JP2013060614A - Surface treated copper foil for flexible printed wiring board and method for producing the same - Google Patents

Surface treated copper foil for flexible printed wiring board and method for producing the same Download PDF

Info

Publication number
JP2013060614A
JP2013060614A JP2011198284A JP2011198284A JP2013060614A JP 2013060614 A JP2013060614 A JP 2013060614A JP 2011198284 A JP2011198284 A JP 2011198284A JP 2011198284 A JP2011198284 A JP 2011198284A JP 2013060614 A JP2013060614 A JP 2013060614A
Authority
JP
Japan
Prior art keywords
chromium
copper foil
film
printed wiring
flexible printed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011198284A
Other languages
Japanese (ja)
Inventor
Yuto Unagiike
勇人 鰻池
Satoru Imai
悟 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2011198284A priority Critical patent/JP2013060614A/en
Publication of JP2013060614A publication Critical patent/JP2013060614A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface treated copper foil for a flexible printed wiring board in which a thick film of a chromium-based film is achieved and a ratio of the chromium-based film to the total amount of a base metal film and the chromium-based film is controlled.SOLUTION: The surface treated copper foil for a flexible printed wiring board is obtained by forming the base metal film composed of at least zinc plating and the chromium-based film on a copper foil, wherein the content of chromium metal relative to the total of the content of zinc and chromium metal in the base metal film and the chromium-based film is 50-99 mass%.

Description

本発明は、ポリイミド樹脂との高密着強度を有するフレキシブルプリント配線板用表面処理銅箔及びその製造方法に関するものである。   The present invention relates to a surface-treated copper foil for flexible printed wiring boards having high adhesion strength with a polyimide resin and a method for producing the same.

近年、デジタル家電の小型化、薄型化、軽量化、高機能化に伴い、それらに使用されているFPC(フレキシブルプリント配線板)の小型、高密度化が進んでいる。これらの要求にこたえるため、FPC材料への要求特性も厳しいものになっている。   In recent years, with the downsizing, thinning, lightening, and high functionality of digital home appliances, the miniaturization and high density of FPC (flexible printed wiring boards) used in them have been advanced. In order to meet these requirements, the required characteristics for FPC materials are also strict.

FPCに用いられる銅箔に対しては、銅箔とそれが貼り付けられる樹脂との接着強度の向上、パターン形成時に用いる薬品耐性の向上、加工時にかかる熱への耐性の向上が求められている。   For copper foils used in FPCs, there is a need to improve the adhesive strength between the copper foil and the resin to which it is attached, improve the chemical resistance used during pattern formation, and improve the resistance to heat applied during processing. .

また、パターンの細線化が進む中において、特に銅箔−樹脂間の密着強度及び、銅箔−樹脂間への加工時の処理液の滲みこみ抑止は重要となる。   In addition, as the pattern becomes thinner, it is particularly important to suppress the adhesion strength between the copper foil and the resin and to prevent the treatment liquid from penetrating during processing between the copper foil and the resin.

このFPC用の銅箔には特性向上のために種々の表面処理が施されるが、その一つであるクロメート処理では、処理により基材表面に得られるクロム系皮膜により防錆及び接着力向上の効果が期待できる。   This FPC copper foil is subjected to various surface treatments to improve its properties. In the chromate treatment, one of which is rust prevention and improved adhesion due to the chromium-based film obtained on the substrate surface. Can be expected.

従来のクロメート処理は以下のようなフローで行われる。   Conventional chromate treatment is performed according to the following flow.

先ず、銅箔に下地金属めっきを施した後これを水洗する。次いで、水洗後の基材表面にクロメート処理を施し、これを更に水洗し、最後に加熱乾燥を施す。これにより、基材表面にクロム系皮膜を形成することができる。   First, after applying a base metal plating to the copper foil, it is washed with water. Next, chromate treatment is applied to the substrate surface after washing with water, and this is further washed with water, and finally dried by heating. Thereby, a chromium system coat can be formed on the substrate surface.

特開2005−60756号公報Japanese Patent Laid-Open No. 2005-60756

しかしながら、クロメート処理液で基材表面の下地金属を溶解し、基材界面近傍のpHを上昇させて、クロメート処理液中のクロム系皮膜を沈着させるという従来工法では、その製膜量および下地金属との比率変更のコントロールが困難である。   However, in the conventional method of dissolving the base metal on the substrate surface with the chromate treatment liquid, raising the pH near the base material interface, and depositing the chromium-based film in the chromate treatment liquid, the amount of film formation and the base metal It is difficult to control the ratio change.

クロメート処理では、クロメート処理液中において基材表面の下地金属が溶解し、界面のpHが上昇することで、基材表面に水酸化クロムを含むクロム系皮膜が沈着する。   In the chromate treatment, the base metal on the substrate surface is dissolved in the chromate treatment solution, and the pH at the interface rises, so that a chromium-based film containing chromium hydroxide is deposited on the substrate surface.

このとき、水酸化クロムの製膜量はクロメート処理液の組成・pH・液当たりによりコントロールできるが、FPC用の銅箔においては下地金属膜及びクロム系皮膜が極めて薄く、また、水酸化クロムの生成により界面付近のpHが再び下降することでクロム系皮膜の再溶解も同時に進行するために、クロム系皮膜の厚膜化および、皮膜量のコントロールが困難である。   At this time, the amount of chromium hydroxide formed can be controlled by the composition, pH, and per solution of the chromate treatment solution. However, in the copper foil for FPC, the base metal film and the chromium-based film are extremely thin. Since the pH in the vicinity of the interface lowers again due to the formation, re-dissolution of the chromium-based film also proceeds at the same time, so it is difficult to increase the thickness of the chromium-based film and control the amount of the film.

さらに、クロム系皮膜の生成比率を溶解する下地金属に対し大きくできないという問題点があるため、クロム系皮膜の厚膜化には、最終的なクロム系皮膜厚に合わせた下地金属の厚膜化が必要である。一方、下地として主に用いられる亜鉛めっき面は化学的に活性な両性金属としての性質をもつため、酸やアルカリ雰囲気の影響を受け易く、クロム系皮膜をピール強度向上の為に厚くするのにともない、厚くなった下地としての亜鉛めっき層がFPC製造工程で用いられる各種酸やアルカリ耐性に悪影響を及ぼす。   Furthermore, since there is a problem that the production ratio of the chromium-based film cannot be increased compared to the base metal to be dissolved, the thickening of the chromium-based film is necessary to increase the thickness of the base metal according to the final chromium-based film thickness. is necessary. On the other hand, the galvanized surface, which is mainly used as the base, has the property as a chemically active amphoteric metal, so it is easily affected by acid and alkali atmospheres, and thickens the chromium-based film to improve the peel strength. Along with this, the thickened galvanized layer as an underlayer adversely affects various acid and alkali resistance used in the FPC manufacturing process.

下地金属膜厚によらないクロム系皮膜の厚膜化方法としては電解クロメート法が考えられるが、電解法においてはその特性上アノード側での環境負荷物質である6価クロムの発生が不可避であり、製品への混入が問題となる。電解法での製品への6価クロムの混入防止には隔膜を用いた方法が考えられるが、隔膜破損の可能性を根絶することができないので本発明では採用しない。   The electrolytic chromate method can be considered as a method of thickening the chromium-based film regardless of the underlying metal film thickness. However, in the electrolytic method, the generation of hexavalent chromium which is an environmentally hazardous substance on the anode side is inevitable due to its characteristics. , Mixing into the product becomes a problem. A method using a diaphragm can be considered to prevent the hexavalent chromium from being mixed into the product by the electrolytic method, but it is not adopted in the present invention because the possibility of the diaphragm being damaged cannot be eradicated.

そこで、本発明の目的は、下地金属の厚膜化をともなわないクロム系皮膜の厚膜化および、下地金属膜とクロム系皮膜の合計量に対するクロム系皮膜比率のコントロールをしたフレキシブルプリント配線板用表面処理銅箔及びその製造方法を提供することにある。   Therefore, an object of the present invention is for a flexible printed wiring board in which the chromium-based film is thickened without increasing the thickness of the base metal and the ratio of the chromium-based film to the total amount of the base metal film and the chromium-based film is controlled. It is providing the surface-treated copper foil and its manufacturing method.

上記課題を解決すべく創案された本発明は、銅箔上に、少なくとも亜鉛めっきからなる下地金属膜とクロム系皮膜を形成したフレキシブルプリント配線板用表面処理銅箔において、下地金属膜とクロム系皮膜の亜鉛及び金属クロムの含有量の合計に対する金属クロムの含有量が50質量%以上99質量%以下であるフレキシブルプリント配線板用表面処理銅箔である。   The present invention, which was created to solve the above problems, is a surface-treated copper foil for flexible printed wiring boards in which a base metal film made of at least zinc plating and a chromium-based film are formed on a copper foil. It is a surface-treated copper foil for flexible printed wiring boards in which the content of metal chromium with respect to the total content of zinc and metal chromium in the film is 50% by mass or more and 99% by mass or less.

前記下地金属膜中の亜鉛が0.1μg/cm2以上0.8μg/cm2以下、前記クロム系皮膜中の金属クロムが0.4μg/cm2以上2.0μg/cm2以下含有されるとよい。 The underlying zinc metal film is 0.1 [mu] g / cm 2 or more 0.8 [mu] g / cm 2 or less, the metal chromium of said chromium based coating in is contained 0.4 [mu] g / cm 2 or more 2.0 [mu] g / cm 2 or less Good.

また、本発明は、銅箔上に、少なくとも亜鉛めっきからなる下地金属膜とクロム系皮膜を形成するフレキシブルプリント配線板用表面処理銅箔の製造方法において、下地金属膜とクロム系皮膜の亜鉛及び金属クロムの含有量の合計に対する金属クロムの含有量を50質量%以上99質量%以下とするフレキシブルプリント配線板用表面処理銅箔の製造方法である。   Further, the present invention provides a method for producing a surface-treated copper foil for a flexible printed wiring board in which a base metal film made of at least zinc plating and a chromium-based film are formed on a copper foil. It is a manufacturing method of the surface-treated copper foil for flexible printed wiring boards which makes content of metal chromium 50 to 99 mass% with respect to the sum total of content of metal chromium.

亜鉛めっきからなる前記下地金属膜を形成し、アルカリ浸漬処理を行った後、クロメート処理により前記クロム系皮膜を形成するとよい。   It is preferable to form the chromium-based film by chromate treatment after the base metal film made of galvanizing is formed and subjected to alkali dipping treatment.

前記アルカリ浸漬処理に水酸化ナトリウム水溶液を用いるとよい。   A sodium hydroxide aqueous solution may be used for the alkali immersion treatment.

本発明によれば、クロム系皮膜の厚膜化および、下地金属膜とクロム系皮膜の合計量に対するクロム系皮膜比率のコントロールをしたフレキシブルプリント配線板用表面処理銅箔及びその製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the surface treatment copper foil for flexible printed wiring boards which controlled the chromium-type film ratio with respect to the total amount of a base metal film and a chromium-type film can be provided, and its manufacturing method. .

各条件での亜鉛とクロムの含有量及びピール強度を示す図である。It is a figure which shows content of zinc and chromium in each condition, and peel strength.

以下、本発明の好適な一実施の形態を詳述する。   Hereinafter, a preferred embodiment of the present invention will be described in detail.

本実施の形態に係るフレキシブルプリント配線板用表面処理銅箔(FPC用表面処理銅箔)は、銅箔上に、少なくとも亜鉛めっきからなる下地金属膜とクロム系皮膜を形成したものであり、下地金属膜とクロム系皮膜の亜鉛及び金属クロムの含有量の合計に対する金属クロムの含有量が50質量%以上99質量%以下であることを特徴とする。   The surface-treated copper foil for a flexible printed wiring board according to the present embodiment (surface-treated copper foil for FPC) is obtained by forming a base metal film and a chromium-based film made of at least zinc plating on a copper foil. The metal chromium content is 50% by mass or more and 99% by mass or less with respect to the total content of zinc and metal chromium in the metal film and the chromium-based film.

下地金属膜中の亜鉛が0.1μg/cm2以上0.8μg/cm2以下、クロム系皮膜中の金属クロムが0.4μg/cm2以上2.0μg/cm2以下含有されることが好ましい。 Zinc underlying metal film is 0.1 [mu] g / cm 2 or more 0.8 [mu] g / cm 2 or less, it is preferable that the metallic chromium chromium based coating in is contained 0.4 [mu] g / cm 2 or more 2.0 [mu] g / cm 2 or less .

このFPC用表面処理銅箔は、銅箔上に、少なくとも亜鉛めっきからなる下地金属膜とクロム系皮膜を形成する際に、下地金属膜とクロム系皮膜の亜鉛及び金属クロムの含有量の合計に対する金属クロムの含有量を50質量%以上99質量%以下とすることにより製造される。   This surface-treated copper foil for FPC is formed on the copper foil with respect to the total content of zinc and metal chromium in the base metal film and the chromium-based film when the base metal film and chromium-based film made of at least zinc plating are formed. It is manufactured by adjusting the content of metallic chromium to 50 mass% or more and 99 mass% or less.

具体的には、特性向上のために種々の表面処理を施した銅箔上に、亜鉛めっきからなる下地金属膜を形成し、得られた基材の表面を水洗し、水酸化ナトリウム水溶液を用いてアルカリ浸漬処理を行った後、クロメート処理によりクロム系皮膜を形成する。そして、更に水洗し、加熱乾燥することでFPC用表面処理銅箔が得られる。   Specifically, a base metal film made of galvanization is formed on a copper foil that has been subjected to various surface treatments for improving the characteristics, and the surface of the obtained substrate is washed with water, using an aqueous sodium hydroxide solution. After the alkali immersion treatment, a chromium-based film is formed by chromate treatment. And the surface-treated copper foil for FPC is obtained by further washing with water and heat-drying.

従来の方法では基材表面のpHを下地金属の溶解によって上昇させていたのに対し、本実施の形態に係るFPC用表面処理銅箔の製造方法では、下地金属めっき後の基材をアルカリに浸漬させることで、後のクロメート処理時に基材表面のpHを強制的に上げ、効率良く、速やかに水酸化クロムを沈着させるようにした。   In the conventional method, the pH of the substrate surface is increased by dissolving the base metal, whereas in the method for manufacturing the surface-treated copper foil for FPC according to the present embodiment, the base material after the base metal plating is made alkaline. By soaking, the pH of the substrate surface was forcibly raised during the subsequent chromate treatment, and chromium hydroxide was deposited efficiently and promptly.

そのため、溶解する下地金属に対するクロム系皮膜の生成比率を大きくすることができる。また、浸漬させるアルカリ溶液の濃度・クロメート処理液中のクロム濃度を変化させることで、比較的容易に水酸化クロムを含むクロム系皮膜の製膜量をコントロールできる。   Therefore, the production | generation ratio of the chromium-type membrane | film | coat with respect to the base metal to melt | dissolve can be enlarged. Further, by changing the concentration of the alkaline solution to be immersed and the chromium concentration in the chromate treatment solution, the amount of the chromium-based film containing chromium hydroxide can be controlled relatively easily.

クロメート処理は後のシランカップリング処理とあわせて、樹脂との接着強度向上に大きな影響を与えると考えられている。このため、水酸化クロムの厚膜化および皮膜量のコントロールが可能になることで各々の樹脂に合わせた皮膜量の最適化により、接着強度の改善が期待される。   The chromate treatment is considered to have a great influence on the improvement of the adhesive strength with the resin, together with the subsequent silane coupling treatment. For this reason, it is expected that the adhesion strength can be improved by optimizing the coating amount according to each resin by making the chromium hydroxide thick and controlling the coating amount.

さらに、従来、クロメート処理液中でクロメート処理液に含まれる酸により下地金属を溶解させることで基材界面近傍のpH上昇を起こし水酸化クロムの沈着を促していたが、本発明においては、予めアルカリ溶液を基材表面に付着させてのクロメート処理であるため、下地金属種によらずクロメート皮膜(クロム系皮膜)の製膜が可能である。このため下地金属として、より高い耐酸性、耐熱性をもつ金属の使用が可能となる。   Furthermore, conventionally, the base metal is dissolved by the acid contained in the chromate treatment solution in the chromate treatment solution to raise the pH in the vicinity of the substrate interface and promote the deposition of chromium hydroxide. Since the chromate treatment is performed by adhering an alkaline solution to the substrate surface, a chromate film (chromium film) can be formed regardless of the base metal species. Therefore, it is possible to use a metal having higher acid resistance and heat resistance as the base metal.

以上要するに、本発明によれば、クロム系皮膜の厚膜化および、下地金属膜とクロム系皮膜の合計量に対するクロム系皮膜比率をコントロールすることができる。   In short, according to the present invention, it is possible to increase the thickness of the chromium-based film and to control the ratio of the chromium-based film to the total amount of the base metal film and the chromium-based film.

以下にクロメート処理の下地金属めっきとして亜鉛を用いた際の実施例、比較例及び従来例を挙げる。   Examples, comparative examples, and conventional examples when zinc is used as the base metal plating for chromate treatment are given below.

(測定方法及び評価方法)
銅箔の表面処理層中の亜鉛及びクロム含有量の測定、銅箔とポリイミド樹脂層とのピール強度はそれぞれ以下の方法により測定又は評価した。
1)亜鉛及びクロムの含有量
ICP発光分光分析計を用いた検量線法により測定した。
2)銅箔とポリイミドとのピール強度
ピール強度試験機を用いて、1mm幅にパターニングされた試料のポリイミド側を両面テープで金属板に固定し、銅箔を90°方向に50mm/分の速度で剥離した際のピール強度を測定した。
(Measurement method and evaluation method)
The measurement of zinc and chromium content in the surface treatment layer of copper foil, and the peel strength of a copper foil and a polyimide resin layer were measured or evaluated by the following methods, respectively.
1) Content of zinc and chromium Measured by a calibration curve method using an ICP emission spectrometer.
2) Peel strength between copper foil and polyimide Using a peel strength tester, the polyimide side of a sample patterned to a width of 1 mm was fixed to a metal plate with a double-sided tape, and the copper foil was moved at a speed of 50 mm / min in the 90 ° direction. The peel strength at the time of peeling was measured.

(処理条件)
基材:表面処理圧延銅箔の最表面に2.5μg/cm2の亜鉛めっきを施したものを用いた。
(Processing conditions)
Substrate: A surface-treated rolled copper foil with 2.5 μg / cm 2 galvanized on the outermost surface was used.

アルカリ浸漬処理:条件(1)アルカリ浸漬無し(従来工法)、条件(2)5g/LのNaOH水溶液、条件(3)10g/LのNaOH水溶液、条件(4)15g/LのNaOH水溶液を用いた。条件(2)〜(3)はいずれも5秒間浸漬させた。   Alkaline immersion treatment: Condition (1) No alkali immersion (conventional method), Condition (2) 5 g / L NaOH aqueous solution, Condition (3) 10 g / L NaOH aqueous solution, Condition (4) 15 g / L NaOH aqueous solution It was. Conditions (2) to (3) were all immersed for 5 seconds.

クロメート処理:硫酸クロム及び硝酸を含む水溶液(Cr量として:1.0g/L、pH:4.0となるよう調製)を用いた。   Chromate treatment: An aqueous solution containing chromium sulfate and nitric acid (as Cr amount: 1.0 g / L, prepared so as to have a pH of 4.0) was used.

最表面に2.5μg/cm2の亜鉛めっきを施した表面処理銅箔をクロメート処理及び種々の濃度でのアルカリ浸漬後のクロメート処理を行い図1にあるような含有量となる基材を得た。 A surface-treated copper foil having a zinc plating of 2.5 μg / cm 2 on the outermost surface is subjected to chromate treatment and chromate treatment after alkali immersion at various concentrations to obtain a substrate having a content as shown in FIG. It was.

それぞれをシランカップリング処理した後にキャスト法によりポリイミド樹脂との積層膜としピール強度を測定し、あわせて図1に図示した。   Each was subjected to a silane coupling treatment, and then the peel strength was measured as a laminated film with a polyimide resin by a cast method.

条件(1)は従来工法による従来例、条件(2)は比較例であり、条件(3)は実施例1、条件(4)は実施例2である。   Condition (1) is a conventional example by a conventional construction method, condition (2) is a comparative example, condition (3) is Example 1, and condition (4) is Example 2.

図1にあるようにアルカリ浸漬することで、従来工法に比べクロム含有量(クロム系皮膜厚)を大幅に増加させることが可能となり、浸漬させるアルカリの濃度により沈着量のコントロールが可能であることを見出せた。   As shown in Fig. 1, it is possible to drastically increase the chromium content (thickness of chromium-based film) compared to the conventional method by immersion in alkali, and the deposition amount can be controlled by the concentration of alkali to be immersed. I was able to find.

また、従来困難であった溶解する下地金属との含有比率を大きく変化させることを可能とした。上記の処理条件によれば、6〜7g/L以上のNaOH水溶液を5秒間浸漬させることで、下地金属膜とクロム系皮膜の亜鉛及び金属クロムの含有量の合計に対する金属クロムの含有量を50質量%以上とすることができる。   In addition, the content ratio with the dissolved base metal, which has been difficult in the past, can be greatly changed. According to the above processing conditions, the content of metal chromium with respect to the total content of zinc and metal chromium in the base metal film and the chromium-based film is reduced to 50 by immersing a NaOH aqueous solution of 6 to 7 g / L or more for 5 seconds. It can be made into the mass% or more.

さらに、最もクロム系皮膜厚の大きな実施例2では、従来例と比較し、約20%のピール強度増加が見られ、耐酸性ピール強度についても同様に向上が見られた。   Further, in Example 2 having the largest chromium-based film thickness, the peel strength was increased by about 20% as compared with the conventional example, and the acid peel strength was similarly improved.

Claims (5)

銅箔上に、少なくとも亜鉛めっきからなる下地金属膜とクロム系皮膜を形成したフレキシブルプリント配線板用表面処理銅箔において、下地金属膜とクロム系皮膜の亜鉛及び金属クロムの含有量の合計に対する金属クロムの含有量が50質量%以上99質量%以下であることを特徴とするフレキシブルプリント配線板用表面処理銅箔。   In the surface-treated copper foil for flexible printed wiring boards in which a base metal film and a chromium-based film formed of at least zinc plating are formed on a copper foil, the metal with respect to the total content of zinc and metal chromium in the base metal film and the chromium-based film The surface-treated copper foil for flexible printed wiring boards, wherein the chromium content is 50% by mass or more and 99% by mass or less. 前記下地金属膜中の亜鉛が0.1μg/cm2以上0.8μg/cm2以下、前記クロム系皮膜中の金属クロムが0.4μg/cm2以上2.0μg/cm2以下含有される請求項1記載のフレキシブルプリント配線板用表面処理銅箔。 Claims zinc of the underlying metal film is 0.1 [mu] g / cm 2 or more 0.8 [mu] g / cm 2 or less, metallic chromium of said chromium based coating in is contained 0.4 [mu] g / cm 2 or more 2.0 [mu] g / cm 2 or less Item 11. A surface-treated copper foil for a flexible printed wiring board according to Item 1. 銅箔上に、少なくとも亜鉛めっきからなる下地金属膜とクロム系皮膜を形成するフレキシブルプリント配線板用表面処理銅箔の製造方法において、下地金属膜とクロム系皮膜の亜鉛及び金属クロムの含有量の合計に対する金属クロムの含有量を50質量%以上99質量%以下とすることを特徴とするフレキシブルプリント配線板用表面処理銅箔の製造方法。   In the method for producing a surface-treated copper foil for a flexible printed wiring board, in which a base metal film made of at least zinc plating and a chromium-based film are formed on a copper foil, the zinc and metal chromium content of the base metal film and the chromium-based film The manufacturing method of the surface treatment copper foil for flexible printed wiring boards characterized by making content of metal chromium with respect to a total into 50 mass% or more and 99 mass% or less. 亜鉛めっきからなる前記下地金属膜を形成し、アルカリ浸漬処理を行った後、クロメート処理により前記クロム系皮膜を形成する請求項3記載のフレキシブルプリント配線板用表面処理銅箔の製造方法。   The manufacturing method of the surface treatment copper foil for flexible printed wiring boards of Claim 3 which forms the said chromium-type membrane | film | coat by chromate treatment after forming the said base metal film which consists of galvanization, performing an alkali immersion treatment. 前記アルカリ浸漬処理に水酸化ナトリウム水溶液を用いる請求項4記載のフレキシブルプリント配線板用表面処理銅箔の製造方法。   The manufacturing method of the surface-treated copper foil for flexible printed wiring boards of Claim 4 which uses sodium hydroxide aqueous solution for the said alkali immersion treatment.
JP2011198284A 2011-09-12 2011-09-12 Surface treated copper foil for flexible printed wiring board and method for producing the same Withdrawn JP2013060614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011198284A JP2013060614A (en) 2011-09-12 2011-09-12 Surface treated copper foil for flexible printed wiring board and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011198284A JP2013060614A (en) 2011-09-12 2011-09-12 Surface treated copper foil for flexible printed wiring board and method for producing the same

Publications (1)

Publication Number Publication Date
JP2013060614A true JP2013060614A (en) 2013-04-04

Family

ID=48185532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011198284A Withdrawn JP2013060614A (en) 2011-09-12 2011-09-12 Surface treated copper foil for flexible printed wiring board and method for producing the same

Country Status (1)

Country Link
JP (1) JP2013060614A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014003838A1 (en) 2013-03-22 2014-09-25 Ngk Insulators, Ltd. honeycomb structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014003838A1 (en) 2013-03-22 2014-09-25 Ngk Insulators, Ltd. honeycomb structure

Similar Documents

Publication Publication Date Title
JP4626390B2 (en) Copper foil for printed wiring boards in consideration of environmental protection
JP5512273B2 (en) Copper foil and copper clad laminate for printed circuit
CN104962965B (en) The environment-friendly type ashing handling process of rolled copper foil
JP4492434B2 (en) Copper foil for printed wiring board, method for producing the same, and trivalent chromium chemical conversion treatment solution used for the production
CN112795964B (en) Ultrathin strippable composite copper foil and preparation method thereof
JP3306404B2 (en) Method for producing surface-treated copper foil and copper-clad laminate using surface-treated copper foil obtained by the method
JPS6113688A (en) Copper foil for printed circuit and method of producing same
JP2001177204A (en) Surface-treated copper foil and method of manufacturing the same
JP3250994B2 (en) Electrolytic copper foil
KR100974373B1 (en) Surface treatment method of copper foil for printed circuit, copper foil and electroplater thereof
WO2014042412A1 (en) Method for surface-treating copper foil and copper foil surface-treated thereby
JP3661763B2 (en) Method for producing surface-treated copper foil for printed wiring board
JP3670185B2 (en) Method for producing surface-treated copper foil for printed wiring board
JP2014100809A (en) Vehicular decorative component having black plating film and method for manufacturing the same
JP2013112891A (en) Electrolytic copper alloy foil, and electrolytic copper alloy foil with carrier foil
KR20090084517A (en) Copper foil for printed circuit improved in thermal resistance and chemical resistance property and fabrication method thereof
JP2006028635A (en) Method for manufacturing surface treated copper foil for microfabrication circuit substrate
JP2002030481A (en) Copper or copper alloy foil and its production method
JP2013060614A (en) Surface treated copper foil for flexible printed wiring board and method for producing the same
JPS63183178A (en) Copper foil for printed circuit and production thereof
JP3564460B2 (en) Copper foil for printed wiring board and method for producing the same
KR102504286B1 (en) Surface treated copper foil and Method for producing the same
JP3709142B2 (en) Copper foil for printed wiring board and method for producing the same
JPWO2020246467A1 (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board
JP2013166969A (en) Surface treatment method of copper foil for fpc and the copper foil for fpc

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202