JP2019075947A - Non-contact power supply device - Google Patents

Non-contact power supply device Download PDF

Info

Publication number
JP2019075947A
JP2019075947A JP2017202443A JP2017202443A JP2019075947A JP 2019075947 A JP2019075947 A JP 2019075947A JP 2017202443 A JP2017202443 A JP 2017202443A JP 2017202443 A JP2017202443 A JP 2017202443A JP 2019075947 A JP2019075947 A JP 2019075947A
Authority
JP
Japan
Prior art keywords
coil
planar
unit
resonant
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017202443A
Other languages
Japanese (ja)
Inventor
啓一 本田
Keiichi Honda
啓一 本田
井上 薫
Kaoru Inoue
薫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heads Corp
Original Assignee
Heads Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heads Corp filed Critical Heads Corp
Priority to JP2017202443A priority Critical patent/JP2019075947A/en
Publication of JP2019075947A publication Critical patent/JP2019075947A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Coils Of Transformers For General Uses (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

To provide a non-contact power supply device capable of increasing a degree of coupling between a secondary coil and a resonant coil, reducing current leakage to reduce a reactive current, efficiently extracting power with a secondary coil, reducing a current flowing to the resonant coil to suppress heat generation, eliminating a complicated control, simplifying a configuration, and improving power supply efficiency.SOLUTION: A plurality of planar secondary coils 19, 20 in which spiral conductive patterns 27, 28 are formed around a core insertion hole 26 and a plurality of planar resonance coils 21 to 23 in which spiral conductive patterns 33 to 35 are formed around a core insertion hole 32 are alternately arranged on a common Π-shaped core 18. The planar secondary coils 19, 20 are connected in parallel. The planar resonant coils 21 to 23 are connected in series. Thereby, a secondary coil 14 and a resonant coil 15 of a power reception unit 16 are configured.SELECTED DRAWING: Figure 3

Description

本発明は、例えば工場内や一般道路を移動する搬送台車(例えば、AGV)又は自動車の電池等に非接触で電力供給(充電)する非接触給電装置に関する。 The present invention relates to a non-contact power feeding apparatus for non-contact power supply (charging) to, for example, a carriage (for example, an AGV) traveling in a factory or a general road, or a battery of an automobile.

従来、例えば、工場等で電池で動く車両(搬送台車)は、定期的に電池を充電する必要があり、所定の場所において充電器の近くに車両を止めて、接続コードを用いて車両の電池と充電器を接続し、電池への充電を行っていた。ところが、接続コードの挿抜作業には手間がかかるので、例えば、特許文献1〜3に示すように、車両に非接触で電力を供給することが行われている。 Conventionally, for example, in a factory or the like, a vehicle (car) that is powered by a battery needs to periodically charge the battery, stop the vehicle near the charger at a predetermined location, and use the connection cord to And the charger was connected to charge the battery. However, since it takes time to connect and disconnect the connection cord, for example, as shown in Patent Documents 1 to 3, power is supplied to the vehicle without contact.

特開2005−94862号公報Unexamined-Japanese-Patent No. 2005-94862 特開2006−325350号公報Unexamined-Japanese-Patent No. 2006-325350 WO2006/022365号公報WO 2006/022365 特許第5707543号明細書Patent No. 5707543 specification

しかしながら、特許文献1〜3に記載のように、一次コイル側又は二次コイル(ピックアップコイル)側に共振回路を組み込むと、共振回路に大きな電流が流れ、発熱するという問題があった。
そこで、特許文献4に示すように、二次コイルの共振電流をスイッチング素子を用いて制御し、二次側共振電流を一定に保ち二次側回路の発熱を抑制した非接触電力供給装置が提案されている。
ところが、二次側で電流を制御するためには、二次側機器を備えた全ての搬送台車に電流を一定に制御する装置(制御部)が必要であり、経済上好ましくない。
本発明は、かかる事情に鑑みてなされたもので、二次コイルと共振コイルとの結合度を高め、電流の漏れを少なくして無効電流を減らし、二次コイルで効率よく電力を取り出すことにより、共振コイルに流れる電流を低減して発熱を抑制することができ、複雑な制御が不要で、構成を簡素化することができる電力供給の効率性に優れた非接触給電装置を提供することを目的とする。
However, as described in Patent Documents 1 to 3, when the resonant circuit is incorporated on the primary coil side or the secondary coil (pickup coil) side, there is a problem that a large current flows in the resonant circuit to generate heat.
Therefore, as shown in Patent Document 4, a contactless power supply device is proposed in which the resonance current of the secondary coil is controlled by using a switching element, and the secondary side resonance current is kept constant to suppress heat generation of the secondary side circuit. It is done.
However, in order to control the current on the secondary side, a device (control unit) for controlling the current constantly is required for all the carriages provided with the secondary side devices, which is not preferable economically.
The present invention has been made in view of such circumstances, and by increasing the degree of coupling between the secondary coil and the resonant coil, reducing current leakage and reducing reactive current, and efficiently extracting power with the secondary coil. It is possible to provide a non-contact power feeding device excellent in the efficiency of power supply which can reduce heat generation by reducing the current flowing to the resonance coil, does not require complicated control, and can simplify the configuration. To aim.

前記目的に沿う本発明に係る非接触給電装置は、インバータを含む高周波電源から電力供給を受ける一次コイルを有する給電部と、前記一次コイルと電磁結合する二次コイル及び共振コイルを有する受電部とを備え、前記給電部から前記受電部に電力を供給する非接触給電装置であって、
前記二次コイル及び前記共振コイルは、共通のΠ字状コアに装着されており、前記共振コイルは、前記Π字状コアの周りに分割配置されて直列に接続された複数の平面状共振コイルを備え、前記二次コイルは、前記Π字状コアの周りに巻かれ、分割された前記平面状共振コイルの間に配置されている。
ここで、共振コイルが3つ以上に分割配置され、二次コイルが2つ以上に分割配置される場合は、分割された二次コイルを並列に接続してもよい。
また、複数の平面状共振コイルを並列に接続し更にこれらを直列(即ち、直並列)に接続してもよい。
なお、Π字状とは、対向する直線辺p、qの一端を直線辺rで結んだ角型U字形状をいう。
A non-contact power feeding device according to the present invention in accordance with the above object comprises a power feeding portion having a primary coil receiving power supply from a high frequency power source including an inverter, a power receiving portion having a secondary coil electromagnetically coupled to the primary coil and a resonant coil. A non-contact power feeding device that supplies power from the power feeding unit to the power receiving unit,
The secondary coil and the resonant coil are mounted on a common Π-shaped core, and the resonant coils are divided around the Π-shaped core and connected in series to a plurality of planar resonant coils connected in series And the secondary coil is disposed between the planar resonant coils which are wound and divided around the Π-shaped core.
Here, in the case where the resonance coil is divided into three or more and the secondary coil is divided into two or more, the divided secondary coils may be connected in parallel.
Alternatively, a plurality of planar resonant coils may be connected in parallel and further connected in series (ie, series-parallel).
In addition, the shape of "Π" means a square U-shape in which one ends of the opposing straight sides p and q are connected by a straight side r.

本発明に係る非接触給電装置において、前記二次コイルは、それぞれ並列に接続された偶数個の平面状二次コイルからなるのが好ましい。また、直列に接続した偶数個の平面状二次コイルに中間タップを設け、中間タップ回路型の整流回路を接続できる。なお、二次コイルに中間タップは設けず、整流回路にブリッジ型の全波整流回路を使用することもある。この場合は、分割された平面状二次コイルは奇数個であってもよい。 In the non-contact power feeding device according to the present invention, preferably, the secondary coil comprises an even number of planar secondary coils connected in parallel. Further, an intermediate tap can be provided to an even number of planar secondary coils connected in series, and an intermediate tap circuit type rectifier circuit can be connected. In addition, an intermediate | middle tap is not provided in a secondary coil, but a bridge type full wave rectifier circuit may be used for a rectifier circuit. In this case, the number of divided planar secondary coils may be odd.

本発明に係る非接触給電装置において、前記各平面状共振コイルは、第1の基板の片側又は両側に渦巻き状に形成された導電パターンで構成され、前記第1の基板には、該導電パターンの中央部を貫通し前記Π字状コアが挿通されるコア挿通孔が形成されているのが好ましい。 In the non-contact power feeding device according to the present invention, each of the planar resonant coils is formed of a conductive pattern formed in a spiral shape on one side or both sides of a first substrate, and the conductive pattern is formed on the first substrate. It is preferable to form a core insertion hole through which the center portion of the hollow part is inserted and the U-shaped core is inserted.

本発明に係る非接触給電装置において、前記各平面状二次コイルは、第2の基板の片側又は両側に渦巻き状に形成された導電パターンで構成され、前記第2の基板には、該導電パターンの中央部を貫通し前記Π字状コアが挿通されるコア挿通孔が形成されているのが好ましい。 In the non-contact power feeding device according to the present invention, each of the planar secondary coils is formed of a conductive pattern formed in a spiral shape on one side or both sides of a second substrate, and the second substrate is made of the conductive pattern. It is preferable to form a core insertion hole which penetrates the central portion of the pattern and through which the Π-shaped core is inserted.

本発明に係る非接触給電装置において、前記第1の基板と隣り合う前記第1、第2の基板との間には絶縁材が配置されているのが好ましい。この絶縁材は層間の絶縁を行うと共に、共振コイル又は二次コイルに発生する熱を外部に容易に逃がすことができる材質を使用するのが好ましい。 In the non-contact power feeding device according to the present invention, preferably, an insulating material is disposed between the first substrate and the first and second substrates adjacent to each other. The insulating material is preferably made of a material capable of insulating between layers and allowing heat generated in the resonant coil or the secondary coil to be easily dissipated to the outside.

本発明に係る非接触給電装置において、前記給電部は給電側制御部を、前記受電部は電池を充電する受電側制御部(整流回路を含む)をそれぞれ有し、前記給電側制御部及び前記受電側制御部には通信を相互に行う第1、第2の通信部がそれぞれ接続され、前記受電側制御部は、前記電池の充電電圧を測定する電圧計測手段と、前記電池の充電電流を測定する電流計測手段とを有し、前記電圧計測手段で測定した前記充電電圧、及び前記電流計測手段で測定した前記充電電流の測定データを前記第2の通信部から前記第1の通信部に送信し、前記給電側制御部は、前記第1の通信部で受信した前記測定データに基づいて前記インバータのPWM制御を行い、前記充電電圧が規定電圧より低い時は、前記電池への定電流制御を行い、前記充電電圧が前記規定電圧となった時は、前記電池への定電圧制御を行う充電制御手段を有することが好ましい。 In the non-contact power feeding device according to the present invention, the power feeding unit includes a power feeding side control unit, and the power receiving unit includes a power receiving side control unit (including a rectification circuit) for charging a battery. First and second communication units for mutually communicating are respectively connected to the power receiving side control unit, and the power receiving side control unit is a voltage measuring means for measuring a charging voltage of the battery, and a charging current of the battery. Current measurement means for measuring, and measurement data of the charging voltage measured by the voltage measuring means and the charging current measured by the current measuring means from the second communication unit to the first communication unit The power supply control unit performs PWM control of the inverter based on the measurement data received by the first communication unit, and when the charge voltage is lower than a specified voltage, a constant current to the battery is supplied. Control, and When but becomes the prescribed voltage preferably has a charging control means for performing constant voltage control to the battery.

本発明に係る非接触給電装置において、前記受電側制御部は、前記受電部の作動温度を測定する温度計を有し、該温度計で測定した前記受電部の前記作動温度の測定データを前記第2の通信部から前記第1の通信部に送信し、前記給電側制御部は、前記第1の通信部で受信した前記受電部の前記作動温度が、予め設定した規定温度値を超えた時に、前記インバータの動作を停止させる、前記インバータの出力を減少させる、又は前記インバータの周波数を非共振周波数側にずらすことが好ましい。 In the non-contact power feeding device according to the present invention, the power receiving side control unit has a thermometer that measures an operating temperature of the power receiving unit, and the measurement data of the operating temperature of the power receiving unit measured by the thermometer is The second communication unit transmits the first communication unit, and the power supply side control unit determines that the operating temperature of the power reception unit received by the first communication unit exceeds a predetermined temperature value set in advance. Sometimes, it is preferable to stop the operation of the inverter, reduce the output of the inverter, or shift the frequency of the inverter to a non-resonant frequency side.

本発明に係る非接触給電装置は、二次コイル及び共振コイルが、共通のΠ字状コアに装着されており、共振コイルが、Π字状コアの周りに分割配置されて直列に接続された複数の平面状共振コイルを備え、二次コイルが、Π字状コアの周りに巻かれ、分割された平面状共振コイルの間に配置されていることにより、二次コイルと共振コイルを接近させて結合度を高めることができるので、磁場の漏れを少なくして無効電流を減らし、二次コイルで効率よく電力を取り出すことが可能となる。また、共振コイルが平面状共振コイルからなり、二次コイルが平面状に巻かれることにより、受電部を小型化すると共に放熱性を確保できる。 In the non-contact power feeding device according to the present invention, the secondary coil and the resonant coil are mounted on a common Π-shaped core, and the resonant coils are divided and arranged around the Π-shaped core and connected in series. A plurality of planar resonant coils are provided, and the secondary coil is disposed between the planar resonant coils divided and wound around the Π-shaped core, thereby bringing the secondary coil and the resonant coil closer to each other. Since the degree of coupling can be increased, leakage of the magnetic field can be reduced to reduce the reactive current, and power can be efficiently extracted by the secondary coil. Further, since the resonant coil is formed of a planar resonant coil and the secondary coil is wound in a planar shape, the power receiving unit can be miniaturized and the heat dissipation can be secured.

そして、必要に応じて二次コイル及び共振コイルの巻き数及び断面積を増やすことによって出力を増大させ、電気自動車やその他の機器にも対応することが可能であり、設計自在性、汎用性に優れる。さらに、二次コイル及び共振コイルが装着される共通のコアがΠ字状であることにより、両端の磁極間の距離が長くなるので、給電部(一次コイル)と受電部(二次コイル)との距離が離れても磁束漏れを小さく抑えることができ、電力供給(充電)の効率が下がり難く、実用性に優れる。 And it is possible to increase the output by increasing the number of turns and the cross sectional area of the secondary coil and the resonant coil as needed, and also to cope with electric vehicles and other devices, for design freedom and versatility. Excellent. Furthermore, since the common core on which the secondary coil and the resonance coil are mounted is in a U-shape, the distance between the magnetic poles at both ends becomes long, so the power feeding unit (primary coil) and the power receiving unit (secondary coil) Even if the distance is long, the magnetic flux leakage can be suppressed to a small level, the efficiency of the power supply (charging) is unlikely to decrease, and the practicability is excellent.

各平面状共振コイルが、第1の基板の片側又は両側に渦巻き状に形成された導電パターンで構成され、第1の基板に導電パターンの中央部を貫通するコア挿通孔が形成されている場合、各基板のコア挿通孔にΠ字状コアを挿通するだけで、平面状共振コイルを容易にΠ字状コアに装着することができ、コアにコイルを巻き付ける作業が不要で、量産性に優れる。
二次コイルが、それぞれ並列に接続された偶数個の平面状二次コイルからなる場合、二次コイルに流れる電流を大きくしながら、二次コイルのインピーダンスを下げることができるので、二次コイルから大電流を取り出しても、発熱を抑えることができる。また、平面状二次コイルが偶数個である場合、センタータップ型の整流回路を採用して、整流回路の簡素化することができ、生産性に優れる。
When each planar resonance coil is formed of a conductive pattern formed in a spiral on one side or both sides of the first substrate, and the core insertion hole penetrating the central portion of the conductive pattern is formed on the first substrate The planar resonant coil can be easily attached to the Π-shaped core simply by inserting the Π-shaped core into the core insertion hole of each substrate, and the work of winding the coil around the core is unnecessary, and mass productivity is excellent. .
If the secondary coil consists of an even number of planar secondary coils connected in parallel, the impedance of the secondary coil can be lowered while increasing the current flowing through the secondary coil, so Even if a large current is taken out, heat generation can be suppressed. When the number of planar secondary coils is an even number, a center tap type rectifier circuit can be adopted to simplify the rectifier circuit, which is excellent in productivity.

各平面状二次コイルが、第2の基板の片側又は両側に渦巻き状に形成された導電パターンで構成され、第2の基板に導電パターンの中央部を貫通するコア挿通孔が形成されている場合、各基板のコア挿通孔にΠ字状コアを挿通するだけで、平面状二次コイルを容易にΠ字状コアに装着することができ、コアにコイルを巻き付ける作業が不要で、量産性に優れる。また、平面状二次コイルと平面状共振コイルが基板上に形成されるので、両者の配置間隔を狭めて二次コイルと共振コイルの結合度をさらに高め、電力供給(充電)効率を向上させることができる。
第1の基板と隣り合う第1、第2の基板との間に絶縁材が配置されている場合、平面状二次コイルと平面状共振コイルとの絶縁性を維持しながら両者を近接させることができ、二次コイルと共振コイルの結合度を高めると共に、受電部の小型化を図ることができ、熱伝導性に優れた絶縁材料を使用すると、共振コイル及び二次コイルからの放熱性も高まる。
Each planar secondary coil is formed of a conductive pattern formed in a spiral shape on one side or both sides of a second substrate, and a core insertion hole penetrating the center portion of the conductive pattern is formed in the second substrate In this case, the planar secondary coil can be easily attached to the Π-shaped core simply by inserting the Π-shaped core into the core insertion hole of each substrate, and the operation of winding the coil around the core is unnecessary, and mass productivity Excellent. In addition, since the planar secondary coil and the planar resonant coil are formed on the substrate, the distance between the two is narrowed to further increase the degree of coupling between the secondary coil and the resonant coil, thereby improving the power supply (charging) efficiency. be able to.
When an insulating material is disposed between the first substrate and the adjacent first and second substrates, the two should be brought close to each other while maintaining the insulation between the planar secondary coil and the planar resonant coil. And increase the degree of coupling between the secondary coil and the resonant coil, as well as miniaturizing the power receiving unit, and using an insulating material excellent in thermal conductivity, the heat dissipation from the resonant coil and the secondary coil is also possible. Increase.

受電部が受電側制御部を、給電部が電池を充電する受電側制御部をそれぞれ有し、受電側制御部及び給電側制御部に通信を相互に行う第1、第2の通信部がそれぞれ接続され、受電側制御部が、電池の充電電圧を測定する電圧計測手段と、電池の充電電流を測定する電流計測手段とを有し、電圧計測手段で測定した充電電圧、及び電流計測手段で測定した充電電流の測定データを第2の通信部から第1の通信部に送信し、給電側制御部が、第1の通信部で受信した測定データに基づいてインバータのPWM制御を行い、充電電圧が規定電圧より低い時は、電池への定電流制御を行い、充電電圧が規定電圧となった時は、電池への定電圧制御を行う充電制御手段を有する場合、給電部側(一次側)で受電部側(二次側)の電圧及び電流を見ながら、インバータの出力を最適に制御することができるので、受電部で複雑な制御を行う必要がなく、受電側制御部の構成を簡素化して、非接触給電装置の普及を図ることができる。
受電側制御部が、受電部の作動温度を測定する温度計を有し、温度計で測定した受電部の作動温度の測定データを第2の通信部から第1の通信部に送信し、給電側制御部が、第1の通信部で受信した受電部の作動温度が予め設定した規定温度値を超えた時に、インバータの動作を停止させる、インバータの出力を減少させる、又はインバータの周波数を非共振周波数側にずらす場合、受電側の温度異常に応じて充電動作を停止、或いは充電条件を変更することができ、安全性に優れる。
The power receiving unit has a power receiving control unit, and the power feeding unit has a power receiving control unit for charging the battery, and the first and second communication units mutually communicate with the power receiving control unit and the power control unit. The power receiving side control unit includes a voltage measuring unit that measures the charging voltage of the battery and a current measuring unit that measures the charging current of the battery, and the charging voltage measured by the voltage measuring unit and the current measuring unit The measurement data of the measured charging current is transmitted from the second communication unit to the first communication unit, and the power supply side control unit performs PWM control of the inverter based on the measurement data received by the first communication unit, and charging is performed. When the voltage is lower than the specified voltage, constant current control to the battery is performed, and when the charge voltage becomes the specified voltage, the power supply side (primary side when the charge control means for performing constant voltage control to the battery is provided) See the voltage and current of the power receiving unit side (secondary side) in , It is possible to optimally control the output of the inverter, it is unnecessary to perform complicated control at the receiving unit, and simplify the configuration of the power receiving side controller, it is possible to spread the non-contact power feeding device.
The power receiving side control unit has a thermometer for measuring the operating temperature of the power receiving unit, transmits measurement data of the operating temperature of the power receiving unit measured by the thermometer from the second communication unit to the first communication unit, and feeds the power. When the operating temperature of the power receiving unit received by the first communication unit exceeds the preset specified temperature value, the side control unit stops the operation of the inverter, reduces the output of the inverter, or When shifting to the resonance frequency side, the charging operation can be stopped or the charging condition can be changed according to the temperature abnormality on the power reception side, and the safety is excellent.

本発明の第1の実施の形態に係る非接触給電装置の概略ブロック図である。FIG. 1 is a schematic block diagram of a non-contact power feeding device according to a first embodiment of the present invention. (A)、(B)はそれぞれ同非接触給電装置の二次コイル及び共振コイルの斜視図及び側面図である。(A) and (B) are respectively a perspective view and a side view of the secondary coil and the resonance coil of the non-contact electric supply device. 同非接触給電装置の二次コイル及び共振コイルの概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the secondary coil of the non-contact electric power supply apparatus, and a resonance coil. (A)、(B)、(C)はそれぞれ同非接触給電装置の平面状二次コイル及び平面状共振コイルの変形例を示す左側面図、正面図、右側面図である。(A), (B), (C) is the left side view, front view, and right side view which show the modification of the planar secondary coil of the non-contact electric power supply apparatus and the planar resonant coil, respectively. 同非接触給電装置を用いた場合の充電電流と時間との関係を示すグラフである。It is a graph which shows the relationship of the charging current at the time of using the non-contact electric power supply same with time. 本発明の第2の実施の形態に係る非接触給電装置の一次コイル周りと、二次コイル及び共振コイル周りの説明図である。It is explanatory drawing of a primary coil periphery of a non-contact electric power supply which concerns on the 2nd Embodiment of this invention, and a secondary coil and a resonant coil periphery.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
以下、図1〜図3を参照して、本発明の第1の実施の形態に係る非接触給電装置10について説明する。
図1に示すように、非接触給電装置10は、インバータ11を含む高周波電源から電力供給を受ける一次コイル12を有する給電部13と、一次コイル12と電磁結合する二次コイル14及び共振コイル15を有する受電部16とを備え、給電部13から受電部16に電力を供給することができ、受電部16に接続された電池17に非接触で充電できるものである。
この非接触給電装置10は、各種機器の充電に用いることができるが、搬送台車(例えば、AGV)や自動車の充電に好適に用いられる。その場合、給電部13を構築物の床部、天井部、又は壁部に固定状態で設け、受電部16を搭載した搬送台車や自動車を給電部13に対して横(水平)移動させ、給電部13の一次コイル12の直上、直下、又は真横に隙間を有して受電部16の二次コイル14及び共振コイル15を配置した状態で充電することができる。なお、この実施の形態では搬送台車に適用される。
Next, embodiments of the present invention will be described with reference to the attached drawings for understanding of the present invention.
Hereinafter, with reference to FIGS. 1 to 3, a non-contact power feeding device 10 according to a first embodiment of the present invention will be described.
As shown in FIG. 1, the non-contact power feeding device 10 includes a power feeding portion 13 having a primary coil 12 receiving power supply from a high frequency power source including an inverter 11, a secondary coil 14 electromagnetically coupled to the primary coil 12, and a resonant coil 15. The power supply unit 13 can supply power to the power reception unit 16, and the battery 17 connected to the power reception unit 16 can be charged in a contactless manner.
The non-contact power feeding device 10 can be used to charge various devices, but is suitably used to charge a transport carriage (for example, an AGV) or a car. In that case, the feeding unit 13 is provided in a fixed state on the floor, ceiling, or wall of the structure, and the carriage or car equipped with the power receiving unit 16 is moved horizontally (horizontally) with respect to the feeding unit 13 The secondary coil 14 and the resonant coil 15 of the power reception unit 16 can be charged with a gap immediately above, immediately below, or just beside the primary coil 12. In this embodiment, the present invention is applied to a transport carriage.

まず、二次コイル14及び共振コイル15の詳細について説明する。
図1、図2(A)、(B)に示すように、二次コイル14及び共振コイル15は、共通のフェライト製のΠ字状コア18に装着されている。そして、二次コイル14及び共振コイル15は、それぞれ偶数個の平面状二次コイル19、20及び複数の平面状共振コイル21〜23を備えており、これらの平面状二次コイル19、20と平面状共振コイル21〜23はΠ字状コア18の周りに交互に分割配置されている。なお、平面状二次コイルは、通常平面状共振コイルの間に配置されているが、分散配置された平面状二次コイルの数が少ない場合は、隣り合う平面状共振コイルの間に平面状二次コイルが配置されない場合もある。
First, the details of the secondary coil 14 and the resonant coil 15 will be described.
As shown in FIG. 1 and FIGS. 2A and 2B, the secondary coil 14 and the resonant coil 15 are mounted on a common ferrite コ ア -shaped core 18. The secondary coil 14 and the resonant coil 15 respectively have an even number of planar secondary coils 19 and 20 and a plurality of planar resonant coils 21 to 23, and these planar secondary coils 19 and 20 The planar resonant coils 21 to 23 are alternately divided around the square-shaped core 18. Although the planar secondary coil is usually disposed between planar resonant coils, when the number of dispersedly disposed planar secondary coils is small, the planar secondary coil is disposed between adjacent planar resonant coils. In some cases, no secondary coil is disposed.

図3に示すように、平面状二次コイル19、20は、それぞれガラスエポキシ基板等の基板(第2の基板、プリント基板)24、25にΠ字状コア18が挿通される矩形のコア挿通孔26を形成し、基板24、25の片面(表面)にコア挿通孔26を中心として銅等で渦巻き状に導電パターン27、28を形成したものであり、平面状共振コイル21〜23は、それぞれガラスエポキシ基板等の基板(第1の基板、プリント基板)29〜31にΠ字状コア18が挿通される矩形のコア挿通孔32を形成し、基板29〜31の片面(表面)にコア挿通孔32を中心として銅等で渦巻き状に導電パターン33〜35を形成したものである。 As shown in FIG. 3, the planar secondary coils 19 and 20 each have a rectangular core through which the Π-shaped core 18 is inserted through a substrate (second substrate, printed substrate) 24 or 25 such as a glass epoxy substrate. Holes 26 are formed, and conductive patterns 27 and 28 are formed spirally on one surface (front surface) of the substrates 24 and 25 with copper or the like centering on the core insertion holes 26, and the planar resonant coils 21 to 23 are A rectangular core insertion hole 32 through which the Π-shaped core 18 is inserted is formed in a substrate (first substrate, printed substrate) 29-31 such as a glass epoxy substrate, and the core is formed on one side (surface) of the substrate 29-31. The conductive patterns 33 to 35 are formed in a spiral shape of copper or the like with the insertion hole 32 as a center.

まず、平面状二次コイル19、20を並列に接続するために、基板24、25には導電パターン27、28の外端及び内端に電気接続されたスルーホール36、37が平面視して同一位置(重なる位置)に設けられている。さらに、基板24、25の所定位置には平面視して重なる位置にスルーホール38が設けられており、スルーホール37、38の間は基板24、25の裏面で接続線39により電気接続されている。そして、平面状二次コイル19、20と交互に配置される平面状共振コイル21、22の基板29、30には、平面視してスルーホール36、38と重なる位置にスルーホール40、41が設けられている。また、最外層となる基板29には、スルーホール40、41に電気接続された端子42、43が設けられている。これにより、平面状二次コイル19、20と平面状共振コイル21〜23が交互に配置(積層)された状態で、平面状二次コイル19、20を並列に接続できると共に、最外層の基板29上で端子42、43を利用して簡単に電気接続を行うことができる。 First, in order to connect the planar secondary coils 19 and 20 in parallel, through holes 36 and 37 electrically connected to the outer end and the inner end of the conductive patterns 27 and 28 are planarly viewed on the substrates 24 and 25. It is provided at the same position (overlapping position). Furthermore, through holes 38 are provided at predetermined positions of the substrates 24 and 25 at overlapping positions in plan view, and the through holes 37 and 38 are electrically connected by connection wires 39 on the back surface of the substrates 24 and 25. There is. Then, in the substrates 29, 30 of the planar resonant coils 21, 22 alternately arranged with the planar secondary coils 19, 20, through holes 40, 41 are provided at positions overlapping with the through holes 36, 38 in plan view. It is provided. Further, terminals 42 and 43 electrically connected to the through holes 40 and 41 are provided on the substrate 29 which is the outermost layer. Thereby, the planar secondary coils 19 and 20 can be connected in parallel in a state in which the planar secondary coils 19 and 20 and the planar resonant coils 21 to 23 are alternately arranged (laminated), and the substrate of the outermost layer Electrical connections can be easily made on terminals 29 using terminals 42 and 43.

次に、平面状共振コイル21〜23を直列に接続するために、基板29には導電パターン33の内端に電気接続されたスルーホール44が設けられ、基板29の所定位置に設けられたスルーホール45と基板29の裏面で接続線46により電気接続されている。そして、基板30には平面視してスルーホール45と重なる位置に、導電パターン34の外端に電気接続されたスルーホール47が設けられている。また、基板30には導電パターン34の内端に電気接続されたスルーホール48が設けられ、基板30の所定位置に設けられたスルーホール49と基板30の裏面で接続線50により電気接続されている。そして、基板31には平面視してスルーホール49と重なる位置に、導電パターン35の外端に電気接続されたスルーホール51が設けられている。 Next, in order to connect planar resonance coils 21 to 23 in series, through hole 44 electrically connected to the inner end of conductive pattern 33 is provided on substrate 29, and the through provided at a predetermined position on substrate 29. The holes 45 and the back surface of the substrate 29 are electrically connected by connection wires 46. A through hole 47 electrically connected to the outer end of the conductive pattern 34 is provided on the substrate 30 at a position overlapping with the through hole 45 in plan view. Further, through hole 48 electrically connected to the inner end of conductive pattern 34 is provided in substrate 30, and through hole 49 provided at a predetermined position of substrate 30 is electrically connected with the back surface of substrate 30 by connection wire 50. There is. A through hole 51 electrically connected to the outer end of the conductive pattern 35 is provided on the substrate 31 at a position overlapping with the through hole 49 in plan view.

さらに、平面状二次コイル19の基板24には、平面視してスルーホール45、47と重なる位置にスルーホール52が設けられ、平面状二次コイル20の基板25には、平面視してスルーホール49、51と重なる位置にスルーホール53が設けられている。
また、平面状共振コイル23の基板31には、導電パターン35の内端に電気接続されたスルーホール54が設けられ、基板31の所定位置に設けられたスルーホール55と基板31の裏面で接続線56により電気接続されている。そして、平面状二次コイル19、20の基板24、25及び平面状共振コイル21、22の基板29、30にも、平面視してスルーホール55と重なる位置にスルーホール57が設けられている。さらに、最外層となる基板29には、導電パターン33の外端及びスルーホール57に電気接続された端子58、59が形成されている。これにより、平面状二次コイル19、20と平面状共振コイル21〜23が交互に配置(積層)された状態で、平面状共振コイル21〜23を直列に接続できると共に、最外層の基板29上で端子58、59を利用して簡単に電気接続を行うことができる。この実施の形態では、各平面状共振コイル及び各平面状二次コイルは密着状態で積層されているが、これらを隙間を有して積層することもできる。また、各基板のスルホールを連結する導体は、半田材の他、金属線を使用することもできる(他の実施の形態でも同じ)。
Furthermore, through holes 52 are provided in substrate 24 of planar secondary coil 19 at positions overlapping with through holes 45 and 47 in plan view, and substrate 25 of planar secondary coil 20 is viewed in plan. Through holes 53 are provided at positions overlapping the through holes 49 and 51.
Further, through hole 54 electrically connected to the inner end of conductive pattern 35 is provided in substrate 31 of planar resonance coil 23, and through hole 55 provided in a predetermined position of substrate 31 is connected with the back surface of substrate 31. It is electrically connected by a line 56. The through holes 57 are also provided at the positions overlapping the through holes 55 in the planar secondary coils 19 and 20 and the substrates 24 and 25 of the planar secondary coils 19 and 20 and the substrates 29 and 30 of the planar resonant coils 21 and 22 in plan view. . Further, terminals 58 and 59 electrically connected to the outer end of the conductive pattern 33 and the through holes 57 are formed on the substrate 29 which is the outermost layer. Thereby, while the planar secondary coils 19 and 20 and the planar resonant coils 21 to 23 are alternately arranged (laminated), the planar resonant coils 21 to 23 can be connected in series, and the outermost layer substrate 29 Electrical connections can easily be made using the terminals 58, 59 above. In this embodiment, the planar resonant coils and the planar secondary coils are stacked in a close contact state, but they may be stacked with a gap. In addition to the solder material, a metal wire can also be used as a conductor connecting through holes of each substrate (the same applies to the other embodiments).

なお、基板24、25、基板29〜31を積層する際に、各基板間は絶縁材(図示せず)で絶縁される。絶縁材の材質は適宜、選択することができるが、例えばカプトンフィルムが好適に用いられる。また、絶縁材の厚さは絶縁材の材質及び発生する電圧によって適宜、選択することができ、例えばカプトンフィルムの場合、厚さ25μmで20kVを絶縁することができる。
このように、平面状二次コイル19、20と平面状共振コイル21〜23を接近させて交互に配置することにより、二次コイル14と共振コイル15の結合度が高まるので、給電時の電流の漏れが少なくなり、無効電流を減らして、二次コイル14で効率よく電力を取り出すことが可能となる。また、平面状二次コイル19、20と平面状共振コイル21〜23が交互に配置されることにより、二次コイル14と共振コイル15に同程度の電流が流れるので、従来よりも共振コイル15に流れる電流を低減して発熱を抑制することができる。さらに、平面状二次コイル19、20が並列に接続され、平面状共振コイル21〜23が直列に接続されることにより、二次コイル14に流れる電流を大きくしながら、二次コイル14のインピーダンスを下げることができるので、二次コイル14から大電流を取り出しても、発熱を抑えることができる。
ここで、二次コイル及び共振コイルを構成する平面状二次コイル及び平面状共振コイルの数、導線パターンの巻き数、スルーホールの配置、端子の取り出し位置等は、適宜、選択することができる。なお、平面状二次コイル及び平面状共振コイルを構成する導線パターンの巻き方向は同一である必要があるが、右回りでも左回りでもよい。
When the substrates 24 and 25 and the substrates 29 to 31 are stacked, the respective substrates are insulated by an insulating material (not shown). The material of the insulating material can be appropriately selected, and for example, a Kapton film is suitably used. In addition, the thickness of the insulating material can be appropriately selected depending on the material of the insulating material and the voltage generated. For example, in the case of Kapton film, 20 kV can be insulated with a thickness of 25 μm.
In this manner, the degree of coupling between the secondary coil 14 and the resonant coil 15 is increased by alternately arranging the planar secondary coils 19 and 20 and the planar resonant coils 21 to 23 close to each other. Thus, the secondary coil 14 can efficiently extract power by reducing the reactive current. In addition, since the secondary coils 19 and 20 and the planar resonant coils 21 to 23 are alternately arranged, the same current flows through the secondary coil 14 and the resonant coil 15, so that the resonant coil 15 is more than the conventional one. It is possible to suppress the heat generation by reducing the current flowing to the Furthermore, by connecting the planar secondary coils 19 and 20 in parallel and connecting the planar resonant coils 21 to 23 in series, the impedance of the secondary coil 14 is increased while the current flowing through the secondary coil 14 is increased. Therefore, even if a large current is extracted from the secondary coil 14, heat generation can be suppressed.
Here, the number of planar secondary coils and planar resonant coils constituting the secondary coil and the resonant coil, the number of turns of the conductor pattern, the arrangement of the through holes, the take-out position of the terminal, etc. can be appropriately selected. . In addition, although the winding direction of the conducting-wire pattern which comprises a planar secondary coil and a planar resonant coil needs to be the same, it may be clockwise or counterclockwise.

以下に、平面状二次コイル及び平面状共振コイルの変形例について説明する。上記実施の形態では、基板の片面のみに渦巻き状の導線パターンを形成したが、基板の両面に渦巻き状の導線パターンを形成することもできる。
図4(A)、(B)、(C)に示すように、平面状コイル60は、ガラスエポキシ製の基板61にΠ字状コア18が挿通されるコア挿通孔62が形成され、基板61の両面にコア挿通孔62を中心として銅等で渦巻き状の導電パターン63a、63bが形成されたものである。この導電パターン63a、63bはスルーホール64を介して巻き方向が同一となるように連続的に形成されており、片面のみに導線パターンを形成する場合よりも巻き数を増やすことができる。また、導電パターン63a、63bの外端にはスルーホール65、66が設けられている。これにより、平面状コイル60を構成する導電パターン63a、63bの両端を基板61内で簡単に電気接続することができ、平面状二次コイル及び平面状共振コイルとして使用することができる。なお、導電パターンは、1本だけでなく、複数本を並列に同心円の渦巻き状に配置してもよい。また、基板61の厚さは例えば2〜5mm程度であり、導電パターン63a、63bの厚さは例えば0.5〜3mm程度である。
Below, the modification of a planar secondary coil and a planar resonant coil is demonstrated. In the above embodiment, although the spiral conductive wire pattern is formed only on one side of the substrate, the spiral conductive wire pattern may be formed on both sides of the substrate.
As shown in FIGS. 4A, 4B, and 4C, in the planar coil 60, a core insertion hole 62 through which the Π-shaped core 18 is inserted is formed in a substrate 61 made of glass epoxy. The conductive patterns 63a and 63b in a spiral shape are formed of copper or the like centering on the core insertion hole 62 on both surfaces thereof. The conductive patterns 63a and 63b are continuously formed through the through holes 64 so that the winding direction is the same, and the number of turns can be increased as compared with the case where the conductor pattern is formed on only one side. Through holes 65 and 66 are provided at the outer ends of the conductive patterns 63a and 63b. Thus, both ends of the conductive patterns 63a and 63b constituting the planar coil 60 can be easily electrically connected in the substrate 61, and can be used as a planar secondary coil and a planar resonant coil. Not only one conductive pattern, but a plurality of conductive patterns may be arranged in parallel in a concentric spiral pattern. The thickness of the substrate 61 is, for example, about 2 to 5 mm, and the thickness of the conductive patterns 63a and 63b is, for example, about 0.5 to 3 mm.

次に、給電部13及び受電部16の詳細について説明する。
図1に示すように、給電部13は給電側制御部67を有し、受電部16は電池17を充電する受電側制御部68を有している。この受電側制御部68の電源としては、搬送台車の電池が使用され、給電部13の電源は通常商用電源が使用される。
そして、給電側制御部67及び受電側制御部68には通信を相互に行う第1、第2の通信部69、70がそれぞれ接続されている。ここで、第1、第2の通信部69、70による通信には、各種通信信号を用いることができるが、無線信号が好ましく、特に光信号が好適に用いられる。例えば、光信号を用いる場合は、第1、第2の通信部69、70に発光部(例えば、LED)と受光部(例えば、フォトダイオード)をそれぞれ設けることにより、給電部13と受電部16との間で光信号を送受信することができる。なお、第1の通信部69から第2の通信部70に信号を送信する必要がなく、第2の通信部70から第1の通信部69のみに信号を送信する場合、第1の通信部69が受信機能のみを備え、第2の通信部70が送信機能のみを備えた構成とすることができる。よって、例えば、光信号を用いる場合は、第1の通信部69に受光部のみを設け、第2の通信部70に発光部のみを設ければよい。
Next, details of the power feeding unit 13 and the power receiving unit 16 will be described.
As shown in FIG. 1, the power supply unit 13 has a power supply side control unit 67, and the power reception unit 16 has a power reception side control unit 68 that charges the battery 17. As a power source of the power receiving side control unit 68, a battery of a transport carriage is used, and as a power source of the power feeding unit 13, a commercial power source is usually used.
The power supply side control unit 67 and the power reception side control unit 68 are connected to first and second communication units 69 and 70 that perform communication with each other. Here, although various communication signals can be used for communication by the first and second communication units 69 and 70, radio signals are preferable, and in particular, optical signals are suitably used. For example, in the case of using an optical signal, the power supply unit 13 and the power reception unit 16 can be provided by providing the light emitting unit (for example, LED) and the light receiving unit (for example, photodiode) in the first and second communication units 69 and 70, respectively. And can transmit and receive optical signals between them. When it is not necessary to transmit a signal from the first communication unit 69 to the second communication unit 70 and to transmit a signal from the second communication unit 70 to only the first communication unit 69, the first communication unit 69 can be configured to have only the reception function, and the second communication unit 70 can have only the transmission function. Thus, for example, in the case of using an optical signal, only the light receiving unit may be provided in the first communication unit 69, and only the light emitting unit may be provided in the second communication unit 70.

受電側制御部68は、電池17の充電電圧を測定する電圧計測手段71、電池17の充電電流を測定する電流計測手段72、及び受電部16(特に、共振コイル15)の作動温度を測定する温度計73を有しており、電圧計測手段71、電流計測手段72、及び温度計73で測定した電池17の充電電圧、充電電流、及び受電部16の作動温度の測定データが、第2の通信部70から第1の通信部69に送信される。このとき、受電側制御部68には、電圧計測手段71、電流計測手段72、及び温度計73で測定した測定データの信号を第2の通信部70と第1の通信部69との間で送受信可能な通信信号に変換(変調)するための信号処理手段(例えば、光信号処理手段等の無線信号処理手段)74が設けられている。また、給電側制御部67には、第2の通信部70から送信され第1の通信部69で受信した通信信号を変換(復調)して測定データの信号を取り出し、その測定データに基づいてインバータ11を制御する充電制御手段75が設けられている。 The power receiving side control unit 68 measures the operating temperature of the voltage measuring unit 71 that measures the charging voltage of the battery 17, the current measuring unit 72 that measures the charging current of the battery 17, and the power receiving unit 16 (in particular, the resonance coil 15). The measurement data of the charge voltage of the battery 17 measured by the voltage measurement means 71, the current measurement means 72, and the thermometer 73, the charge current, and the operating temperature of the power receiving unit 16 is second. The communication unit 70 transmits the first communication unit 69. At this time, the power reception side control unit 68 receives a signal of measurement data measured by the voltage measurement unit 71, the current measurement unit 72, and the thermometer 73 between the second communication unit 70 and the first communication unit 69. Signal processing means (for example, wireless signal processing means such as an optical signal processing means) 74 for converting (modulating) into communication signals that can be transmitted and received are provided. Further, the power supply side control unit 67 converts (demodulates) the communication signal transmitted from the second communication unit 70 and received by the first communication unit 69 to extract a signal of measurement data, and based on the measurement data Charge control means 75 for controlling the inverter 11 is provided.

この充電制御手段75は、充電電圧が規定電圧より低い時は、電池17への定電流制御を行い、充電電圧が規定電圧となった時は、電池17への定電圧制御を行う。このとき、規定電圧は通常電池の定格電圧の1.1〜1.15倍程度が好ましいが、本発明はこの数字に限定されるものではない。また、インバータ11の制御方式にはPWM制御が好適に用いられる。なお、インバータ11の電力は商用電源(例えば、三相交流)76を整流回路77で直流に変換することによって得られる。また、インバータ11の動作周波数は、可聴周波数を超える20〜100kHz程度が好ましいが、例えば85kHzにすれば小型化することができる。 The charge control means 75 performs constant current control on the battery 17 when the charge voltage is lower than the specified voltage, and performs constant voltage control on the battery 17 when the charge voltage becomes the specified voltage. At this time, it is preferable that the specified voltage is usually about 1.1 to 1.15 times the rated voltage of the battery, but the present invention is not limited to this number. Further, PWM control is suitably used as a control method of the inverter 11. The electric power of the inverter 11 is obtained by converting a commercial power supply (for example, three-phase alternating current) 76 into a direct current by the rectification circuit 77. The operating frequency of the inverter 11 is preferably about 20 to 100 kHz, which exceeds the audible frequency. However, for example, the frequency can be reduced to 85 kHz.

本実施の形態では、共振コイル15に共振用コンデンサ78が接続されることにより共振回路を構成しており、二次コイル15の出力は整流器79を介して負荷である電池17に接続されている。これにより、共振コイル15に大電流を流すことができるが、二次コイル14及び共振コイル15を構成する平面状二次コイル19、20及び平面状共振コイル21〜23が交互に配置され、二次コイル14と共振コイル15の結合度が高いため、二次コイル14及び共振コイル15を通過する磁束の量が同程度となり、従来に比べて共振コイル15に流れる電流を減らして二次コイル14に流れる電流を増加させることができ、電力を効率よく取り出して電池17を短時間で効率的に充電することができる。なお、共振回路の共振周波数は、インバータ11の発振周波数より大きいことが好ましいが、小さくすることもできる。 In the present embodiment, the resonance capacitor 78 is connected to the resonance coil 15 to constitute a resonance circuit, and the output of the secondary coil 15 is connected to the battery 17 which is a load via the rectifier 79. . Thereby, a large current can be supplied to the resonant coil 15, but the planar secondary coils 19 and 20 and the planar resonant coils 21 to 23 constituting the secondary coil 14 and the resonant coil 15 are alternately disposed, and Since the degree of coupling between the secondary coil 14 and the resonant coil 15 is high, the amount of magnetic flux passing through the secondary coil 14 and the resonant coil 15 becomes approximately the same, and the current flowing to the resonant coil 15 is reduced compared to the prior art. It is possible to increase the current flowing to the power source, efficiently extract the power, and efficiently charge the battery 17 in a short time. The resonant frequency of the resonant circuit is preferably larger than the oscillation frequency of the inverter 11, but can be reduced.

次に、一次コイル12周りと、二次コイル14及び共振コイル15周りについて説明する。
図1に示すように、一次コイル12が巻かれている一次側コア80は、二次側と同様のフェライト製のΠ字状コアである。なお、一次コイル12にはリッツ線が使用される。
そして、給電時に給電部13の一次コイル12に対し、隙間を有して受電部16の二次コイル14及び共振コイル15を配置した際に、一次側コア80の両側の端側磁極部81、82と二次側のΠ字状コア18の両側の端側磁極部83、84が対向する。
Next, the periphery of the primary coil 12 and the periphery of the secondary coil 14 and the resonant coil 15 will be described.
As shown in FIG. 1, the primary side core 80 around which the primary coil 12 is wound is a Π-shaped core made of ferrite similar to the secondary side. A litz wire is used for the primary coil 12.
Then, when the secondary coil 14 and the resonant coil 15 of the power receiving unit 16 are arranged with a gap with respect to the primary coil 12 of the power feeding unit 13 at the time of feeding, the end side magnetic pole portions 81 on both sides of the primary core 80, 82 and the end side magnetic pole parts 83 and 84 of the both sides of the secondary side square-shaped core 18 oppose each other.

従来の一次コイルや二次コイルでは、E形コアが用いられているが、E形コアの場合、両側の端側磁極部の間に中央磁極部が存在するため、隣り合う中央磁極部と端側磁極部との距離が短く、その間で磁束漏洩が発生し易い。よって、従来の非接触給電装置で効率的に充電を行うためには、一次コイル(給電部)と二次コイル(受電部)との距離を短くしなければならなかった。しかし、本実施の形態のΠ字状コア18の場合、中央磁極部が存在しないため、一次側の端側磁極部81、82と二次側の端側磁極部83、84との距離aが、端側磁極部83、84間の距離bより短ければ、磁束漏洩が発生しない。つまり、両側の端側磁極部83、84間の距離が、E形コアの中央磁極部と端側磁極部との距離よりも長い分、Π字状コア18内(端側磁極部83、84間)の磁束漏れが小さくなり、端側磁極部81、82と端側磁極部83、84との距離aが長くなっても充電の効率が下がり難く、実用性に優れる。 In the conventional primary coil and secondary coil, an E-shaped core is used, but in the case of an E-shaped core, the central magnetic pole portions exist between the end side magnetic pole portions on both sides. The distance to the side pole portion is short, and magnetic flux leakage is likely to occur therebetween. Therefore, in order to charge efficiently with the conventional non-contact electric power feeding apparatus, the distance between the primary coil (power feeding unit) and the secondary coil (power receiving unit) had to be shortened. However, in the case of the Π-shaped core 18 of the present embodiment, since the central magnetic pole portion does not exist, the distance a between the primary side end magnetic pole portions 81 and 82 and the secondary side end magnetic pole portions 83 and 84 is If the distance b between the end-side magnetic pole portions 83 and 84 is shorter, no magnetic flux leakage occurs. That is, the distance between the end side magnetic pole portions 83 and 84 on both sides is longer than the distance between the central magnetic pole portion and the end side magnetic pole portion of the E-shaped core. Leakage of the magnetic flux between the end side magnetic pole portions 81 and 82 and the end side magnetic pole portions 83 and 84 is reduced, and the efficiency of charging is not easily lowered, which is excellent in practicability.

なお、一次コイル12と、二次コイル14及び共振コイル15の巻き数は、電池17の電圧(要求される出力)等に応じて、適宜、選択することができるが、例えば、一次コイル12の巻き数を10〜30ターン程度とした場合、二次コイル14の巻き数は例えば5〜20ターン程度とし、共振コイル15の巻き数は例えば10〜50ターン程度とすることができる。この場合の、コイルに流す電流の電流密度は1〜2.5A/mm程度とするのが好ましいが、基板上にコイルを形成する場合は放熱を確保して、例えば、2.5Amm以上とすることもできる(以下の実施の形態においても同じ)。 The number of turns of the primary coil 12, the secondary coil 14 and the resonant coil 15 can be appropriately selected according to the voltage (the required output) of the battery 17, etc. For example, the number of turns of the primary coil 12 When the number of turns is approximately 10 to 30 turns, the number of turns of the secondary coil 14 can be, for example, approximately 5 to 20 turns, and the number of turns of the resonant coil 15 can be approximately 10 to 50 turns. In this case, the current density of the current supplied to the coil is preferably about 1 to 2.5 A / mm 2 , but in the case of forming the coil on the substrate, heat radiation is ensured, for example, 2.5 A mm 2 or more (The same applies to the following embodiments).

続いて、この非接触給電装置10の動作について説明する。
図1に示すように、所定位置に設置された給電部13に対し、受電部16を有する搬送台車(例えば、AGV)を移動させる。このとき、給電部13若しくは給電部13の近傍に近接センサ等のセンサ(図示せず)を設置しておき、受電部16(搬送台車)が所定の範囲(位置)に停止したことをセンサで検知した時に、給電部13及び受電部16が作動可能な状態となって、充電作業が開始する。
次に、電池17の充電電圧と充電電流が、電圧計測手段71と電流計測手段72で測定され、受電部16(共振コイル15)の作動温度が、温度計73で測定されて、それらの測定データ(信号)が信号処理手段74を介して第2の通信部70から通信信号として外部に放出される。放出された通信信号は第1の通信部69で受信され、充電制御手段75によって、各測定データ(信号)に復調される。
Subsequently, the operation of the non-contact power feeding device 10 will be described.
As shown in FIG. 1, a transport carriage (for example, an AGV) having a power reception unit 16 is moved with respect to the power supply unit 13 installed at a predetermined position. At this time, a sensor (not shown) such as a proximity sensor is installed near the power feeding unit 13 or the power feeding unit 13, and the sensor that the power receiving unit 16 (transport carriage) has stopped within a predetermined range (position) When detected, the power feeding unit 13 and the power receiving unit 16 become operable, and the charging operation starts.
Next, the charging voltage and the charging current of the battery 17 are measured by the voltage measuring means 71 and the current measuring means 72, and the operating temperature of the power receiving unit 16 (resonance coil 15) is measured by the thermometer 73 The data (signal) is emitted from the second communication unit 70 to the outside as a communication signal through the signal processing means 74. The released communication signal is received by the first communication unit 69 and demodulated by the charge control means 75 into measurement data (signals).

図5に示すように、電圧計測手段71によって検出された電圧(充電電圧V)が規定電圧(Vc)より低い場合は、電池17への定電流制御(CC領域)を行い、電池17の電圧が規定電圧となった場合は、電池17への定電圧制御(CV領域)を行う。なお、規定電圧としては電池17の定格電圧(Vs)より少し(例えば、5〜15%程度)高い範囲とすることが好ましい。
この仕上げ充電(CV領域)が完了した後、所定時間約10分(0〜20分が好ましい)が経過したら、充電完了の信号を受電部16(第2の通信部70)から給電部13(第1の通信部69)に送り、給電部13及び受電部16の動作を停止させて充電作業が完了する。
なお、定電流制御を行った後、タイマーを作動させて(即ち、タイマー制御により)定電圧(充電)制御を行って充電制御を完了してもよい。
また、電池17への充電電圧又は充電電流が平常値から外れて異常状態にある場合(予め設定した最大電圧値又は最大電流値を超えた場合)は、給電部13(インバータ11)を停止させ、警報(ランプ、ベル、その他の信号)を発することが好ましい。さらに、温度計73で測定された受電部16(共振コイル15)の作動温度が、予め設定した規定温度値を超えた場合に、給電側制御部67の指令によって、インバータ11の動作を停止させる、インバータの出力を減少させる、又はインバータの周波数を非共振周波数側にずらす等の動作を行うことが好ましい。このとき、複数の規定温度値を設定しておき、規定温度値に応じて段階的に動作を切り替えるようにしてもよい。
As shown in FIG. 5, when the voltage (charging voltage V) detected by the voltage measuring means 71 is lower than the specified voltage (Vc), the constant current control (CC region) to the battery 17 is performed, and the voltage of the battery 17 is When the voltage becomes a specified voltage, constant voltage control (CV region) to the battery 17 is performed. The specified voltage is preferably in a range slightly higher (for example, about 5 to 15%) than the rated voltage (Vs) of the battery 17.
After the finishing charge (CV region) is completed, when a predetermined time of about 10 minutes (0 to 20 minutes is preferred) elapses, a signal indicating the completion of charging is received from the power receiving unit 16 (second communication unit 70) to the power feeding unit 13 (second communication unit 70). Then, the operation of the power feeding unit 13 and the power receiving unit 16 is stopped to complete the charging operation.
Note that after performing constant current control, the timer may be operated (that is, timer control) to perform constant voltage (charge) control to complete charge control.
In addition, when the charging voltage or the charging current to the battery 17 deviates from the normal value and is in an abnormal state (when the preset maximum voltage value or the maximum current value is exceeded), the power supply unit 13 (inverter 11) is stopped. , Alarm (lamp, bell, other signal) preferably. Furthermore, when the operating temperature of the power reception unit 16 (resonance coil 15) measured by the thermometer 73 exceeds a preset specified temperature value, the operation of the inverter 11 is stopped by a command of the power supply control unit 67. It is preferable to perform operations such as reducing the output of the inverter or shifting the frequency of the inverter to the non-resonant frequency side. At this time, a plurality of prescribed temperature values may be set, and the operation may be switched in stages according to the prescribed temperature values.

次に、本発明の第2の実施の形態に係る非接触給電装置の一次コイル周りと、二次コイル及び共振コイル周りについて説明する。
図6において、第2の実施の形態における二次コイル85及び共振コイル86が、第1の実施の形態と異なる点は、二次コイル85を構成する複数の平面状二次コイル87、88及び共振コイル86を構成する平面状共振コイル89〜91が、Π字状コア18の周りにリッツ線を渦巻き状に巻いて形成されている点である。ここで、平面状二次コイル87、88及び平面状共振コイル89〜91は、いずれも電気接続のために二層巻としたが、これに限定されるものではない。なお、二次コイル及び共振コイルを構成する平面状二次コイル及び平面状共振コイルの数は、適宜、選択することができる。また、平面状二次コイル及び平面状共振コイルを形成するリッツ線の太さや巻き数は、それぞれに流れる電流の大きさや電池17の電圧(要求される出力)等に応じて、適宜、選択することができる。
本実施の形態では、平面状共振コイル89〜91の両側に、銅板の両面に絶縁層を形成した絶縁材92を配置した。これにより、平面状共振コイル89〜91と隣接する平面状二次コイル87、88との絶縁性を確保すると共に、放熱性を向上させて、平面状共振コイル89〜91の温度上昇を防止することができる。
なお、その他の構成や動作は第1の実施の形態と同様なので、説明を省略する。
Next, the periphery of the primary coil of the noncontact power feeding device according to the second embodiment of the present invention, and the periphery of the secondary coil and the resonant coil will be described.
6, the secondary coil 85 and the resonant coil 86 according to the second embodiment are different from those according to the first embodiment in that a plurality of planar secondary coils 87 and 88 constituting the secondary coil 85 and Planar resonant coils 89 to 91 constituting the resonant coil 86 are formed by spirally winding a litz wire around the Π-shaped core 18. Here, although the planar secondary coils 87 and 88 and the planar resonant coils 89 to 91 are both wound in two layers for electrical connection, the present invention is not limited to this. The number of planar secondary coils and planar resonant coils constituting the secondary coil and the resonant coil can be appropriately selected. Further, the thickness and the number of turns of the litz wire forming the planar secondary coil and the planar resonant coil are appropriately selected according to the magnitude of the current flowing in each and the voltage of the battery 17 (required output). be able to.
In the present embodiment, the insulating material 92 in which the insulating layers are formed on both sides of the copper plate is disposed on both sides of the planar resonant coils 89 to 91. Thus, the insulation between the planar resonant coils 89 to 91 and the planar secondary coils 87 and 88 adjacent to each other is secured, and the heat dissipation is improved to prevent the temperature rise of the planar resonant coils 89 to 91. be able to.
The other configurations and operations are similar to those of the first embodiment, and thus the description thereof is omitted.

以上、本発明の実施の形態を説明したが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。
例えば、上記実施の形態では、フェライト製のΠ字状コア及び一次側コアを用いたが、高周波特性がよく鉄損(渦電流損、ヒステリシス損)が少ないその他の材料で製造されたコアを使用することもできる。また、平面状二次コイル及び平面状共振コイルの一方を基板上に導電パターンで形成し、他方をリッツ線で形成してもよい。さらに、一次コイル側にも共振コイルを設けることができる。
なお、第1、第2の通信部における信号の媒体手段として、光以外に、電波や超音波を使用することも可能である。
また、前記実施の形態において、各基板に形成されたコイル(導電パターン)の連結はスルーホールで行っているが、リード線(例えば、リッツ線)を用いて行うこともできる。
As mentioned above, although embodiment of this invention was described, this invention is not limited to the structure as described in the above-mentioned embodiment in any way, It is considered within the range described in the claim. Other embodiments and modifications are also included.
For example, in the above embodiment, the ferrite Π-shaped core and the primary side core are used, but cores made of other materials having good high frequency characteristics and low iron loss (eddy current loss, hysteresis loss) are used You can also Alternatively, one of the planar secondary coil and the planar resonant coil may be formed on the substrate by a conductive pattern, and the other may be formed by a litz wire. Furthermore, a resonant coil can be provided also on the primary coil side.
In addition to radio waves, radio waves or ultrasonic waves can be used as medium means for signals in the first and second communication units.
Moreover, in the said embodiment, although the connection of the coil (conductive pattern) formed in each board | substrate is performed by the through hole, it can also carry out using a lead wire (for example, litz wire).

10:非接触給電装置、11:インバータ、12:一次コイル、13:給電部、14:二次コイル、15:共振コイル、16:受電部、17:電池、18:Π字状コア、19、20:平面状二次コイル、21〜23:平面状共振コイル、24、25:基板、26:コア挿通孔、27、28:導電パターン、29〜31:基板、32:コア挿通孔、33〜35:導電パターン、36〜38:スルーホール、39:接続線、40、41:スルーホール、42、43:端子、44、45:スルーホール、46:接続線、47〜49:スルーホール、50:接続線、51〜55:スルーホール、56:接続線、57:スルーホール、58、59:端子、60:平面状コイル、61:基板、62:コア挿通孔、63a、63b:導電パターン、64〜66:スルーホール、67:給電側制御部、68:受電側制御部、69、70:第1、第2の通信部、71:電圧計測手段、72:電流計測手段、73:温度計、74:信号処理手段、75:充電制御手段、76:商用電源、77:整流回路、78:共振用コンデンサ、79:整流器、80:一次側コア、81〜84:端側磁極部、85:二次コイル、86:共振コイル、87、88:平面状二次コイル、89〜91:平面状共振コイル、92:絶縁材 10: non-contact power feeding device, 11: inverter, 12: primary coil, 13: power feeding portion, 14: secondary coil, 15: resonant coil, 16: power receiving portion, 17: battery, 18: square core 19, 19 20: planar secondary coil, 21 to 23: planar resonant coil, 24, 25: substrate, 26: core insertion hole, 27, 28: conductive pattern, 29 to 31: substrate, 32: core insertion hole, 33 to 33 35: conductive pattern, 36 to 38: through hole, 39: connection line, 40, 41: through hole, 42, 43: terminal, 44, 45: through hole, 46: connection line, 47 to 49: through hole, 50 A connection wire, 51 to 55: through hole, 56: connection wire, 57: through hole, 58, 59: terminal, 60: planar coil, 61: substrate, 62: core insertion hole, 63a, 63b: conductive pattern, 64-6 : Through hole, 67: power supply side control unit, 68: power reception side control unit, 69, 70: first and second communication units, 71: voltage measurement means, 72: current measurement means, 73: thermometer, 74: Signal processing means 75: charge control means 76: commercial power supply 77: rectification circuit 78: resonance capacitor 79: rectifier 80: primary side core 81 to 84 end side magnetic pole part 85: secondary coil , 86: resonant coil, 87, 88: planar secondary coil, 89 to 91: planar resonant coil, 92: insulating material

Claims (7)

インバータを含む高周波電源から電力供給を受ける一次コイルを有する給電部と、前記一次コイルと電磁結合する二次コイル及び共振コイルを有する受電部とを備え、前記給電部から前記受電部に電力を供給する非接触給電装置であって、
前記二次コイル及び前記共振コイルは、共通のΠ字状コアに装着されており、前記共振コイルは、前記Π字状コアの周りに分割配置されて直列に接続された複数の平面状共振コイルを備え、前記二次コイルは、前記Π字状コアの周りに巻かれ、分割された前記平面状共振コイルの間に配置されていることを特徴とする非接触給電装置。
The power supply unit includes a power feeding unit having a primary coil that receives power supply from a high frequency power supply including an inverter, and a power receiving unit having a secondary coil and a resonant coil electromagnetically coupled to the primary coil. Contactless power supply device
The secondary coil and the resonant coil are mounted on a common Π-shaped core, and the resonant coils are divided around the Π-shaped core and connected in series to a plurality of planar resonant coils connected in series The non-contact power feeding device according to claim 1, wherein the secondary coil is disposed between the planar resonant coils divided and wound around the Π-shaped core.
請求項1記載の非接触給電装置において、前記二次コイルは、それぞれ並列に接続された偶数個の平面状二次コイルからなることを特徴とする非接触給電装置。 The noncontact power feeding device according to claim 1, wherein the secondary coil comprises an even number of planar secondary coils connected in parallel. 請求項2記載の非接触給電装置において、前記各平面状共振コイルは、第1の基板の片側又は両側に渦巻き状に形成された導電パターンで構成され、前記第1の基板には、該導電パターンの中央部を貫通し前記Π字状コアが挿通されるコア挿通孔が形成されていることを特徴とする非接触給電装置。 The non-contact power feeding device according to claim 2, wherein each of the planar resonant coils is formed of a conductive pattern formed in a spiral shape on one side or both sides of a first substrate, and the first substrate is made of the conductive pattern. The non-contact electric power supply characterized by forming the core insertion hole which penetrates the central part of a pattern, and the said square-shaped core is penetrated. 請求項3記載の非接触給電装置において、前記各平面状二次コイルは、第2の基板の片側又は両側に渦巻き状に形成された導電パターンで構成され、前記第2の基板には、該導電パターンの中央部を貫通し前記Π字状コアが挿通されるコア挿通孔が形成されていることを特徴とする非接触給電装置。 4. The noncontact power feeding device according to claim 3, wherein each of the planar secondary coils is formed of a conductive pattern formed in a spiral shape on one side or both sides of a second substrate, and the second substrate The non-contact electric power supply characterized by forming the core penetration hole which penetrates the central part of an electric conduction pattern, and the above-mentioned U-shaped core is penetrated. 請求項4記載の非接触給電装置において、前記第1の基板と隣り合う前記第1、第2の基板との間には絶縁材が配置されていることを特徴とする非接触給電装置。 5. The noncontact power feeding device according to claim 4, wherein an insulating material is disposed between the first substrate and the first and second substrates adjacent to each other. 請求項1〜5のいずれか1記載の非接触給電装置において、前記給電部は給電側制御部を、前記受電部は電池を充電する受電側制御部をそれぞれ有し、前記給電側制御部及び前記受電側制御部には通信を相互に行う第1、第2の通信部がそれぞれ接続され、前記受電側制御部は、前記電池の充電電圧を測定する電圧計測手段と、前記電池の充電電流を測定する電流計測手段とを有し、前記電圧計測手段で測定した前記充電電圧、及び前記電流計測手段で測定した前記充電電流の測定データを前記第2の通信部から前記第1の通信部に送信し、前記給電側制御部は、前記第1の通信部で受信した前記測定データに基づいて前記インバータのPWM制御を行い、前記充電電圧が規定電圧より低い時は、前記電池への定電流制御を行い、前記充電電圧が前記規定電圧となった時は、前記電池への定電圧制御を行う充電制御手段を有することを特徴とする非接触給電装置。 The non-contact power feeding device according to any one of claims 1 to 5, wherein the power feeding unit has a power feeding side control unit, and the power receiving unit has a power receiving side control unit for charging a battery, and the power feeding side control unit First and second communication units that mutually communicate with each other are connected to the power receiving side control unit, and the power receiving side control unit is a voltage measuring unit that measures a charging voltage of the battery, and a charging current of the battery Current measurement means for measuring the charge voltage measured by the voltage measurement means, and measurement data of the charge current measured by the current measurement means from the second communication unit to the first communication unit And the power supply side control unit performs PWM control of the inverter based on the measurement data received by the first communication unit, and when the charge voltage is lower than a specified voltage, Perform current control, and When but becomes the prescribed voltage is a non-contact power feeding apparatus characterized by having a charging control means for performing constant voltage control to the battery. 請求項6記載の非接触給電装置において、前記受電側制御部は、前記受電部の作動温度を測定する温度計を有し、該温度計で測定した前記受電部の前記作動温度の測定データを前記第2の通信部から前記第1の通信部に送信し、前記給電側制御部は、前記第1の通信部で受信した前記受電部の前記作動温度が、予め設定した規定温度値を超えた時に、前記インバータの動作を停止させる、前記インバータの出力を減少させる、又は前記インバータの周波数を非共振周波数側にずらすことを特徴とする非接触給電装置。 The non-contact power feeding device according to claim 6, wherein the power reception side control unit has a thermometer that measures an operating temperature of the power receiving unit, and measurement data of the operating temperature of the power receiving unit measured by the thermometer The second communication unit transmits to the first communication unit, and the power supply side control unit determines that the operating temperature of the power reception unit received by the first communication unit exceeds a preset specified temperature value. A non-contact power feeding device characterized in that the operation of the inverter is stopped, the output of the inverter is reduced, or the frequency of the inverter is shifted to a non-resonant frequency side.
JP2017202443A 2017-10-19 2017-10-19 Non-contact power supply device Pending JP2019075947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017202443A JP2019075947A (en) 2017-10-19 2017-10-19 Non-contact power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017202443A JP2019075947A (en) 2017-10-19 2017-10-19 Non-contact power supply device

Publications (1)

Publication Number Publication Date
JP2019075947A true JP2019075947A (en) 2019-05-16

Family

ID=66545245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017202443A Pending JP2019075947A (en) 2017-10-19 2017-10-19 Non-contact power supply device

Country Status (1)

Country Link
JP (1) JP2019075947A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11768505B2 (en) * 2019-02-07 2023-09-26 Universal City Studios Llc Ride system with dynamic ride vehicle configurations

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11768505B2 (en) * 2019-02-07 2023-09-26 Universal City Studios Llc Ride system with dynamic ride vehicle configurations

Similar Documents

Publication Publication Date Title
US10158256B2 (en) Contactless connector system tolerant of position displacement between transmitter coil and receiver coil and having high transmission efficiency
JP6371364B2 (en) Non-contact power supply device
JP6633857B2 (en) Power transmission device and wireless power transmission system
JP6490585B2 (en) Coil arrangement in a wireless power transfer system for low electromagnetic radiation
JP6262750B2 (en) System and method for inductance compensation in wireless power transfer
JP5240786B2 (en) Non-contact power feeding device
US10984946B2 (en) Reducing magnetic flux density proximate to a wireless charging pad
US9969282B2 (en) Systems and methods for thermal management in wireless power transfer
CN105720695B (en) Inductive wireless power transfer system
JP2017517866A (en) System and method for reducing emissions for a polarized coil system for wireless inductive power transfer
JP2017517866A5 (en)
JP2012143091A (en) Remotely and wirelessly driven charger
WO2013150785A1 (en) Coil unit, and power transmission device equipped with coil unit
JP5592241B2 (en) Power receiving device, power transmitting device, and wireless power transmission system
JP2015106581A (en) Power transmission coil unit and wireless power transmission device
WO2015122343A1 (en) Coil unit and power supply system provided therewith
JP5384195B2 (en) Non-contact power supply device
WO2013150784A1 (en) Coil unit, and power transmission device equipped with coil unit
CN105720699B (en) Inductive wireless power transfer system
JP2019075947A (en) Non-contact power supply device
JP2013055856A (en) Non-contact electric power supply device
US10693321B2 (en) Inductive power transfer using diverted magnetic field
JP2019170017A (en) Wireless power transmission system
KR102521855B1 (en) Wireless charging pad and wireless charging apparatus
US10084351B2 (en) Power feeding device