatly depends on the average L / D of the Mn sulfide-based inclusions, and when the average L / D exceeds 4.5, the durability ratio increases. Was found to be greatly reduced. On the other hand, the durability ratio of the test piece taken in the L direction is hardly affected by the average L / D value.
[0019]
Although the details of this reason are still unknown, sulfides such as Mn sulfide-based inclusions become elongated by hot working, and when they intersect at an angle with the surface (open face) of the test piece, a notch is formed. It is presumed that the action occurs and acts as an action like a surface scratch. In the Ono-type rotating bending fatigue test, since tensile stress acts on the surface of the test piece, it is presumed that the fatigue strength is deteriorated if there is a notch on the surface of the test piece.
[0020]
From the above experimental results, in the present invention, the average value of the ratio (L / D) of the length (L) to the width (D) of the Mn sulfide-based inclusion was set to 4.5 or less.
[0021]
The average L / D is controlled by the addition of an element that lowers the aspect ratio (L / D) of Mn sulfide-based inclusions such as Mg described below, and the area reduction from the steel ingot or slab.
[0022]
Here, the method of measuring the size of the Mn sulfide-based inclusions is as follows. The vicinity of the center of the steel is mirror-polished in the L section, and about 100 Mn sulfide-based inclusions near the center of the diameter or the thickness are optically polished. A photograph is taken with a microscope, and the photograph is read by an image processing device, and an average L / D is obtained.
[0023]
Next, reasons for limiting the amount of S will be described.
As a group of test steels, a steel ingot containing C: 0.42%, S: 0.001% to 0.025% by mass%, and other components adjusted was melted, hot-rolled, and L-section In Example 1, a steel bar having a diameter of 85 mmφ having Mn sulfide-based inclusions having an average L / D in the range of about 2.5 to 3.5 was produced. In addition, as test group 2, C: 0.42%, Cr: 1%, Mo: 0.55%, V: 0.41%, S: 0.001% to 0.025% by mass% Then, a steel ingot with other components adjusted is melted, hot-rolled, and Mn sulfide having an average L / D form in the range of about 2.5 to 3.5 in the L section in the same manner as the test steel 1 group. A steel bar with a diameter of 85 mmφ having a physical inclusion was produced. Here, the method of measuring the size of the Mn sulfide-based inclusions is as follows. The vicinity of the center of the diameter of each steel bar is mirror-polished in the L section, and about 100 Mn sulfide-based inclusions near the center of the diameter are measured with an optical microscope. , And the photograph was read by an image processing device to determine the average L / D. From these steel bars, a tensile test specimen and an Ono-type rotating bending fatigue test specimen were sampled in the C direction (perpendicular to the stretching direction by rolling). Next, these are quenched from 900 ° C. to 960 ° C. and tempered at 580 ° C. to 660 ° C., and then subjected to a tensile test and an Ono-type rotary bending fatigue test to obtain an endurance ratio (fatigue limit / tensile strength). Was examined.
[0024]
FIG. 2 shows the experimental results of the durability ratio of the test steel 1 group and the test steel 2 group. In the case of the test steel group 1, the S content exceeds 0.01%, and the durability ratio decreases significantly. From this experimental result, S is limited to 0.01% or less (including 0%). On the other hand, in the case of the test steel group 2, the durability ratio is significantly deteriorated from the S content exceeding 0.02%. Although the reason is unknown at present, in the case of steel containing elements such as Cr, Mo, and V, it is estimated that the fatigue strength can be maintained at a certain value up to an S content of 0.02%. Therefore, the amount of S in the case of steel containing these elements is limited to 0.02% or less (including 0%). Preferably it is 0.01% or less.
[0025]
Next, reasons for limiting other chemical components will be described.
Al: more than 0.01% to 0.1%,
Al is an essential element as a deoxidizing element, and has the function of forming AlN and preventing the crystal grains from becoming coarse. The coarsening of the crystal grains not only causes the deterioration of toughness, but also the generation of coarse grains in a part of the part is not preferable because the mechanical properties become non-uniform. Al must be at least 0.01% or more. On the other hand, if it exceeds 0.1%, nozzle clogging during continuous casting becomes severe, so the upper limit is made 0.10%.
[0026]
Mg: 0.0002-0.01%, and Mg / S ≧ 0.05
Ca: 0.0005 to 0.01%, and Ca / S ≧ 0.05
Zr: 0.0005-0.02%, and Zr / S ≧ 0.05
Te: 0.0002 to 0.005%, and Te / S ≧ 0.05
REM: 0.0005-0.01%, and REM / S ≧ 0.05
In the steel of the present invention, one or more of Mg, Ca, Zr, Te, and REM are added. These are useful elements that function to lower the aspect ratio (L / D) of Mn sulfide-based inclusions.
[0027]
When the Mg content is less than 0.0002% and when the Mg content is Mg / S <0.05 in terms of mass% relative to the S content, the effect of reducing the aspect ratio is not observed, while when it exceeds 0.01%, Cluster-like inclusions are formed and become the starting point of fatigue fracture. Therefore, Mg is set to 0.0002 to 0.01% and Mg / S ≧ 0.05. When the Ca content is less than 0.0005% and when the Ca content is Ca / S <0.05 by mass% relative to the S content, there is no effect of lowering the aspect ratio, while when it exceeds 0.01%, the cluster form is reduced. Inclusions form and serve as starting points for fatigue failure. Therefore, Ca is 0.0005 to 0.01%, and Ca / S ≧ 0.05. When Zr is less than 0.0005% and Zr amount is such that Zr / S <0.05 in mass% ratio to S amount, there is no effect of decreasing the aspect ratio, and when it exceeds 0.02%, cluster-like inclusions are formed. It becomes the starting point of fatigue failure. Therefore, Zr is set to 0.0005 to 0.02% and Zr / S ≧ 0.05. When Te is less than 0.0002% and the amount of Te satisfies Te / S <0.05 in terms of mass% with respect to the amount of S, there is no effect of lowering the aspect ratio. Manufacturing becomes difficult. Therefore, Te is set to 0.0002 to 0.005% and Te / S ≧ 0.05. When the REM is less than 0.0005% and the REM amount is REM / S <0.05 in terms of mass% relative to the S amount, there is no effect of lowering the aspect ratio. The REM content is 0.0005 to 0.01% and REM / S ≧ 0.05 in consideration of economy because the effect of reduction is reduced and the element is an expensive element.
[0028]
C: 0.3-0.5%
C is the most basic element that affects fatigue strength, toughness, and ductility, not to mention static strength. If C is less than 0.3%, the static strength and fatigue strength are insufficient, and if more than 0.5%, the toughness deteriorates. Therefore, C is set to 0.3 to 0.5%.
[0029]
Si: not more than 0.5% Si is an important element having a solid solution strengthening ability next to C, but is also an element that significantly deteriorates toughness and workability. If it exceeds 0.5%, the toughness significantly deteriorates. Therefore, Si is limited to 0.5% or less.
[0030]
Mn: 0.3-1.5%
Mn is an important element for improving the hardenability and securing the hardness up to the core of the component even when the cooling rate is insufficient. If it is less than 0.3%, the required strength cannot be secured. If it exceeds 1.5%, toughness and workability deteriorate, so Mn is set to 0.3 to 1.5%.
[0031]
P: 0.035% or less (including 0%)
P is the element which is most easily segregated at the grain boundary among the elements added to steel and makes the grain boundary brittle. In the present invention, it is preferable to reduce as much as possible. In particular, if it exceeds 0.035%, grain boundary destruction becomes significant. Therefore, P is limited to 0.035% or less. When used in an environment where delayed fracture is a problem, the content is preferably limited to 0.015% or less.
[0032]
Cr: 0.4 to 1.5%
Cr, like Mn, is a useful element for improving the hardenability of steel. When Mn alone is insufficient in hardenability, it is a useful additive element for securing hardness up to the core of a part. If it is less than 0.4%, the effect is small, and if it exceeds 1.5%, the effect per added amount is reduced, and it is more advantageous to obtain the effect by adding another element. Therefore, Cr is set to 0.4% to 1.5%.
[0033]
Mo: 0.1% to 1.5%
Mo is an element that causes the so-called secondary hardening that hardens steel during tempering by precipitating Mo carbonitride finely. It is an element that increases the fatigue strength by precipitation hardening and, like Mn and Cr, improves the hardenability. If the amount is less than 0.1%, a sufficient effect cannot be obtained, and if the amount is more than 1.5%, the dissolved carbide remains at the time of quenching heat treatment, and the toughness is deteriorated. Therefore, Mo is set to 0.1% to 1.5%.
[0034]
V: more than 0.1% to 0.6%
V, like Mo, is an element that causes so-called secondary hardening that hardens steel during tempering by precipitating fine carbonitrides. It is an element that brings about refinement of crystal grains by fine carbonitrides, thereby increasing the toughness and further improving the fatigue strength due to precipitation hardening. If the amount is less than 0.1%, a sufficient effect cannot be obtained. If the amount is more than 0.6%, the dissolved carbide remains at the time of quenching heat treatment, and the toughness is rather deteriorated. Therefore, V is set to more than 0.1% to 0.6%.
[0035]
Since the steel of the present invention is used after being subjected to a quenching / tempering treatment in a part manufacturing process, parameters such as a heating temperature and a finishing temperature among the rolling conditions do not significantly affect the strength. It is recommended that the quenching solution temperature during the component manufacturing process be 830 ° C. or higher. However, particularly when a large amount of V or Mo is added, it is preferable that the carbonitride of V or Mo is solution-hardened. The solution temperature is preferably 880 ° C. or higher. Although the tempering temperature is recommended to be 450 ° C. or higher, it is preferable to set the tempering temperature to 550 ° C. or higher when the toughness is to be improved by high temperature tempering.
[0036]
Next, a steel part having excellent fatigue properties manufactured from the steel of the present invention will be described with reference to FIGS. 3 (a), 3 (b) and 3 (c). In the steel of the steel part 1, Mn sulfide-based inclusions 4 elongated by processing such as rolling and forging exist. FIGS. 3A and 3B show a case where the elongated Mn sulfide-based inclusions 4 intersect at an angle that is not parallel to the open surface 2 (the surface of the part or the inner surface of the hole). However, by applying the steel of the present invention to a part having a portion where a tensile stress 3 is generated on such an open surface 2, a steel part having excellent fatigue characteristics can be obtained. On the other hand, as shown in FIG. 3C, even when a tensile stress 3 is generated on the open surface 2, the Mn sulfide-based inclusion 4 is oriented in a direction parallel to the open surface 2. No improvement in fatigue properties can be expected even when the steel of the present invention is applied.
The above effects are as described above.
[0037]
Next, a common rail used in a diesel engine will be described with reference to FIG. 4 as an example of the steel part. The common rail is a part located between the pump and the injector for pumping light oil as fuel, and is a pipe-shaped container for accumulating light oil. The main pipe rail hole 5 is a main pipe of the common rail, and has a role of accumulating light oil. Several branch holes 6 are formed in the main rail hole 5 and open perpendicularly to the hole, through which light oil is pumped to each injector. When the light oil is periodically pumped with the operation of the engine, the pressure of the light oil in the common rail is also periodically increased. A circumferential tensile stress is periodically generated in the main rail hole 5 and the branch hole 6. Since the common rail is usually manufactured along the longitudinal direction of the rolled steel bar, the Mn sulfide-based inclusions 4 elongated by rolling intersect the inner surface of the branch hole 6 at a substantially right angle. Since the branch hole is an open surface, the portion is exactly in the situation shown in FIG. By applying the steel of the present invention to such a common rail, the fatigue characteristics are significantly improved.
[0038]
Hereinafter, the present invention will be described in more detail with reference to Examples. However, these Examples are not intended to limit the present invention. Are included in the target range.
[0039]
Embodiment 1
Steels of 11 kinds of chemical compositions shown in Table 1 were melted, cut from the steel ingots into steel ingots of various sizes in order to adjust the area reduction rate, and a slab rolled into 1200 ° C. Heating, hot rolling, finishing at 900 ℃, to produce steel plates of various thicknesses of thickness 15-35mm, width 80mm, from the vicinity of the thickness center of the steel plate in the C direction 15mm square, length 80mm Square bars were collected.
[0040]
The cross section in the thickness direction (the cross section perpendicular to the longitudinal direction of the square bar) of the L cross section of the steel bar of each square bar is mirror-polished to remove about 100 Mn sulfide-based inclusions near the center of the cross section. The photograph was taken with an optical microscope, the photograph was read by an image processing apparatus, the ratio (L / D) of the length (L) and the width (D) was obtained, and the average value thereof was calculated.
[0041]
After heating these rods to 850-960 ° C, they were quenched and tempered at 530-660 ° C. Thereafter, a tensile test piece and an Ono-type rotating bending fatigue test piece were prepared from these square bars.
[0042]
[Table 1]
Figure 2004083986
[0043]
Using these test pieces, a tensile test and an Ono-type rotary bending fatigue test were performed, and a durability ratio (fatigue limit / tensile strength) was determined.
Table 2 shows the above results.
[0044]
[Table 2]
Figure 2004083986
[0045]
Test Nos. 1 to 8 are steels of the present invention, all of which have a sufficient durability ratio. On the other hand, the sample No. 9 of the comparative steel had Mn, Ca, Zr, Te, and REM less than the range of the present invention, and the sample No. 11 had S exceeding the range of the present invention. This is an example in which the average L / D exceeds the range of the present invention and the durability ratio is deteriorated. In Test No. 10, although the chemical components were within the range of the present invention, the reduction ratio of rolling was too large, and the average L / D of the Mn sulfide-based inclusions exceeded the range of the present invention. Is an example in which is deteriorated. Test No. 12 is an example in which Al is smaller than the range of the present invention, so that the crystal grain size is coarsened and the durability ratio is deteriorated.
[0046]
Embodiment 2
Further, in order to confirm the superiority of the steel of the present invention, tests were performed on actual parts. Steels having ten chemical compositions shown in Table 3 were smelted and slab-rolled steel slabs were heated to 1170 ° C, hot-rolled, and finished at 880 ° C to obtain 45 mmφ steel bars. The L section near the center of the steel bar is mirror-polished, and about 100 Mn sulfide-based inclusions near the center of the diameter are photographed with an optical microscope, and the photograph is read by an image processing device to obtain a length (L). The ratio (L / D) of the width and the width (D) was determined, and the average value thereof was calculated. Next, this bar was processed to form a common rail along the longitudinal direction of the bar shown in FIG. 4 having a length of 320 mm, a main rail hole diameter of 7 mmφ, and five branch holes of 1 mmφ (common rail 1) and a length of 310 mm. , Main rail hole diameter 6.5mmφ, diameter of 5 branch holes 1.4mmφ (common rail 2), length 300mm, main rail hole diameter 6mmφ, diameter of 5 branch holes 1.9mmφ (common rail 3) 3 Kinds were made. After heating these common rails to 830 to 950 ° C, they were quenched and tempered at 530 to 660 ° C.
[0047]
[Table 3]
Figure 2004083986
[0048]
Thereafter, one main rail hole and the five branch holes of these common rails were all sealed, and light oil was injected from the remaining one main rail hole so that the pressure was periodically changed by a pump. It was assessed periodically pressure changes Repeating 10 7 times as corresponding to the fatigue limit the maximum pressure of the gas oil (cracks not to enter) withstand (MPa) as the fatigue limit characteristic value of the common rail.
Table 4 shows the above results.
[0049]
[Table 4]
Figure 2004083986
[0050]
Test Nos. 13 to 18 are the steels of the present invention, all of which have a high fatigue limit characteristic value of the common rail. On the other hand, in sample No. 19 of the comparative steel, Mg, Ca, Zr, Te, and REM were below the range of the present invention. This is an example in which a material-based inclusion becomes a starting point of fatigue fracture, and the fatigue limit characteristic value is deteriorated. Test No. 20 is an example in which Zr exceeds the range of the present invention, and the cluster-like inclusions become the starting point of fatigue fracture, and the fatigue limit characteristic value deteriorates. Test No. 21 is an example in which the fatigue limit characteristic value deteriorated because S exceeded the range of the present invention. Test No. 22 is an example in which the amount of Al added was smaller than the range of the present invention, so that the crystal grains became coarse and the fatigue limit characteristic value deteriorated.
[0051]
【The invention's effect】
From the above results, according to the present invention, the average L / D of the Mn sulfide-based inclusions was controlled to an appropriate value or less by optimizing the components of the steel, etc., and the steel was elongated by compression processing such as rolling or forging. A steel having excellent fatigue characteristics suitable for a steel part having an open surface that is not parallel to the Mn sulfide-based inclusion and having a part where a tensile stress occurs in the open surface, and a part manufactured from the steel are provided. It can be said that the invention has an extremely remarkable industrial effect.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the average L / D of Mn sulfide-based inclusions and the durability ratio.
FIG. 2 is a diagram showing a relationship between an S content and a durability ratio.
3A and 3B are diagrams showing a state of existence of Mn sulfide-based inclusions, and FIG. 3A is a diagram showing a case where an extending direction of Mn sulfide-based inclusions is perpendicular to an open surface in a part; FIG. 4 is a view showing a case where the direction in which the Mn sulfide-based inclusions extend and the open surface in the part are at an oblique angle, and FIG. It is a figure showing a case.
FIG. 4 is a diagram showing a schematic vertical cross section of a common rail and showing an extending direction of Mn sulfide-based inclusions.
[Explanation of symbols]
Reference Signs List 1 steel material 2 open surface 3 direction of applied stress 4 elongated Mn sulfide-based inclusion 5 main rail hole 6 branch hole 7 common rail length 8 main rail diameter 9 branch hole diameter

Claims (6)

質量%で、
S:0.01%以下(0%を含む)、
Al:0.01%超〜0.1%
を含有し、
Mg:0.0002〜0.01%、かつMg/S≧0.05、
Ca:0.0005〜0.01%、かつCa/S≧0.05、
Zr:0.0005〜0.02%、かつZr/S≧0.05、
Te:0.0002〜0.005%、かつTe/S≧0.05、
REM:0.0005〜0.01%、かつREM/S≧0.05
の内の1種または2種以上を含有し、鋼のL断面において観察されるMn硫化物系介在物の長さ(L)と幅(D)の比(L/D)の平均値が4.5以下であることを特徴とする疲労特性の優れた鋼。
In mass%,
S: 0.01% or less (including 0%),
Al: more than 0.01% to 0.1%
Containing
Mg: 0.0002-0.01%, and Mg / S ≧ 0.05,
Ca: 0.0005 to 0.01%, and Ca / S ≧ 0.05,
Zr: 0.0005 to 0.02%, and Zr / S ≧ 0.05;
Te: 0.0002-0.005%, and Te / S ≧ 0.05,
REM: 0.0005-0.01%, and REM / S ≧ 0.05
And the average value of the ratio (L / D) of the length (L) to the width (D) of the Mn sulfide-based inclusions observed in the L section of the steel is 4 A steel having excellent fatigue properties, characterized by being not more than 0.5.
鋼が、質量%で、
C:0.3〜0.5%、
Si:0.5%以下、
Mn:0.3〜1.5%、
P:0.035%以下(0%を含む)
を含有することを特徴とする請求項1記載の疲労特性の優れた鋼。
Steel, in mass%,
C: 0.3-0.5%,
Si: 0.5% or less,
Mn: 0.3-1.5%,
P: 0.035% or less (including 0%)
The steel according to claim 1, wherein the steel has excellent fatigue properties.
質量%で、
S:0.02%以下(0%を含む)、
Al:0.01%超〜0.1%
を含有し、
Cr:0.4〜1.5%、
Mo:0.1%〜1.5%、
V:0.1%超〜0.6%
の内の1種または2種以上を含有し、
さらに、
Mg:0.0002〜0.01%、かつMg/S≧0.05、
Ca:0.0005〜0.01%、かつCa/S≧0.05、
Zr:0.0005〜0.02%、かつZr/S≧0.05、
Te:0.0002〜0.005%、かつTe/S≧0.05、
REM:0.0005〜0.01%、かつREM/S≧0.05
の内の1種または2種以上を含有し、鋼のL断面において観察されるMn硫化物系介在物の長さ(L)と幅(D)の比(L/D)の平均値が4.5以下であることを特徴とする疲労特性の優れた鋼。
In mass%,
S: 0.02% or less (including 0%),
Al: more than 0.01% to 0.1%
Containing
Cr: 0.4 to 1.5%,
Mo: 0.1% to 1.5%,
V: more than 0.1% to 0.6%
Containing one or more of the following,
further,
Mg: 0.0002-0.01%, and Mg / S ≧ 0.05,
Ca: 0.0005 to 0.01%, and Ca / S ≧ 0.05,
Zr: 0.0005 to 0.02%, and Zr / S ≧ 0.05;
Te: 0.0002-0.005%, and Te / S ≧ 0.05,
REM: 0.0005-0.01%, and REM / S ≧ 0.05
And the average value of the ratio (L / D) of the length (L) to the width (D) of the Mn sulfide-based inclusions observed in the L section of the steel is 4 A steel having excellent fatigue properties, characterized by being not more than 0.5.
鋼が、質量%で、
C:0.3〜0.5%、
Si:0.5%以下、
Mn:0.3〜1.5%
P:0.035%以下(0%を含む)
を含有することを特徴とする請求項3記載の疲労特性の優れた鋼。
Steel, in mass%,
C: 0.3-0.5%,
Si: 0.5% or less,
Mn: 0.3-1.5%
P: 0.035% or less (including 0%)
4. The steel according to claim 3, wherein the steel has excellent fatigue properties.
請求項1乃至4の内のいずれかに記載の鋼から作製した鋼部品であって、圧延や鍛造などの圧縮加工によって伸長したMn硫化物系介在物の伸長方向と平行でない開放面を有し、かつ該開放面に引張応力が生じる部分を有することを特徴とする鋼部品。A steel part made from the steel according to any one of claims 1 to 4, wherein the steel part has an open surface that is not parallel to the direction of elongation of the Mn sulfide-based inclusions elongated by a compression process such as rolling or forging. And a portion having a tensile stress on the open surface. 鋼部品がコモンレールであることを特徴とする請求項5記載の鋼部品。The steel part according to claim 5, wherein the steel part is a common rail.
JP2002245734A 2002-08-26 2002-08-26 Common rail with excellent fatigue characteristics Expired - Fee Related JP3934511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002245734A JP3934511B2 (en) 2002-08-26 2002-08-26 Common rail with excellent fatigue characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002245734A JP3934511B2 (en) 2002-08-26 2002-08-26 Common rail with excellent fatigue characteristics

Publications (2)

Publication Number Publication Date
JP2004083986A true JP2004083986A (en) 2004-03-18
JP3934511B2 JP3934511B2 (en) 2007-06-20

Family

ID=32053837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002245734A Expired - Fee Related JP3934511B2 (en) 2002-08-26 2002-08-26 Common rail with excellent fatigue characteristics

Country Status (1)

Country Link
JP (1) JP3934511B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203358A (en) * 2006-02-03 2007-08-16 Usui Kokusai Sangyo Kaisha Ltd High pressure fuel piping for accumulator fuel injection systems, and manufacturing method therefor
JP2009287108A (en) * 2008-05-30 2009-12-10 Nippon Steel Corp Steel superior in fatigue characteristics for common rail, and common rail
EP2177745A1 (en) * 2007-07-10 2010-04-21 Usui Kokusai Sangyo Kaisha Limited Steel tube for fuel injection tube and process for producing the same
WO2013121930A1 (en) 2012-02-15 2013-08-22 新日鐵住金株式会社 Rolled rod steel for hot forging, hot-forged roughly shaped material, and common rail and process for producing same
CN114892070A (en) * 2022-04-02 2022-08-12 承德建龙特殊钢有限公司 Sulfur-containing gear steel and production method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203358A (en) * 2006-02-03 2007-08-16 Usui Kokusai Sangyo Kaisha Ltd High pressure fuel piping for accumulator fuel injection systems, and manufacturing method therefor
EP2177745A1 (en) * 2007-07-10 2010-04-21 Usui Kokusai Sangyo Kaisha Limited Steel tube for fuel injection tube and process for producing the same
EP2177745A4 (en) * 2007-07-10 2014-09-17 Usui Kokusai Sangyo Kk Steel tube for fuel injection tube and process for producing the same
JP2009287108A (en) * 2008-05-30 2009-12-10 Nippon Steel Corp Steel superior in fatigue characteristics for common rail, and common rail
WO2013121930A1 (en) 2012-02-15 2013-08-22 新日鐵住金株式会社 Rolled rod steel for hot forging, hot-forged roughly shaped material, and common rail and process for producing same
US9951403B2 (en) 2012-02-15 2018-04-24 Nippon Steel & Sumitomo Metal Corporation Hot-forged section material and common rail
US9994943B2 (en) 2012-02-15 2018-06-12 Nippon Steel & Sumitomo Metal Corporation Rolled steel bar for hot forging, hot-forged section material, and common rail and method for producing the same
CN114892070A (en) * 2022-04-02 2022-08-12 承德建龙特殊钢有限公司 Sulfur-containing gear steel and production method thereof
CN114892070B (en) * 2022-04-02 2024-01-30 承德建龙特殊钢有限公司 Sulfur-containing gear steel and production method thereof

Also Published As

Publication number Publication date
JP3934511B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
KR101615842B1 (en) High-strength steel pipe for line pipe having excellent hydrogen-induced cracking resistance, high-strength steel pipe for line pipe using same, and method for manufacturing same
EP1889937B1 (en) High tensile steel product excellent in delayed fracture resistance and method for production thereof
JP6017341B2 (en) High strength cold-rolled steel sheet with excellent bendability
EP3112487B1 (en) Steel for induction hardening
CN109642286B (en) Ferritic stainless steel hot-rolled annealed steel sheet and method for producing same
JP6451874B2 (en) High strength seamless steel pipe for oil well and method for producing the same
JP2008208454A (en) High-strength steel excellent in delayed fracture resistance and its production method
JPH0765141B2 (en) Tool steel for hot working
EP2617850A1 (en) High-strength hot rolled steel sheet having excellent toughness and method for producing same
WO2016079908A1 (en) High-strength seamless steel pipe for oil wells and method for producing same
JP2001271134A (en) Low-alloy steel excellent in sulfide stress cracking resistance and toughness
WO2017110027A1 (en) High strength seamless stainless steel pipe for oil wells and manufacturing method therefor
JP2009242841A (en) High-tensile steel excellent in bending workability and low-temperature toughness, and method for manufacturing the same
KR102169859B1 (en) Martensite stainless steel plate
CN114402086B (en) Wear-resistant steel sheet and method for producing same
JP2010222680A (en) Method for manufacturing high strength high toughness steel excellent in workability
JP5477089B2 (en) Manufacturing method of high strength and high toughness steel
JP2018150585A (en) Antifriction steel plate and manufacturing method of antifriction steel plate
JP3606024B2 (en) Induction-hardened parts and manufacturing method thereof
CN113453812B (en) Steel pipe for fuel injection pipe and fuel injection pipe using same
JP4396561B2 (en) Induction hardening steel
JP2004083986A (en) Steel having excellent fatigue property and steel part produced from the steel
JP2008144211A (en) V-containing non-heat treated steel
JP3288563B2 (en) Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same
EP3214189A1 (en) Method for manufacturing steel for high-strength hollow spring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070315

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees