JP2013055856A - Non-contact electric power supply device - Google Patents

Non-contact electric power supply device Download PDF

Info

Publication number
JP2013055856A
JP2013055856A JP2011194049A JP2011194049A JP2013055856A JP 2013055856 A JP2013055856 A JP 2013055856A JP 2011194049 A JP2011194049 A JP 2011194049A JP 2011194049 A JP2011194049 A JP 2011194049A JP 2013055856 A JP2013055856 A JP 2013055856A
Authority
JP
Japan
Prior art keywords
frequency
power
coil
power supply
receiving coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011194049A
Other languages
Japanese (ja)
Inventor
Keiichi Honda
啓一 本田
Yoshinori Kataoka
義範 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON TEKUMO KK
Heads Corp
Original Assignee
NIPPON TEKUMO KK
Heads Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON TEKUMO KK, Heads Corp filed Critical NIPPON TEKUMO KK
Priority to JP2011194049A priority Critical patent/JP2013055856A/en
Publication of JP2013055856A publication Critical patent/JP2013055856A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact electric power supply device which sends a large amount of electric power to a power receiving coil while preventing the power receiving coil from generating heat.SOLUTION: The non-contact electric power supply device comprises: a power transmission coil 12 connected to an inverter 13 which generates high-frequency power of frequency f1; a power receiving coil 16 which is arranged to movable moving objects 14, 15 and generates electric power by an alternating magnetic field generated by the power transmission coil 12; and a charge control part 30 which is connected to the power receiving coil 16 and converts electric power generated to the power receiving coil 16 into a direct current to charge a battery 31. A resonant circuit which resonates at frequency f2 and a temperature sensor 33 are provided in the power receiving coil 16. The frequency f2 of the resonant circuit is changed in accordance with the temperature detected by the temperature sensor 33 and a difference between the frequency f1 and the resonant frequency f2 is expanded, thereby preventing an excessive temperature rise in the power receiving coil 16.

Description

本発明は、電池を搭載した動体物(例えば、自動車、台車、移動するロボット等を含む)に接続コードを用いることなく、非接触で電力を供給する装置に関する。 The present invention relates to an apparatus for supplying electric power in a contactless manner without using a connection cord for a moving object (for example, an automobile, a carriage, a moving robot, etc.) on which a battery is mounted.

特許文献1には、一次コイルに高周波電源を接続し、自動車等に搭載され一次コイルとは離れた位置にある二次コイルに電磁誘導によって一次コイルから電力を送り、自動車等に搭載されたバッテリを充電する装置が提案されている。
また、特許文献2には、給電エリア内に駐車中の各自動車の下方に送電装置を設けて、送電装置(一次コイル)から各自動車に設けられた受電装置(二次コイル)に向けて送電し、電池を充電する技術が提案されている。
In Patent Document 1, a high-frequency power source is connected to a primary coil, electric power is sent from a primary coil to a secondary coil mounted on an automobile or the like and away from the primary coil by electromagnetic induction, and mounted on an automobile or the like. An apparatus for charging the battery has been proposed.
In Patent Document 2, a power transmission device is provided below each parked vehicle in the power supply area, and power is transmitted from the power transmission device (primary coil) to the power receiving device (secondary coil) provided in each vehicle. However, a technique for charging a battery has been proposed.

特許第4318742号公報Japanese Patent No. 4318742 特開2010−273441号公報JP 2010-273441 A

しかしながら、特許文献1、2に記載の技術は、受電側に二次側共振コイルを有し、この共振コイルに共振電流が流れるので、発熱するという問題があった。そこで、二次側共振コイルの共振周波数を一次側のインバータの周波数から離して(遠ざけて)使用することが開示されているが、共振周波数を離すと共振電流が少なくなって、二次側に大きな電力を発生させることができないという問題があった。 However, the techniques described in Patent Documents 1 and 2 have a problem that the secondary side resonance coil is provided on the power receiving side, and a resonance current flows through the resonance coil, so that heat is generated. Therefore, it is disclosed that the resonance frequency of the secondary side resonance coil is separated from the frequency of the primary side inverter (distant), but if the resonance frequency is separated, the resonance current decreases, and the secondary side There was a problem that large electric power could not be generated.

また、二次コイルに最終的に接続される電池の充電が完了すると、電池への充電電流は流れないが、共振回路には依然として共振電流が流れ電力損失を伴うという問題があった。これらの問題は、複数の自動車(即ち、動体物)に電力を供給する場合に顕著に発生していた。 Further, when charging of the battery finally connected to the secondary coil is completed, the charging current to the battery does not flow, but there is a problem that the resonance current still flows through the resonance circuit and causes power loss. These problems have occurred remarkably when power is supplied to a plurality of automobiles (that is, moving objects).

本発明は、かかる事情に鑑みてなされたもので、動体物に搭載した受電コイルの発熱を防止し、かつ最大の電力を効率良く受電させるようにした非接触電力供給装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a non-contact power supply apparatus that prevents heat generation of a power receiving coil mounted on a moving object and efficiently receives maximum power. And

前記目的に沿う第1の発明に係る非接触電力供給装置は、周波数f1の高周波電力を発生するインバータに接続された送電コイルと、移動可能な動体物に設けられ、前記送電コイルによって発生する交番磁場によって電力を発生する受電コイルと、前記動体物に搭載され、前記受電コイルに接続されて該受電コイルに発生した電力を直流に変換して電池に充電する充電制御部とを有する非接触電力供給装置において、
前記受電コイルには周波数f2で共振する共振回路が設けられていると共に温度センサーが設けられ、該温度センサーの検知温度が所定値aより高くなると、前記共振回路の周波数f2を前記周波数f1から遠ざけて温度上昇を防止し、前記温度センサーの検知温度が所定値bより低くなると前記共振回路の周波数f2を前記周波数f1に近づけて前記受電コイルの受電電力を増加する共振周波数調整回路が設けられている。
The non-contact power supply apparatus according to the first aspect of the invention that meets the above-described object is a power transmission coil connected to an inverter that generates high-frequency power having a frequency f1 and an alternating power that is provided in a movable moving object and is generated by the power transmission coil. Non-contact power having a power receiving coil that generates power by a magnetic field, and a charging control unit that is mounted on the moving object and that is connected to the power receiving coil and converts the power generated in the power receiving coil to direct current to charge the battery In the supply device,
The power receiving coil is provided with a resonance circuit that resonates at a frequency f2 and a temperature sensor. When the temperature detected by the temperature sensor becomes higher than a predetermined value a, the frequency f2 of the resonance circuit is moved away from the frequency f1. And a resonance frequency adjusting circuit is provided for increasing the power received by the power receiving coil by bringing the frequency f2 of the resonance circuit close to the frequency f1 when the temperature detected by the temperature sensor is lower than a predetermined value b. Yes.

また、第2の発明に係る非接触電力供給装置は、周波数f1の高周波電力を発生するインバータに接続された送電コイルと、移動可能な動体物に設けられ、前記送電コイルによって発生する交番磁場によって電力を発生する受電コイルと、前記動体物に搭載され、前記受電コイルに接続されて該受電コイルに発生した電力を直流に変換して電池に充電する充電制御部とを有する非接触電力供給装置において、
前記受電コイルには周波数f2で共振する共振回路が設けられていると共に温度センサーが設けられ、該温度センサーの検知温度によって、前記共振回路の周波数f2を変えて前記周波数f1と前記周波数f2との差を拡大し、前記受電コイルの過度な温度上昇を防止する共振周波数調整回路が設けられている。
Further, the non-contact power supply device according to the second aspect of the present invention is provided by a power transmission coil connected to an inverter that generates high-frequency power having a frequency f1 and an alternating magnetic field generated by the movable coil and generated by the power transmission coil. A non-contact power supply device comprising a power receiving coil that generates power, and a charging control unit that is mounted on the moving object and that is connected to the power receiving coil and converts the power generated in the power receiving coil into direct current to charge the battery. In
The power receiving coil is provided with a resonance circuit that resonates at a frequency f2 and is provided with a temperature sensor, and the frequency f2 of the resonance circuit is changed according to the detected temperature of the temperature sensor, and the frequency f1 and the frequency f2 are changed. A resonance frequency adjusting circuit is provided to enlarge the difference and prevent an excessive temperature rise of the power receiving coil.

第3の発明に係る非接触電力供給装置は、第1、第2の発明に係る非接触電力供給装置において、前記共振周波数調整回路には、前記電池の充電の完了を検知する充電完了センサーが設けられ、前記温度センサーの出力に関わらず、前記充電完了センサーの出力によって、前記周波数f1と前記周波数f2との差を拡大して前記共振回路の電流を減らしている。 The contactless power supply device according to a third aspect of the present invention is the contactless power supply device according to the first and second aspects of the invention, wherein the resonance frequency adjustment circuit includes a charge completion sensor that detects completion of charging of the battery. Regardless of the output of the temperature sensor, the difference between the frequency f1 and the frequency f2 is increased by the output of the charge completion sensor to reduce the current of the resonance circuit.

第4の発明に係る非接触電力供給装置は、第1〜第3の発明に係る非接触電力供給装置において、前記共振周波数調整回路は、並列に接続されたコンデンサの容量をスイッチング手段によって切り換えている。 A contactless power supply apparatus according to a fourth aspect of the present invention is the contactless power supply apparatus according to the first to third aspects of the invention, wherein the resonance frequency adjusting circuit switches the capacitance of capacitors connected in parallel by switching means. Yes.

第5の発明に係る非接触電力供給装置は、第1〜第4の発明に係る非接触電力供給装置において、前記受電コイルは電力を発生する二次コイルと、該二次コイルに磁気結合して前記周波数f2で共振する共振コイルとを個別に有している。 A contactless power supply apparatus according to a fifth aspect of the present invention is the contactless power supply apparatus according to any of the first to fourth aspects of the invention, wherein the power receiving coil is magnetically coupled to a secondary coil that generates power and the secondary coil. And a resonance coil that resonates at the frequency f2.

第6の発明に係る非接触電力供給装置は、第1〜第5の発明に係る非接触電力供給装置において、前記送電コイルは一定幅の平行領域を有する長尺のコイルからなって、前記動体物は複数あって、それぞれの前記動体物に前記送電コイルから電力を供給可能である。 The contactless power supply apparatus according to a sixth aspect of the present invention is the contactless power supply apparatus according to the first to fifth aspects of the invention, wherein the power transmission coil is a long coil having a parallel region of a certain width, and the moving body There are a plurality of objects, and each moving object can be supplied with electric power from the power transmission coil.

第7の発明に係る非接触電力供給装置は、第6の発明に係る非接触電力供給装置において、前記送電コイルには該送電コイルによって発生する磁束漏れを減らすコアが設けられている。 A contactless power supply apparatus according to a seventh aspect of the present invention is the contactless power supply apparatus according to the sixth aspect of the present invention, wherein the power transmission coil is provided with a core that reduces magnetic flux leakage generated by the power transmission coil.

そして、第8の発明に係る非接触電力供給装置は、第6、第7の発明に係る非接触電力供給装置において、前記動体物は、前記送電コイルに沿って移動中に、前記送電コイルからの電力を受電可能である。
なお、以上の発明において、受電コイルの共振回路の周波数(共振周波数)f2をインバータの周波数f1から遠ざける方法として、共振周波数を上げる場合と下げる場合があり、いずれであっても本発明は適用される。
And the non-contact electric power supply apparatus which concerns on 8th invention is the non-contact electric power supply apparatus which concerns on 6th, 7th invention. WHEREIN: The said moving body is moving from the said power transmission coil while moving along the said power transmission coil. The power of can be received.
In the above invention, as a method of moving the frequency (resonance frequency) f2 of the resonance circuit of the power receiving coil away from the frequency f1 of the inverter, there are a case where the resonance frequency is raised and a case where it is lowered. The

第1〜第8の発明に係る非接触電力供給装置においては、受電コイルに温度センサーを設け、温度センサーの検知温度によって、共振回路の周波数f2を変えて周波数f1と共振回路の周波数(共振周波数)f2との差を拡大し、受電コイルの過度な温度上昇を防止する共振周波数調整回路が設けられているので、これによって受電コイルの温度上昇を防止できる。
この場合、受電コイルの温度が下がった場合は、共振周波数f2を周波数f1に近づけることができ、これによって供給電力を増加できる。
In the contactless power supply devices according to the first to eighth aspects of the invention, a temperature sensor is provided in the power receiving coil, and the frequency f1 of the resonance circuit is changed by changing the frequency f2 of the resonance circuit depending on the temperature detected by the temperature sensor. ) Since the difference from f2 is enlarged and a resonance frequency adjusting circuit for preventing an excessive temperature rise of the power receiving coil is provided, a temperature rise of the power receiving coil can be prevented thereby.
In this case, when the temperature of the power receiving coil decreases, the resonance frequency f2 can be brought close to the frequency f1, thereby increasing the power supply.

第3の発明に係る非接触電力供給装置において、共振周波数調整回路には、電池の充電の完了を検知する充電完了センサーが設けられ、温度センサーの出力に関わらず、充電完了センサーの出力によって、発振周波数f1と共振周波数f2との差を拡大して共振回路の電流を減らしているので、受電コイルに流れる共振電流を減らすことができる。 In the non-contact power supply apparatus according to the third aspect of the invention, the resonance frequency adjustment circuit is provided with a charge completion sensor for detecting the completion of battery charging, regardless of the output of the temperature sensor, Since the current of the resonance circuit is reduced by increasing the difference between the oscillation frequency f1 and the resonance frequency f2, the resonance current flowing through the power receiving coil can be reduced.

第4の発明に係る非接触電力供給装置おいて、共振周波数調整回路は、並列に接続されたコンデンサの容量をスイッチング手段によって切り換えている。これによって、簡便にコンデンサを切り換えることができ、共振周波数f2を変えることができる。 In the non-contact power supply apparatus according to the fourth aspect of the invention, the resonance frequency adjustment circuit switches the capacitance of the capacitors connected in parallel by the switching means. Thereby, the capacitor can be easily switched, and the resonance frequency f2 can be changed.

第5の発明に係る非接触電力供給装置において、受電コイルは電力を発生する二次コイルと、二次コイルに磁気結合して周波数f2で共振する共振コイルとを個別に有しているので、共振コイルに発生する電流のみを制御すれば足りる。 In the non-contact power supply device according to the fifth aspect of the invention, the power receiving coil individually includes a secondary coil that generates power and a resonance coil that is magnetically coupled to the secondary coil and resonates at a frequency f2. It is sufficient to control only the current generated in the resonant coil.

第6の発明に係る非接触電力供給装置において、送電コイルは一定幅の平行領域を有する長尺のコイルからなって、動体物は複数あって、それぞれの動体物に送電コイルから電力を供給可能である。これによって、同時に又は個別に複数の動体物に電力を供給できる。 In the non-contact power supply apparatus according to the sixth aspect of the invention, the power transmission coil is a long coil having a parallel region with a constant width, and there are a plurality of moving objects, and power can be supplied to each moving object from the power transmission coil. It is. Thereby, electric power can be supplied to a plurality of moving objects simultaneously or individually.


第7の発明に係る非接触電力供給装置において、送電コイルには送電コイルによって発生する磁束漏れを減らすコアが設けられているので、漏洩磁束が減少し、無駄なエネルギーを節約できる。
.
In the non-contact power supply apparatus according to the seventh aspect of the invention, the power transmission coil is provided with a core that reduces magnetic flux leakage generated by the power transmission coil, so that the leakage magnetic flux is reduced and useless energy can be saved.

そして、第8の発明に係る非接触電力供給装置において、動体物は、送電コイルに沿って移動中に、送電コイルからの電力を受電可能であり、電力ケーブルの大幅な省略が可能となる。なお、信号ケーブルについては無線(電波又は光)を用いることによって完全無線化ができる。 In the contactless power supply device according to the eighth aspect of the present invention, the moving object can receive power from the power transmission coil while moving along the power transmission coil, and the power cable can be largely omitted. The signal cable can be completely wireless by using radio (radio wave or light).

本発明の第1の実施の形態に係る非接触電力供給装置の説明図である。It is explanatory drawing of the non-contact electric power supply apparatus which concerns on the 1st Embodiment of this invention. 同非接触電力供給装置の正面図である。It is a front view of the non-contact power supply device. 動体物に搭載されている受電コイル周りの説明図である。It is explanatory drawing of the surroundings of the receiving coil mounted in the moving body. (A)、(B)はそれぞれ共振周波数と電流との関係を示すグラフである。(A), (B) is a graph which shows the relationship between a resonant frequency and an electric current, respectively. 同非接触電力供給装置の制御装置の一部を示すフロー図である。It is a flowchart which shows a part of control apparatus of the non-contact electric power supply apparatus. (A)は一次コイルにコアを設けた場合の説明図、(B)は(A)のA−A矢視断面図、(C)は他例に係るコアの説明図である。(A) is explanatory drawing at the time of providing a core in a primary coil, (B) is AA arrow sectional drawing of (A), (C) is explanatory drawing of the core which concerns on another example.

続いて、添付した図面を参照しながら、本発明を具体化した実施の形態について説明する。
図1、図2に示すように、本発明の一実施の形態に係る非接触電力供給装置10は、地面11(又は床面)に埋設された送電コイル12と、送電コイル12に高周波電力を供給するインバータ13と、移動可能な動体物の一例である複数の車両14、15にそれぞれ搭載された受電コイル16とを有している。以下、これらについて詳しく説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings.
As shown in FIGS. 1 and 2, the non-contact power supply apparatus 10 according to one embodiment of the present invention includes a power transmission coil 12 embedded in the ground 11 (or a floor surface) and high-frequency power to the power transmission coil 12. It has the inverter 13 to supply and the receiving coil 16 each mounted in the some vehicles 14 and 15 which are examples of the movable body. These will be described in detail below.

送電コイル12(即ち、一次コイル)は、一定幅の平行領域を有し、内幅aが例えば150〜400mm、内側長さbが3〜10mで、巻数が3〜12ターンの長尺の巻線(コイル)からなって、導線(導体)としては、例えば、高周波特性に優れたリッツ線又は通常の絶縁銅線が使用されている。なお、必要に応じて銅パイプ又はアルミパイプを用いた導線を使用し、内部に水を流して水冷することもできる。導線は絶縁被膜で覆われたものを使用し、流す電流は通常5〜20A程度であるので、この電流に耐える電線を使用する。 The power transmission coil 12 (i.e., the primary coil) has a parallel region with a constant width, an inner width a of, for example, 150 to 400 mm, an inner length b of 3 to 10 m, and a length of 3 to 12 turns. As the conducting wire (conductor), for example, a litz wire or a normal insulated copper wire having excellent high frequency characteristics is used. In addition, if necessary, a lead wire using a copper pipe or an aluminum pipe can be used, and water can be flowed inside to be water-cooled. Since the conducting wire is covered with an insulating film, and the current that flows is usually about 5 to 20 A, an electric wire that can withstand this current is used.

送電コイル12は地面(床面)11に浅く埋設され、表面には導体は設けられていない。即ち、送電コイル12は地面11から露出していてもよいし、地面11に埋設する場合は、送電コイル12の上面に絶縁体を配置するのがよい。
更に、必要に応じて、図6(A)、(B)に示すように、断面E字状のコア17を、図6(C)に示すように、断面コ字状のコア17aを、送電コイル12の底部及び側部を覆うようにして複数配置し、磁束漏れを減らし、磁気的特性を向上することもできる。なお、コア17、17aは適当長さ(例えば5〜30cm)に分断されてもよい。
The power transmission coil 12 is embedded in the ground (floor surface) 11 shallowly, and no conductor is provided on the surface. That is, the power transmission coil 12 may be exposed from the ground 11, and when embedded in the ground 11, an insulator may be disposed on the upper surface of the power transmission coil 12.
Further, as shown in FIGS. 6A and 6B, a core 17 having an E-shaped cross section and a core 17a having a U-shaped cross section as shown in FIG. A plurality of coils 12 may be disposed so as to cover the bottom and sides of the coil 12 to reduce magnetic flux leakage and improve magnetic characteristics. The cores 17 and 17a may be divided into appropriate lengths (for example, 5 to 30 cm).

送電コイル12には直列(又は並列)にコンデンサ20aが接続され、送電コイル12とコンデンサ20aによって形成される共振周波数fpを、インバータ13の発振周波数f1に近づけて、インバータ13側から見た送電コイル12のインピーダンスを減少させて、より多くの電流が送電コイル12内を流れるようにしている。なお、f1とfpとの関係は、0.05・f1<|f1−fp|<0.3・f1であるのが好ましい。また、f1は10kHz〜1000kHz(好ましくは20〜50kHz)の範囲で選択するのがよい。 A capacitor 20a is connected in series (or in parallel) to the power transmission coil 12, and the power transmission coil viewed from the inverter 13 side is brought close to the oscillation frequency f1 of the inverter 13 with the resonance frequency fp formed by the power transmission coil 12 and the capacitor 20a. The impedance of 12 is decreased so that more current flows in the power transmission coil 12. The relationship between f1 and fp is preferably 0.05 · f1 <| f1−fp | <0.3 · f1. Moreover, it is good to select f1 in the range of 10 kHz-1000 kHz (preferably 20-50 kHz).

図3に示すように、各車両14、15の底部には地面11から隙間を有して受電コイル16が設けられている。この受電コイル16は、長尺の送電コイル12によって発生する交番磁場によって電力を発生する二次コイル18と、二次コイル18に並列に(即ち、重ねた状態で)磁気結合された共振コイル19とを個別に有している。共振コイル19には直列(又は並列)に共振周波数調整回路20が接続されてる。なお、この実施の形態においては、車両は2台であったが、1台又は3台以上でもよい。
共振周波数調整回路20は、C1〜C4の容量を有するコンデンサ21〜24と、これらのコンデンサ22〜24に直列に接続されたスイッチング手段25〜27とを有し、スイッチング手段25〜27のオンオフは、スイッチ素子制御部28からの信号によって行われている。
なお、図3に示すように、漏洩磁束を減らすために、受電コイル16に下向き開放のコア(フェライトコア)16aを設けるのが好ましい。
As shown in FIG. 3, power receiving coils 16 are provided at the bottoms of the vehicles 14 and 15 with a gap from the ground 11. The power receiving coil 16 includes a secondary coil 18 that generates electric power by an alternating magnetic field generated by the long power transmitting coil 12, and a resonance coil 19 that is magnetically coupled in parallel (that is, overlapped) to the secondary coil 18. Individually. A resonance frequency adjusting circuit 20 is connected to the resonance coil 19 in series (or in parallel). In this embodiment, there are two vehicles, but one or three or more vehicles may be used.
The resonance frequency adjusting circuit 20 includes capacitors 21 to 24 having capacities C1 to C4 and switching means 25 to 27 connected in series to these capacitors 22 to 24, and the switching means 25 to 27 are turned on / off. This is performed by a signal from the switch element control unit 28.
In addition, as shown in FIG. 3, in order to reduce leakage magnetic flux, it is preferable to provide the receiving coil 16 with a downwardly open core (ferrite core) 16a.

ここで、スイッチング手段25〜27として有接点の開閉器を用いることもできるが、例えば、トランジスタ、FET、MOS−FET等の半導体素子を使用するのが耐久上から好ましい。
共振コイル19は一定のインダクタンスLを有しているので、コンデンサ21〜24を並列に接続すれば、コンデンサ21〜24の容量Cとインダクタンス(二次コイル18からの誘導分も含む)によって決定される共振周波数f2の共振回路を形成する。
この共振周波数f2は、コンデンサ21〜24の接続状況によって、図4(A)又は(Bのように異なる。
Here, although a contact switch can be used as the switching means 25 to 27, for example, it is preferable from the viewpoint of durability to use a semiconductor element such as a transistor, FET, or MOS-FET.
Since the resonance coil 19 has a certain inductance L, if the capacitors 21 to 24 are connected in parallel, it is determined by the capacitance C and the inductance (including the induction from the secondary coil 18) of the capacitors 21 to 24. A resonance circuit having a resonance frequency f2 is formed.
The resonance frequency f2 varies as shown in FIG. 4A or B depending on the connection status of the capacitors 21 to 24.

図4(A)は、インバータ13の発振周波数f1より、共振周波数f2が高い状態にあり、コンデンサ21〜24の接続状態によって(即ち、徐々にコンデンサの容量Cを減らすと)徐々に共振周波数f2がインバータ13の発振周波数f1から遠ざかる。
一方、受電コイル16には、温度センサー33が設けられ、常時受電コイル16(詳細には共振コイル19)の温度を測定できるようになっている。
4A shows that the resonance frequency f2 is higher than the oscillation frequency f1 of the inverter 13, and the resonance frequency f2 is gradually increased depending on the connection state of the capacitors 21 to 24 (that is, when the capacitance C of the capacitor is gradually decreased). Is away from the oscillation frequency f1 of the inverter 13.
On the other hand, the power receiving coil 16 is provided with a temperature sensor 33 so that the temperature of the power receiving coil 16 (specifically, the resonance coil 19) can be constantly measured.

この温度センサー33の出力は、共振周波数調整回路20に入力され、共振コイル19の温度が一定値(例えば、所定値a)より高くなると、共振周波数f2を周波数f1から遠ざけて、共振コイル19を流れる電流を減らし、温度上昇を防止している。また、共振コイル19の温度を測定して、共振コイル19の温度が一定値(例えば、所定値b)より低い場合は、共振周波数f2を周波数f1に近づけて、より多くの電流で電池31を充電し、充電時間の短縮化を図っている。 The output of the temperature sensor 33 is input to the resonance frequency adjusting circuit 20, and when the temperature of the resonance coil 19 becomes higher than a certain value (for example, a predetermined value a), the resonance frequency f2 is moved away from the frequency f1, and the resonance coil 19 is moved. The flowing current is reduced to prevent the temperature from rising. Further, when the temperature of the resonance coil 19 is measured and the temperature of the resonance coil 19 is lower than a certain value (for example, a predetermined value b), the resonance frequency f2 is brought close to the frequency f1, and the battery 31 is charged with more current. The battery is charged to shorten the charging time.

この様子を、図5を参照しながら説明する。温度センサー33の検知温度をTthとし、共振コイル19の許容最高温度をTmaxとする。コンデンサ容量を一段減らすとは、並列接続されているコンデンサ21〜24から順次コンデンサ24、コンデンサ23、コンデンサ22をスイッチング素子27、26、25を作動させて順次切り離すことをいう。コンデンサ21については常時接続されている。また、コンデンサ容量を一段増やすとは、例えば、共振コイル19に一つのコンデンサ21が接続されている状態から、順次コンデンサ22、コンデンサ23、コンデンサ24を並列に接続することをいう。 This will be described with reference to FIG. The detection temperature of the temperature sensor 33 is Tth, and the allowable maximum temperature of the resonance coil 19 is Tmax. To reduce the capacitor capacity by one step means that the capacitors 24, 23, and 22 are sequentially disconnected from the capacitors 21 to 24 that are connected in parallel by operating the switching elements 27, 26, and 25. The capacitor 21 is always connected. Further, increasing the capacitor capacity by one step means, for example, sequentially connecting the capacitor 22, the capacitor 23, and the capacitor 24 in parallel from the state where one capacitor 21 is connected to the resonance coil 19.

なお、この実施の形態では、最小のコンデンサの容量は、C1となり、最大のコンデンサの容量はC1+C2+C3+C4となり、図4(A)に示すように、共振コイル19に接続されたコンデンサ21〜24の容量を減らすと、共振周波数f2は高くなってインバータ13の周波数f1から遠ざかる。 In this embodiment, the capacitance of the minimum capacitor is C1, and the capacitance of the maximum capacitor is C1 + C2 + C3 + C4. As shown in FIG. 4A, the capacitances of the capacitors 21 to 24 connected to the resonance coil 19 Is reduced, the resonance frequency f2 is increased and is moved away from the frequency f1 of the inverter 13.

従って、図5に示すように、温度センサー33の検知温度Tthが、許容最高温度Tmax(例えば、220℃)より小さいことを確認する(ステップS1)。検知温度Tthが、許容最高温度Tmaxと同じかより高い場合には、危険であるので、共振周波数調整回路20に信号を送って、スイッチング手段25〜27を全部オフにして、共振周波数f2を周波数f1から大きくずらすか、又は共振コイル19とコンデンサとの接続を切り離す。この処置1(ステップS2)によって、共振コイル19を流れる電流は大きく減少するので、発熱が下がり共振コイル19の温度は下がる。 Therefore, as shown in FIG. 5, it is confirmed that the detected temperature Tth of the temperature sensor 33 is lower than the allowable maximum temperature Tmax (for example, 220 ° C.) (step S1). If the detected temperature Tth is equal to or higher than the maximum allowable temperature Tmax, it is dangerous. Therefore, a signal is sent to the resonance frequency adjusting circuit 20 to turn off all the switching means 25 to 27 and set the resonance frequency f2 to the frequency. Either greatly deviate from f1, or disconnect the connection between the resonant coil 19 and the capacitor. By this treatment 1 (step S2), the current flowing through the resonance coil 19 is greatly reduced, so that the heat generation is reduced and the temperature of the resonance coil 19 is lowered.

次に、温度センサー33の検知温度Tthが、T1<Tth<Tmax(例えば、T1(所定値a)=180℃)の場合(ステップS3)は、コンデンサ容量を一段減らす(ステップS4)。今、仮にコンデンサ21〜24の全てを並列に接続していたとすると、図4(A)のC1+C2+C3+C4の状態から、C1+C2+C3の接続状態となり、共振コイル19の共振周波数f2が高くなって、インバータ13の周波数f1から離れる。これによって、二次コイル18の温度が下がることになるが、温度変化に時間がかかるので、タイマーで20〜60秒程度のカウントを行う(ステップS5)。 Next, when the detected temperature Tth of the temperature sensor 33 is T1 <Tth <Tmax (for example, T1 (predetermined value a) = 180 ° C.) (step S3), the capacitor capacity is decreased by one step (step S4). Assuming that all of the capacitors 21 to 24 are connected in parallel, the state of C1 + C2 + C3 + C4 in FIG. Move away from the frequency f1. As a result, the temperature of the secondary coil 18 decreases, but it takes time to change the temperature, so the timer counts for about 20 to 60 seconds (step S5).

この後、温度センサー33の検知温度Tthが、所定の温度T2(=所定値b、例えば130℃)より低い場合には(ステップS6)、減らしたコンデンサの容量を一段増やす(ステップS7)。これによって、共振回路の共振周波数f2が、周波数f1に近づき、より多くの共振電流が流れる。この共振電流と二次電流は略一次比例するので、二次コイル18に流れる最大電流も増加する。 Thereafter, when the detected temperature Tth of the temperature sensor 33 is lower than a predetermined temperature T2 (= predetermined value b, for example, 130 ° C.) (step S6), the reduced capacitance is increased by one step (step S7). As a result, the resonance frequency f2 of the resonance circuit approaches the frequency f1, and more resonance current flows. Since the resonance current and the secondary current are approximately linearly proportional, the maximum current flowing through the secondary coil 18 also increases.

この実施の形態では、共振周波数f2を、インバータの周波数f1より大きい範囲で共振回路の電流を制御したが、図4(B)に示すように、共振周波数f2をインバータ13の周波数f1より小さい範囲で、コンデンサの容量変更を行うこともできる。 In this embodiment, the resonance circuit current is controlled in a range where the resonance frequency f2 is larger than the frequency f1 of the inverter. However, as shown in FIG. 4B, the resonance frequency f2 is a range smaller than the frequency f1 of the inverter 13. Thus, the capacitance of the capacitor can be changed.

二次コイル18によって誘起された電力は、高周波電力であるので、車両14、15に搭載され整流回路を含む充電制御部30によって直流に変換し、電池31を充電している。この実施の形態では、電池31が過充電になると、電池31の損傷を招くので、充電電圧を充電制御部30の出力電圧に合わせて、電池31の充電が完了すると、これを充電完了センサーで検知し、電池31への充電をしないようにする。また、共振コイル19にはこの状態でも、共振電流が流れるので、共振周波数調整回路20に信号を与えて、共振周波数f2をインバータ13の発振周波数f1から遠ざけるようにして、共振回路の電流を減らす。 Since the electric power induced by the secondary coil 18 is high-frequency electric power, it is converted into direct current by the charging control unit 30 that is mounted on the vehicles 14 and 15 and includes the rectifier circuit, and the battery 31 is charged. In this embodiment, if the battery 31 is overcharged, the battery 31 is damaged. Therefore, when the charging of the battery 31 is completed by adjusting the charging voltage to the output voltage of the charging control unit 30, the charging completion sensor is used. Detect the battery 31 so that the battery 31 is not charged. Even in this state, the resonance current flows through the resonance coil 19, so that a signal is given to the resonance frequency adjustment circuit 20 so that the resonance frequency f 2 is kept away from the oscillation frequency f 1 of the inverter 13, thereby reducing the current in the resonance circuit. .

本発明は前記した実施の形態に限定されるものではなく、本発明の要旨を変更しない範囲でその構成を変更することもできる。更に、本発明は具体的数字に基づいて、実施の形態を説明したが、この数値には限定されない。
前記実施の形態においては、温度センサーで受電コイルの温度を測定したが、共振コイルの温度を直接測定してもよい。
また、前記実施の形態においては、受電コイルを二次コイルと共振コイルに分離したものについて説明したが、二次コイルと共振コイルを一体化し、これに並列にコンデンサを接続する構造のものであっても本発明は適用される。
そして、前記実施の形態では、車両は固定状態で送電コイルの上に配置されているが、車両(例えば、台車)は送電コイルに沿って移動する場合も、送電コイルからの電力を受電できる。
The present invention is not limited to the above-described embodiment, and the configuration thereof can be changed without changing the gist of the present invention. Furthermore, although this invention demonstrated embodiment based on the specific number, it is not limited to this number.
In the embodiment, the temperature of the power receiving coil is measured by the temperature sensor, but the temperature of the resonance coil may be directly measured.
In the above embodiment, the power receiving coil is separated into the secondary coil and the resonant coil. However, the secondary coil and the resonant coil are integrated, and a capacitor is connected in parallel to this. However, the present invention is applied.
And in the said embodiment, although the vehicle is arrange | positioned on the power transmission coil in the fixed state, even when a vehicle (for example, trolley | bogie) moves along a power transmission coil, it can receive the electric power from a power transmission coil.

10:非接触電力供給装置、11:地面、12:送電コイル、13:インバータ、14、15:車両、16:受電コイル、16a:コア、17、17a:コア、18:二次コイル、19:共振コイル、20:共振周波数調整回路、20a:コンデンサ、21〜24:コンデンサ、25〜27:スイッチング手段、28:スイッチ素子制御部、30:充電制御部、31:電池、33:温度センサー 10: Non-contact power supply device, 11: Ground, 12: Power transmission coil, 13: Inverter, 14, 15: Vehicle, 16: Power reception coil, 16a: Core, 17, 17a: Core, 18: Secondary coil, 19: Resonant coil, 20: Resonant frequency adjustment circuit, 20a: Capacitor, 21-24: Capacitor, 25-27: Switching means, 28: Switch element control unit, 30: Charge control unit, 31: Battery, 33: Temperature sensor

Claims (8)

周波数f1の高周波電力を発生するインバータに接続された送電コイルと、移動可能な動体物に設けられ、前記送電コイルによって発生する交番磁場によって電力を発生する受電コイルと、前記動体物に搭載され、前記受電コイルに接続されて該受電コイルに発生した電力を直流に変換して電池に充電する充電制御部とを有する非接触電力供給装置において、
前記受電コイルには周波数f2で共振する共振回路が設けられていると共に温度センサーが設けられ、該温度センサーの検知温度が所定値aより高くなると、前記共振回路の周波数f2を前記周波数f1から遠ざけて温度上昇を防止し、前記温度センサーの検知温度が所定値bより低くなると前記共振回路の周波数f2を前記周波数f1に近づけて前記受電コイルの受電電力を増加する共振周波数調整回路が設けられていることを特徴とする非接触電力供給装置。
A power transmission coil connected to an inverter that generates high-frequency power of frequency f1, a movable moving object, and a power receiving coil that generates power by an alternating magnetic field generated by the power transmission coil; and mounted on the moving object; In the non-contact power supply device having a charging control unit that is connected to the power receiving coil and converts the power generated in the power receiving coil into direct current and charges the battery,
The power receiving coil is provided with a resonance circuit that resonates at a frequency f2 and a temperature sensor. When the temperature detected by the temperature sensor becomes higher than a predetermined value a, the frequency f2 of the resonance circuit is moved away from the frequency f1. And a resonance frequency adjusting circuit is provided for increasing the power received by the power receiving coil by bringing the frequency f2 of the resonance circuit close to the frequency f1 when the temperature detected by the temperature sensor is lower than a predetermined value b. A non-contact power supply device.
周波数f1の高周波電力を発生するインバータに接続された送電コイルと、移動可能な動体物に設けられ、前記送電コイルによって発生する交番磁場によって電力を発生する受電コイルと、前記動体物に搭載され、前記受電コイルに接続されて該受電コイルに発生した電力を直流に変換して電池に充電する充電制御部とを有する非接触電力供給装置において、
前記受電コイルには周波数f2で共振する共振回路が設けられていると共に温度センサーが設けられ、該温度センサーの検知温度によって、前記共振回路の周波数f2を変えて前記周波数f1と前記周波数f2との差を拡大し、前記受電コイルの過度な温度上昇を防止する共振周波数調整回路が設けられていることを特徴とする非接触電力供給装置。
A power transmission coil connected to an inverter that generates high-frequency power of frequency f1, a movable moving object, and a power receiving coil that generates power by an alternating magnetic field generated by the power transmission coil; and mounted on the moving object; In the non-contact power supply device having a charging control unit that is connected to the power receiving coil and converts the power generated in the power receiving coil into direct current and charges the battery,
The power receiving coil is provided with a resonance circuit that resonates at a frequency f2 and is provided with a temperature sensor, and the frequency f2 of the resonance circuit is changed according to the detected temperature of the temperature sensor, and the frequency f1 and the frequency f2 are changed. A non-contact power supply apparatus, wherein a resonance frequency adjusting circuit is provided to enlarge the difference and prevent an excessive temperature rise of the power receiving coil.
請求項1又は2記載の非接触電力供給装置において、前記共振周波数調整回路には、前記電池の充電の完了を検知する充電完了センサーが設けられ、前記温度センサーの出力に関わらず、前記充電完了センサーの出力によって、前記周波数f1と前記周波数f2との差を拡大して前記共振回路の電流を減らすことを特徴とする非接触電力供給装置。 3. The non-contact power supply apparatus according to claim 1, wherein the resonance frequency adjustment circuit is provided with a charge completion sensor that detects completion of charging of the battery, and the charge completion is performed regardless of an output of the temperature sensor. A non-contact power supply apparatus that reduces a current of the resonance circuit by enlarging a difference between the frequency f1 and the frequency f2 according to an output of a sensor. 請求項1〜3のいずれか1項に記載の非接触電力供給装置において、前記共振周波数調整回路は、並列に接続されたコンデンサの容量をスイッチング手段によって切り換えていることを特徴とする非接触電力供給装置。 The contactless power supply device according to any one of claims 1 to 3, wherein the resonance frequency adjusting circuit switches the capacitance of capacitors connected in parallel by switching means. Feeding device. 請求項1〜4のいずれか1項に記載の非接触電力供給装置において、前記受電コイルは電力を発生する二次コイルと、該二次コイルに磁気結合して前記周波数f2で共振する共振コイルとを個別に有していることを特徴とする非接触電力供給装置。 5. The contactless power supply device according to claim 1, wherein the power receiving coil is a secondary coil that generates power, and a resonance coil that is magnetically coupled to the secondary coil and resonates at the frequency f <b> 2. And a non-contact power supply device. 請求項1〜5のいずれか1項に記載の非接触電力供給装置において、前記送電コイルは一定幅の平行領域を有する長尺のコイルからなって、前記動体物は複数あって、それぞれの前記動体物に前記送電コイルから電力を供給可能であることを特徴とする非接触電力供給装置。 The contactless power supply device according to any one of claims 1 to 5, wherein the power transmission coil is a long coil having a parallel region with a constant width, and there are a plurality of moving objects, and each of the moving objects. A non-contact power supply apparatus capable of supplying power to a moving object from the power transmission coil. 請求項6記載の非接触電力供給装置において、前記送電コイルには該送電コイルによって発生する磁束漏れを減らすコアが設けられていることを特徴とする非接触電力供給装置。 The contactless power supply apparatus according to claim 6, wherein the power transmission coil is provided with a core that reduces magnetic flux leakage generated by the power transmission coil. 請求項6又は7記載の非接触電力供給装置において、前記動体物は、前記送電コイルに沿って移動中に、前記送電コイルからの電力を受電可能であることを特徴とする非接触電力供給装置。 8. The non-contact power supply apparatus according to claim 6 or 7, wherein the moving object can receive power from the power transmission coil while moving along the power transmission coil. .
JP2011194049A 2011-09-06 2011-09-06 Non-contact electric power supply device Withdrawn JP2013055856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011194049A JP2013055856A (en) 2011-09-06 2011-09-06 Non-contact electric power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011194049A JP2013055856A (en) 2011-09-06 2011-09-06 Non-contact electric power supply device

Publications (1)

Publication Number Publication Date
JP2013055856A true JP2013055856A (en) 2013-03-21

Family

ID=48132357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011194049A Withdrawn JP2013055856A (en) 2011-09-06 2011-09-06 Non-contact electric power supply device

Country Status (1)

Country Link
JP (1) JP2013055856A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015080517A1 (en) * 2013-11-29 2015-06-04 주식회사 한림포스텍 Low-heat wireless power reception device
CN105610248A (en) * 2016-01-27 2016-05-25 中国科学院微电子研究所 Coupling power supply circuit and method of implantable electronic biologic sensor
KR101873399B1 (en) 2018-01-04 2018-07-02 (주)그린파워 Resonant Inductor of Wireless Power Transfer Apparatus and a method
US10404101B2 (en) 2015-12-24 2019-09-03 Toyota Jidosha Kabushiki Kaisha Contactless electric power transmission device and electric power transfer system
CN113661596A (en) * 2019-03-28 2021-11-16 爱欧艾日本株式会社 Wireless power feeding system having battery-mounted device fitted to power receiving device on which lamp unit is mounted

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015080517A1 (en) * 2013-11-29 2015-06-04 주식회사 한림포스텍 Low-heat wireless power reception device
US10404101B2 (en) 2015-12-24 2019-09-03 Toyota Jidosha Kabushiki Kaisha Contactless electric power transmission device and electric power transfer system
CN105610248A (en) * 2016-01-27 2016-05-25 中国科学院微电子研究所 Coupling power supply circuit and method of implantable electronic biologic sensor
KR101873399B1 (en) 2018-01-04 2018-07-02 (주)그린파워 Resonant Inductor of Wireless Power Transfer Apparatus and a method
CN113661596A (en) * 2019-03-28 2021-11-16 爱欧艾日本株式会社 Wireless power feeding system having battery-mounted device fitted to power receiving device on which lamp unit is mounted

Similar Documents

Publication Publication Date Title
US8482159B2 (en) Wireless power apparatus and wireless power-receiving method
JP6371364B2 (en) Non-contact power supply device
US9831681B2 (en) Power reception apparatus and power receiving method
JP6288519B2 (en) Wireless power transmission system
WO2011121800A1 (en) Voltage detector, abnormality detection device, non-contact power transfer device, non-contact power receiver device, and vehicle
JP2016504755A (en) Coil arrangement in a wireless power transfer system for low electromagnetic radiation
WO2015162859A1 (en) Contactless power transmission device, contactless power reception device, and contactless power transmission system
JP6089464B2 (en) Non-contact power transmission device
US20150061402A1 (en) Power reception device, power transmission device and power transfer system
US9912198B2 (en) Wireless power transmission device
JP2011167036A (en) Electric power feed device for vehicle, and electric power reception device
JP5852225B2 (en) Power receiving apparatus and power receiving method
JP6665392B2 (en) Non-contact power transmission system and power receiving device
JP2013055856A (en) Non-contact electric power supply device
JP2012023913A (en) Non-contact power feeding device
US20140292099A1 (en) Wireless power apparatus and operation method thereof
JP6454943B2 (en) Non-contact power supply device and non-contact power supply system using the same
US20160204621A1 (en) Power Feeding Device and Non-Contact Power Transmission Device
JP5384195B2 (en) Non-contact power supply device
TWI417910B (en) Electromagnetic apparatus using shared flux in a multi-load parallel magnetic circuit and method of operation
US11577618B2 (en) Wired/wireless integrated power reception system
JP6040510B2 (en) Power transmission system
JP2012143093A (en) Proximity wireless charging ac adapter
JP2019075947A (en) Non-contact power supply device
Hatchavanich et al. Operation region of LCL resonant inverter for inductive power transfer application

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202