JP2013055837A - Voltage-balance correction circuit - Google Patents

Voltage-balance correction circuit Download PDF

Info

Publication number
JP2013055837A
JP2013055837A JP2011193584A JP2011193584A JP2013055837A JP 2013055837 A JP2013055837 A JP 2013055837A JP 2011193584 A JP2011193584 A JP 2011193584A JP 2011193584 A JP2011193584 A JP 2011193584A JP 2013055837 A JP2013055837 A JP 2013055837A
Authority
JP
Japan
Prior art keywords
battery
voltage
output
switching element
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011193584A
Other languages
Japanese (ja)
Inventor
Mamoru Kuraishi
守 倉石
Masaaki Suzuki
正彰 鈴木
Munetaka Yamamoto
宗隆 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2011193584A priority Critical patent/JP2013055837A/en
Priority to PCT/JP2012/004758 priority patent/WO2013035238A1/en
Publication of JP2013055837A publication Critical patent/JP2013055837A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a voltage-balance correction circuit, which corrects a voltage balance of a plurality of secondary batteries connected in series, that allows, in particular, reducing the number of circuit elements, shortening the processing time of overcurrent detection, and performing the overcurrent detection without delay.SOLUTION: A voltage-balance correction circuit for first and second batteries connected in series includes: a first switching element connected in parallel to the first battery; a second switching element connected in parallel to the second battery; an inductor that is disposed between the connection portion of the first and second batteries and the connection portion of the first and second switching elements, turns on the first switching element, charges electromagnetic energy by driving the first battery, turns on the second switching element, and charges the second battery by the electromagnetic energy; and control means that detects an overcurrent to the first and second switching elements, and then turns off the first and second switching elements when detecting the overcurrent.

Description

本発明は直列に接続された複数の二次電池の電圧バランスを補正する電圧バランス補正回路に関する。   The present invention relates to a voltage balance correction circuit that corrects the voltage balance of a plurality of secondary batteries connected in series.

今日、リチウムイオン電池やニッケル水素蓄電池等の二次電池は、所謂ハイブリットカーや電気自動車のみならず、フォークリフトや各種産業用機械のバックアップ電源等としても広く使用されている。したがって、このような用途に使用される二次電池には大きな出力が要求され、多数の電池を直列に接続して使用している。この場合、特に直列に接続された各電池の出力電圧が一致することが重要であり、このため電圧バランス補正回路が組み込まれている。   Nowadays, secondary batteries such as lithium ion batteries and nickel metal hydride storage batteries are widely used not only for so-called hybrid cars and electric vehicles, but also as backup power sources for forklifts and various industrial machines. Therefore, a large output is required for a secondary battery used for such an application, and a large number of batteries are connected in series. In this case, it is particularly important that the output voltages of the batteries connected in series match each other. For this reason, a voltage balance correction circuit is incorporated.

図5は直列に接続された2個の二次電池の電圧バランスを補正する際の電圧バランス補正回路の基本的な回路である。電池B1とB2は直列に接続され、インダクタLの一端を電池B1の負極端子と電池B2の正極端子に接続し、電池B1の正極端子とインダクタLの他端間にスイッチング素子S1を配設し、電池B2の負極端子とインダクLの他端間にスイッチング素子S2を配設して構成されている。   FIG. 5 is a basic circuit of a voltage balance correction circuit for correcting the voltage balance of two secondary batteries connected in series. The batteries B1 and B2 are connected in series, one end of the inductor L is connected to the negative terminal of the battery B1 and the positive terminal of the battery B2, and the switching element S1 is disposed between the positive terminal of the battery B1 and the other end of the inductor L. The switching element S2 is disposed between the negative terminal of the battery B2 and the other end of the inductor L.

スイッチング素子S1、S2には不図示の信号発生回路から制御信号が出力され、例えば電池B1の出力電圧が電池B2の出力電圧より高い時、先ずスイッチング素子S1をオンすると共にスイッチング素子S2をオフし、インダクタLに矢印(実線)方向の電流を流し、インダクタLに発生する誘導起電力によって電磁エネルギーを蓄積し、次にスイッチング素子S1をオフすると共にスイッチング素子S2をオンし、インダクタLに蓄積した電磁エネルギーによって電池B2を充電する。一方、電池B2の出力電圧が電池B1の出力電圧より高い時には、上記とは逆に、先にスイッチング素子S2をオンすると共にスイッチング素子S1をオフし、次にスイッチング素子S1をオンすると共にスイッチング素子S2をオフすることによって、インダクタLに矢印(点線)方向の電流を流し、インダクタLに蓄積した電磁エネルギーによって電池B1を充電する。   A control signal is output to the switching elements S1 and S2 from a signal generation circuit (not shown). For example, when the output voltage of the battery B1 is higher than the output voltage of the battery B2, the switching element S1 is first turned on and the switching element S2 is turned off. The current in the direction of the arrow (solid line) is passed through the inductor L, electromagnetic energy is accumulated by the induced electromotive force generated in the inductor L, and then the switching element S1 is turned off and the switching element S2 is turned on and accumulated in the inductor L. Battery B2 is charged by electromagnetic energy. On the other hand, when the output voltage of the battery B2 is higher than the output voltage of the battery B1, contrary to the above, the switching element S2 is first turned on and the switching element S1 is turned off, and then the switching element S1 is turned on and the switching element is turned on. By turning off S2, a current in the direction of the arrow (dotted line) flows through the inductor L, and the battery B1 is charged by the electromagnetic energy accumulated in the inductor L.

特許文献1は電圧バランス補正回路において、インダクタLに過電流が流れることを防止する回路を開示する。図6は特許文献1に開示するバランス補正回路の一例であり、上記電池B1、B2、インダクタL、スイッチング素子S1、S2以外に、スイッチング素子S1に並列に抵抗R1と副スイッチング素子S3の直列回路が接続され、またスイッチング素子S2に並列に抵抗R2と副スイッチング素子S4の直列回路が接続され、それぞれスイッチング素子S1、S2のバイパス回路を構成している。   Patent Document 1 discloses a circuit for preventing an overcurrent from flowing through an inductor L in a voltage balance correction circuit. FIG. 6 shows an example of a balance correction circuit disclosed in Patent Document 1. In addition to the batteries B1 and B2, the inductor L, and the switching elements S1 and S2, a series circuit of a resistor R1 and a sub-switching element S3 in parallel with the switching element S1. Are connected, and a series circuit of a resistor R2 and a sub-switching element S4 is connected in parallel to the switching element S2, thereby constituting bypass circuits of the switching elements S1 and S2, respectively.

また、コンパレータ20はインダクタLに過電流が流れることを防止するため、抵抗R1と副スイッチング素子S3との接続部の電圧と基準電圧V1を比較し、過電流の検知を行い、ゲートドライバD3を介して信号発生回路10に検知信号を出力する。同様に、コンパレータ21についても、抵抗R2と副スイッチング素子S4との接続部の電圧と基準電圧V2を比較し、過電流の検知を行い、ゲートドライバD4を介して信号発生回路10に検知信号を出力する。   Further, the comparator 20 compares the voltage at the connection between the resistor R1 and the sub switching element S3 with the reference voltage V1 in order to prevent the overcurrent from flowing through the inductor L, detects the overcurrent, and sets the gate driver D3. The detection signal is output to the signal generation circuit 10 via Similarly, the comparator 21 compares the voltage at the connection between the resistor R2 and the sub-switching element S4 with the reference voltage V2, detects an overcurrent, and sends a detection signal to the signal generation circuit 10 via the gate driver D4. Output.

尚、前述のように、スイッチング素子S1、S2には、信号発生回路10から前述の制御信号が対応するゲートドライバD1、D2を介して入力し、電池B1、B2の電圧バランスの補正を行っている。   As described above, the control signals are input to the switching elements S1 and S2 from the signal generation circuit 10 via the corresponding gate drivers D1 and D2, and the voltage balance of the batteries B1 and B2 is corrected. Yes.

特開2006−67742号公報JP 2006-67742 A

従来の電圧バランス補正回路では、上記のように副スイッチング素子S3、S4が必要であり、使用する回路素子が増加する。また、信号発生回路10から出力された制御信号に基づいて副スイッチング素子S3、S4を駆動し、抵抗R1と副スイッチング素子S3との接続部に発生する電圧を基準電圧V1と比較し、また抵抗R2と副スイッチング素子S4との接続部に発生する電圧を基準電圧V2と比較し、過電流検知を行う。このため、過電流検知が遅れる。   In the conventional voltage balance correction circuit, the sub-switching elements S3 and S4 are necessary as described above, and the number of circuit elements to be used increases. Further, the sub-switching elements S3 and S4 are driven based on the control signal output from the signal generating circuit 10, the voltage generated at the connection between the resistor R1 and the sub-switching element S3 is compared with the reference voltage V1, and the resistance The voltage generated at the connection portion between R2 and the sub switching element S4 is compared with the reference voltage V2, and overcurrent detection is performed. For this reason, overcurrent detection is delayed.

そこで、本発明は回路素子の数を減らすと共に、過電流検知の遅延の小さい電圧バランス補正回路を提供することを目的とする。   Accordingly, an object of the present invention is to provide a voltage balance correction circuit that reduces the number of circuit elements and has a small overcurrent detection delay.

上記課題は本発明によれば、直列に接続された第1、第2の電池と、上記第1の電池に並列に接続され、第1の制御信号によってオン、オフ駆動する単一の第1のスイッチング手段と、上記第2の電池に並列に接続され、第2の制御信号によってオン、オフ駆動する単一の第2のスイッチング手段と、上記第1、第2の電池の接続部と第1、第2のスイッチング手段の接続部間に配設され、上記第1のスイッチング手段をオンすると共に第2のスイッチング手段をオフすることによって上記第1の電池を駆動して電磁エネルギーを蓄積し、上記第2のスイッチング手段をオンすると共に第1のスイッチング手段をオフすることによって上記第2の電池を充電するインダクタと、該インダクタへの過電流を検出する過電流検出手段と、該過電流を検出すると上記第1、第2のスイッチング手段をオフする制御手段とを有する電圧バランス補正回路を提供することによって達成できる。すなわち、上記インダクタへの電磁エネルギーの蓄積の間、過電流検出手段がインダクタへの過電流を検出すると、上記第1又は第2のスイッチング素子をオフし、インダクタへの過電流の供給を停止し、少ないスイッチング素子によって過電流検出を行う。   According to the present invention, the first and second batteries connected in series and the first battery connected in parallel to the first battery and driven on and off by a first control signal are provided. Switching means, a single second switching means connected in parallel to the second battery and driven to be turned on and off by a second control signal, and a connection portion between the first and second batteries, and the second battery 1. It is disposed between the connecting portions of the first and second switching means, and turns on the first switching means and turns off the second switching means to drive the first battery to accumulate electromagnetic energy. An inductor for charging the second battery by turning on the second switching means and turning off the first switching means, an overcurrent detection means for detecting an overcurrent to the inductor, and the overcurrent Upon detection can be accomplished by providing a voltage balance correction circuit and a control means for turning off the first, second switching means. That is, when the overcurrent detection means detects an overcurrent to the inductor during the accumulation of electromagnetic energy in the inductor, the first or second switching element is turned off and the supply of the overcurrent to the inductor is stopped. Overcurrent detection is performed with a small number of switching elements.

また、上記課題は本発明によれば、上記制御手段は、過電流検出手段によって検出された過電流検出信号と第1、第2の制御信号によって上記第1、第2のスイッチング手段をオフする構成であり、遅延なく過電流検出を行うことができる。   Further, according to the present invention, the control means turns off the first and second switching means by the overcurrent detection signal detected by the overcurrent detection means and the first and second control signals. The configuration allows overcurrent detection without delay.

さらに、上記過電流検出手段は、第1、第2のスイッチング手段をオンすることによって変化する電位と予め設定された基準電位を比較して過電流検出を行い、回路素子を減らす構成である。   Further, the overcurrent detection means is configured to perform overcurrent detection by comparing a potential that changes by turning on the first and second switching means and a preset reference potential, thereby reducing circuit elements.

本発明によればスイッチング素子の数を増加させることなく、電圧バランス補正回路の過電流検知を行うことができる。また、制御信号の出力と同時に過電流検知を行い、電圧バランス補正回路の過電流検知の遅延を小さくすることができる。   According to the present invention, overcurrent detection of the voltage balance correction circuit can be performed without increasing the number of switching elements. Further, the overcurrent detection is performed simultaneously with the output of the control signal, and the delay of the overcurrent detection of the voltage balance correction circuit can be reduced.

本実施形態の電圧バランス補正回路の回路図である。It is a circuit diagram of the voltage balance correction circuit of this embodiment. 駆動信号発生回路の論理を説明する図である。It is a figure explaining the logic of a drive signal generation circuit. 電圧バランス補正回路の各部の電圧変化を示すタイムチャートである。It is a time chart which shows the voltage change of each part of a voltage balance correction circuit. タイムチャートに示す各部の位置を説明する回路図である。It is a circuit diagram explaining the position of each part shown in a time chart. 連続する2個の二次電池の電圧バランスを補正する基本的な回路図である。It is a basic circuit diagram which corrects the voltage balance of two continuous secondary batteries. 特許文献に開示するバランス補正回路の一例を示す図である。It is a figure which shows an example of the balance correction circuit disclosed by patent document.

以下、本発明の実施形態について、図面を参照しながら説明する。
図1は本実施形態の電圧バランス補正回路の回路図である。電池E1、E2は直列に多数の電池が接続された中の任意の2個の電池を示し、電池E1の正極端子には同じ構成の不図示の電池が接続され、電池E2の負極端子にも同じ構成の不図示の電池が接続されている。尚、電池E1、E2として、例えばリチウムイオン電池が使用されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a circuit diagram of a voltage balance correction circuit according to this embodiment. Batteries E1 and E2 represent any two batteries connected in series, and a battery (not shown) having the same configuration is connected to the positive terminal of the battery E1, and the negative terminal of the battery E2 is also connected to the negative terminal of the battery E2. A battery (not shown) having the same configuration is connected. As the batteries E1 and E2, for example, lithium ion batteries are used.

また、本実施形態のバランス補正回路では、2個のスイッチング素子SW1、SW2が使用され、スイッチング素子SW1、SW2の接続部にはインダクタLの一端が接続され、インダクタLの他端は上記電池E1の負極端子と電池E2の正極端子に接続されている。このスイッチング素子SW1、SW2と、インダクタLは、前述の図5において説明した場合と同様、電池E1とE2の電圧バランスの補正を行う。   Further, in the balance correction circuit of the present embodiment, two switching elements SW1 and SW2 are used, and one end of the inductor L is connected to the connection portion of the switching elements SW1 and SW2, and the other end of the inductor L is connected to the battery E1. Are connected to the positive terminal of the battery E2. The switching elements SW1 and SW2 and the inductor L correct the voltage balance of the batteries E1 and E2, as in the case described with reference to FIG.

尚、スイッチング素子SW1の他端と電池E1の正極端子間には抵抗RS1が接続され、スイッチング素子SW2の他端と電池E2の負極端子間には抵抗RS2が接続されている。   A resistor RS1 is connected between the other end of the switching element SW1 and the positive terminal of the battery E1, and a resistor RS2 is connected between the other end of the switching element SW2 and the negative terminal of the battery E2.

スイッチング素子SW1には駆動信号発生回路1から駆動信号が出力され、スイッチング素子SW1を駆動する。また、スイッチング素子SW2には駆動信号発生回路2から駆動信号が出力され、スイッチング素子SW2を駆動する。尚、上記スイッチング素子SW1、SW2をMOSFETで構成する場合、対応する駆動信号発生回路1又は2からゲート信号が対応するスイッチング素子SW1、SW2に出力される。   A drive signal is output from the drive signal generation circuit 1 to the switching element SW1 to drive the switching element SW1. In addition, a drive signal is output from the drive signal generation circuit 2 to the switching element SW2 to drive the switching element SW2. When the switching elements SW1 and SW2 are constituted by MOSFETs, gate signals are output from the corresponding drive signal generation circuit 1 or 2 to the corresponding switching elements SW1 and SW2.

駆動信号発生回路1は後述する論理を有するゲート回路で構成され、コンパレータ3から出力される遮断信号A1、及び後述する制御信号B1に基づいて駆動信号をスイッチング素子SW1に出力する。同様に、駆動信号発生回路2も上記と同じ論理を有するゲート回路で構成され、コンパレータ4から出力される遮断信号A2、及び後述する制御信号B2に基づいて駆動信号をスイッチング素子SW2に出力する。   The drive signal generation circuit 1 is configured by a gate circuit having logic described later, and outputs a drive signal to the switching element SW1 based on a cutoff signal A1 output from the comparator 3 and a control signal B1 described later. Similarly, the drive signal generation circuit 2 is also composed of a gate circuit having the same logic as described above, and outputs a drive signal to the switching element SW2 based on a cutoff signal A2 output from the comparator 4 and a control signal B2 described later.

コンパレータ3はインダクタLに流れる過電流を検出する回路であり、反転入力(+)には抵抗R11、R12、R21、R22で分圧された、抵抗R11とR12の接続部の電圧が印加され、非反転入力(−)にはスイッチング素子SW1と抵抗RS1の接続部の電圧が印加される。コンパレータ3は反転入力(+)に入力する電圧値を基準電圧とし、非反転入力(−)に入力する電圧値がこの基準電圧を超える場合、遮断信号A1(後述する“0”)を駆動信号発生回路1に出力する。   The comparator 3 is a circuit that detects an overcurrent flowing through the inductor L, and the voltage at the connection portion of the resistors R11 and R12 divided by the resistors R11, R12, R21, and R22 is applied to the inverting input (+). The voltage at the connection between the switching element SW1 and the resistor RS1 is applied to the non-inverting input (−). The comparator 3 uses the voltage value input to the inverting input (+) as a reference voltage, and when the voltage value input to the non-inverting input (−) exceeds the reference voltage, the comparator 3 outputs a cutoff signal A1 (“0” described later) as a drive signal Output to the generation circuit 1.

同様に、コンパレータ4もインダクタLに流れる過電流を検出する回路であり、非反転入力(−)には抵抗R11、R12、R21、R22で分圧された、抵抗R21とR22の接続部の電圧が印加され、反転入力(+)にはスイッチング素子SW2と抵抗RS2の接続部の電圧が印加される。コンパレータ4は非反転入力(−)に入力する電圧を基準電圧とし、反転入力(+)に入力する電圧が基準電圧を超える場合、遮断信号A2(後述する“0”)を駆動信号発生回路2に出力する。   Similarly, the comparator 4 is a circuit that detects an overcurrent flowing through the inductor L, and the voltage at the connection portion of the resistors R21 and R22 divided by the resistors R11, R12, R21, and R22 is applied to the non-inverting input (−). Is applied, and the voltage at the connection between the switching element SW2 and the resistor RS2 is applied to the inverting input (+). The comparator 4 uses the voltage input to the non-inverting input (−) as a reference voltage, and when the voltage input to the inverting input (+) exceeds the reference voltage, the comparator 4 generates a cutoff signal A2 (“0” to be described later) as the drive signal generation circuit 2. Output to.

図2は上記駆動信号発生回路1の回路論理を説明する図である。所謂アンド(AND)論理であり、遮断信号A1が“0”である時、制御信号B1が“0”であっても “1”であっても、スイッチング素子SW1に駆動信号を出力しない。一方、遮断信号A1が“1”である時、制御信号B1に従ってスイッチング素子SW1に駆動信号を出力する。   FIG. 2 is a diagram for explaining the circuit logic of the drive signal generating circuit 1. This is so-called AND logic, and when the cutoff signal A1 is “0”, no drive signal is output to the switching element SW1 regardless of whether the control signal B1 is “0” or “1”. On the other hand, when the cutoff signal A1 is “1”, a drive signal is output to the switching element SW1 according to the control signal B1.

駆動信号発生回路2の回路論理も同様であり、遮断信号A2が“0”である時、制御信号B2が“0”であっても “1”であっても、スイッチング素子SW2に駆動信号を出力しない。一方、遮断信号A2が“1”である時、制御信号B2に従ってスイッチング素子SW2に駆動信号を出力する。   The circuit logic of the drive signal generation circuit 2 is the same. When the cutoff signal A2 is “0”, the drive signal is sent to the switching element SW2 regardless of whether the control signal B2 is “0” or “1”. Do not output. On the other hand, when the cutoff signal A2 is “1”, a drive signal is output to the switching element SW2 according to the control signal B2.

尚、制御信号B1、B2は不図示の比較回路から供給される信号であり、電池E1の出力電圧とE2の出力電圧を比較し、比較結果に従った制御信号B1、B2が比較回路から対応する駆動信号発生回路1又は2に出力される。   The control signals B1 and B2 are signals supplied from a comparison circuit (not shown), the output voltage of the battery E1 is compared with the output voltage of E2, and the control signals B1 and B2 according to the comparison result correspond from the comparison circuit. Is output to the drive signal generation circuit 1 or 2.

次に、本例の過電流保護の回路動作を説明する。
図3は上記電圧バランス補正回路の各部の電圧変化を示すタイムチャートである。また、図4は上記タイムチャートに示す回路の計測位置を示す。尚、両図に示す「n11」は前述の抵抗R11とR12の接続部の電位を示し、「n21」は前述の抵抗R21とR22の接続部の電位を示す。また、「n12」は前述のスイッチング素子SW1と抵抗RS1の接続部の電位を示し、「n22」は前述のスイッチング素子SW2と抵抗RS2の接続部の電位を示す。また「n13」はコンパレータ3の出力を示し、「n23」はコンパレータ4の出力を示し、「n14」は駆動信号発生回路1に入力する制御信号を示し、「n24」は駆動信号発生回路2に入力する制御信号を示す。さらに、「n15」は駆動信号発生回路1の出力を示し、「n25」は駆動信号発生回路2の出力を示す。
Next, the circuit operation of the overcurrent protection of this example will be described.
FIG. 3 is a time chart showing the voltage change of each part of the voltage balance correction circuit. FIG. 4 shows the measurement position of the circuit shown in the time chart. Note that “n11” shown in both figures indicates the potential at the connection between the resistors R11 and R12, and “n21” indicates the potential at the connection between the resistors R21 and R22. “N12” indicates the potential at the connection between the switching element SW1 and the resistor RS1, and “n22” indicates the potential at the connection between the switching element SW2 and the resistor RS2. “N13” indicates the output of the comparator 3, “n23” indicates the output of the comparator 4, “n14” indicates a control signal input to the drive signal generation circuit 1, and “n24” indicates the drive signal generation circuit 2. Indicates the control signal to be input. Further, “n15” indicates the output of the drive signal generation circuit 1, and “n25” indicates the output of the drive signal generation circuit 2.

尚、図3に示すタイムチャートは、電池E1の出力電圧が電池E2の出力電圧より高い場合の例であり、この場合制御信号「n14」が先に出力され、次に制御信号「n24」が出力される。   3 is an example when the output voltage of the battery E1 is higher than the output voltage of the battery E2. In this case, the control signal “n14” is output first, and then the control signal “n24” is output. Is output.

先ず、図3に示すtのタイミングにおいて、制御信号「n14」及び「n24」は出力されておらず、スイッチング素子SW1及びSW2はオフ状態である。また、抵抗R11とR12の接続点の電位「n11」及び、抵抗R21とR22の接続点の電位「n21」は、電池E1と電池E2の出力電圧の和を抵抗R11、R12、R21、R22で分圧した電圧に設定され、「n11」は抵抗R11とR12の接続部の電圧(基準電圧)に設定され、「n21」は抵抗R21とR22の接続部の電圧(基準電圧)に設定されている。したがって、この時コンパレータ3の反転入力(+)には上記「n11」の電圧が印加され、コンパレータ4の非反転入力(−)には上記「n21」の電圧が印加される。 First, at the timing of t 0 shown in FIG. 3, the control signal "n14" and "n24" has not been outputted, the switching elements SW1 and SW2 are off. The potential “n11” at the connection point between the resistors R11 and R12 and the potential “n21” at the connection point between the resistors R21 and R22 are the sum of the output voltages of the battery E1 and the battery E2 at the resistors R11, R12, R21, and R22. The divided voltage is set, “n11” is set to the voltage (reference voltage) at the connection between the resistors R11 and R12, and “n21” is set to the voltage (reference voltage) at the connection between the resistors R21 and R22. Yes. Therefore, at this time, the voltage “n11” is applied to the inverting input (+) of the comparator 3, and the voltage “n21” is applied to the non-inverting input (−) of the comparator 4.

ここで、コンパレータ3の非反転入力(−)には、抵抗RS1を介して電池E1の正極端子の電圧が印加され、コンパレータ3の出力「n13」は“1”(Hレベル)である。また、コンパレータ4の反転入力(+)には、抵抗RS2を介して電池E2の負極端子の電圧が印加され、コンパレータ3の出力「n23」も“1”である。   Here, the voltage of the positive terminal of the battery E1 is applied to the non-inverting input (−) of the comparator 3 via the resistor RS1, and the output “n13” of the comparator 3 is “1” (H level). Further, the voltage at the negative terminal of the battery E2 is applied to the inverting input (+) of the comparator 4 via the resistor RS2, and the output “n23” of the comparator 3 is also “1”.

その後、図3に示すtのタイミングで、制御信号「n14」が駆動信号発生回路1に出力されると、駆動信号発生回路1は前述の図2に示す論理に従って出力信号「n15」を出力する。すなわち、コンパレータ3からの出力「n13」は上記のように“1”(遮断信号A1が“1”)であり、制御信号「n14」も“1”(制御信号B1も“1”)となるので、駆動信号発生回路1の出力信号「n15」が“1”となり、スイッチング素子SW1をオンする。 After that, when the control signal “n14” is output to the drive signal generation circuit 1 at the timing t 1 shown in FIG. 3, the drive signal generation circuit 1 outputs the output signal “n15” according to the logic shown in FIG. To do. That is, the output “n13” from the comparator 3 is “1” (the cutoff signal A1 is “1”) as described above, and the control signal “n14” is also “1” (the control signal B1 is also “1”). Therefore, the output signal “n15” of the drive signal generating circuit 1 becomes “1”, and the switching element SW1 is turned on.

スイッチング素子SW1がオンすると、抵抗RS1を介してインダクタLに電流が流れ、インダクタLに電磁エネルギーが蓄積する。その後、抵抗RS1の一端の「n12」の電位は序々に低下し、例えば図3に示すtのタイミングで、「n11」の基準電圧より低くなる。基準電圧「n11」は、インダクタLへの電磁エネルギーの蓄積の上限に対応して設定されており、これ以上のインダクタLへの電流供給を停止するものである。すなわち、抵抗RS1の一端の電位「n12」が基準電圧「n11」より低くなると、コンパレータ3の反転入力(+)側の電位が、非反転入力(−)側の電位より高くなり、コンパレータ3の出力「n13」が “1”から“0”(Lレベル)に変わる。 When the switching element SW1 is turned on, a current flows through the inductor L via the resistor RS1, and electromagnetic energy is accumulated in the inductor L. Thereafter, the potential of the "n12" end of the resistor RS1 is gradually decreases, for example, at timing t 2 shown in FIG. 3, becomes lower than the reference voltage of the "n11". The reference voltage “n11” is set corresponding to the upper limit of the accumulation of electromagnetic energy in the inductor L, and stops the current supply to the inductor L beyond this. That is, when the potential “n12” at one end of the resistor RS1 becomes lower than the reference voltage “n11”, the potential on the inverting input (+) side of the comparator 3 becomes higher than the potential on the non-inverting input (−) side. The output “n13” changes from “1” to “0” (L level).

このため、駆動信号発生回路1の出力「n15」は図2に示す論理に従って“0”となり、スイッチング素子SW1をオフする。したがって、以後過電流がインダクタLに供給されることがなく、インダクタLへの過剰な電磁エネルギーの蓄積を防止する。また、この時、駆動信号発生回路1からの出力「n15」は制御信号「n14」の出力を直接使用して決定され、他に回路(例えば、制御信号がコンパレータ等の回路)を介して決定されないため、インダクタLへの過電流の供給を直ちに停止することができる。   For this reason, the output “n15” of the drive signal generating circuit 1 becomes “0” according to the logic shown in FIG. 2, and the switching element SW1 is turned off. Therefore, thereafter, no overcurrent is supplied to the inductor L, and accumulation of excessive electromagnetic energy in the inductor L is prevented. At this time, the output “n15” from the drive signal generation circuit 1 is determined by directly using the output of the control signal “n14”, and is determined through another circuit (for example, the control signal is a circuit such as a comparator). Therefore, the supply of overcurrent to the inductor L can be stopped immediately.

次に、図3に示すtのタイミングで制御信号「n24」が駆動信号発生回路2に出力されると、駆動信号発生回路2は図2に示す論理に従って、出力「n25」を“1”として、駆動信号をスイッチング素子SW2に供給する。すなわち、この時コンパレータ4からの出力「n23」は前述のように“1”であり、制御信号「n24」も“1”となるので、図2に示す論理に従って、駆動信号発生回路2から駆動信号をスイッチング素子SW2に出力する。 Next, when the control signal "n24" at timing t 3 when 3 is output to the drive signal generating circuit 2, a drive signal generation circuit 2 according to the logic shown in FIG. 2, the output "n25""1" As a driving signal is supplied to the switching element SW2. That is, at this time, the output “n23” from the comparator 4 is “1” as described above, and the control signal “n24” is also “1”, so that the drive signal generation circuit 2 drives according to the logic shown in FIG. A signal is output to the switching element SW2.

このため、スイッチング素子SW2は直ちにオンし、スイッチング素子SW2、抵抗RS2、電池E2、インダクタLの閉回路を形成し、インダクタLに蓄積された電磁エネルギーによって電池E2を充電する。この充電によって抵抗RS2の一端の電位「n22」は序々に上昇し、例えば図3に示すtのタイミングで、「n21」の基準電圧より高くなる。この基準電圧「n21」は前述の過電流に対応して、インダクタLから電池E2への電磁エネルギーの供給終了時間に対応しており、以後電池E2による無駄な放電を防止する。 Therefore, the switching element SW2 is immediately turned on to form a closed circuit of the switching element SW2, the resistor RS2, the battery E2, and the inductor L, and the battery E2 is charged by the electromagnetic energy accumulated in the inductor L. This potential "n22" end of the resistor RS2 by charging increased to gradually, for example, at timing t 4 when 3, becomes higher than the reference voltage of the "n21". This reference voltage “n21” corresponds to the above-described overcurrent, and corresponds to the supply end time of electromagnetic energy from the inductor L to the battery E2, and prevents unnecessary discharge by the battery E2 thereafter.

したがって、抵抗RS2の一端の電位「n22」が基準電圧「n21」より高くなると、コンパレータ4の反転入力(+)側の電位が、非反転入力(−)側の電位より高くなり、コンパレータ4の出力「n23」が “1”から“0”に変わる。このため、駆動信号発生回路2の出力「n25」は図2に示す論理に従って“0”となり、スイッチング素子SW2をオフする。したがって、以後電池E2への充電処理は停止する。また、この時、駆動信号発生回路2からの出力信号「n25」は制御信号「n24」の出力を直接使用して決定され、他に回路(例えば、制御信号がコンパレータ等の回路)を介して決定されないため、直ちに上記閉回路を開放することができる。   Therefore, when the potential “n22” at one end of the resistor RS2 becomes higher than the reference voltage “n21”, the potential on the inverting input (+) side of the comparator 4 becomes higher than the potential on the non-inverting input (−) side. The output “n23” changes from “1” to “0”. For this reason, the output “n25” of the drive signal generation circuit 2 becomes “0” according to the logic shown in FIG. 2, and the switching element SW2 is turned off. Therefore, the charging process for the battery E2 is stopped thereafter. At this time, the output signal “n25” from the drive signal generation circuit 2 is determined by directly using the output of the control signal “n24”, and other circuit (for example, the control signal is a circuit such as a comparator). Since it is not determined, the closed circuit can be opened immediately.

以後、図3に示すtのタイミングで制御信号「n14」が再度出力され、前述と同様、図2に示す論理に従って、駆動信号発生回路1の出力「n15」が“1”となり、スイッチング素子SW1をオンし、抵抗RS1を介してインダクタLに電磁エネルギーを蓄積する。その後、tのタイミングでインダクタLへの電磁エネルギーの蓄積を停止し、更にtのタイミングで出力される制御信号「n24」によって、インダクタLに蓄積された電磁エネルギーを使用して電池E2を充電する。 Thereafter, the output control signal "n14" at the timing t 5 shown in FIG. 3 again, in the same manner as described above, according to the logic shown in FIG. 2, the drive signal output "n15" is "1" and the generating circuit 1, the switching element SW1 is turned on, and electromagnetic energy is accumulated in the inductor L via the resistor RS1. Thereafter, the storage of the electromagnetic energy in the inductor L is stopped at the timing of t 6 , and the battery E 2 is installed using the electromagnetic energy stored in the inductor L by the control signal “n 24” output at the timing of t 7. Charge.

以後、上記処理を繰り返し、電池E1によって電池E2を充電し、電池E1の出力電圧と電池E2の出力電圧が一致するまで上記処理が繰り返される。またこの間、インダクタLへの電磁エネルギーの蓄積はコンパレータ3及び4の働きによって、過電流が発生しないように制御され、電池E1とE2の電圧バランスの補正処理が行なわれる。   Thereafter, the above process is repeated, the battery E2 is charged by the battery E1, and the above process is repeated until the output voltage of the battery E1 matches the output voltage of the battery E2. During this time, the accumulation of electromagnetic energy in the inductor L is controlled by the functions of the comparators 3 and 4 so that no overcurrent is generated, and the voltage balance correction process for the batteries E1 and E2 is performed.

また、本実施形態によれば、駆動信号発生回路1からの出力「n15」は制御信号「n14」の出力を直接使用して決定され、他に回路を介して決定されないため、インダクタLへの過電流の供給を直ちに停止することができる。   Further, according to the present embodiment, the output “n15” from the drive signal generation circuit 1 is determined by directly using the output of the control signal “n14”, and is not determined via any other circuit. The overcurrent supply can be stopped immediately.

尚、上記実施形態の説明は、電池E1の出力電圧が電池E2の出力電圧より高い場合の例であり、制御信号「n14」が先に出力され、次に制御信号「n24」が出力される場合について説明したが、電池E1の出力電圧が電池E2の出力電圧より低い場合には、制御信号「n24」が先に出力され、次に制御信号「n24」が出力される制御となる。   The above embodiment is an example in the case where the output voltage of the battery E1 is higher than the output voltage of the battery E2, and the control signal “n14” is output first, and then the control signal “n24” is output. As described above, when the output voltage of the battery E1 is lower than the output voltage of the battery E2, the control signal “n24” is output first, and then the control signal “n24” is output.

また、上記実施形態の説明では、直列に接続された電池E1とE2の電圧バランス補正処理に関連して過電流の検出を行ったが、電池E1とE2は直列に多数の電池が接続された中の任意の2個の電池を示すものであり、他の連続する2個の電池の電圧バランス補正についても同様に実施することができる。   In the description of the above embodiment, overcurrent detection is performed in connection with the voltage balance correction processing of the batteries E1 and E2 connected in series. However, the batteries E1 and E2 are connected to a number of batteries in series. Any two batteries are shown, and the voltage balance correction of the other two consecutive batteries can be similarly performed.

さらに、上記実施形態の説明では、電池E1、E2としてリチウムイオン電池の例で説明したが、ニッケル水素蓄電池やニッケルカドミウム蓄電池等であってもよい。   Furthermore, in the description of the above embodiment, the example of the lithium ion battery has been described as the batteries E1 and E2, but a nickel hydride storage battery, a nickel cadmium storage battery, or the like may be used.

1、2・・駆動信号発生回路
3、4・・コンパレータ
E1、E2・・電池
R11、R12、R21、R22・・抵抗
RS1、RS2・・抵抗
SW1、SW2・・スイッチング素子
L・・インダクタ
1,... Driving signal generation circuit 3, 4... Comparator E 1, E 2 .. Battery R 11, R 12, R 21, R 22... Resistance RS 1, RS 2.

Claims (3)

直列に接続された第1、第2の電池と、
前記第1の電池に並列に接続され、第1の制御信号によってオン、オフ駆動する単一の第1のスイッチング手段と、
前記第2の電池に並列に接続され、第2の制御信号によってオン、オフ駆動する単一の第2のスイッチング手段と、
前記第1、第2の電池の接続部と前記第1、第2のスイッチング手段の接続部間に配設され、前記第1のスイッチング手段をオンすると共に前記第2のスイッチング手段をオフすることによって前記第1の電池を駆動して電磁エネルギーを蓄積し、前記第2のスイッチング手段をオンすると共に前記第1のスイッチング手段をオフすることによって前記第2の電池を充電するインダクタと、
前記インダクタへの過電流を検出する過電流検出手段と、
該過電流を検出すると前記第1、第2のスイッチング手段をオフする制御手段と、
を有することを特徴とする電圧バランス補正回路。
First and second batteries connected in series;
A single first switching means connected in parallel to the first battery and driven to be turned on and off by a first control signal;
A single second switching means connected in parallel to the second battery and driven on and off by a second control signal;
It is arranged between the connection part of the first and second batteries and the connection part of the first and second switching means, and turns on the first switching means and turns off the second switching means. An inductor that drives the first battery to store electromagnetic energy and charges the second battery by turning on the second switching means and turning off the first switching means;
Overcurrent detection means for detecting an overcurrent to the inductor;
Control means for turning off the first and second switching means when detecting the overcurrent;
A voltage balance correction circuit comprising:
前記制御手段は、前記過電流検出手段によって検出された過電流検出信号と前記第1、第2の制御信号によって前記第1、第2のスイッチング手段をオフすることを特徴とする請求項1に記載の電圧バランス補正回路。   2. The control unit according to claim 1, wherein the control unit turns off the first and second switching units based on an overcurrent detection signal detected by the overcurrent detection unit and the first and second control signals. The voltage balance correction circuit described. 前記過電流検出手段は、前記第1、第2のスイッチング手段をオンすることによって変化する電位と予め設定された基準電位を比較して過電流検出を行なうことを特徴とする請求項1、又は2に記載の電圧バランス補正回路。   The overcurrent detection means performs overcurrent detection by comparing a potential that changes by turning on the first and second switching means with a preset reference potential, or 2. The voltage balance correction circuit according to 2.
JP2011193584A 2011-09-06 2011-09-06 Voltage-balance correction circuit Pending JP2013055837A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011193584A JP2013055837A (en) 2011-09-06 2011-09-06 Voltage-balance correction circuit
PCT/JP2012/004758 WO2013035238A1 (en) 2011-09-06 2012-07-26 Voltage balance correction circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011193584A JP2013055837A (en) 2011-09-06 2011-09-06 Voltage-balance correction circuit

Publications (1)

Publication Number Publication Date
JP2013055837A true JP2013055837A (en) 2013-03-21

Family

ID=46758986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011193584A Pending JP2013055837A (en) 2011-09-06 2011-09-06 Voltage-balance correction circuit

Country Status (2)

Country Link
JP (1) JP2013055837A (en)
WO (1) WO2013035238A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021059949A1 (en) * 2019-09-25 2021-04-01 パナソニックIpマネジメント株式会社 Energy transfer circuit, and electricity storage system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3014612B1 (en) 2013-12-10 2015-12-04 IFP Energies Nouvelles SYSTEM AND METHOD FOR BALANCING THE LOAD OF A PLURALITY OF ENERGY STORAGE MODULES
FR3024804B1 (en) 2014-08-05 2016-09-02 Ifp Energies Now SYSTEM FOR BALANCING THE CELL LOAD OF AN ELECTRIC ENERGY STORAGE SYSTEM
JP6398931B2 (en) * 2015-09-25 2018-10-03 株式会社オートネットワーク技術研究所 In-vehicle power supply device and control method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19526836A1 (en) * 1995-07-22 1997-01-23 Fraunhofer Ges Forschung Charge balancing device between a plurality of energy stores or converters
US5982142A (en) * 1998-05-22 1999-11-09 Vanner, Inc. Storage battery equalizer with improved, constant current output filter, overload protection, temperature compensation and error signal feedback
DE102010001423A1 (en) * 2010-02-01 2011-08-04 SB LiMotive Company Ltd., Kyonggi Battery with inductive cell balancing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4140585B2 (en) 2004-08-27 2008-08-27 Fdk株式会社 Balance correction device for secondary batteries connected in series and correction method thereof
JP5428961B2 (en) 2010-03-12 2014-02-26 ダイキン工業株式会社 Overcurrent protection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19526836A1 (en) * 1995-07-22 1997-01-23 Fraunhofer Ges Forschung Charge balancing device between a plurality of energy stores or converters
US5982142A (en) * 1998-05-22 1999-11-09 Vanner, Inc. Storage battery equalizer with improved, constant current output filter, overload protection, temperature compensation and error signal feedback
DE102010001423A1 (en) * 2010-02-01 2011-08-04 SB LiMotive Company Ltd., Kyonggi Battery with inductive cell balancing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021059949A1 (en) * 2019-09-25 2021-04-01 パナソニックIpマネジメント株式会社 Energy transfer circuit, and electricity storage system

Also Published As

Publication number Publication date
WO2013035238A1 (en) 2013-03-14

Similar Documents

Publication Publication Date Title
JP6134520B2 (en) Balance correction device and power storage device
JP5717217B2 (en) Power storage device
US8680814B2 (en) Battery charger and battery charging method
EP2685592A1 (en) Balance correction device and electricity storage system
JP2013013268A (en) Cell balancing apparatus
CN108494041B (en) Balance correction device and power storage system
JPWO2014045659A1 (en) Secondary battery pack and authentication method
WO2013111410A1 (en) Battery cell voltage equalisation circuit
JP2009081949A (en) Device for protecting battery pack and battery pack system including the device
JP2013055837A (en) Voltage-balance correction circuit
JP5187407B2 (en) Auxiliary battery charger
JP5744598B2 (en) Balance correction device and power storage system
JP2016040999A (en) Charged state equalization method of storage battery device
US20150377973A1 (en) Voltage monitoring device
JP6115446B2 (en) Full charge capacity calculation device
JP2016090366A (en) Irregularity detection circuit
JP6428775B2 (en) Battery system and battery system control method
JP5718702B2 (en) Balance correction device and power storage system
JP2016154423A (en) Voltage balance device
JP5577057B2 (en) In-vehicle charger
JP2013115882A (en) Voltage balance correction circuit
JP2017147887A (en) Power source system
JP6380012B2 (en) Power storage device and method of connecting power storage device
CN114726062B (en) Battery charging equalization control circuit and electronic product
JP2015089156A (en) Voltage equalization device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140617