JP2013058627A - Epitaxial growth device - Google Patents

Epitaxial growth device Download PDF

Info

Publication number
JP2013058627A
JP2013058627A JP2011196339A JP2011196339A JP2013058627A JP 2013058627 A JP2013058627 A JP 2013058627A JP 2011196339 A JP2011196339 A JP 2011196339A JP 2011196339 A JP2011196339 A JP 2011196339A JP 2013058627 A JP2013058627 A JP 2013058627A
Authority
JP
Japan
Prior art keywords
reflector
cylindrical concave
shaped
heater
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011196339A
Other languages
Japanese (ja)
Other versions
JP5626163B2 (en
Inventor
Takeshi Kobayashi
武史 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2011196339A priority Critical patent/JP5626163B2/en
Publication of JP2013058627A publication Critical patent/JP2013058627A/en
Application granted granted Critical
Publication of JP5626163B2 publication Critical patent/JP5626163B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a device capable of growing an epitaxial layer having a uniform film thickness by heating a silicon single crystal substrate in a uniform manner by the adjustment of a heat ray from a reflector.SOLUTION: An epitaxial growth device includes: a heater having a plurality of rod-shaped single-body heaters, each disposed on the upper and lower sides of a susceptor and radially arranged into a circular shape; and an upper and a lower doughnut-shaped reflector each disposed on the upper side of the upper heater and the lower side of the lower heater. At least one of the upper and lower doughnut-shaped reflectors includes a convergence reflector plate for converging heat radiation of the heater and a dispersion reflector plate for dispersing the heat radiation. The convergence reflector plate includes a cylindrical concave formed along the rod-shaped single-body heater. The cylindrical concave includes a portion having a cross section of a different curvature radius in the radial direction of the doughnut-shaped reflector.

Description

本発明は、シリコン単結晶基板の主表面にエピタキシャル層を成長させるエピタキシャル成長装置に関する。   The present invention relates to an epitaxial growth apparatus for growing an epitaxial layer on a main surface of a silicon single crystal substrate.

気相成長法により、シリコン単結晶基板の表面にエピタキシャル層(シリコン単結晶薄膜)を形成したシリコンエピタキシャルウェーハは、バイポーラICやMOS−IC等の電子デバイスに広く使用されている。
近年、電子デバイスの微細化によって、薄膜化やウェーハの大直径化が進む中、形成されるエピタキシャル層厚の面内均一化が重要な課題の一つとなっている。例えば直径200mmのシリコンエピタキシャルウェーハの製造においては、複数枚の基板をバッチ処理する方法に代えて、膜厚分布等の制御が比較的容易な枚葉式エピタキシャル成長装置が主流になりつつある。これは、反応室内において、1枚のシリコン単結晶基板をサセプタ上で水平に保持し、原料ガスを反応室の一端から他端へ水平かつ一方向に供給しながら、エピタキシャル層を成長させるものである。
A silicon epitaxial wafer in which an epitaxial layer (silicon single crystal thin film) is formed on the surface of a silicon single crystal substrate by a vapor phase growth method is widely used in electronic devices such as bipolar ICs and MOS-ICs.
In recent years, with the miniaturization of electronic devices and the progress of thinning and increasing the diameter of wafers, in-plane uniformity of the thickness of the formed epitaxial layer has become an important issue. For example, in the manufacture of a silicon epitaxial wafer having a diameter of 200 mm, a single-wafer epitaxial growth apparatus that is relatively easy to control the film thickness distribution and the like is becoming the mainstream instead of the batch processing method for a plurality of substrates. This is to grow an epitaxial layer while holding a single silicon single crystal substrate horizontally on a susceptor in a reaction chamber and supplying a source gas horizontally and in one direction from one end to the other end of the reaction chamber. is there.

エピタキシャル層の成長速度は温度の影響を強く受けるので、エピタキシャル層厚の均一性を向上させるためには、シリコン単結晶基板の面内の温度分布の制御が重要である。
エピタキシャル成長装置の加熱方式には様々なものがあり、シリコン単結晶基板を1枚ずつエピタキシャル成長させる枚葉式エピタキシャル装置の場合は、シリコン単結晶基板の上下からハロゲンランプヒータで加熱する方式が多く使われる。ハロゲンランプに片口金型ランプを用いる場合は、ランプを放射状に1列の円形に配列することになり、このランプの背後にはヒータからの熱線を反射して基板に照射するためのドーナツ状のリフレクタを配置する(特許文献1、2参照)。また他に、サセプタの支持軸の保護や温度計測のための光路確保のために、サセプタに載置された基板の上下で、ドーナツ状のリフレクタの中心を通る円筒形状のリフレクタも配置される。
Since the growth rate of the epitaxial layer is strongly influenced by the temperature, it is important to control the temperature distribution in the plane of the silicon single crystal substrate in order to improve the uniformity of the epitaxial layer thickness.
There are various heating methods for the epitaxial growth apparatus. In the case of a single-wafer epitaxial apparatus in which a single crystal silicon substrate is epitaxially grown one by one, a heating method using a halogen lamp heater from above and below the silicon single crystal substrate is often used. . When a single-end mold lamp is used as the halogen lamp, the lamps are arranged radially in a row, and behind this lamp is a donut-like shape for reflecting the heat rays from the heater and irradiating the substrate. A reflector is disposed (see Patent Documents 1 and 2). In addition, in order to protect the support shaft of the susceptor and to secure an optical path for temperature measurement, cylindrical reflectors passing through the center of the donut-shaped reflector are also arranged above and below the substrate placed on the susceptor.

特開2010−147350号公報JP 2010-147350 A 特開平4−255214号公報JP-A-4-255214

ヒータの背後に配置されるドーナツ状のリフレクタは、基板の中心付近を強く照射するインサイド用ランプの背後には円筒凹面形状の反射板部が、基板の周辺付近を強く照射するアウトサイド用ランプの背後には平面形状の反射板部が設けられる。
インサイド用ランプの円筒凹面形状の反射板部では、ランプの光が収束されるため、基板に帯状の照射面が形成され、円形に複数配置されたインサイド用ランプの帯状照射面が軸対称で加算されて、基板の中心付近の照射強度が周辺よりも強くなってしまう。一方、平面形状の反射板部においては、ランプの光が分散されるため、分散された光が、基板上に設けた円筒形状のリフレクタで反射され、基板周辺付近の照射強度が増大する。ヒータのインサイド/アウトサイド用ランプの照射強度を調整することにより、基板面内の温度分布の均一化を図るが、上記したように円筒凹面形状の反射板部から反射した熱線により、基板中心付近で帯状照射面の重なりが多くなるため、当該基板中心付近の照度が急激に増大しやすく、インサイド/アウトサイド用ランプの照度を調整しても、急激に変動した照度分布が残ってしまう問題があった。
これにより、基板の面内の温度分布が不均一になり、エピタキシャル層厚が面内で不均一になってしまうという問題があった。
The donut-shaped reflector placed behind the heater is a cylindrical concave reflector behind the inside lamp that strongly illuminates the vicinity of the center of the substrate. A planar reflector is provided behind.
In the cylindrical concave reflector part of the inside lamp, the light from the lamp is converged, so a band-shaped irradiation surface is formed on the substrate, and the plurality of circularly arranged inside lamp irradiation surfaces are added symmetrically. As a result, the irradiation intensity near the center of the substrate becomes stronger than the periphery. On the other hand, in the planar reflecting plate portion, the light from the lamp is dispersed, so that the dispersed light is reflected by a cylindrical reflector provided on the substrate, and the irradiation intensity near the periphery of the substrate is increased. By adjusting the irradiation intensity of the heater's inside / outside lamp, the temperature distribution in the substrate surface is made uniform, but as described above, near the center of the substrate by the heat rays reflected from the cylindrical concave reflector In this case, the illuminance near the center of the substrate tends to increase rapidly, and even if the illuminance of the inside / outside lamp is adjusted, the illuminance distribution that fluctuates rapidly remains. there were.
As a result, the temperature distribution in the plane of the substrate becomes non-uniform, and the epitaxial layer thickness becomes non-uniform in the plane.

本発明は、上記問題点に鑑みてなされたものであって、リフレクタからの熱線を調節して、シリコン単結晶基板を面内均一に加熱し、膜厚が均一なエピタキシャル層を成長させることができる装置を提供することを目的とする。   The present invention has been made in view of the above problems, and it is possible to heat a silicon single crystal substrate uniformly in a plane by adjusting heat rays from a reflector to grow an epitaxial layer having a uniform film thickness. An object of the present invention is to provide a device that can be used.

上記目的を達成するために、本発明は、サセプタに水平に載置されたシリコン単結晶基板の主表面にエピタキシャル層を成長させるエピタキシャル成長装置であって、前記サセプタの上下に各々配置され、放射状に円形に並べられた複数の棒状の単体ヒータを有するヒータと、前記上のヒータの上側及び前記下のヒータの下側に各々配置された上下のドーナツ状リフレクタとを備え、前記上下のドーナツ状リフレクタの少なくとも一つは、前記ヒータの熱放射を収束させる収束反射板部と熱放射を分散させる分散反射板部とを有し、前記収束反射板部は前記棒状の単体ヒータに沿って形成された円筒凹面を有し、かつ該円筒凹面は前記ドーナツ状リフレクタの径方向で異なった曲率半径の断面の部分を有するものであることを特徴とするエピタキシャル成長装置を提供する。   In order to achieve the above object, the present invention provides an epitaxial growth apparatus for growing an epitaxial layer on a main surface of a silicon single crystal substrate placed horizontally on a susceptor. A heater having a plurality of rod-shaped single heaters arranged in a circle, and upper and lower donut-shaped reflectors respectively disposed on the upper side of the upper heater and the lower side of the lower heater, the upper and lower donut-shaped reflectors At least one has a converging reflecting plate portion for converging the heat radiation of the heater and a distributed reflecting plate portion for dispersing the heat radiation, and the converging reflecting plate portion is formed along the rod-shaped single heater. An epitaxy characterized in that it has a cylindrical concave surface, and the cylindrical concave surface has a cross-sectional portion with a different radius of curvature in the radial direction of the donut-shaped reflector. To provide a Kisharu growth apparatus.

このようなリフレクタの収束反射板部の円筒凹面であれば、基板中心領域への照射強度を効率的に調整することができ、基板面内で均一に加熱することができる。また、円筒凹面で反射するため、基板中心領域への熱線の反射を効果的に行うことができる。従って、基板を面内均一に加熱することにより、面内均一な膜厚のエピタキシャル層を成長させることができ、高品質なエピタキシャルウェーハを製造できる装置となる。   With such a cylindrical concave surface of the converging reflection plate portion of the reflector, the irradiation intensity to the central region of the substrate can be adjusted efficiently, and heating can be performed uniformly within the substrate surface. Further, since the light is reflected by the cylindrical concave surface, the heat rays can be effectively reflected to the central region of the substrate. Accordingly, by heating the substrate uniformly in the plane, an epitaxial layer having a uniform thickness in the plane can be grown, so that a high-quality epitaxial wafer can be manufactured.

このとき、前記収束反射板部の円筒凹面は、前記リフレクタの外周端から内周端に向かって、断面の曲率半径が段階的に大きくなっているものであることが好ましい。
このように曲率半径が段階的に大きくなっているものであれば、本発明の円筒凹面の形成が容易で、かつ基板への熱線の照射を効果的に調節できる装置となる。
In this case, it is preferable that the cylindrical concave surface of the convergent reflection plate portion has a gradually increasing curvature radius in section from the outer peripheral end to the inner peripheral end of the reflector.
Thus, if the radius of curvature is increased stepwise, the cylindrical concave surface of the present invention can be easily formed, and the apparatus can effectively adjust the irradiation of heat rays to the substrate.

このとき、前記収束反射板部の円筒凹面は、前記リフレクタの外周端の断面の曲率半径が70mm以下で、前記内周端の断面の曲率半径が100mm以上であることが好ましい。
このような円筒凹面であれば、基板の面内の温度差を効果的に低減でき、基板の面内で均一な厚さのエピタキシャル層を成長させることができる装置となる。
At this time, it is preferable that the cylindrical concave surface of the convergent reflection plate portion has a radius of curvature of a cross section of the outer peripheral end of the reflector of 70 mm or less and a radius of curvature of a cross section of the inner peripheral end of 100 mm or more.
With such a cylindrical concave surface, the temperature difference in the surface of the substrate can be effectively reduced, and an epitaxial layer having a uniform thickness can be grown in the surface of the substrate.

このとき、前記収束反射板部の円筒凹面は、前記リフレクタの内周端の断面の曲率半径が無限大であることが好ましい。
このような内周端の断面が直線の円筒凹面は形成が容易で、基板の中央領域への照射強度を効果的に調節することができる装置となる。
In this case, it is preferable that the cylindrical concave surface of the convergent reflecting plate portion has an infinite radius of curvature of the cross section of the inner peripheral end of the reflector.
Such a cylindrical concave surface having a straight cross section at the inner peripheral end can be easily formed, and the apparatus can effectively adjust the irradiation intensity to the central region of the substrate.

以上のように、本発明によれば、ヒータにより基板面内均一に加熱して膜厚均一性が高いエピタキシャル層を成長させることができ、高品質のエピタキシャルウェーハを製造することができる装置となる。   As described above, according to the present invention, an epitaxial layer with high film thickness uniformity can be grown by heating uniformly in the substrate surface with a heater, and a high quality epitaxial wafer can be manufactured. .

本発明のエピタキシャル成長装置の一例を示す概略図である。It is the schematic which shows an example of the epitaxial growth apparatus of this invention. 本発明のエピタキシャル成長装置のヒータとドーナツ状リフレクタの概略図である。It is the schematic of the heater and donut-shaped reflector of the epitaxial growth apparatus of this invention. 本発明のエピタキシャル成長装置のドーナツ状リフレクタを部分的に示す概略図である。It is the schematic which shows partially the doughnut-shaped reflector of the epitaxial growth apparatus of this invention.

以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。
図1に本発明のエピタキシャル成長装置の概略図を示す。
Hereinafter, the present invention will be described in detail as an example of an embodiment with reference to the drawings, but the present invention is not limited thereto.
FIG. 1 shows a schematic view of an epitaxial growth apparatus of the present invention.

図1の枚葉式エピタキシャル成長装置10は、反応室11内にシリコン単結晶基板Wを水平に配置するためのサセプタ12が設けられ、サセプタ12は支持軸13により支持され、この支持軸13はサセプタ12を回転させるための機構(不図示)を有する。
このサセプタ12の上下には、シリコン単結晶基板Wを加熱するための単体ヒータが円形に並べられたヒータ15a、15bが各々配置されている。また、この上下のヒータ15a、15bの中央には、円筒状のリフレクタ14a、14bが各々配置されている。この円筒状のリフレクタ14a、14bにより、支持軸13の加熱防止や、温度計測のための光路を確保することができる。
1 is provided with a susceptor 12 for horizontally arranging a silicon single crystal substrate W in a reaction chamber 11, and the susceptor 12 is supported by a support shaft 13, which is supported by the susceptor 13. And a mechanism (not shown) for rotating 12.
Above and below the susceptor 12, heaters 15 a and 15 b in which single heaters for heating the silicon single crystal substrate W are arranged in a circle are arranged. In addition, cylindrical reflectors 14a and 14b are respectively arranged at the centers of the upper and lower heaters 15a and 15b. The cylindrical reflectors 14a and 14b can prevent the support shaft 13 from being heated and ensure an optical path for temperature measurement.

図2はサセプタ12側から見たヒータ15a、15bと、その背後に設けられたドーナツ状リフレクタ16a、16bの概略図である。ヒータ15a、15bは、放射状に円形に並べられた複数の棒状の単体ヒータ17a、17bを有する。この単体ヒータ17a、17bとしては、例えばハロゲンランプを用いることができ、主に基板中央部に熱線を照射するインサイド用ランプである単体ヒータ17aと、主に基板の周辺部に熱線を照射するアウトサイド用ランプである単体ヒータ17bとを並べてヒータ15a、15bを形成する。これらインサイド/アウトサイド用の単体ヒータ17a、17bの照射強度を各々調節して基板を面内均一に加熱する。
そして、上のヒータ15aの上側及び下のヒータ15bの下側に、上下のドーナツ状リフレクタ16a、16bが各々配置される。この上下のドーナツ状リフレクタ16a、16bの少なくとも一つは、ヒータ15a、15bの熱放射を収束させる収束反射板部18aと熱放射を分散させる分散反射板部18bとを有する。これら収束反射板部18a、分散反射板部18bは、交互に形成されてもよいし、回転対称又は線対称に形成されてもよい。
FIG. 2 is a schematic view of the heaters 15a and 15b viewed from the susceptor 12 side and the donut-shaped reflectors 16a and 16b provided behind the heaters 15a and 15b. The heaters 15a and 15b have a plurality of rod-shaped single heaters 17a and 17b arranged radially in a circle. As the single heaters 17a and 17b, for example, halogen lamps can be used. The single heater 17a, which is an inside lamp that mainly radiates heat rays to the center of the substrate, and the out that radiates heat rays mainly to the periphery of the substrate. Heaters 15a and 15b are formed side by side with a single heater 17b that is a side lamp. The substrate is heated in-plane uniformly by adjusting the irradiation intensity of each of the inside / outside single heaters 17a and 17b.
And the upper and lower donut-shaped reflectors 16a and 16b are arrange | positioned at the upper side of the upper heater 15a, and the lower side of the lower heater 15b, respectively. At least one of the upper and lower donut-shaped reflectors 16a and 16b has a converging reflection plate portion 18a for converging the heat radiation of the heaters 15a and 15b and a dispersion reflection plate portion 18b for dispersing the heat radiation. These convergent reflection plate portions 18a and dispersion reflection plate portions 18b may be formed alternately, or may be formed rotationally or line-symmetrically.

この収束反射板部18aは、棒状の単体ヒータ17aに沿って形成された、図3(A)、(B)に示すような円筒凹面19、19’を有し、かつ該円筒凹面19、19’はドーナツ状リフレクタ16a、16bの径方向で異なった曲率半径の断面の部分を有するものである。
このような円筒凹面19、19’は、その形状により、単体ヒータ17aからの熱放射を効果的に収束させて反射することができる。また、単に円筒凹面の曲率半径を大きくしても、逆に基板中央部の加熱が不十分になり、基板の温度が面内で不均一になってしまうが、本発明のように、ドーナツ状リフレクタ16a、16bの径方向で異なった曲率半径の断面の部分を有するものであれば、反射された熱線による帯状の照射面の基板中心付近での重なりを抑制しつつ、適切な加熱が可能である。従って、基板中心付近が過剰に加熱されることはなく、基板の面内を均一に加熱することができる。
The convergent reflection plate portion 18a has cylindrical concave surfaces 19, 19 'as shown in FIGS. 3 (A) and 3 (B) formed along the rod-shaped single heater 17a, and the cylindrical concave surfaces 19, 19 'Has cross-sectional portions having different radii of curvature in the radial direction of the donut-shaped reflectors 16a and 16b.
Such cylindrical concave surfaces 19 and 19 ′ can effectively converge and reflect the heat radiation from the single heater 17a depending on the shape thereof. In addition, even if the radius of curvature of the cylindrical concave surface is simply increased, the central portion of the substrate is not sufficiently heated, and the temperature of the substrate becomes non-uniform in the plane. If the reflectors 16a and 16b have cross-sectional portions having different radii of curvature in the radial direction, appropriate heating is possible while suppressing the overlap of the strip-shaped irradiation surface near the substrate center due to the reflected heat rays. is there. Therefore, the vicinity of the substrate center is not excessively heated, and the in-plane surface of the substrate can be heated uniformly.

また、図3(A)、(B)に示すように、収束反射板部18a、18’aの円筒凹面19、19’は、ドーナツ状リフレクタ16a、16’aの外周端から内周端に向かって、断面の曲率半径が段階的に大きくなっているものであることが好ましい。
このように曲率半径を段階的に大きくすることで、収束反射板部18a、18’aの形成が容易で、また、基板中心付近への熱線の照射を効果的に調節できる。
Further, as shown in FIGS. 3A and 3B, the cylindrical concave surfaces 19 and 19 ′ of the converging reflection plate portions 18a and 18′a extend from the outer peripheral end to the inner peripheral end of the donut-shaped reflectors 16a and 16′a. On the other hand, it is preferable that the curvature radius of the cross section is gradually increased.
Thus, by gradually increasing the radius of curvature, the convergent reflecting plate portions 18a and 18'a can be easily formed, and the irradiation of heat rays near the center of the substrate can be effectively adjusted.

この収束反射板部18aの円筒凹面19は、ドーナツ状リフレクタ16a、16bの外周端の断面の曲率半径が70mm以下で、内周端の断面の曲率半径が100mm以上であることが好ましい。
このような円筒凹面19であれば、ヒータ15a、15bからの熱放射を効果的に収束して反射し、かつ、基板中心付近への過剰な照射を抑制することができる。
The cylindrical concave surface 19 of the convergent reflection plate portion 18a preferably has a radius of curvature of the cross section of the outer peripheral end of the donut-shaped reflectors 16a and 16b of 70 mm or less and a radius of curvature of the cross section of the inner peripheral end of 100 mm or more.
With such a cylindrical concave surface 19, it is possible to effectively converge and reflect the heat radiation from the heaters 15a and 15b, and to suppress excessive irradiation near the center of the substrate.

また、図3(B)に示すように、収束反射板部18’aの円筒凹面19’は、ドーナツ状リフレクタ16’a、16’bの内周端の断面の曲率半径が無限大であることが好ましい。
このような曲率半径が無限大の場合には、断面が直線であり、円筒凹面19’の内周部に平面が形成される。これにより、基板中心付近に帯状照射面の重なりが形成されにくく、過剰な照射を十分に抑制することができ、また、円筒凹面19’の形成も容易である。
Further, as shown in FIG. 3B, the cylindrical concave surface 19 ′ of the convergent reflecting plate portion 18′a has an infinite radius of curvature at the cross section of the inner peripheral ends of the donut-shaped reflectors 16′a and 16′b. It is preferable.
When the radius of curvature is infinite, the cross section is a straight line, and a flat surface is formed on the inner peripheral portion of the cylindrical concave surface 19 ′. Thereby, it is difficult to form an overlap of the belt-shaped irradiation surfaces in the vicinity of the center of the substrate, it is possible to sufficiently suppress excessive irradiation, and it is easy to form the cylindrical concave surface 19 ′.

上記した円筒凹面19を有する収束反射板部18aは、上下のドーナツ状リフレクタ16a、16b両方に形成されてもよいし、どちらか一方のみに形成されてもよい。一方のみに形成する場合には、他方のドーナツ状リフレクタは例えば平面の反射板部を形成したものを用いることができる。   The convergent reflection plate portion 18a having the cylindrical concave surface 19 may be formed on both the upper and lower donut-shaped reflectors 16a and 16b, or may be formed on only one of them. In the case where it is formed only on one side, the other donut-shaped reflector can be formed, for example, having a flat reflecting plate portion.

上記した本発明のエピタキシャル成長装置10を用いて、例えば、サセプタ12上にシリコン単結晶基板Wを載置し、ヒータ15a、15bにより基板Wを加熱し、トリクロロシラン等の原料ガスを反応室11内に導入しながらエピタキシャル層を成長させることができる。
本発明の装置であれば、シリコン単結晶基板を面内で均一に加熱することができるため、面内均一な膜厚のエピタキシャル層を成長させることができ、高品質のエピタキシャルウェーハを製造することができる。
Using the above-described epitaxial growth apparatus 10 of the present invention, for example, a silicon single crystal substrate W is placed on a susceptor 12, the substrate W is heated by heaters 15a and 15b, and a source gas such as trichlorosilane is supplied into the reaction chamber 11. The epitaxial layer can be grown while being introduced into the substrate.
With the apparatus of the present invention, the silicon single crystal substrate can be uniformly heated in the plane, so that an epitaxial layer having a uniform in-plane thickness can be grown, and a high-quality epitaxial wafer is manufactured. Can do.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
図1に示す直径300mmウェーハ用の枚葉式エピタキシャル成長装置を用いて、直径300mmのシリコンウェーハの中心温度を1100℃に加熱したときのウェーハ面内温度分布を測定した。測定は、特公平07−058730に記載されている方法で行った。これは、イオン注入によって表面に不純物注入層が形成された拡散ウェーハを用意して加熱し、熱拡散後のシート抵抗を測定することによりウェーハ温度を求める方法である。
上のドーナツ状リフレクタのインサイド用ランプの収束反射板部には、2種類の曲率半径の断面を組み合わせた円筒凹面を有する反射板部を使用し、アウトサイド用ランプの反射板部は平面とした。また、下のドーナツ状リフレクタには、ドーナツ状リフレクタの内周端から外周端まで一様な曲率半径の断面を有する円筒凹面の反射板部と、平面の反射板部を形成したものを用いた。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these.
Example 1
Using the single wafer epitaxial growth apparatus for a 300 mm diameter wafer shown in FIG. 1, the temperature distribution in the wafer surface when the center temperature of a silicon wafer having a diameter of 300 mm was heated to 1100 ° C. was measured. The measurement was performed by the method described in Japanese Patent Publication No. 07-058730. This is a method for obtaining a wafer temperature by preparing and heating a diffusion wafer having an impurity injection layer formed on the surface by ion implantation and measuring the sheet resistance after thermal diffusion.
The converging reflecting plate portion of the inside lamp of the upper donut-shaped reflector is a reflecting plate portion having a cylindrical concave surface combining two types of curvature radius sections, and the reflecting plate portion of the outside lamp is flat. . In addition, as the lower donut-shaped reflector, a cylindrical concave reflecting plate portion having a uniform curvature radius from the inner peripheral end to the outer peripheral end of the donut-shaped reflector and a flat reflecting plate portion were used. .

上のドーナツ状リフレクタのインサイド用ランプの反射板部において、円筒凹面の外周部の断面の曲率半径を40mmとし、円筒凹面の内周部の断面の曲率半径を70、100、200mm(図3(A))、及び無限大(平面)(図3(B))とした。
測定した結果を表1に示す。表1から分かるように、面内最大温度差はそれぞれ10.4、9.1、7.4、5.3℃となり、円筒凹面の内周部の断面の曲率半径が100mm以上で10℃以下となり、円筒凹面の内周部が平面のときに最も小さい温度差となった。
In the reflecting plate portion of the inside lamp of the upper donut-shaped reflector, the radius of curvature of the outer peripheral portion of the cylindrical concave surface is 40 mm, and the radius of curvature of the inner peripheral portion of the cylindrical concave surface is 70, 100, 200 mm (FIG. 3 ( A)) and infinity (plane) (FIG. 3B).
The measured results are shown in Table 1. As can be seen from Table 1, the in-plane maximum temperature differences are 10.4, 9.1, 7.4, and 5.3 ° C., respectively, and the curvature radius of the cross section of the inner periphery of the cylindrical concave surface is 100 mm or more and 10 ° C. or less. Thus, the smallest temperature difference was obtained when the inner peripheral portion of the cylindrical concave surface was flat.

(実施例2)
実施例1と同様に加熱を行って、その際の基板の面内最大温度差を測定した。ただし、上のドーナツ状リフレクタのインサイド用ランプの反射板部の円筒凹面の内周部を平面とし、外周部の断面の曲率半径を55、70、100mmとした。
測定結果を表1に示す。基板の面内最大温度差はそれぞれ8.7、9.8、11.5℃となり、円筒凹面の外周部の断面の曲率半径が70mm以下で10℃以下となった。
(Example 2)
Heating was performed in the same manner as in Example 1, and the in-plane maximum temperature difference of the substrate at that time was measured. However, the inner peripheral portion of the cylindrical concave surface of the reflecting plate portion of the inside lamp of the upper donut-shaped reflector was a flat surface, and the radius of curvature of the cross section of the outer peripheral portion was 55, 70, 100 mm.
The measurement results are shown in Table 1. The in-plane maximum temperature differences of the substrate were 8.7, 9.8 and 11.5 ° C., respectively, and the radius of curvature of the outer periphery of the cylindrical concave surface was 70 mm or less and 10 ° C. or less.

(実施例3)
実施例1と同様に加熱を行って、その際の基板の面内最大温度差を測定した。ただし、上のドーナツ状リフレクタのインサイド用ランプの反射板部の円筒凹面の内周部の断面の曲率半径を40mmとし、外周部を平面とした。
測定結果を表1に示す。実施例3では、基板の面内最大温度差は8.6℃で、10℃以下になった。
(Example 3)
Heating was performed in the same manner as in Example 1, and the in-plane maximum temperature difference of the substrate at that time was measured. However, the curvature radius of the cross section of the inner peripheral part of the cylindrical concave surface of the reflecting plate part of the inside lamp of the upper donut-shaped reflector was 40 mm, and the outer peripheral part was a plane.
The measurement results are shown in Table 1. In Example 3, the in-plane maximum temperature difference of the substrate was 8.6 ° C., which was 10 ° C. or less.

(実施例4)
実施例1と同様に加熱を行って、その際の基板の面内最大温度差を測定した。ただし、上のドーナツ状リフレクタについて、3種類の曲率半径の断面を組み合わせた円筒凹面を有するインサイド用ランプの反射板部を使用し、反射板部の円筒凹面の内周部を平面、中央部を断面の曲率半径40mmとし、外周部を平面とした。
測定結果を表1に示す。実施例4では、基板の面内最大温度差は7.2℃となった。
Example 4
Heating was performed in the same manner as in Example 1, and the in-plane maximum temperature difference of the substrate at that time was measured. However, for the upper donut-shaped reflector, the reflecting plate portion of the inside lamp having a cylindrical concave surface combining three types of curvature radius sections is used, and the inner peripheral portion of the cylindrical concave surface of the reflecting plate portion is flat and the central portion is The radius of curvature of the cross section was 40 mm, and the outer periphery was a flat surface.
The measurement results are shown in Table 1. In Example 4, the in-plane maximum temperature difference of the substrate was 7.2 ° C.

(比較例)
実施例1と同様に加熱を行って、その際の基板の面内最大温度差を測定した。ただし、上のドーナツ状リフレクタのインサイド用ランプの反射板部の円筒凹面は断面の曲率半径が一様に40mmのものを用いた。
測定結果を表1に示す。基板の面内最大温度差は12.7℃で、不均一な加熱となっていた。
(Comparative example)
Heating was performed in the same manner as in Example 1, and the in-plane maximum temperature difference of the substrate at that time was measured. However, the cylindrical concave surface of the reflecting plate portion of the inside lamp of the upper donut-shaped reflector was used with a uniform curvature radius of 40 mm in cross section.
The measurement results are shown in Table 1. The in-plane maximum temperature difference of the substrate was 12.7 ° C., which was uneven heating.

Figure 2013058627
Figure 2013058627

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

10…エピタキシャル成長装置、 11…反応室、 12…サセプタ、
13…支持軸、 14a、14b…円筒状のリフレクタ、 15a、15b…ヒータ、
16a、16b、16’a、16’b…ドーナツ状リフレクタ、
17a、17b…単体ヒータ、 18a、18’a…収束反射板部、
18b…分散反射板部、 19、19’…円筒凹面、 W…シリコン単結晶基板。
10 ... epitaxial growth apparatus, 11 ... reaction chamber, 12 ... susceptor,
13 ... Support shaft, 14a, 14b ... Cylindrical reflector, 15a, 15b ... Heater,
16a, 16b, 16'a, 16'b ... donut-shaped reflectors,
17a, 17b: single heater, 18a, 18'a: converging reflector,
18b ... dispersion reflector part 19, 19, '... cylindrical concave surface, W ... silicon single crystal substrate.

Claims (4)

サセプタに水平に載置されたシリコン単結晶基板の主表面にエピタキシャル層を成長させるエピタキシャル成長装置であって、前記サセプタの上下に各々配置され、放射状に円形に並べられた複数の棒状の単体ヒータを有するヒータと、前記上のヒータの上側及び前記下のヒータの下側に各々配置された上下のドーナツ状リフレクタとを備え、前記上下のドーナツ状リフレクタの少なくとも一つは、前記ヒータの熱放射を収束させる収束反射板部と熱放射を分散させる分散反射板部とを有し、前記収束反射板部は前記棒状の単体ヒータに沿って形成された円筒凹面を有し、かつ該円筒凹面は前記ドーナツ状リフレクタの径方向で異なった曲率半径の断面の部分を有するものであることを特徴とするエピタキシャル成長装置。   An epitaxial growth apparatus for growing an epitaxial layer on a main surface of a silicon single crystal substrate placed horizontally on a susceptor, comprising a plurality of rod-shaped single heaters arranged above and below the susceptor and arranged radially in a circle. And upper and lower donut-shaped reflectors respectively disposed on the upper side of the upper heater and the lower side of the lower heater, and at least one of the upper and lower donut-shaped reflectors A converging reflecting plate portion for converging and a dispersive reflecting plate portion for dispersing heat radiation; the converging reflecting plate portion having a cylindrical concave surface formed along the rod-shaped single heater; and the cylindrical concave surface is An epitaxial growth apparatus characterized by having a cross-sectional portion with a different radius of curvature in the radial direction of a donut-shaped reflector. 前記分散反射板部の円筒凹面は、前記リフレクタの外周端から内周端に向かって、断面の曲率半径が段階的に大きくなっているものであることを特徴とする請求項1に記載のエピタキシャル成長装置。   2. The epitaxial growth according to claim 1, wherein the cylindrical concave surface of the dispersion reflecting plate portion has a radius of curvature of a section that increases stepwise from an outer peripheral end to an inner peripheral end of the reflector. apparatus. 前記分散反射板部の円筒凹面は、前記リフレクタの外周端の断面の曲率半径が70mm以下で、前記内周端の断面の曲率半径が100mm以上であることを特徴とする請求項1又は請求項2に記載のエピタキシャル成長装置。   The cylindrical concave surface of the dispersion reflecting plate part has a radius of curvature of a cross section of an outer peripheral end of the reflector of 70 mm or less and a radius of curvature of a cross section of the inner peripheral end of 100 mm or more. 2. The epitaxial growth apparatus according to 2. 前記分散反射板部の円筒凹面は、前記リフレクタの内周端の断面の曲率半径が無限大であることを特徴とする請求項1乃至請求項3のいずれか一項に記載のエピタキシャル成長装置。   4. The epitaxial growth apparatus according to claim 1, wherein the cylindrical concave surface of the dispersion reflecting plate portion has an infinite radius of curvature of a cross section of an inner peripheral end of the reflector. 5.
JP2011196339A 2011-09-08 2011-09-08 Epitaxial growth equipment Active JP5626163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011196339A JP5626163B2 (en) 2011-09-08 2011-09-08 Epitaxial growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011196339A JP5626163B2 (en) 2011-09-08 2011-09-08 Epitaxial growth equipment

Publications (2)

Publication Number Publication Date
JP2013058627A true JP2013058627A (en) 2013-03-28
JP5626163B2 JP5626163B2 (en) 2014-11-19

Family

ID=48134245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011196339A Active JP5626163B2 (en) 2011-09-08 2011-09-08 Epitaxial growth equipment

Country Status (1)

Country Link
JP (1) JP5626163B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014514734A (en) * 2011-03-11 2014-06-19 アプライド マテリアルズ インコーポレイテッド Off-angle heating of the underside of the substrate using a lamp assembly
JP2015082634A (en) * 2013-10-24 2015-04-27 信越半導体株式会社 Epitaxial growth apparatus
JP2018517299A (en) * 2015-05-29 2018-06-28 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Processing chamber with reflector
WO2023026929A1 (en) * 2021-08-27 2023-03-02 京セラ株式会社 Heating device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146733U (en) * 1984-08-30 1986-03-28 富士通株式会社 Heat treatment equipment for semiconductors
JPH03500549A (en) * 1987-06-18 1991-02-07 アドヴァンスド・セミコンダクター・マテリアルズ・アメリカ・インコーポレーテッド Heating device for reaction chamber of chemical vapor deposition equipment
JP2002529911A (en) * 1998-10-30 2002-09-10 アプライド マテリアルズ インコーポレイテッド Double surface reflector
JP2008071787A (en) * 2006-09-12 2008-03-27 Ushio Inc Heating device of light irradiation type and heating method of light irradiation type
WO2011021549A1 (en) * 2009-08-18 2011-02-24 東京エレクトロン株式会社 Heat treatment apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146733U (en) * 1984-08-30 1986-03-28 富士通株式会社 Heat treatment equipment for semiconductors
JPH03500549A (en) * 1987-06-18 1991-02-07 アドヴァンスド・セミコンダクター・マテリアルズ・アメリカ・インコーポレーテッド Heating device for reaction chamber of chemical vapor deposition equipment
JP2002529911A (en) * 1998-10-30 2002-09-10 アプライド マテリアルズ インコーポレイテッド Double surface reflector
JP2008071787A (en) * 2006-09-12 2008-03-27 Ushio Inc Heating device of light irradiation type and heating method of light irradiation type
WO2011021549A1 (en) * 2009-08-18 2011-02-24 東京エレクトロン株式会社 Heat treatment apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014514734A (en) * 2011-03-11 2014-06-19 アプライド マテリアルズ インコーポレイテッド Off-angle heating of the underside of the substrate using a lamp assembly
JP2015082634A (en) * 2013-10-24 2015-04-27 信越半導体株式会社 Epitaxial growth apparatus
JP2018517299A (en) * 2015-05-29 2018-06-28 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Processing chamber with reflector
WO2023026929A1 (en) * 2021-08-27 2023-03-02 京セラ株式会社 Heating device

Also Published As

Publication number Publication date
JP5626163B2 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
CN107578984B (en) Susceptor support portion and epitaxial growth apparatus including the same
JP5602903B2 (en) Epitaxial film formation method and epitaxial growth apparatus
JP2019016800A (en) Susceptor support shaft with uniformity tuning lenses for epi process
US9123765B2 (en) Susceptor support shaft for improved wafer temperature uniformity and process repeatability
JP5446760B2 (en) Epitaxial growth method
JP5191373B2 (en) Epitaxial wafer manufacturing method and manufacturing apparatus
JP5807522B2 (en) Epitaxial growth equipment
TWI613751B (en) Susceptor assemblies for supporting wafers in a reactor apparatus
JP5659493B2 (en) Vapor growth method
JP5626163B2 (en) Epitaxial growth equipment
JP4864396B2 (en) Semiconductor element manufacturing method and semiconductor element manufacturing apparatus
CN109841541B (en) SiC epitaxial growth device
TW201535476A (en) Epitaxial growth apparatus
CN105742154A (en) Manufacturing Method Of Epitaxial Silicon Wafer
JPH0845863A (en) Single wafer semiconductor substrate heat treatment device
JP2013138114A (en) Semiconductor manufacturing apparatus and susceptor supporting member
JP6115445B2 (en) Epitaxial growth equipment
JP6198584B2 (en) Epitaxial film formation method and epitaxial growth apparatus
JP6309252B2 (en) Epitaxial film formation method and epitaxial growth apparatus
KR20140092704A (en) Susceptor and epitaxial reactor inclusing the same
JP6210382B2 (en) Epitaxial growth equipment
CN109841542B (en) SiC epitaxial growth device
JP2017224850A (en) Deposition method by epitaxial growth and epitaxial growth apparatus
JP2009231535A (en) Vapor deposition apparatus
KR101540573B1 (en) Apparatus for Manufacturing Wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140915

R150 Certificate of patent or registration of utility model

Ref document number: 5626163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250