JP2015082634A - Epitaxial growth apparatus - Google Patents

Epitaxial growth apparatus Download PDF

Info

Publication number
JP2015082634A
JP2015082634A JP2013221219A JP2013221219A JP2015082634A JP 2015082634 A JP2015082634 A JP 2015082634A JP 2013221219 A JP2013221219 A JP 2013221219A JP 2013221219 A JP2013221219 A JP 2013221219A JP 2015082634 A JP2015082634 A JP 2015082634A
Authority
JP
Japan
Prior art keywords
scatterer
epitaxial growth
growth apparatus
absorber
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013221219A
Other languages
Japanese (ja)
Other versions
JP6115445B2 (en
Inventor
一成 須田
Kazunari Suda
一成 須田
小林 武史
Takeshi Kobayashi
武史 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2013221219A priority Critical patent/JP6115445B2/en
Publication of JP2015082634A publication Critical patent/JP2015082634A/en
Application granted granted Critical
Publication of JP6115445B2 publication Critical patent/JP6115445B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an epitaxial growth apparatus which can grow an epitaxial layer uniform in thickness by heating a monocrystalline silicon substrate uniformly in a plane while controlling heat waves from a heater in epitaxial growth.SOLUTION: An epitaxial growth apparatus comprises: a heater having combinations of rod-shaped heater units 15a and 15b disposed above and below a susceptor 12 and horizontally, arrayed along a circle so that a longitudinal direction of each rod-shaped heater unit is put in agreement with a radial direction of the circle; and upper and lower doughnut-shaped reflectors 16a and 16b which are disposed above the upper combination of rod-shaped heater units and below the lower combination of rod-shaped heater units, respectively. The epitaxial growth apparatus further comprises: a scatterer 20 for scattering heat waves from the heater; and/or an absorber 17 for absorbing heat waves from the heater, provided that the scatterer and the absorber are disposed near a monocrystalline silicon substrate W or the susceptor. Each or one of the scatterer and the absorber is provided in a generally circular form. The diameter of each of the scatterer and the absorber is in a range of 5-50% of the diameter of the monocrystalline silicon substrate.

Description

本発明は、シリコン単結晶基板の主表面にエピタキシャル層を成長させるエピタキシャル成長装置に関する。   The present invention relates to an epitaxial growth apparatus for growing an epitaxial layer on a main surface of a silicon single crystal substrate.

気相成長法により、シリコン単結晶基板の表面にエピタキシャル層を形成したシリコンエピタキシャルウェーハは電子デバイスに広く使用されている。近年、電子デバイスの微細化によって、エピタキシャル膜厚の面内均一化が重要な課題の一つとなっている。   A silicon epitaxial wafer in which an epitaxial layer is formed on the surface of a silicon single crystal substrate by a vapor deposition method is widely used for electronic devices. In recent years, with the miniaturization of electronic devices, in-plane uniformity of the epitaxial film thickness has become one of the important issues.

エピタキシャル層の成長速度は温度の影響を強く受けるので、エピタキシャル層の膜厚均一性を向上させる為には、シリコン単結晶基板の面内の温度分布の制御が重要である。エピタキシャルウェーハ製造装置の加熱方式には様々なものがあり、シリコンウェーハを1枚ずつエピタキシャル成長させる枚葉エピタキシャル装置の場合は、シリコンウェーハの上下からハロゲンランプヒータで加熱する方式が多く使われる。ハロゲンランプに片口金型ランプを用いる場合はランプを円形に配列することになり、このランプの背後にはヒータからの熱線を反射して基板に照射するためのドーナツ状のリフレクタを配置する。また他に、サセプタの支持軸の保護や温度計測のための光路確保のために、サセプタに載置された基板の上下で、ドーナツ状のリフレクタの中心を通る円筒形状のリフレクタも配置される。   Since the growth rate of the epitaxial layer is strongly influenced by temperature, it is important to control the temperature distribution in the plane of the silicon single crystal substrate in order to improve the film thickness uniformity of the epitaxial layer. There are various heating methods for an epitaxial wafer manufacturing apparatus. In the case of a single wafer epitaxial apparatus in which silicon wafers are epitaxially grown one by one, a method of heating with a halogen lamp heater from above and below the silicon wafer is often used. When a single-end die lamp is used as the halogen lamp, the lamps are arranged in a circular shape, and a donut-shaped reflector for reflecting the heat rays from the heater and irradiating the substrate is disposed behind the lamp. In addition, in order to protect the support shaft of the susceptor and to secure an optical path for temperature measurement, cylindrical reflectors passing through the center of the donut-shaped reflector are also arranged above and below the substrate placed on the susceptor.

ヒータの背後に設置されるドーナツ状のリフレクタ形状の違いにより、基板の中心付近を強く照射するインサイド用ランプと、基板の周辺付近を強く照射するアウトサイド用ランプがあり、この両方のランプの照射強度を調整することにより、基板面内の温度分布の均一化を図っているが、基板中心付近の照度は急激に増大しやすく、インサイド/アウトサイド用ランプの照度を調整しても、急激に変動した照度分布が残ってしまう問題があった。これにより、基板面内の温度分布が不均一となり、エピタキシャル層の膜厚が不均一になってしまうという問題があった。   Depending on the shape of the donut-shaped reflector installed behind the heater, there are an inside lamp that irradiates the vicinity of the substrate strongly and an outside lamp that irradiates the vicinity of the substrate strongly. By adjusting the intensity, the temperature distribution in the substrate surface is made uniform, but the illuminance near the center of the substrate tends to increase rapidly, and even if the illuminance of the inside / outside lamp is adjusted, There was a problem that the changed illuminance distribution remained. As a result, there is a problem that the temperature distribution in the substrate surface becomes non-uniform and the film thickness of the epitaxial layer becomes non-uniform.

特許文献1や特許文献2では、ドーナツ状リフレクタの曲率半径の変更や、ランプ中心側に散乱体を有する構造にすることで、急激な照度分布を抑制し、温度分布を改善している。   In Patent Document 1 and Patent Document 2, a rapid illuminance distribution is suppressed and a temperature distribution is improved by changing the radius of curvature of the donut-shaped reflector or by using a structure having a scatterer on the lamp center side.

特開2013-058627JP2013-058627 特開2013-110145JP2013-110145

本発明は、上記した従来技術の問題点に鑑みなされたものであり、エピタキシャル成長において、ヒータからの熱線を調節して、シリコン単結晶基板を面内均一に加熱し、膜厚が均一なエピタキシャル層を成長させることができるエピタキシャル成長装置を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and in epitaxial growth, a heat ray from a heater is adjusted to uniformly heat a silicon single crystal substrate in a plane, thereby obtaining an epitaxial layer having a uniform film thickness. It is an object of the present invention to provide an epitaxial growth apparatus capable of growing the substrate.

上記課題を解決するために、本発明のエピタキシャル成長装置は、サセプタに略水平に載置されたシリコン単結晶基板の主表面にエピタキシャル層を成長させるエピタキシャル成長装置であって、前記サセプタの上下に各々配置され、放射状に円形に並べられた複数の棒状の単体ヒータを有するヒータと、前記上のヒータの上側及び前記下のヒータの下側に各々配置された上下のドーナツ状リフレクタとを備えるエピタキシャル成長装置において、前記シリコン単結晶基板又は前記サセプタの近傍に前記ヒータからの熱線を散乱する散乱体及び/又は前記ヒータからの熱線を吸収する吸収体を有し、前記散乱体及び/又は前記吸収体が略円形状に設けられてなり、前記散乱体及び/又は前記吸収体の直径が、前記シリコン単結晶基板の直径の5〜50%の範囲にあることを特徴とする。   In order to solve the above problems, an epitaxial growth apparatus of the present invention is an epitaxial growth apparatus for growing an epitaxial layer on a main surface of a silicon single crystal substrate placed substantially horizontally on a susceptor, and is disposed above and below the susceptor. An epitaxial growth apparatus comprising: a heater having a plurality of rod-shaped single heaters arranged radially in a circle; and upper and lower donut-shaped reflectors respectively disposed above the upper heater and below the lower heater A scatterer that scatters heat rays from the heater and / or an absorber that absorbs heat rays from the heater in the vicinity of the silicon single crystal substrate or the susceptor, and the scatterer and / or the absorber is substantially The diameter of the scatterer and / or the absorber is the same as the diameter of the silicon single crystal substrate. Characterized in that in the range of 50%.

散乱体及び/又は吸収体をシリコン単結晶基板或いはサセプタの上方、又はサセプタの下方に、略円形状に設置することで、シリコン単結晶基板の局所的な部分の温度を低下させることが出来、また、散乱体又は吸収体の位置、散乱量を変更することにより温度の低下部分と低下量をコントロールすることが可能である。   By installing the scatterer and / or absorber in a substantially circular shape above the silicon single crystal substrate or susceptor or below the susceptor, the temperature of the local portion of the silicon single crystal substrate can be lowered, Moreover, it is possible to control the temperature-decreasing portion and the amount of decrease by changing the position of the scatterer or absorber and the amount of scattering.

また、前記散乱体及び/又は前記吸収体を略円形状に設けるにあたっては、略円形状の散乱体及び/又は吸収体を使用してもよいし、非円形状の散乱体及び/又は吸収体を並べて集合体として略円形状としたものを使用してもよい。また、略円形状であればリング状でもよく、その場合、前記散乱体及び/又は前記吸収体の直径は、リング状の外径をその直径とする。   In providing the scatterer and / or the absorber in a substantially circular shape, a substantially circular scatterer and / or absorber may be used, or a non-circular scatterer and / or absorber. You may use what was made into the substantially circular shape as an aggregate | assembly by arranging. Moreover, if it is substantially circular shape, a ring shape may be sufficient, and the diameter of the said scatterer and / or the said absorber makes a ring-shaped outer diameter the diameter.

前記散乱体及び/又は前記吸収体の位置がシリコン単結晶基板面の上方で、前記シリコン単結晶基板の表面からの距離が前記シリコン単結晶基板の直径の20%未満の範囲にあるのが好適である。すなわち、前記散乱体及び/又は前記吸収体の位置がシリコン単結晶基板面の上方且つ前記シリコン単結晶基板の直径の20%未満の距離に設けられるのが好適である。   Preferably, the position of the scatterer and / or the absorber is above the surface of the silicon single crystal substrate, and the distance from the surface of the silicon single crystal substrate is in a range of less than 20% of the diameter of the silicon single crystal substrate. It is. That is, the position of the scatterer and / or the absorber is preferably provided above the silicon single crystal substrate surface and at a distance of less than 20% of the diameter of the silicon single crystal substrate.

前記散乱体及び/又は前記吸収体の位置がサセプタの下方で、前記サセプタの下面からの距離が前記シリコン単結晶基板の直径の20%未満の範囲にあるのが好適である。すなわち、前記散乱体及び/又は前記吸収体の位置がシリコン単結晶基板面の下方且つ前記シリコン単結晶基板の直径の20%未満の距離に設けられるのが好適である。   It is preferable that the position of the scatterer and / or the absorber is below the susceptor and the distance from the lower surface of the susceptor is within a range of less than 20% of the diameter of the silicon single crystal substrate. That is, the position of the scatterer and / or the absorber is preferably provided below the silicon single crystal substrate surface and at a distance of less than 20% of the diameter of the silicon single crystal substrate.

前記散乱体が、反射体であるのが好ましい。   The scatterer is preferably a reflector.

前記反射体が、金メッキ製であるのが好ましい。   The reflector is preferably made of gold plating.

前記散乱体及び/又は前記吸収体が、細線形状であるのが好ましい。   It is preferable that the scatterer and / or the absorber has a thin line shape.

前記散乱体及び/又は前記吸収体が、炭化珪素製又は炭化珪素で被覆されたものであるのが好ましい。例えば、前記炭化珪素で被覆されたものとしては、炭素製基材を炭化珪素で被覆したものが適用できる。   The scatterer and / or the absorber is preferably made of silicon carbide or coated with silicon carbide. For example, as what was coat | covered with the said silicon carbide, what coat | covered the carbon base material with silicon carbide is applicable.

前記散乱体及び/又は前記吸収体が、石英製であるのが好ましい。   The scatterer and / or the absorber is preferably made of quartz.

前記散乱体が、石英製散乱体であり、その表面粗さがRa0.01〜10μmであるのが好適である。   It is preferable that the scatterer is a quartz scatterer and the surface roughness is Ra 0.01 to 10 μm.

前記石英製散乱体が、高さ0.1〜10mmの凹凸表面を有する形状であるのが好適である。また、前記石英製散乱体が、波長1550nmにおける透過率で25%を超えるのが好ましい。   The quartz scatterer preferably has a shape having an uneven surface with a height of 0.1 to 10 mm. The quartz scatterer preferably has a transmittance of more than 25% at a wavelength of 1550 nm.

本発明によれば、エピタキシャル成長において、ヒータからの熱線を調節して、シリコン単結晶基板を面内均一に加熱し、膜厚が均一なエピタキシャル層を成長させることができるエピタキシャル成長装置を提供することができるという著大な効果を奏する。   According to the present invention, it is possible to provide an epitaxial growth apparatus capable of growing an epitaxial layer having a uniform film thickness by epitaxially growing a silicon single crystal substrate in a plane by adjusting heat rays from a heater. There is a great effect that you can.

本発明に係るエピタキシャル成長装置の一つの実施の形態を示す側面概略図である。1 is a schematic side view showing an embodiment of an epitaxial growth apparatus according to the present invention. 本発明に係るエピタキシャル成長装置の別の実施の形態を示し、(a)が側面概略図、(b)が(a)の部分拡大図である。The other embodiment of the epitaxial growth apparatus which concerns on this invention is shown, (a) is a schematic side view, (b) is the elements on larger scale of (a). 従来のエピタキシャル成長装置を示す側面概略図である。It is a schematic side view showing a conventional epitaxial growth apparatus. 従来のエピタキシャル成長装置におけるウェーハ面内温度分布を示すグラフである。It is a graph which shows the temperature distribution in the wafer surface in the conventional epitaxial growth apparatus. 実施例2−5のウェーハ面内温度分布を示すグラフである。It is a graph which shows the wafer surface temperature distribution of Example 2-5.

以下、本発明の実施形態を図面を参照しながら説明するが、本発明はこれに限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.

図1に、本発明に係るエピタキシャル成長装置の一つの実施の形態を示す。本発明のエピタキシャル成長装置10Aは、反応ガスを基板Wに対して略水平に導入して、基板W上に薄膜を気相成長させるための反応室11と、反応室11内にシリコン単結晶基板Wを略水平に配置するためのサセプタ12と、前記サセプタ12の上下に各々配置され、シリコン単結晶基板Wを加熱するための放射状に円形に並べられた複数の棒状の単体ヒータを有するヒータ15a,15bと、前記上のヒータ15aの中央に配置された円筒状リフレクタ14a及び前記下のヒータ15bの中央に配置された円筒状リフレクタ14bと、を備える。前記円筒状リフレクタ14a,14bにより、支持軸13の加熱防止や、温度計測のための光路を確保することができる。   FIG. 1 shows an embodiment of an epitaxial growth apparatus according to the present invention. The epitaxial growth apparatus 10A of the present invention introduces a reaction gas substantially horizontally with respect to the substrate W, and causes a thin film on the substrate W to vapor-phase grow, and the silicon single crystal substrate W in the reaction chamber 11. , And a heater 15a having a plurality of rod-shaped single heaters arranged respectively in the upper and lower sides of the susceptor 12 and arranged radially in a circle for heating the silicon single crystal substrate W. 15b, and a cylindrical reflector 14a disposed at the center of the upper heater 15a and a cylindrical reflector 14b disposed at the center of the lower heater 15b. The cylindrical reflectors 14a and 14b can secure an optical path for preventing the support shaft 13 from being heated and for measuring temperature.

サセプタ12は、該サセプタ12を回転させる機構を設けた支持軸13により支持されている。前記支持軸13はサセプタ12の周縁部を支持する複数のアーム部24a,24bを有している。また、上のヒータ15aの上側及び下のヒータ15bの下側には、上下のドーナツ状リフレクタ16a、16bが各々配置される。   The susceptor 12 is supported by a support shaft 13 provided with a mechanism for rotating the susceptor 12. The support shaft 13 has a plurality of arm portions 24 a and 24 b that support the peripheral portion of the susceptor 12. In addition, upper and lower donut-shaped reflectors 16a and 16b are respectively arranged on the upper side of the upper heater 15a and the lower side of the lower heater 15b.

前記円筒状リフレクタ14a,14b、ドーナツ状リフレクタ16a,16b及びヒータ15a,15bの構成については、特許文献1及び特許文献2に開示された円筒状リフレクタ、ドーナツ状リフレクタ及びヒータと同様の構成を採用することができる。   The configurations of the cylindrical reflectors 14a and 14b, the donut-shaped reflectors 16a and 16b, and the heaters 15a and 15b are the same as the cylindrical reflector, the donut-shaped reflector and the heater disclosed in Patent Document 1 and Patent Document 2. can do.

すなわち、上下のヒータ15a、15bは、放射状に円形に並べられた複数の棒状の単体ヒータを有する。この単体ヒータとしては、例えばハロゲンランプを用いることができ、主に基板中央部に熱線を照射するインサイド用ランプである単体ヒータと、主に基板の周辺部に熱線を照射するアウトサイド用ランプである単体ヒータとを並べてヒータ15a、15bを形成する。これらインサイド/アウトサイド用の単体ヒータの照射強度を各々調節して基板を面内均一に加熱する。
上のヒータ15aの上側及び下のヒータ15bの下側に、上下のドーナツ状リフレクタ16a、16bが各々配置される。この上下のドーナツ状リフレクタ16a、16bの少なくとも一つは、ヒータ15a、15bの熱放射を収束させる円筒凹面形状の収束反射板部と、熱放射を分散させる平板形状の分散反射板部とを有する。これら収束反射板部、分散反射板部は、交互に形成されてもよいし、回転対称又は線対称に形成されてもよい。
That is, the upper and lower heaters 15a and 15b have a plurality of rod-shaped single heaters arranged radially in a circle. As the single heater, for example, a halogen lamp can be used. The single heater is an inside lamp that mainly radiates heat rays to the central portion of the substrate, and the outside lamp that mainly radiates heat rays to the peripheral portion of the substrate. Heaters 15a and 15b are formed side by side with a single heater. The substrate is heated uniformly in the plane by adjusting the irradiation intensity of each of the inside / outside single heaters.
Upper and lower donut-shaped reflectors 16a and 16b are respectively arranged above the upper heater 15a and below the lower heater 15b. At least one of the upper and lower donut-shaped reflectors 16a and 16b has a cylindrical concave converging reflection plate portion for converging the heat radiation of the heaters 15a and 15b, and a flat plate-shaped dispersion reflection plate portion for dispersing the heat radiation. . These convergent reflection plate portions and dispersion reflection plate portions may be formed alternately, or may be formed rotationally or line-symmetrically.

そして、本発明のエピタキシャル成長装置10Aは、前記シリコン単結晶基板W又は前記サセプタ12の近傍に吸収体17が設けられており、前記ヒータ15a、15bからの熱線を吸収する吸収領域を有している。前記吸収体である吸収体17は円盤状であり、前記吸収体の直径が、前記シリコン単結晶基板の直径の5〜50%の範囲にある。なお、前記シリコン単結晶基板は円盤状のウェーハである。   In the epitaxial growth apparatus 10A of the present invention, an absorber 17 is provided in the vicinity of the silicon single crystal substrate W or the susceptor 12, and has an absorption region that absorbs heat rays from the heaters 15a and 15b. . The absorber 17 as the absorber is disk-shaped, and the diameter of the absorber is in the range of 5 to 50% of the diameter of the silicon single crystal substrate. The silicon single crystal substrate is a disc-shaped wafer.

図1の例では、吸収体17は円盤状のものを示した。図1の例では、吸収体17としては、炭素製基材を炭化珪素で被覆したものを示した。このように、炭化珪素製又は炭素製基材を炭化珪素で被覆したものであれば、ヒータからの熱放射を効果的に吸収させることができる。そして、前記吸収体の位置がサセプタ12の下方で、前記サセプタ12の下面からの距離がシリコン単結晶基板Wの直径の20%未満の範囲としてある。   In the example of FIG. 1, the absorber 17 is a disc-shaped one. In the example of FIG. 1, as the absorber 17, a carbon base material coated with silicon carbide is shown. Thus, if the silicon carbide or carbon substrate is coated with silicon carbide, the heat radiation from the heater can be effectively absorbed. The position of the absorber is below the susceptor 12 and the distance from the lower surface of the susceptor 12 is within a range of less than 20% of the diameter of the silicon single crystal substrate W.

上記のように吸収体17を設けることで、前記上のヒータ15a、15bからの熱線を吸収させる吸収領域が形成され、シリコン単結晶基板Wの局所的な部分の温度を低下させることができる。故に、シリコン単結晶基板Wを面内で均一に加熱することができるため、面内均一な膜厚のエピタキシャル層を成長させることができ、高品質のエピタキシャルウェーハを製造することができる。   By providing the absorber 17 as described above, an absorption region that absorbs heat rays from the heaters 15a and 15b is formed, and the temperature of a local portion of the silicon single crystal substrate W can be lowered. Therefore, since the silicon single crystal substrate W can be heated uniformly in the plane, an epitaxial layer having a uniform thickness in the plane can be grown, and a high-quality epitaxial wafer can be manufactured.

次に、本発明に係るエピタキシャル成長装置の別の実施の形態を図2(a)(b)に示す。図2(a)(b)において、本発明のエピタキシャル成長装置10Bは、散乱体20としてリング形状の金メッキ製反射体を用いた以外は上記したエピタキシャル成長装置10Aと同様の構成である。なお、このような反射体の材質としては、例えば、ステンレス等の金属材料を金メッキしたものとすることができる。   Next, another embodiment of the epitaxial growth apparatus according to the present invention is shown in FIGS. 2A and 2B, the epitaxial growth apparatus 10B of the present invention has the same configuration as the epitaxial growth apparatus 10A described above except that a ring-shaped gold-plated reflector is used as the scatterer 20. In addition, as a material of such a reflector, metal materials, such as stainless steel, can be gold-plated, for example.

前記上のヒータからの熱線を散乱させる散乱体20は、前記シリコン単結晶基板Wの直上に設けられており、前記シリコン単結晶基板Wの上面と前記上側ドーナツ状リフレクタ14aの下端との間に、支持部22を介して設けられている。そして、散乱体20の位置がシリコン単結晶Wの基板面の上方で、前記シリコン単結晶基板Wの表面からの距離が前記シリコン単結晶基板Wの直径の20%未満の範囲にある。   The scatterer 20 that scatters heat rays from the upper heater is provided immediately above the silicon single crystal substrate W, and is located between the upper surface of the silicon single crystal substrate W and the lower end of the upper donut-shaped reflector 14a. The support portion 22 is provided. The position of the scatterer 20 is above the substrate surface of the silicon single crystal W, and the distance from the surface of the silicon single crystal substrate W is in the range of less than 20% of the diameter of the silicon single crystal substrate W.

上記のように散乱体20を設けることで、前記シリコン単結晶基板Wの上面と前記上の円筒状リフレクタ14aの下端との間に、前記上のヒータ15aからの熱線を散乱させる散乱体が形成され、シリコン単結晶基板Wの局所的な部分の温度を低下させることが出来る。故に、シリコン単結晶基板Wを面内で均一に加熱することができるため、面内均一な膜厚のエピタキシャル層を成長させることができ、高品質のエピタキシャルウェーハを製造することができる。   By providing the scatterer 20 as described above, a scatterer that scatters heat rays from the upper heater 15a is formed between the upper surface of the silicon single crystal substrate W and the lower end of the upper cylindrical reflector 14a. Thus, the temperature of the local portion of the silicon single crystal substrate W can be lowered. Therefore, since the silicon single crystal substrate W can be heated uniformly in the plane, an epitaxial layer having a uniform thickness in the plane can be grown, and a high-quality epitaxial wafer can be manufactured.

また、散乱体20は、石英製散乱体とすることで、単体ヒータからの熱放射を効果的に散乱させることもできる。また、それらの表面粗さ、表面形状等を変えることで、散乱の度合いを調節することも容易である。   Moreover, the scatterer 20 can be effectively made to scatter thermal radiation from a single heater by using a quartz scatterer. It is also easy to adjust the degree of scattering by changing the surface roughness, surface shape, and the like.

石英製散乱体とした場合の表面粗さは、Ra0.01〜10μmであることが好ましい。また、石英製散乱体とした場合には、高さ0.1〜10mmの凹凸表面を有する形状であるのがさらに好適である。さらに、前記石英製散乱体が、波長1550nmにおける透過率で25%を超えることが好ましい。   When the quartz scatterer is used, the surface roughness is preferably Ra 0.01 to 10 μm. In the case of a quartz scatterer, a shape having an uneven surface with a height of 0.1 to 10 mm is more preferable. Furthermore, it is preferable that the quartz scatterer exceeds 25% in transmittance at a wavelength of 1550 nm.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to this.

(実施例1・比較例1)
実施例1として、図1のような直径300mmウェーハ用の枚葉式エピタキシャル成長装置において、直径300mmのシリコンウェーハの中心温度を1100℃に加熱したときのウェーハ面内温度分布を測定した。測定は、特公平07−058730に記載されている方法で行った。これは、イオン注入によって表面に不純物注入層が形成された拡散ウェーハを用意し、熱拡散後のシート抵抗を測定することによりウェーハの面内温度分布を求める方法である。実施例1では、図1に示すように、サセプタの下方でサセプタの下面からの距離が15mmの位置に直径50mmの円盤状の炭化珪素で被覆された炭素製の吸収体を設置した。このときのウェーハ中心部の温度減衰量(本願散乱体を設置した場合の、設置しなかった場合に比較した温度の低下量)は5.8℃、ウェーハ面内温度分布(ウェーハ面内温度均一性)は±3.6℃であった。実施例1の温度減衰量とウェーハ面内温度分布を表1に示す。
(Example 1 and Comparative Example 1)
As Example 1, in a single wafer epitaxial growth apparatus for a 300 mm diameter wafer as shown in FIG. 1, the temperature distribution in the wafer surface was measured when the center temperature of a silicon wafer having a diameter of 300 mm was heated to 1100 ° C. The measurement was performed by the method described in Japanese Patent Publication No. 07-058730. In this method, a diffusion wafer having an impurity injection layer formed on the surface by ion implantation is prepared, and the in-plane temperature distribution of the wafer is obtained by measuring the sheet resistance after thermal diffusion. In Example 1, as shown in FIG. 1, a carbon absorber covered with disc-shaped silicon carbide having a diameter of 50 mm was installed at a position 15 mm away from the lower surface of the susceptor below the susceptor. At this time, the temperature attenuation at the center of the wafer (when the scatterer of the present application is installed, the amount of decrease in temperature compared to when it is not installed) is 5.8 ° C., and the temperature distribution within the wafer (uniform temperature within the wafer) Property) was ± 3.6 ° C. Table 1 shows the temperature attenuation and the in-wafer temperature distribution in Example 1.

また、比較例1として、図3に示した従来の直径300mmウェーハ用の枚葉式エピタキシャル成長装置100において、シリコンウェーハの中心温度を1100℃に加熱したときのウェーハ面内温度分布を実施例1と同様に測定した。従来の枚葉式エピタキシャル成長装置100は、図1の吸収体17が設置されていないこと以外は図1の枚葉式エピタキシャル成長装置10Aと同様の構成である。比較例1の温度分布を図4に示す。比較例1の温度減衰量とウェーハ面内温度分布を表1に示す。比較例1のウェーハ面内温度分布は±6.5℃であった。   Further, as Comparative Example 1, in the conventional single wafer epitaxial growth apparatus 100 for a 300 mm diameter wafer shown in FIG. 3, the in-plane temperature distribution when the center temperature of the silicon wafer is heated to 1100 ° C. It measured similarly. The conventional single wafer epitaxial growth apparatus 100 has the same configuration as the single wafer epitaxial growth apparatus 10A of FIG. 1 except that the absorber 17 of FIG. 1 is not installed. The temperature distribution of Comparative Example 1 is shown in FIG. Table 1 shows the temperature attenuation and the in-wafer temperature distribution in Comparative Example 1. The wafer surface temperature distribution of Comparative Example 1 was ± 6.5 ° C.

(実施例2)
図2(a)(b)のように、ウェーハ中心部の直上にリング形状の散乱体として円筒シリンダ形の散乱体を設置した直径300mmウェーハ用の枚葉式エピタキシャル成長装置において、シリコンウェーハの中心温度を1100℃に加熱したときのウェーハ面内温度分布を実施例1と同様に測定した。円筒シリンダ形の散乱体としては、図2(b)に示すように、直径dが80mm、シリンダ高さhが5mm、厚さtが2mmのものを使用した。使用した散乱体はリング形状の金メッキ製反射体であり、設置高さ(ウェーハ表面からの距離)を5mm,20mm,30mm,40mm,50mm,60mmと変更し温度減衰量を評価したところ、表2に示すように、それぞれ22.3℃,22.1℃,17.3℃,15.4℃,10.2℃,3.4℃であった。また、ウェーハ面内温度分布は、表2に示すようにそれぞれ±6.3℃,6.2℃,3.8℃,2.8℃,1.6℃,9.6℃であった。実施例2−5のウェーハ面内温度分布を図5に示す。
(Example 2)
As shown in FIGS. 2A and 2B, in a single wafer epitaxial growth apparatus for a 300 mm diameter wafer in which a cylindrical cylinder-shaped scatterer is installed as a ring-shaped scatterer directly above the center of the wafer, the center temperature of the silicon wafer The temperature distribution in the wafer surface when the substrate was heated to 1100 ° C. was measured in the same manner as in Example 1. As the cylindrical / cylindrical scatterer, a scatterer having a diameter d of 80 mm, a cylinder height h of 5 mm, and a thickness t of 2 mm was used as shown in FIG. The used scatterer is a ring-shaped gold-plated reflector, and the installation height (distance from the wafer surface) was changed to 5 mm, 20 mm, 30 mm, 40 mm, 50 mm, and 60 mm, and the temperature attenuation was evaluated. As shown in Fig. 2, they were 22.3 ° C, 22.1 ° C, 17.3 ° C, 15.4 ° C, 10.2 ° C and 3.4 ° C, respectively. Further, as shown in Table 2, the in-plane temperature distributions were ± 6.3 ° C., 6.2 ° C., 3.8 ° C., 2.8 ° C., 1.6 ° C., and 9.6 ° C., respectively. FIG. 5 shows the temperature distribution in the wafer surface of Example 2-5.

(実施例3)
図2(a)(b)のように、ウェーハ中心部の直上にリング形状の散乱体を設置した直径300mmウェーハ用の枚葉式エピタキシャル成長装置において、シリコンウェーハの中心温度を1100℃に加熱したときのウェーハ面内温度分布を実施例1と同様に測定した。散乱体は直径dが80mmの円筒シリンダ形のリング形状の金メッキ製反射体であり、シリンダ高さhを2mm,10mm,20mmに変更したもの(厚さtは2mm)、および直径0.5mmの金メッキ細線を螺旋状に重ねた形状(直径dは80mm)の反射体を使用した。温度減衰量を評価したところ、表3に示すように、それぞれ11.2℃,22.9℃,40.3℃,5.0℃であった。また、ウェーハ面内温度分布は、表3に示すようにそれぞれ±1.6℃,6.6℃,15.3℃,4.0℃であった。
(Example 3)
As shown in FIGS. 2A and 2B, when the center temperature of the silicon wafer is heated to 1100 ° C. in a single wafer epitaxial growth apparatus for a 300 mm diameter wafer in which a ring-shaped scatterer is installed immediately above the wafer center. The wafer in-plane temperature distribution was measured in the same manner as in Example 1. The scatterer is a cylindrical cylinder-shaped ring-shaped gold-plated reflector having a diameter d of 80 mm, and the cylinder height h is changed to 2 mm, 10 mm, and 20 mm (thickness t is 2 mm), and the diameter is 0.5 mm. A reflector having a shape in which gold-plated fine wires are spirally stacked (diameter d is 80 mm) was used. When the amount of temperature attenuation was evaluated, as shown in Table 3, they were 11.2 ° C., 22.9 ° C., 40.3 ° C., and 5.0 ° C., respectively. In addition, as shown in Table 3, the wafer in-plane temperature distribution was ± 1.6 ° C., 6.6 ° C., 15.3 ° C., and 4.0 ° C., respectively.

(実施例4)
図2(a)(b)のように、ウェーハ中心部の直上にリング形状の散乱体を設置した直径300mmウェーハ用の枚葉式エピタキシャル成長装置において、ウェーハ中心温度を1100℃に加熱したときのウェーハ面内温度分布を実施例1と同様に測定した。散乱体は直径dが80mmの円筒シリンダ形のリング形状の石英製であり(厚さtは2mm)、シリンダの表面粗さをRa=0.01μm,0.1μm,10μmに加工したもの、及びシリンダ表面に幅2mm、深さ0.5mmの溝を2mm間隔で加工した凹凸表面を有するものの温度減衰量を評価したところ、表4に示すように、それぞれ5.4℃,8.0℃,12.9℃,12.1℃であった。また、ウェーハ面内温度分布は、表4に示すようにそれぞれ±3.8℃,2.5℃,1.6℃,1.6℃であった。
Example 4
The wafer when the wafer center temperature is heated to 1100 ° C. in a single wafer epitaxial growth apparatus for a 300 mm diameter wafer in which a ring-shaped scatterer is installed immediately above the wafer center as shown in FIGS. The in-plane temperature distribution was measured in the same manner as in Example 1. The scatterer is made of a cylindrical cylinder-shaped ring-shaped quartz having a diameter d of 80 mm (thickness t is 2 mm), and the cylinder surface roughness is processed to Ra = 0.01 μm, 0.1 μm, 10 μm, and As shown in Table 4, when the surface of the cylinder having a concavo-convex surface obtained by processing grooves with a width of 2 mm and a depth of 0.5 mm at intervals of 2 mm was evaluated, as shown in Table 4, 5.4 ° C., 8.0 ° C. 12.9 ° C and 12.1 ° C. The in-plane temperature distributions were ± 3.8 ° C., 2.5 ° C., 1.6 ° C., and 1.6 ° C., respectively, as shown in Table 4.

(実施例5)
図2(a)(b)のように、ウェーハ中心部の直上にリング形状の吸収体を設置した直径300mmウェーハ用の枚様式エピタキシャル成長装置において、ウェーハ中心温度を1100℃に加熱したときのウェーハ面内温度分布を実施例1と同様に測定した。吸収体は直径dが80mmの円筒シリンダ形状の石英製であり(厚さtは2mm)、波長1550nmにおける透過率を80%,25%,1%と加工したものの温度減衰量を評価したところ、表5に示すようにそれぞれ9.2℃,32.0℃,40.0℃であった。また、ウェーハ面内温度分布は表5に示すようにそれぞれ±1.9℃,11.1℃,15.1℃であった。
(Example 5)
As shown in FIGS. 2A and 2B, the wafer surface when the wafer center temperature is heated to 1100 ° C. in a single wafer epitaxial growth apparatus for a 300 mm diameter wafer in which a ring-shaped absorber is installed immediately above the wafer center. The internal temperature distribution was measured in the same manner as in Example 1. The absorber is made of quartz in the shape of a cylindrical cylinder having a diameter d of 80 mm (thickness t is 2 mm), and when the transmittance at a wavelength of 1550 nm is processed as 80%, 25%, and 1%, the temperature attenuation amount is evaluated. As shown in Table 5, they were 9.2 ° C, 32.0 ° C, and 40.0 ° C, respectively. Further, as shown in Table 5, the in-plane temperature distribution of the wafer was ± 1.9 ° C., 11.1 ° C., and 15.1 ° C., respectively.

このように、本発明のエピタキシャル成長装置を用いることで、ウェーハの局所的な部分の温度を低下させることができ、また低下量のコントロールが可能であることが示された。   As described above, it was shown that the temperature of a local portion of the wafer can be lowered and the amount of reduction can be controlled by using the epitaxial growth apparatus of the present invention.

なお、上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The above-described embodiment is an exemplification, and the embodiment having substantially the same configuration as the technical idea described in the claims of the present invention and having the same function and effect is any type. Are also included in the technical scope of the present invention.

10A,10B:本発明のエピタキシャル成長装置、11:反応室、12:サセプタ、13:支持軸、14a、14b:円筒状のリフレクタ、15a、15b:ヒータ、16a、16b:ドーナツ状リフレクタ、17:吸収体、20:散乱体、22:支持部、24a,24b:アーム部、100:従来のエピタキシャル成長装置、d:直径、h:高さ、t:厚さ、W:シリコン単結晶基板。 10A, 10B: epitaxial growth apparatus of the present invention, 11: reaction chamber, 12: susceptor, 13: support shaft, 14a, 14b: cylindrical reflector, 15a, 15b: heater, 16a, 16b: donut-shaped reflector, 17: absorption Body: 20: scatterer, 22: support part, 24a, 24b: arm part, 100: conventional epitaxial growth apparatus, d: diameter, h: height, t: thickness, W: silicon single crystal substrate.

Claims (11)

サセプタに略水平に載置されたシリコン単結晶基板の主表面にエピタキシャル層を成長させるエピタキシャル成長装置であって、前記サセプタの上下に各々配置され、放射状に円形に並べられた複数の棒状の単体ヒータを有するヒータと、前記上のヒータの上側及び前記下のヒータの下側に各々配置された上下のドーナツ状リフレクタとを備えるエピタキシャル成長装置において、
前記シリコン単結晶基板又は前記サセプタの近傍に前記ヒータからの熱線を散乱する散乱体及び/又は前記ヒータからの熱線を吸収する吸収体を有し、前記散乱体及び/又は前記吸収体が略円形状に設けられてなり、前記散乱体及び/又は前記吸収体の直径が、前記シリコン単結晶基板の直径の5〜50%の範囲にあることを特徴とするエピタキシャル成長装置。
An epitaxial growth apparatus for growing an epitaxial layer on a main surface of a silicon single crystal substrate mounted substantially horizontally on a susceptor, the plurality of rod-shaped single heaters arranged above and below the susceptor and arranged radially in a circle And an upper and lower donut-shaped reflectors respectively disposed on the upper side of the upper heater and the lower side of the lower heater,
A scatterer that scatters heat rays from the heater and / or an absorber that absorbs heat rays from the heater is provided in the vicinity of the silicon single crystal substrate or the susceptor, and the scatterer and / or the absorber is substantially circular. An epitaxial growth apparatus characterized in that the scatterer and / or the absorber is provided in a shape and has a diameter in the range of 5 to 50% of the diameter of the silicon single crystal substrate.
前記散乱体及び/又は前記吸収体の位置がシリコン単結晶基板面の上方で、前記シリコン単結晶基板の表面からの距離が前記シリコン単結晶基板の直径の20%未満の範囲にあることを特徴とする請求項1に記載のエピタキシャル成長装置。   The position of the scatterer and / or the absorber is above the surface of the silicon single crystal substrate, and the distance from the surface of the silicon single crystal substrate is in a range of less than 20% of the diameter of the silicon single crystal substrate. The epitaxial growth apparatus according to claim 1. 前記散乱体及び/又は前記吸収体の位置がサセプタの下方で、前記サセプタの下面からの距離が前記シリコン単結晶基板の直径の20%未満の範囲にあることを特徴とする請求項1に記載のエピタキシャル成長装置。   The position of the said scatterer and / or the said absorber is under a susceptor, and the distance from the lower surface of the said susceptor exists in the range which is less than 20% of the diameter of the said silicon single crystal substrate. Epitaxial growth equipment. 前記散乱体が、反射体であることを特徴とする請求項1〜3いずれか1項記載のエピタキシャル成長装置。   The epitaxial growth apparatus according to claim 1, wherein the scatterer is a reflector. 前記反射体が、金メッキ製であることを特徴とする請求項4に記載するエピタキシャル成長装置。   The epitaxial growth apparatus according to claim 4, wherein the reflector is made of gold plating. 前記散乱体及び/又は前記吸収体が、細線形状であることを特徴とする請求項1〜5いずれか1項記載のエピタキシャル成長装置。   The epitaxial growth apparatus according to claim 1, wherein the scatterer and / or the absorber has a thin line shape. 前記散乱体及び/又は前記吸収体が、炭化珪素製又は炭化珪素で被覆されたものであることを特徴とする請求項1〜3いずれか1項記載のエピタキシャル成長装置。   The epitaxial growth apparatus according to any one of claims 1 to 3, wherein the scatterer and / or the absorber is made of silicon carbide or coated with silicon carbide. 前記散乱体及び/又は前記吸収体が、石英製であることを特徴とする請求項1〜3いずれか1項記載のエピタキシャル成長装置。   The epitaxial growth apparatus according to claim 1, wherein the scatterer and / or the absorber is made of quartz. 前記散乱体が、石英製散乱体であり、その表面粗さがRa0.01〜10μmであることを特徴とする請求項8記載のエピタキシャル成長装置。   The epitaxial growth apparatus according to claim 8, wherein the scatterer is a quartz scatterer, and has a surface roughness of Ra 0.01 to 10 μm. 前記石英製散乱体が、高さ0.1〜10mmの凹凸表面を有する形状であることを特徴とする請求項8又は9記載のエピタキシャル成長装置。   The epitaxial growth apparatus according to claim 8 or 9, wherein the quartz scatterer has a shape having an uneven surface with a height of 0.1 to 10 mm. 前記石英製散乱体が、波長1550nmにおける透過率で25%を超えることを特徴とする請求項8〜10いずれか1項記載のエピタキシャル成長装置。   The epitaxial growth apparatus according to claim 8, wherein the quartz scatterer has a transmittance of more than 25% at a wavelength of 1550 nm.
JP2013221219A 2013-10-24 2013-10-24 Epitaxial growth equipment Active JP6115445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013221219A JP6115445B2 (en) 2013-10-24 2013-10-24 Epitaxial growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013221219A JP6115445B2 (en) 2013-10-24 2013-10-24 Epitaxial growth equipment

Publications (2)

Publication Number Publication Date
JP2015082634A true JP2015082634A (en) 2015-04-27
JP6115445B2 JP6115445B2 (en) 2017-04-19

Family

ID=53013071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013221219A Active JP6115445B2 (en) 2013-10-24 2013-10-24 Epitaxial growth equipment

Country Status (1)

Country Link
JP (1) JP6115445B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190047912A (en) * 2017-10-30 2019-05-09 에스케이실트론 주식회사 Apparatus for Epitaxial growth
KR20220083083A (en) * 2020-12-11 2022-06-20 에스케이실트론 주식회사 Susceptor supporter and epitaxial reactor including the same
US11538683B2 (en) 2017-12-08 2022-12-27 Siltronic Ag Method for depositing an epitaxial layer on a front side of a semiconductor wafer and device for carrying out the method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864544A (en) * 1994-08-22 1996-03-08 Touyoko Kagaku Kk Vapor growing method
JP2000138170A (en) * 1998-10-30 2000-05-16 Applied Materials Inc Semiconductor equipment
JP2002217110A (en) * 2000-12-27 2002-08-02 Applied Materials Inc Heating apparatus and semiconductor manufacturing apparatus using the same
JP2008547217A (en) * 2005-06-22 2008-12-25 アクセリス テクノロジーズ インコーポレーテッド Apparatus and method for processing dielectric material
JP2010114138A (en) * 2008-11-04 2010-05-20 Sumco Techxiv株式会社 Susceptor device, apparatus for manufacturing epitaxial wafer, and method of manufacturing epitaxial wafer
JP2012151389A (en) * 2011-01-21 2012-08-09 Hitachi Kokusai Electric Inc Substrate processing apparatus and manufacturing method of semiconductor device
JP2013058627A (en) * 2011-09-08 2013-03-28 Shin Etsu Handotai Co Ltd Epitaxial growth device
JP2013110145A (en) * 2011-11-17 2013-06-06 Shin Etsu Handotai Co Ltd Epitaxial growth apparatus and epitaxial growth method
JP2013138114A (en) * 2011-12-28 2013-07-11 Applied Materials Inc Semiconductor manufacturing apparatus and susceptor supporting member

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864544A (en) * 1994-08-22 1996-03-08 Touyoko Kagaku Kk Vapor growing method
JP2000138170A (en) * 1998-10-30 2000-05-16 Applied Materials Inc Semiconductor equipment
JP2002217110A (en) * 2000-12-27 2002-08-02 Applied Materials Inc Heating apparatus and semiconductor manufacturing apparatus using the same
JP2008547217A (en) * 2005-06-22 2008-12-25 アクセリス テクノロジーズ インコーポレーテッド Apparatus and method for processing dielectric material
JP2010114138A (en) * 2008-11-04 2010-05-20 Sumco Techxiv株式会社 Susceptor device, apparatus for manufacturing epitaxial wafer, and method of manufacturing epitaxial wafer
JP2012151389A (en) * 2011-01-21 2012-08-09 Hitachi Kokusai Electric Inc Substrate processing apparatus and manufacturing method of semiconductor device
JP2013058627A (en) * 2011-09-08 2013-03-28 Shin Etsu Handotai Co Ltd Epitaxial growth device
JP2013110145A (en) * 2011-11-17 2013-06-06 Shin Etsu Handotai Co Ltd Epitaxial growth apparatus and epitaxial growth method
JP2013138114A (en) * 2011-12-28 2013-07-11 Applied Materials Inc Semiconductor manufacturing apparatus and susceptor supporting member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190047912A (en) * 2017-10-30 2019-05-09 에스케이실트론 주식회사 Apparatus for Epitaxial growth
KR102081871B1 (en) * 2017-10-30 2020-02-26 에스케이실트론 주식회사 Apparatus for Epitaxial growth
US11538683B2 (en) 2017-12-08 2022-12-27 Siltronic Ag Method for depositing an epitaxial layer on a front side of a semiconductor wafer and device for carrying out the method
KR20220083083A (en) * 2020-12-11 2022-06-20 에스케이실트론 주식회사 Susceptor supporter and epitaxial reactor including the same
KR102513858B1 (en) 2020-12-11 2023-03-27 에스케이실트론 주식회사 Susceptor supporter and epitaxial reactor including the same

Also Published As

Publication number Publication date
JP6115445B2 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
JP6577104B2 (en) Susceptor support shaft with uniformity adjusting lens for EPI process
US20160068996A1 (en) Susceptor and pre-heat ring for thermal processing of substrates
JP6291478B2 (en) Susceptor assembly for supporting a wafer in a reactor apparatus
JP5807522B2 (en) Epitaxial growth equipment
KR102167554B1 (en) Improved edge ring lip
JP5191373B2 (en) Epitaxial wafer manufacturing method and manufacturing apparatus
US8372196B2 (en) Susceptor device, manufacturing apparatus of epitaxial wafer, and manufacturing method of epitaxial wafer
US10271382B2 (en) Circular lamp arrays
TW201535476A (en) Epitaxial growth apparatus
JP6115445B2 (en) Epitaxial growth equipment
KR101535547B1 (en) Substrate processing apparatus
JP2015516685A5 (en)
JP2024501860A (en) System and method for preheating ring in semiconductor wafer reactor
JP2011146537A (en) Epitaxial growth device
JP5626163B2 (en) Epitaxial growth equipment
CN109881186A (en) A kind of device for being heated at high temperature in CVD equipment to substrate
JP5184302B2 (en) Susceptor device, epitaxial wafer manufacturing apparatus, and epitaxial wafer manufacturing method
CN109841542B (en) SiC epitaxial growth device
JP6210382B2 (en) Epitaxial growth equipment
KR101540573B1 (en) Apparatus for Manufacturing Wafer
KR20190047912A (en) Apparatus for Epitaxial growth
JP7322365B2 (en) Susceptor and chemical vapor deposition equipment
JP2010114331A (en) Method of manufacturing epitaxial wafer
KR20240026043A (en) Substrate processing apparatus
KR20240029212A (en) Epitaxial wafer manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170306

R150 Certificate of patent or registration of utility model

Ref document number: 6115445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250