JP2013055819A - Power generation control system and power conditioner - Google Patents

Power generation control system and power conditioner Download PDF

Info

Publication number
JP2013055819A
JP2013055819A JP2011193037A JP2011193037A JP2013055819A JP 2013055819 A JP2013055819 A JP 2013055819A JP 2011193037 A JP2011193037 A JP 2011193037A JP 2011193037 A JP2011193037 A JP 2011193037A JP 2013055819 A JP2013055819 A JP 2013055819A
Authority
JP
Japan
Prior art keywords
power
communication
control signal
power generation
power line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011193037A
Other languages
Japanese (ja)
Other versions
JP5935268B2 (en
Inventor
Tetsuo Goto
哲生 後藤
Tsuyoshi Maruyama
剛史 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011193037A priority Critical patent/JP5935268B2/en
Publication of JP2013055819A publication Critical patent/JP2013055819A/en
Application granted granted Critical
Publication of JP5935268B2 publication Critical patent/JP5935268B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/121Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using the power network as support for the transmission

Abstract

PROBLEM TO BE SOLVED: To prevent destabilization of a system due to excess power generated by a power generation system in the case a power generation device such as a photovoltaic power generation system will become dramatically and widely used.SOLUTION: For example, in the case a power generation device is a solar cell panel, a power generation control system comprises: the solar cell panel 1; a power conditioner 2 for converting output of the panel into voltage able to execute system interconnection to a commercial alternative current power line; a communication slave unit 23 provided in the power conditioner 2 and able to extract a signal for power line communication from the power line; and a communication master unit 52 able to pour a signal for power line communication into a trunk power line of a transformer station 5. The power conditioner 2 has a function to avoid system interconnection on the basis of a control signal regarding permission or non-permission of system interconnection transmitted by the communication master unit 52 to the communication slave unit 23, and can restrain supply to the system of the power generated by photovoltaic generation.

Description

本発明は、太陽光発電システム等の小規模な発電システムの運用技術及び当該システムに用いられるパワーコンディショナに関する。   The present invention relates to an operation technique for a small-scale power generation system such as a solar power generation system and a power conditioner used in the system.

近年、新エネルギーの1つとして太陽光発電が注目されており、一般家庭への太陽光発電システムの導入が徐々に増大している。このような太陽光発電システムでは、発電した電力を、その家屋内で使用することができるほか、余剰電力は電力会社に売電することができる(例えば、特許文献1参照。)。   In recent years, photovoltaic power generation has attracted attention as one of the new energies, and the introduction of photovoltaic power generation systems to ordinary households is gradually increasing. In such a solar power generation system, the generated power can be used in the house, and surplus power can be sold to an electric power company (for example, refer to Patent Document 1).

特開2003−298075号公報(段落[0002])JP 2003-298075 A (paragraph [0002])

従来の太陽光発電システムにおける発電量は日射によって決まり、電力需要に応じて調整されるものではない。現状は、まだ一般家庭への太陽光発電の普及は少なく、その発電(売電)電力の総量が電力会社における電力供給力に占める割合は極めて小さい。しかしながら、近い将来、一般家庭等の小規模な需要家に太陽光発電システムが飛躍的に普及すると予想される。その場合、例えば電力需要が少ない休日等において多数の太陽電池パネルから需要に比して過剰な発電電力が電力系統に提供されると、系統が不安定になることが予想される。系統が不安定な状態が続くと、開閉器が動作して大規模停電を招く場合がある。   The amount of power generation in a conventional solar power generation system is determined by solar radiation and is not adjusted according to the power demand. At present, the spread of solar power generation to ordinary households is still small, and the ratio of the total amount of generated (sold) power to the power supply capacity of electric power companies is extremely small. However, in the near future, the solar power generation system is expected to spread dramatically to small consumers such as ordinary households. In that case, for example, if a large amount of generated power is provided to the power system from a large number of solar panels on a holiday or the like when the power demand is low, the system is expected to become unstable. If the system continues to be unstable, the switch may operate and cause a large-scale power outage.

かかる課題に鑑み、本発明は、太陽光発電システム等の小規模な発電システムが飛躍的に普及した場合に、発電システムの過剰な発電電力による系統不安定化を、防止することを目的とする。   In view of such problems, an object of the present invention is to prevent system instability due to excessive generated power of a power generation system when a small-scale power generation system such as a solar power generation system has been widely spread. .

(1)本発明の発電制御システムは、複数の電力線に配電する主幹の電力線に対して、電力線通信用の信号注入が可能な通信親機と、需要家に設置された発電装置と、前記発電装置の出力を、接続されるべき電力線と系統連系可能な電圧に変換するパワーコンディショナと、前記パワーコンディショナに対応して設けられ、前記需要家の電力線から電力線通信用の信号抽出が可能な通信子機と、を備え、前記通信親機から前記通信子機に送信される系統連系の許否に関する制御信号に基づいて、前記パワーコンディショナは系統連系を回避する機能を有していることを特徴とするものである。   (1) The power generation control system of the present invention includes a communication master unit capable of injecting a signal for power line communication with respect to a main power line that distributes power to a plurality of power lines, a power generation apparatus installed at a consumer, and the power generation A power conditioner that converts the output of the device into a voltage that can be connected to the power line to be connected to the power line, and a power line communication signal extraction from the consumer power line. The power conditioner has a function of avoiding grid connection based on a control signal relating to permission / inhibition of grid connection transmitted from the communication master unit to the communication slave unit. It is characterized by being.

上記のように構成された発電制御システムでは、電力需要が少ない休日等の日中において多数の発電装置(例えば太陽電池パネル)から供給される過剰な発電電力により電力系統が不安定になることが予想される場合(又は不安定になり始めた場合)、制御信号に基づいて、パワーコンディショナは系統連系を回避する。これにより、発電システムの過剰な発電電力による系統不安定化を、防止することができる。   In the power generation control system configured as described above, the power system may become unstable due to excessive generated power supplied from a large number of power generation devices (for example, solar battery panels) during the daytime such as holidays when power demand is low. When expected (or when it starts to become unstable), based on the control signal, the power conditioner avoids grid connection. Thereby, system instability due to excessive generated power of the power generation system can be prevented.

(2)また、上記(1)の発電制御システムにおいて、制御信号は、ブロードキャスト方式で通信親機から複数の通信子機に送信されることが好ましい。
この場合、例えば通信親機を上位の変電所に設置して電力線にブロードキャスト方式で制御信号を注入すれば、当該変電所の下位にある全ての通信子機に対して一斉に制御信号を受信させ、多数のパワーコンディショナに対して、それらの系統連系を回避させることで、発電システムによる過剰な発電電力の抑制に大きな効果を得ることができる。
(2) In the power generation control system of (1), it is preferable that the control signal is transmitted from the communication parent device to the plurality of communication child devices by a broadcast method.
In this case, for example, if a communication master unit is installed in a higher-level substation and a control signal is injected into the power line by a broadcast method, all the communication slave units in the lower level of the substation receive the control signal all at once. By avoiding such grid interconnections for a large number of power conditioners, a great effect can be obtained in suppressing excessive generated power by the power generation system.

(3)また、上記(1)又は(2)の発電制御システムにおいて、通信親機は、系統連系を行う制御信号及び中断する制御信号のいずれか一方を、択一的、かつ、継続的に送信するものであってもよい。
この場合、信号が継続的に送信されるので、通信子機は、確実に制御信号を受信することができる。また、継続的な送信によって、系統連系の許否をきめ細かく、臨機応変に行うことができる。
(3) In the power generation control system according to (1) or (2) above, the communication master unit selectively and continuously selects one of the control signal for performing grid connection and the control signal for interrupting. You may transmit to.
In this case, since the signal is continuously transmitted, the communication slave unit can reliably receive the control signal. Moreover, the continuous transmission can be performed finely and flexibly in response to the grid connection.

(4)また、上記(1)又は(2)の発電制御システムにおいて、通信親機は、系統連系を行う制御信号を一時的に送信し、当該制御信号を通信子機が受信したとき、パワーコンディショナは、所定時間だけ系統連系を実行するようにしてもよい。
この場合、制御信号が送信される時間が短いので、当該制御信号と他の通信の信号との相互干渉を抑制することができる。
(4) Also, in the power generation control system of (1) or (2) above, the communication master unit temporarily transmits a control signal for performing grid connection, and when the communication slave unit receives the control signal, The power conditioner may execute grid connection for a predetermined time.
In this case, since the time during which the control signal is transmitted is short, mutual interference between the control signal and other communication signals can be suppressed.

(5)また、上記(1)〜(4)のいずれかの発電制御システムにおいて、他の目的の電力線通信が行われる可能性がある場合には、当該目的の信号が送信されない時期に、通信親機は制御信号の送信を行うことが好ましい。
この場合、他の電力線通信の信号との相互干渉を確実に防止しつつ、パワーコンディショナに対する系統連系の制御を行うことができる。
(5) In addition, in the power generation control system according to any one of (1) to (4) above, when there is a possibility that power line communication for another purpose may be performed, communication is performed at a time when the signal for the target is not transmitted The master unit preferably transmits a control signal.
In this case, it is possible to control the grid connection to the power conditioner while reliably preventing mutual interference with other power line communication signals.

(6)また、上記(1)〜(5)のいずれかの発電制御システムにおいて、接続されている電力系統での事故を検出した場合は、所定時間、系統連系及び電力線通信を中断することが好ましい。
この場合、事故の復旧のために、例えば開閉制御を行うための信号が電力線通信により送信される場合にも、当該信号と、パワーコンディショナに関する制御信号とが、相互に干渉しない。この所定時間とは、例えば、事故から復旧するに要する経験的・統計的な時間に基づいて定めることができる。
(6) In addition, in the power generation control system according to any one of (1) to (5), when an accident in the connected power system is detected, the grid connection and power line communication are interrupted for a predetermined time. Is preferred.
In this case, in order to recover from an accident, for example, even when a signal for performing opening / closing control is transmitted by power line communication, the signal and the control signal related to the power conditioner do not interfere with each other. The predetermined time can be determined based on, for example, empirical / statistical time required to recover from an accident.

(7)また、上記(6)の発電制御システムにおいて、接続されている電力系統での事故を検出し、かつ、事故からの復旧を検出した場合は、復旧から一定時間経過後に、系統連系を開始するようにしてもよい。
この場合、復旧から一定時間経過後に、系統連系を開始するので、より確実に、他の電力線通信の信号との相互干渉を回避しながら、パワーコンディショナに関する系統連系の制御を行うことができる。また、この一定時間を、パワーコンディショナごとにランダムに設定すれば、一斉に系統連系が再開されることによる系統への影響を緩和することができる。
(7) In addition, in the power generation control system of (6) above, when an accident is detected in the connected power system and recovery from the accident is detected, the grid connection is May be started.
In this case, grid connection is started after a certain period of time has elapsed since restoration, so that grid connection control related to the power conditioner can be more reliably performed while avoiding mutual interference with other power line communication signals. it can. Moreover, if this fixed time is randomly set for each power conditioner, it is possible to mitigate the influence on the system due to the simultaneous resumption of system interconnection.

(8)一方、本発明は、発電装置の出力を、商用交流の電力線と系統連系可能な電圧に変換するパワーコンディショナであって、通信親機から前記電力線に注入された電力線通信用の信号を抽出する通信子機を備え、前記通信親機から前記通信子機に送信される系統連系の許否に関する制御信号に基づいて、系統連系を回避する機能を有していることを特徴とするものである。   (8) On the other hand, the present invention is a power conditioner that converts the output of the power generator into a voltage that can be grid-connected to a commercial AC power line, for power line communication injected into the power line from a communication master unit. A communication slave unit that extracts a signal is provided, and has a function of avoiding grid interconnection based on a control signal relating to permission / prohibition of grid interconnection transmitted from the communication master unit to the communication slave unit. It is what.

上記のように構成されたパワーコンディショナでは、電力需要が少ない休日等の日中において多数の発電システム(例えば太陽光発電システム)から供給される過剰な発電電力により系統が不安定になることが予想される場合(又は不安定になり始めた場合)、制御信号に基づいて、パワーコンディショナは系統連系を回避する。これにより、発電システムの過剰な発電電力による系統不安定化を、防止することができる。   In the power conditioner configured as described above, the system may become unstable due to excessive generated power supplied from a large number of power generation systems (for example, solar power generation systems) during the daytime such as holidays when power demand is low. When expected (or when it starts to become unstable), based on the control signal, the power conditioner avoids grid connection. Thereby, system instability due to excessive generated power of the power generation system can be prevented.

本発明の発電制御システム及びパワーコンディショナによれば、発電システムの過剰な発電電力による系統不安定化を、防止することができる。   According to the power generation control system and the power conditioner of the present invention, system instability due to excessive generated power in the power generation system can be prevented.

本発明の一実施形態に係る太陽光発電制御システム及びこれを構成するパワーコンディショナを示すブロック回路図である。It is a block circuit diagram which shows the solar power generation control system which concerns on one Embodiment of this invention, and the power conditioner which comprises this. 図1のパワーコンディショナにおける系統連系の制御の一例を示すフローチャートである。It is a flowchart which shows an example of the control of the grid connection in the power conditioner of FIG. 図1のパワーコンディショナにおける系統連系の制御の他の例を示すフローチャートである。6 is a flowchart showing another example of grid interconnection control in the power conditioner of FIG. 1. パワーコンディショナに対する制御信号を送信するタイミングの例を示す図である。It is a figure which shows the example of the timing which transmits the control signal with respect to a power conditioner. 本発明の他の実施形態に係る発電制御システム及びこれを構成するパワーコンディショナを示すブロック回路図である。It is a block circuit diagram which shows the electric power generation control system which concerns on other embodiment of this invention, and the power conditioner which comprises this.

《システム構成の第1例》
図1は、本発明の一実施形態に係る発電制御システムとして太陽光発電制御システム及びこれを構成するパワーコンディショナを示すブロック回路図である。この太陽光発電制御システムは、いわゆるメガソーラー発電所のような本格的な発電制御能力を持つ大規模システムではなく、例えば、一般家庭、店舗、ビル、公共設備等の需要家を対象として設置される比較的小規模なシステムである。ここでは、典型的に、一般家庭に用いられるシステムとして説明する。
<< First example of system configuration >>
FIG. 1 is a block circuit diagram showing a photovoltaic power generation control system as a power generation control system according to an embodiment of the present invention and a power conditioner constituting the photovoltaic power generation control system. This solar power generation control system is not a large-scale system with full-scale power generation control capability like a so-called mega solar power plant, but is installed for consumers such as ordinary households, stores, buildings, and public facilities. This is a relatively small system. Here, it is typically described as a system used in a general household.

図1において、太陽電池パネル1は、通常、家屋の屋根に設置される。太陽電池1と接続されるパワーコンディショナ2は、屋内や軒下に設置される。電力量計3は、軒下や、家屋の敷地内のポールに設置される。なお、ここでは、パワーコンディショナ2に着目した回路部分のみを描いているが、実際には電力量計3の下位に分電盤があり、さらに、多くの屋内配線が接続されている。また、実際には電力量計3も買電用と、売電用とに分かれているが、ここでは詳細は省略する。   In FIG. 1, the solar cell panel 1 is normally installed on the roof of a house. The power conditioner 2 connected to the solar cell 1 is installed indoors or under the eaves. The watt-hour meter 3 is installed under the eaves or on a pole in the house site. Here, only the circuit portion focusing on the power conditioner 2 is shown, but in reality, there is a distribution board below the watt hour meter 3, and many indoor wirings are connected. Actually, the watt-hour meter 3 is also divided into for power purchase and for power sale, but details are omitted here.

上記パワーコンディショナ2は、太陽電池パネル1が出力する直流電圧を、商用交流の電力系統と連系可能な交流電圧に変換するインバータ装置21と、開閉制御装置22と、通信子機23とを備えている。開閉制御装置22は、インバータ装置21から商用交流の電力系統へ繋がる電路を開閉する開閉器としての機能と、開閉のための一定の判断を行う制御機能とを有している。   The power conditioner 2 includes an inverter device 21 that converts a DC voltage output from the solar battery panel 1 into an AC voltage that can be linked to a commercial AC power system, an open / close control device 22, and a communication slave device 23. I have. The switching control device 22 has a function as a switch that opens and closes an electric circuit connected from the inverter device 21 to the commercial AC power system, and a control function that performs a certain determination for switching.

通信子機23は、後述の通信親機52と電力線通信を行うPLCモデムである。電力線通信の信号重畳方式としては、例えば、商用交流波形のゼロクロス付近に1又は0のデジタル信号を重畳するTWACS(Two-Way Automatic Communications System)を採用することができる。通信子機23は、電力量計3の2次側の電路、すなわち、屋内配線の電力線から、自身の電源電圧を得るとともに、当該電力線を通信線としても使用する。   The communication slave unit 23 is a PLC modem that performs power line communication with a communication master unit 52 described later. As a signal superposition method for power line communication, for example, TWACS (Two-Way Automatic Communications System) that superimposes a digital signal of 1 or 0 near the zero cross of a commercial AC waveform can be employed. The communication slave unit 23 obtains its own power supply voltage from the secondary side electric circuit of the watt-hour meter 3, that is, the power line of the indoor wiring, and also uses the power line as a communication line.

上記のような太陽電池パネル1とパワーコンディショナ2とを含んで構成される太陽光発電制御システムが、多数(図示しているのは2戸のみ)の一般家庭に設置されているとする。一般家庭には、商用交流電圧として、単相3線式の低圧電路L2(簡略化のため2線のみを図示している。)を経て、200V/100Vが供給されている。この電圧は、戸建て住宅の場合は一般に、6.6kVの高圧を200/100Vの低圧に変圧する柱上トランス4から供給されている。柱上トランス4は、地区ごとに複数(図示しているのは2個のみ)設置されており、それぞれが、多数の太陽光発電制御システムを傘下に有している。   It is assumed that the solar power generation control system including the solar battery panel 1 and the power conditioner 2 as described above is installed in a large number of households (only two are illustrated). A general household is supplied with 200V / 100V as a commercial AC voltage via a single-phase three-wire low piezoelectric path L2 (only two wires are shown for simplicity). In the case of a detached house, this voltage is generally supplied from a pole transformer 4 that transforms a high voltage of 6.6 kV to a low voltage of 200/100 V. A plurality of pole transformers 4 are installed in each district (only two are shown), and each has a large number of photovoltaic power generation control systems.

柱上トランス4よりさらに上位には、変電所5がある。変電所5内には例えば特別高圧の77kVを高圧の6.6kVに変圧する配電トランス51が設置されている。この配電トランス51から、高圧電路L1(通常3相3線又は4線であるが簡略化のため2線を図示している。)を経て、柱上トランス4に電圧が付与されている。すなわち、高圧電路L1は、柱上トランス4を経て複数の低圧の電力線に配電する主幹の電力線である。変電所5内には、PLCモデムである通信親機52が設置されている。この通信親機52は、前述の信号重畳方式で高圧電路L1に電力線通信の信号を注入することにより、柱上トランス4から低圧電路L2を経て、各戸の通信子機23と電力線通信を行うことができる。   There is a substation 5 above the pole transformer 4. In the substation 5, for example, a distribution transformer 51 for transforming a special high voltage of 77 kV to a high voltage of 6.6 kV is installed. A voltage is applied from the distribution transformer 51 to the pole transformer 4 through a high piezoelectric path L1 (usually three-phase three-wire or four-wire but two wires are shown for simplification). That is, the high piezoelectric path L1 is a main power line that distributes power to a plurality of low-voltage power lines via the pole transformer 4. In the substation 5, a communication master device 52, which is a PLC modem, is installed. The communication master unit 52 performs power line communication with the communication slave unit 23 of each door through the low piezoelectric path L2 from the pole transformer 4 by injecting a power line communication signal to the high piezoelectric path L1 by the signal superposition method described above. Can do.

上記通信親機52は、電力需給の監視・制御を行う監視制御装置6と、通信ケーブルによって接続されている。このような監視制御装置6は、典型的には、電力会社の中央指令室等に設置される。例えば、休日で、平日よりも電力需要が少なく、かつ、日中は晴天で多数の太陽光発電制御システムから大量の発電(売電)が行われるとき、電力の供給が過剰となって電力系統が不安定になり得る。このような事態が予想される場合(又は不安定になり始めた場合でもよい。)に、監視制御装置6は、太陽光発電の発電電力による系統連系を中断させる制御信号を、通信親機52に対して与えることができる。また、監視制御装置6は、中断の必要性が無いとき又は無くなったときには、系統連系を実行する制御信号を、通信親機52に対して与えることができる。   The communication master unit 52 is connected to the monitoring control device 6 that monitors and controls power supply and demand through a communication cable. Such a monitoring control device 6 is typically installed in a central command room of an electric power company or the like. For example, when there is less power demand on weekdays than on weekdays, and when there is a large amount of power generation (power sales) from a large number of photovoltaic power generation control systems on a clear day during the day, the power supply becomes excessive and the power system Can become unstable. When such a situation is expected (or may start to become unstable), the monitoring control device 6 sends a control signal for interrupting the grid interconnection by the generated power of the photovoltaic power generation to the communication master unit. 52 can be given. Moreover, the monitoring control apparatus 6 can give the control signal which performs grid connection with respect to the communication main | base station 52, when there is no necessity of interruption or it loses.

通信親機52は、上位から指示された制御信号を通信子機23に送信する。この制御信号に基づいて、パワーコンディショナ2は、系統連系を行うか又は中断する制御を行うことができる。すなわち、太陽電池パネル1及びパワーコンディショナ2に通信親機52を加えた三者は、単なる太陽光発電システムではなく、太陽光発電自体をも制御する太陽光発電制御システムを構成している。   The communication master device 52 transmits a control signal instructed from the host to the communication slave device 23. Based on this control signal, the power conditioner 2 can perform control for performing or interrupting grid interconnection. That is, the three persons who added the communication master unit 52 to the solar cell panel 1 and the power conditioner 2 constitute not only a mere photovoltaic power generation system but also a photovoltaic power generation control system that controls the photovoltaic power generation itself.

《系統連系の制御例1》
次に、上記のような太陽光発電制御システムに関する系統連系の制御について説明する。図2は、かかる系統連系の制御の一例を示すフローチャートである。このフローチャートの制御主体は、パワーコンディショナ2(主として開閉制御装置22)である。
パワーコンディショナ2は、日の出により最低限の光量が得られると夜間の待機状態から自動起動する。逆に、日没により最低限の光量が得られなくなると、パワーコンディショナ2は自動的に運転を停止し、待機状態となる。この場合、フローチャートの処理はリセットされ、初期状態に戻る。夜間は、この待機状態のままである。
<< System connection control example 1 >>
Next, system interconnection control related to the above-described photovoltaic power generation control system will be described. FIG. 2 is a flowchart showing an example of such grid interconnection control. The control subject of this flowchart is the power conditioner 2 (mainly the opening / closing control device 22).
The power conditioner 2 is automatically activated from a standby state at night when a minimum amount of light is obtained by sunrise. On the other hand, when the minimum amount of light cannot be obtained due to sunset, the power conditioner 2 automatically stops driving and enters a standby state. In this case, the process of the flowchart is reset and returns to the initial state. It remains in this standby state at night.

自動起動したパワーコンディショナ2は、まず、通信子機23が、系統連系を実行する制御信号を、通信親機52から受信したか否かの判定を行う(ステップS1)。当該信号を受信しない場合は、受信するまで待つ状態となる(ステップS1の繰り返し)。当該信号を受信すると、パワーコンディショナ2は、系統連系を実行し(ステップS2)、売電が可能であれば商用交流の電力系統へ電力を供給する。   The automatically activated power conditioner 2 first determines whether or not the communication slave unit 23 has received a control signal for executing grid interconnection from the communication master unit 52 (step S1). If the signal is not received, it waits until it is received (repeating step S1). When the signal is received, the power conditioner 2 executes grid connection (step S2), and supplies power to a commercial AC power system if power can be sold.

系統連系を開始したパワーコンディショナ2は、通信子機23が、系統連系を中断する制御信号を通信親機52から受信したか否かを判定し(ステップS3)、さらに、連系すべき系統に事故(停電等)が発生しているか否かを判定する(ステップS4)。通常は、ステップS3,S4における判定はいずれも「No」であり、ステップS2〜S4の処理が繰り返されている。   The power conditioner 2 that has started the grid connection determines whether or not the communication slave unit 23 has received a control signal for interrupting the grid connection from the communication master unit 52 (step S3), and further performs the link. It is determined whether an accident (power failure or the like) has occurred in the power system (step S4). Normally, the determinations in steps S3 and S4 are all “No”, and the processes in steps S2 to S4 are repeated.

そして、電力需要に対して必要以上の電力が太陽光発電により供給されると予想される場合(あるいはそのような事態になり始めた場合)、監視制御装置6から通信親機52に対して、系統連系を中断する制御信号が与えられる。これを受けて通信親機52は、系統連系を中断する制御信号を、ブロードキャスト方式で電力線(高圧電路L1)に注入する。注入された制御信号は、変電所5の傘下にある全ての電力線を介して、全ての通信子機23に送信される。通信子機23がこの制御信号を受信すると(ステップS3のYes)、パワーコンディショナ2は、系統連系を中断する(ステップS7)。系統連系の中断により、電力線通信も中断される。   And when it is anticipated that more electric power than necessary for the electric power demand is supplied by solar power generation (or when such a situation starts to occur), the monitoring control device 6 communicates with the communication master unit 52. A control signal for interrupting grid connection is given. In response to this, the communication master unit 52 injects a control signal for interrupting the grid connection into the power line (high piezoelectric path L1) by the broadcast method. The injected control signal is transmitted to all the communication slave units 23 through all the power lines under the substation 5. When the communication slave unit 23 receives this control signal (Yes in step S3), the power conditioner 2 interrupts the grid connection (step S7). Due to the interruption of grid connection, power line communication is also interrupted.

以後、パワーコンディショナ2は、再び系統連系を実行する制御信号を通信子機23が受信するのを待つ(ステップS1の繰り返し)。
通信子機23が、再び系統連系を実行する制御信号を受信すると(ステップS1の「Yes」)、パワーコンディショナ2は、前述のように、ステップS2〜S4を実行する。
Thereafter, the power conditioner 2 waits for the communication slave unit 23 to receive a control signal for executing grid connection again (repeat of step S1).
When the communication slave unit 23 receives the control signal for executing grid connection again (“Yes” in step S1), the power conditioner 2 executes steps S2 to S4 as described above.

また、系統連系を中断する制御信号を受信しなくても、系統に事故が発生していることを、パワーコンディショナ2自身が検出した場合(ステップS4の「Yes」)には、パワーコンディショナ2は、系統連系を中断する(ステップS5)。以後、パワーコンディショナ2は、系統の状態が事故から復旧し、かつ、復旧から一定時間が経過するのを待って(ステップS5,S6の繰り返し)、経過により、ステップS1に戻り、以下、同様の処理が行われる。   Even if the control signal for interrupting the grid connection is not received, when the power conditioner 2 itself detects that an accident has occurred in the grid ("Yes" in step S4), the power conditioner The na 2 interrupts the grid connection (step S5). Thereafter, the power conditioner 2 waits for the state of the system to recover from the accident and for a certain period of time to elapse (repetition of steps S5 and S6), and then returns to step S1 with the progress, and so on. Is performed.

以上のように、通信親機52も含めた当該太陽光発電制御システムでは、電力需要が少ない休日等の日中において多数の太陽電池パネルから供給される過剰な発電電力により電力系統が不安定になることが予想される場合(又は不安定になり始めた場合)、制御信号に基づいて、パワーコンディショナ2は系統連系を回避する。従って、太陽光発電の過剰な発電電力による系統不安定化を、防止することができる。   As described above, in the solar power generation control system including the communication master unit 52, the power system becomes unstable due to excessive generated power supplied from a large number of solar battery panels during the daytime such as a holiday when power demand is low. If it is expected (or starts to become unstable), the power conditioner 2 avoids grid connection based on the control signal. Therefore, system instability due to excessive generated power of solar power generation can be prevented.

また、上記の制御信号は、ブロードキャスト方式で通信親機52から多数の通信子機23に送信される。すなわち、通信親機52を上位の変電所5に設置して電力線にブロードキャスト方式で制御信号を注入すれば、当該変電所5の下位にある全ての通信子機23に対して一斉に制御信号を受信させ、多数のパワーコンディショナ2に対して、それらの系統連系を回避させることで、太陽光発電による過剰な発電電力の抑制に大きな効果を得ることができる。   Further, the control signal is transmitted from the communication master unit 52 to a large number of communication slave units 23 by the broadcast method. That is, if the communication master unit 52 is installed in the upper substation 5 and a control signal is injected into the power line by the broadcast method, the control signal is sent to all the communication slave units 23 in the lower order of the substation 5 at the same time. It is possible to obtain a great effect on suppression of excessive generated power by solar power generation by receiving and causing a large number of power conditioners 2 to avoid such grid interconnection.

また、通信親機52は、系統連系を行う制御信号及び中断する制御信号のいずれか一方を、択一的、かつ、継続的に送信する。従って、通信子機23は、受信に失敗することなく、確実に制御信号を受信することができる。なお、電力線に他の通信信号が重畳されない場合は、このように継続的に、系統連系の許否を示す制御信号を、常時、例えば前述のTWACSによって、通信親機52から通信子機23へ、提供することができる。また、継続的な送信によって、系統連系の許否をきめ細かく、臨機応変に行うことができる。   Moreover, the communication main | base station 52 alternatively and continuously transmits either one of the control signal which performs grid connection, and the control signal which interrupts. Therefore, the communication slave device 23 can reliably receive the control signal without failing in reception. If no other communication signal is superimposed on the power line, a control signal indicating permission / inhibition of grid connection is continuously sent from the communication master unit 52 to the communication slave unit 23, for example, by the above-described TWACS. Can be offered. Moreover, the continuous transmission can be performed finely and flexibly in response to the grid connection.

《系統連系の制御例2》
図3は、系統連系の制御の他の例を示すフローチャートである。図において、自動起動したパワーコンディショナ2は、まず、通信子機23が、系統連系を開始(実行)する制御信号を、通信親機52から受信したか否かの判定を行う(ステップS11)。当該信号を受信しない場合は、受信するまで待つ状態となる(ステップS11の繰り返し)。当該信号を受信すると、パワーコンディショナ2は、系統連系を実行し(ステップS12)、売電が可能であれば商用交流の電力系統へ電力を供給する。
<< Example 2 of grid interconnection control >>
FIG. 3 is a flowchart illustrating another example of grid interconnection control. In the figure, the automatically activated power conditioner 2 first determines whether or not the communication slave unit 23 has received from the communication master unit 52 a control signal for starting (executing) grid interconnection (step S11). ). If the signal is not received, it waits until it is received (repeating step S11). When the signal is received, the power conditioner 2 executes grid interconnection (step S12), and supplies power to the commercial AC power system if power can be sold.

系統連系を開始したパワーコンディショナ2は、所定時間が経過したか否かを判定し(ステップS13)、さらに、連系すべき系統に事故(停電等)が発生しているか否かを判定する(ステップS15)。所定時間の範囲内で系統の事故がなければ、所定時間の経過により、パワーコンディショナ2は、系統連系を終了する(ステップS14)。以後、パワーコンディショナ2は、再び系統連系を実行する制御信号を通信子機23が受信するのを待つ(ステップS1の繰り返し)。   The power conditioner 2 that has started the grid connection determines whether or not a predetermined time has elapsed (step S13), and further determines whether or not an accident (such as a power failure) has occurred in the grid to be connected. (Step S15). If there is no grid fault within the predetermined time range, the power conditioner 2 ends the grid connection as the predetermined time elapses (step S14). Thereafter, the power conditioner 2 waits for the communication slave unit 23 to receive a control signal for executing grid connection again (repeat of step S1).

一方、所定時間が経過する前に、系統に事故が発生していることを、パワーコンディショナ2自身が検出した場合(ステップS15の「Yes」)には、パワーコンディショナ2は、系統連系を中断する(ステップS16)。以後、パワーコンディショナ2は、系統の状態が事故から復旧し、かつ、復旧から一定時間が経過するのを待つ(ステップS17,S13,S15,S16の繰り返し)。ステップS13における所定時間が経過する前に、事故から復旧してステップS17における一定時間が経過した場合は、パワーコンディショナ2は、系統連系を実行(再開)し(ステップS12)、所定時間の経過により、系統連系を終了する。また、事故から復旧してステップS17における一定時間が経過する前にステップS13における所定時間が経過した場合も、系統連系は終了となる(ステップS14)。以下、同様の処理が行われる。   On the other hand, when the power conditioner 2 itself detects that an accident has occurred in the system before the predetermined time has elapsed (“Yes” in step S15), the power conditioner 2 Is interrupted (step S16). Thereafter, the power conditioner 2 waits for the state of the system to recover from the accident and for a fixed time to elapse (repetition of steps S17, S13, S15, and S16). When the predetermined time in Step S17 has elapsed after the recovery from the accident before the predetermined time in Step S13 has elapsed, the power conditioner 2 executes (restarts) the grid interconnection (Step S12), The grid connection is terminated after the passage. Also, the grid interconnection is terminated when the predetermined time in step S13 elapses before the fixed time in step S17 elapses after recovery from the accident (step S14). Thereafter, the same processing is performed.

図3のフローチャートの処理を行う太陽光発電制御システムによれば、ある時刻に通信親機52から系統連系を開始する信号が送信され、これを通信子機23で受信したパワーコンディショナ2が、所定時間、太陽光発電の発電電力を系統に供給する、という運用が可能となる。さらに具体的には、例えば夏の晴天日であれば、朝6時から夕方6時まで12時間、系統連系させることや、電力需給が逼迫する午後の一定時間だけ系統連系させる、といった種々の運用が可能である。   According to the photovoltaic power generation control system that performs the processing of the flowchart of FIG. 3, the power conditioner 2 that receives a signal for starting grid connection from the communication master device 52 at a certain time and is received by the communication slave device 23 is transmitted to the power conditioner 2. The operation of supplying the generated power of the photovoltaic power generation to the system for a predetermined time becomes possible. More specifically, for example, if it is a sunny day in summer, it is possible to connect to the grid for 12 hours from 6 am to 6 pm, or to connect to the grid for a certain time in the afternoon when power supply and demand is tight. Can be used.

もちろん、系統連系を開始する制御信号が無ければ系統連系は行われない。従って、電力需要が少ない休日等の日中において多数の太陽電池パネルから供給される過剰な発電電力により系統が不安定になることが予想される場合、系統連系を実行する制御信号を通信子機23に与えないことによって、パワーコンディショナ2は系統連系を行わない。従って、太陽光発電の過剰な発電電力による系統不安定化を、防止することができる。   Of course, grid connection is not performed unless there is a control signal for starting grid connection. Therefore, when it is expected that the system will become unstable due to excessive generated power supplied from a large number of solar cell panels during the daytime such as holidays when power demand is low, a control signal for executing grid connection is sent to the communication device. By not giving to the machine 23, the power conditioner 2 does not perform grid connection. Therefore, system instability due to excessive generated power of solar power generation can be prevented.

また、上記の制御信号は、ブロードキャスト方式で通信親機52から多数の通信子機23に送信される。すなわち、通信親機52を上位の変電所5に設置して電力線にブロードキャスト方式で制御信号を注入すれば、当該変電所5の下位にある全ての通信子機23に対して一斉に制御信号を受信させることができる。制御信号を受信した多数のパワーコンディショナ2は、結果的に、系統連系の時間を制限することになるので、太陽光発電による過剰な発電電力の抑制に大きな効果を得ることができる。   Further, the control signal is transmitted from the communication master unit 52 to a large number of communication slave units 23 by the broadcast method. That is, if the communication master unit 52 is installed in the upper substation 5 and a control signal is injected into the power line by the broadcast method, the control signal is sent to all the communication slave units 23 in the lower order of the substation 5 at the same time. It can be received. As a result, the large number of power conditioners 2 that have received the control signal limit the grid connection time, and therefore, a great effect can be obtained in suppressing excessive power generated by solar power generation.

また、図3のフローチャートに示す制御信号の送信の仕方によれば、系統連系を実行するか否かの制御信号を継続的に送信しないので、制御信号が送信される時間が短く、通信の負荷が少ない。そのため、制御信号と他の電力線通信の信号との相互干渉を抑制することができる。他の電力線通信の信号とは、例えば、開閉器を遠隔制御で開閉するための開閉信号、系統の電圧を監視する電圧チェック信号等である。これらは、例えば、商用電源の周波数よりも高い周波数の、微小な振幅の正弦波信号として商用交流に重畳される。   Also, according to the control signal transmission method shown in the flowchart of FIG. 3, the control signal indicating whether or not to perform grid connection is not continuously transmitted. There is little load. Therefore, mutual interference between the control signal and other power line communication signals can be suppressed. Other power line communication signals are, for example, an open / close signal for opening and closing the switch by remote control, a voltage check signal for monitoring the system voltage, and the like. These are superimposed on the commercial alternating current as, for example, a sine wave signal having a minute amplitude with a frequency higher than that of the commercial power supply.

図4は、パワーコンディショナ2に対する制御信号Spを送信するタイミングの例を示す図である。図4の(a)に示す電圧チェック信号Sx(t1〜t2,t3〜t4)のように定期的に送信されている信号がある場合には、その合間となる時刻t2からt3までの間に、通信親機52は、制御信号Spを送信する。通信親機52は、常に、電力線通信の信号を監視しており、他の目的の電力線通信が行われる可能性がある場合には、当該目的の信号が送信されない時期に、ブロードキャスト方式で、信号の送信を行う。これにより、他の電力線通信の信号との相互干渉を確実に防止しつつ、パワーコンディショナ2に対する系統連系の制御を行うことができる。   FIG. 4 is a diagram illustrating an example of timing for transmitting the control signal Sp to the power conditioner 2. When there is a signal that is periodically transmitted, such as the voltage check signal Sx (t1 to t2, t3 to t4) shown in FIG. 4 (a), it is between the times t2 and t3 in the interval. The communication master device 52 transmits a control signal Sp. The communication base unit 52 constantly monitors the signal of the power line communication, and when there is a possibility that the other power line communication is performed, the signal is transmitted in the broadcast method at the time when the target signal is not transmitted. Send. Thereby, the grid connection control with respect to the power conditioner 2 can be performed while reliably preventing mutual interference with other power line communication signals.

また、図4の(b)は、電力系統の事故(例えば地絡)が時刻t11に発生した場合、関連する開閉器が一旦開かれ、逐次再投入される。この再投入の過程で事故原因の場所を特定できれば、その場所への通電を回避しつつ、通電可能な系統には別のルートで通電する等の制御が行われる。このような開閉制御の信号Syが電力線通信として送信される可能性がある時間帯Δt(t11〜t12)は、経験的・統計的にわかっている。   FIG. 4 (b) shows that when a power system accident (for example, ground fault) occurs at time t11, the associated switch is once opened and sequentially reapplied. If the location of the cause of the accident can be identified in the process of recharging, control such as energizing the system that can be energized by another route while avoiding energization to that location is performed. The time zone Δt (t11 to t12) in which such a switching control signal Sy may be transmitted as power line communication is empirically and statistically known.

一方、事故の影響が及ぶ系統に接続されているパワーコンディショナ2は、電圧低下によって事故を検知することができ、系統連系を自動的に中断する。パワーコンディショナ2は、所定時間、この中断を継続する。所定時間とは、少なくともΔt(t11〜t12)である。このような所定時間の中断により、開閉制御の信号Syが電力線通信により送信される場合にも、当該信号Syと、パワーコンディショナ2に関する制御信号とが、相互に干渉しない。   On the other hand, the power conditioner 2 connected to the system affected by the accident can detect the accident due to the voltage drop, and automatically interrupts the grid connection. The inverter 2 continues this interruption for a predetermined time. The predetermined time is at least Δt (t11 to t12). Even when the opening / closing control signal Sy is transmitted by power line communication due to such interruption of the predetermined time, the signal Sy and the control signal related to the power conditioner 2 do not interfere with each other.

また、通信親機52は、例えば時刻t12において、事故からの復旧を検出した場合、復旧からさらに一定時間経過後の時刻t13に、制御信号Spを送信して系統連系を開始する。これにより、復旧から一定時間経過後に、系統連系を開始することになるので、より確実に、他の電力線通信の信号(Sy)との相互干渉を回避しながら、パワーコンディショナ2に関する系統連系の制御を行うことができる。また、この一定時間を、パワーコンディショナ2ごとにランダムに設定すれば、一斉に系統連系が再開されることによる系統への影響を緩和することができる。   For example, when the recovery from the accident is detected at time t12, the communication master device 52 transmits a control signal Sp at a time t13 after a certain time has elapsed since the recovery to start grid interconnection. As a result, grid connection is started after a certain period of time has elapsed since the restoration, and thus the grid connection with respect to the power conditioner 2 is more reliably avoided while avoiding mutual interference with other power line communication signals (Sy). The system can be controlled. Moreover, if this fixed time is set at random for each power conditioner 2, it is possible to mitigate the influence on the system due to the simultaneous resumption of system interconnection.

なお、前述のように、他の電力線通信の信号(Sx,Sy)と、パワーコンディショナ2に対する系統連系の制御信号Spとは、互いに信号重畳の方式が異なるので、通信子機23は、制御信号Spのみを有効に受信することができる。   As described above, other power line communication signals (Sx, Sy) and the grid-connected control signal Sp for the power conditioner 2 have different signal superposition methods. Only the control signal Sp can be received effectively.

また、上述のような、他の目的の電力線通信との干渉を回避する方策は、パワーコンディショナ2等の発電用設備の制御信号のためだけでなく、電力量計3から電力情報を系統の上位へ電力線通信で伝達する自動検針システムに適用できる。この場合の電力量計3は通信子機23と同様の電力線通信の機能を備えるものとし、通信親機52からの検針指令信号に基づき、検針結果の信号を通信親機52に送信する。   In addition, the above-mentioned measures for avoiding interference with other power line communication are not only for the control signal of the power generation equipment such as the power conditioner 2 but also for the power information from the watt hour meter 3. It can be applied to an automatic meter reading system that transmits to the upper level by power line communication. The watt-hour meter 3 in this case has the same power line communication function as that of the communication slave unit 23, and transmits a meter reading result signal to the communication master unit 52 based on the meter reading command signal from the communication master unit 52.

《システム構成の第2例》
図5は、本発明の他の実施形態に係る発電制御システム及びこれを構成するパワーコンディショナを示すブロック回路図である。この発電システムは、発電装置として、太陽電池パネル1のほか、例えば、燃料電池7、風力発電機8を備えている。太陽電池パネル1、燃料電池7及び風力発電機8のそれぞれの出力は、パワーコンディショナ2A内の電力変換装置21Aにより、系統連系に適した交流電圧に変換される。
<< Second example of system configuration >>
FIG. 5 is a block circuit diagram showing a power generation control system and a power conditioner constituting the power generation control system according to another embodiment of the present invention. This power generation system includes, for example, a fuel cell 7 and a wind power generator 8 in addition to the solar cell panel 1 as a power generation device. Each output of the solar cell panel 1, the fuel cell 7, and the wind power generator 8 is converted into an AC voltage suitable for grid connection by the power conversion device 21A in the power conditioner 2A.

このような構成についても図1〜3と同様に、系統連系の制御を行うことができる。また、図5は、3種類の発電装置を併用した例を示したが、燃料電池7の単独使用や、風力発電機8の単独使用も可能である。また、任意の2種類の発電装置を組み合わせることも可能である。なお、発電装置はこれらに限定されるものではなく、例えば、電気自動車のバッテリから系統に余剰電力を供給することも可能である。   With respect to such a configuration, the grid interconnection control can be performed as in FIGS. 5 shows an example in which three types of power generators are used in combination, but the fuel cell 7 can be used alone or the wind power generator 8 can be used alone. It is also possible to combine any two types of power generation devices. Note that the power generation device is not limited to these, and for example, surplus power can be supplied to the system from the battery of the electric vehicle.

《その他》
なお、上記各実施形態において、通信子機23はパワーコンディショナ2の内部に設けているが、外部の近傍に設けることも可能である。要するに、通信子機23は、パワーコンディショナ2に対応して設けられていればよいのであって、設置場所は限定されない。但し、機能的な観点からは、系統連系の許否に関する制御信号を受信する通信子機23は、その設置場所に関わらず、系統連系を回避する機能を備えるパワーコンディショナ2の構成要素たり得るものである。
また、通信親機52の設置場所は、複数の電力線に配電する主幹の電力線に対して電力線通信用の信号注入を行う点で変電所5内が好適であるが、必ずしも変電所5内に限定される訳ではない。
<Others>
In addition, in each said embodiment, although the communication subunit | mobile_unit 23 is provided in the inside of the power conditioner 2, it can also be provided in the external vicinity. In short, the communication slave unit 23 only needs to be provided corresponding to the power conditioner 2, and the installation location is not limited. However, from a functional point of view, the communication slave unit 23 that receives a control signal regarding permission / inhibition of grid interconnection is a component of the power conditioner 2 having a function of avoiding grid interconnection regardless of the installation location. To get.
The communication base unit 52 is preferably installed in the substation 5 in that a signal for power line communication is injected into a main power line that distributes power to a plurality of power lines. It is not done.

なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 太陽電池パネル(発電装置)
2,2A パワーコンディショナ
7 燃料電池(発電装置)
8 風力発電機(発電装置)
22 開閉制御装置
23 通信子機
52 通信親機
1 Solar panel (power generation device)
2,2A Power conditioner 7 Fuel cell (power generation device)
8 Wind power generator (power generator)
22 Opening / closing control device 23 Communication slave unit 52 Communication master unit

Claims (8)

複数の電力線に配電する主幹の電力線に対して、電力線通信用の信号注入が可能な通信親機と、
需要家に設置された発電装置と、
前記発電装置の出力を、接続されるべき電力線と系統連系可能な電圧に変換するパワーコンディショナと、
前記パワーコンディショナに対応して設けられ、前記需要家の電力線から電力線通信用の信号抽出が可能な通信子機と、を備え、
前記通信親機から前記通信子機に送信される系統連系の許否に関する制御信号に基づいて、前記パワーコンディショナは系統連系を回避する機能を有していることを特徴とする発電制御システム。
A communication master unit capable of injecting signals for power line communication with respect to a main power line that distributes power to a plurality of power lines,
A power generator installed in a consumer;
A power conditioner that converts the output of the power generator into a voltage that can be connected to the power line to be connected;
A communication slave unit provided corresponding to the power conditioner and capable of extracting a signal for power line communication from the power line of the consumer,
The power conditioner has a function of avoiding grid interconnection based on a control signal relating to permission / inhibition of grid interconnection transmitted from the communication master unit to the communication slave unit. .
前記制御信号は、ブロードキャスト方式で前記通信親機から複数の前記通信子機に送信される請求項1記載の発電制御システム。   The power generation control system according to claim 1, wherein the control signal is transmitted from the communication parent device to the plurality of communication child devices by a broadcast method. 前記通信親機は、系統連系を行う制御信号及び中断する制御信号のいずれか一方を、択一的、かつ、継続的に送信する請求項1又は2に記載の発電制御システム。   The power generation control system according to claim 1, wherein the communication base unit alternatively and continuously transmits one of a control signal for performing grid connection and a control signal for interrupting. 前記通信親機は、系統連系を行う制御信号を一時的に送信し、当該制御信号を前記通信子機が受信したとき、前記パワーコンディショナは、所定時間だけ系統連系を実行する請求項1又は2に記載の発電制御システム。   The communication master unit temporarily transmits a control signal for grid connection, and when the communication slave unit receives the control signal, the power conditioner executes grid connection for a predetermined time. The power generation control system according to 1 or 2. 他の目的の電力線通信が行われる可能性がある場合には、当該目的の信号が送信されない時期に、前記通信親機は前記制御信号の送信を行う請求項1〜4のいずれか1項に記載の発電制御システム。   5. The communication base unit according to claim 1, wherein when there is a possibility that power line communication for another purpose is performed, the communication base unit transmits the control signal at a time when the target signal is not transmitted. The power generation control system described. 接続されている電力系統での事故を検出した場合は、所定時間、系統連系及び電力線通信を中断する請求項1〜5のいずれか1項に記載の発電制御システム。   The power generation control system according to any one of claims 1 to 5, wherein when an accident in the connected power system is detected, the grid connection and power line communication are interrupted for a predetermined time. 接続されている電力系統での事故を検出し、かつ、事故からの復旧を検出した場合は、復旧から一定時間経過後に、系統連系を開始する請求項6記載の発電制御システム。   The power generation control system according to claim 6, wherein when an accident in the connected power system is detected and recovery from the accident is detected, the grid interconnection is started after a lapse of a certain time from the recovery. 発電装置の出力を、商用交流の電力線と系統連系可能な電圧に変換するパワーコンディショナであって、
通信親機から前記電力線に注入された電力線通信用の信号を抽出する通信子機を備え、
前記通信親機から前記通信子機に送信される系統連系の許否に関する制御信号に基づいて、系統連系を回避する機能を有していることを特徴とするパワーコンディショナ。
A power conditioner that converts the output of the power generator into a voltage that can be connected to a commercial AC power line,
A communication slave unit that extracts a signal for power line communication injected into the power line from a communication master unit,
A power conditioner having a function of avoiding grid interconnection based on a control signal relating to permission / prohibition of grid interconnection transmitted from the communication master unit to the communication slave unit.
JP2011193037A 2011-09-05 2011-09-05 Power generation control system Active JP5935268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011193037A JP5935268B2 (en) 2011-09-05 2011-09-05 Power generation control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011193037A JP5935268B2 (en) 2011-09-05 2011-09-05 Power generation control system

Publications (2)

Publication Number Publication Date
JP2013055819A true JP2013055819A (en) 2013-03-21
JP5935268B2 JP5935268B2 (en) 2016-06-15

Family

ID=48132330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011193037A Active JP5935268B2 (en) 2011-09-05 2011-09-05 Power generation control system

Country Status (1)

Country Link
JP (1) JP5935268B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103730910A (en) * 2013-12-20 2014-04-16 南京南瑞集团公司 Dynamic equivalence method for large-scale photovoltaic power station grid connection
CN103928940A (en) * 2014-03-31 2014-07-16 国家电网公司 Active power control device and control method for distributed photovoltaic power station
WO2014169051A1 (en) * 2013-04-09 2014-10-16 Intel Corporation Controlling supply of power to computing devices with dynamically variable energy capacity
CN104242351A (en) * 2014-10-11 2014-12-24 上海正泰电源系统有限公司 Photovoltaic power generation system employing virtual grounding technology
US20180309301A1 (en) * 2017-04-21 2018-10-25 Fan Wang Solar array communications
JP2018196312A (en) * 2017-05-22 2018-12-06 Necプラットフォームズ株式会社 Overload detector, power transmission controller, overload detection method, and program
CN110912141A (en) * 2019-10-18 2020-03-24 苏州浪潮智能科技有限公司 Data center power distribution system and method
JP2020141452A (en) * 2019-02-27 2020-09-03 株式会社ダイヘン Power management device
US11133777B2 (en) 2017-04-21 2021-09-28 Fan Wang Solar array communications
CN114788169A (en) * 2020-09-17 2022-07-22 苏州恩易浦科技有限公司 Solar array monitoring and safe disconnection from remote controller

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01270419A (en) * 1988-04-22 1989-10-27 Hitachi Ltd State monitor method for power distribution system
JP2001264356A (en) * 2000-03-17 2001-09-26 Hitachi Ltd Monitoring system
JP2002027764A (en) * 2000-07-10 2002-01-25 Omron Corp Power conditioner and photovoltaic power generating system using it
JP2007185079A (en) * 2006-01-10 2007-07-19 Chugoku Electric Power Co Inc:The Method for controlling distributed power supply system, and plc master station apparatus used therein
JP2008283741A (en) * 2007-05-08 2008-11-20 Matsushita Electric Works Ltd Power control system
JP2009011150A (en) * 2007-05-30 2009-01-15 Sanyo Electric Co Ltd Device and system for linking system, and power control system
JP2009240091A (en) * 2008-03-27 2009-10-15 Chugoku Electric Power Co Inc:The Transfer breaking system and transfer break signal repeating installation
JP2009284590A (en) * 2008-05-20 2009-12-03 Osaka Gas Co Ltd Power generation system
JP2010004389A (en) * 2008-06-20 2010-01-07 Panasonic Electric Works Co Ltd Watthour meter and power line carrier communication system
US20100195357A1 (en) * 2009-02-05 2010-08-05 Enphase Energy, Inc. Method and apparatus for determining a corrected monitoring voltage
JP2010226942A (en) * 2009-02-26 2010-10-07 Sanyo Electric Co Ltd Grid interconnection device, grid interconnection system, and power control system
JP2010239688A (en) * 2009-03-30 2010-10-21 Chugoku Electric Power Co Inc:The Distributed power supply block system, monitor control device, and distributed power supply control device
JP2011078168A (en) * 2009-09-29 2011-04-14 Panasonic Electric Works Co Ltd Power management system

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01270419A (en) * 1988-04-22 1989-10-27 Hitachi Ltd State monitor method for power distribution system
JP2001264356A (en) * 2000-03-17 2001-09-26 Hitachi Ltd Monitoring system
JP2002027764A (en) * 2000-07-10 2002-01-25 Omron Corp Power conditioner and photovoltaic power generating system using it
JP2007185079A (en) * 2006-01-10 2007-07-19 Chugoku Electric Power Co Inc:The Method for controlling distributed power supply system, and plc master station apparatus used therein
JP2008283741A (en) * 2007-05-08 2008-11-20 Matsushita Electric Works Ltd Power control system
JP2009011150A (en) * 2007-05-30 2009-01-15 Sanyo Electric Co Ltd Device and system for linking system, and power control system
JP2009240091A (en) * 2008-03-27 2009-10-15 Chugoku Electric Power Co Inc:The Transfer breaking system and transfer break signal repeating installation
JP2009284590A (en) * 2008-05-20 2009-12-03 Osaka Gas Co Ltd Power generation system
JP2010004389A (en) * 2008-06-20 2010-01-07 Panasonic Electric Works Co Ltd Watthour meter and power line carrier communication system
US20100195357A1 (en) * 2009-02-05 2010-08-05 Enphase Energy, Inc. Method and apparatus for determining a corrected monitoring voltage
JP2010226942A (en) * 2009-02-26 2010-10-07 Sanyo Electric Co Ltd Grid interconnection device, grid interconnection system, and power control system
JP2010239688A (en) * 2009-03-30 2010-10-21 Chugoku Electric Power Co Inc:The Distributed power supply block system, monitor control device, and distributed power supply control device
JP2011078168A (en) * 2009-09-29 2011-04-14 Panasonic Electric Works Co Ltd Power management system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014169051A1 (en) * 2013-04-09 2014-10-16 Intel Corporation Controlling supply of power to computing devices with dynamically variable energy capacity
US9798367B2 (en) 2013-04-09 2017-10-24 Intel Corporation Controlling supply of power to computing devices with dynamically variable energy capacity
CN103730910A (en) * 2013-12-20 2014-04-16 南京南瑞集团公司 Dynamic equivalence method for large-scale photovoltaic power station grid connection
CN103928940A (en) * 2014-03-31 2014-07-16 国家电网公司 Active power control device and control method for distributed photovoltaic power station
CN104242351A (en) * 2014-10-11 2014-12-24 上海正泰电源系统有限公司 Photovoltaic power generation system employing virtual grounding technology
US11133777B2 (en) 2017-04-21 2021-09-28 Fan Wang Solar array communications
US20180309301A1 (en) * 2017-04-21 2018-10-25 Fan Wang Solar array communications
JP2018196312A (en) * 2017-05-22 2018-12-06 Necプラットフォームズ株式会社 Overload detector, power transmission controller, overload detection method, and program
JP2020141452A (en) * 2019-02-27 2020-09-03 株式会社ダイヘン Power management device
JP7259183B2 (en) 2019-02-27 2023-04-18 株式会社ダイヘン power management device
CN110912141A (en) * 2019-10-18 2020-03-24 苏州浪潮智能科技有限公司 Data center power distribution system and method
CN114788169A (en) * 2020-09-17 2022-07-22 苏州恩易浦科技有限公司 Solar array monitoring and safe disconnection from remote controller
CN114788169B (en) * 2020-09-17 2023-05-05 苏州恩易浦科技有限公司 Solar array monitoring and safe disconnection from remote controller

Also Published As

Publication number Publication date
JP5935268B2 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
JP5935268B2 (en) Power generation control system
Che et al. Only connect: Microgrids for distribution system restoration
Bacha et al. Photovoltaics in microgrids: An overview of grid integration and energy management aspects
Braun et al. Is the distribution grid ready to accept large‐scale photovoltaic deployment? State of the art, progress, and future prospects
US7701085B2 (en) Grid interconnection device, grid interconnection system and power control system
WO2016134173A1 (en) Method and apparatus for activation and de-activation of power conditioners in distributed resource island systems using low voltage ac
JP2010213384A (en) Distributed power supply system
CN103091604B (en) A kind of island detection method of grid-connected photovoltaic system and pick-up unit
Miller et al. Advanced integration of distributed energy resources
KR101742600B1 (en) Distributing borad with uninterruptible function
Martirano et al. Implementation of SCADA systems for a real microgrid lab testbed
JP6243617B2 (en) Power system
JP5410037B2 (en) Grid interconnection device and grid interconnection system
JP2013121255A (en) Power supply system
CN205846863U (en) A kind of power plant special remote monitoring system for diesel generator set of black starting-up
Skowronska-Kurec et al. Demonstration of microgrid technology at a military installation
JPH06153404A (en) Battery power system
Zubieta Demonstration of a microgrid based on a DC bus backbone at an industrial building
WO2009052908A2 (en) Photovoltaic generator system
CN202586401U (en) Mixing DC system shared by hydropower station and photovoltaic power station
Wild et al. Flexibility platform and the associated role of future DSO within IElectrix SHAKTI pilot project
JP5857583B2 (en) Electric energy measurement system and electric energy meter
André et al. Low-voltage grid upgrades enabling islanding operation
Clarke et al. Development of Demand and Supply Management Control Systems for Network Connected Photovoltaic Systems
JP6917543B2 (en) Controls, power conversion systems, and power generation systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160425

R150 Certificate of patent or registration of utility model

Ref document number: 5935268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250