JP2010213384A - Distributed power supply system - Google Patents

Distributed power supply system Download PDF

Info

Publication number
JP2010213384A
JP2010213384A JP2009053956A JP2009053956A JP2010213384A JP 2010213384 A JP2010213384 A JP 2010213384A JP 2009053956 A JP2009053956 A JP 2009053956A JP 2009053956 A JP2009053956 A JP 2009053956A JP 2010213384 A JP2010213384 A JP 2010213384A
Authority
JP
Japan
Prior art keywords
power
transformer
inverter
boosted
alternating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009053956A
Other languages
Japanese (ja)
Inventor
Seiji Kawachi
清次 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2009053956A priority Critical patent/JP2010213384A/en
Publication of JP2010213384A publication Critical patent/JP2010213384A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]

Abstract

<P>PROBLEM TO BE SOLVED: To link multiple household distributed power supplies to a power system at low cost. <P>SOLUTION: A large-scale photovoltaic power generating system 1 is connected to a linkage point 3 in a power system 2 and a circuit breaker 4 is placed between the system and the linkage point 3. In the photovoltaic power generating system 1, the following operation is carried out: multiple direct-current powers from the photovoltaic power generators G1 at individual homes are converted into an alternating-current power in a lump by an inverter I1 and the alternating-current power is boosted by a transformer T2 and a transformer T1, and the boosted alternating-current power is supplied to the power system 2; a direct-current power from the photovoltaic power generator G2 at each home is converted into an alternating-current power by the inverter I2 at each home and the resulting multiple alternating-current powers are boosted in a lump by a transformer T3 and the transformer T1, and each boosted alternating-current power is supplied to the power system 2; and a direct-current power from a storage battery C is converted into an alternating-current power by an inverter I3 and the alternating-current power is boosted by a transformer T4 and the transformer T1, and the boosted alternating-current power is supplied to the power system 2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、家庭用分散型電源を利用した分散型電源システムに関する。   The present invention relates to a distributed power supply system using a home distributed power supply.

現在、家庭用太陽光発電システムは、各家庭から配電線を介して電力系統に連系されているが、今後、電力系統へ大量に連系されるようになった場合、電圧の上昇や変動、単独運転検出の困難化等の問題が顕在化されることが予想される。
これに対して、電圧の上昇や変動、高調波等を抑制する方策として、電圧調整器、パワーエレクトロニクス機器や、蓄電池を導入する方法がある。また、単独運転を検出する方策として、各家庭用太陽光発電システムに付加する単独運転防止装置を従来よりも高機能のものとする方法や、変電所の遮断器情報を元にして転送遮断する方法が提案され、既に製品化されているものもある。特許文献1には、配電系統の停電を確実に検出できるとともに、分散型電源の単独運転を確実に防止することが可能な分散型電源の単独運転検出システムが開示されている。
Currently, home photovoltaic power generation systems are linked to the power grid from homes via distribution lines. However, if a large number of grids are linked to the power grid in the future, voltage increases and fluctuations will occur. It is expected that problems such as difficulty in detecting an isolated operation will become apparent.
On the other hand, there is a method of introducing a voltage regulator, a power electronics device, or a storage battery as a measure for suppressing voltage rise, fluctuation, harmonics, and the like. In addition, as a measure to detect isolated operation, the isolated operation prevention device added to each household photovoltaic power generation system has a higher function than the conventional one, and the transfer is cut off based on the circuit breaker information of the substation. Some methods have been proposed and already commercialized. Patent Document 1 discloses a distributed power supply isolated operation detection system that can reliably detect a power failure in a distribution system and can reliably prevent a distributed power supply isolated operation.

特開2007−259660号公報JP 2007-259660 A

しかしながら、従来の方法は、単独運転検出については、各家庭用太陽光発電システムに個別の対策を行う必要があるので、コストがかかるという問題がある。また、電圧の上昇や変動、高調波等については、連系点が6.6kV等の電圧階級が低い配電線であるため制御が困難なので、太陽光発電システムの電圧上昇等による影響が電力系統に顕著に出てしまうという欠点がある。
本発明は、上記課題を鑑みてなされたものであり、その主たる目的は、複数の家庭用分散型電源を低コストで電力系統に連系させることにある。
However, the conventional method has a problem that it is expensive because it is necessary to take an individual measure for each home-use solar power generation system for detecting an isolated operation. In addition, voltage rises, fluctuations, harmonics, etc. are difficult to control because they are distribution lines with a low voltage class, such as 6.6 kV. There is a disadvantage that it appears prominently.
The present invention has been made in view of the above problems, and a main object thereof is to link a plurality of home-use distributed power sources to a power system at low cost.

上記課題を解決するために、本発明は、分散型電源システムであって、家庭に設置され、直流電力を発電する分散型電源と、複数の前記分散型電源から直流電力を受電し、受電した直流電力を交流電力に変換するインバータと、前記インバータから交流電力を受電し、受電した交流電力を昇圧して電力系統に供給する変圧器と、を備えることを特徴とする。
この構成によれば、家庭用の分散型電源を複数台まとめて、インバータ及び変圧器を介して低コストで電力系統に連系させることができる。また、直流電力を交流電力に変換し、変換した交流電力を昇圧することにより、電圧階級が高いところで電力系統に直接連系させることができるので、分散型電源による電圧の上昇や変動、高調波等の影響を減少させることができる。なお、変圧器は、実施の形態における変圧器T1及びT2に相当する。
In order to solve the above-described problems, the present invention is a distributed power supply system that is installed in a home and receives direct-current power from a plurality of distributed power supplies that generate direct-current power and receive power. An inverter that converts DC power into AC power; and a transformer that receives AC power from the inverter, boosts the received AC power, and supplies the AC power to the power system.
According to this configuration, a plurality of household distributed power sources can be combined and linked to the power system at low cost via the inverter and the transformer. In addition, by converting DC power to AC power and boosting the converted AC power, it can be directly connected to the power system at a high voltage class, so voltage increases and fluctuations due to distributed power sources, harmonics Etc. can be reduced. The transformer corresponds to the transformers T1 and T2 in the embodiment.

また、本発明は、分散型電源システムであって、前記変圧器が、複数の前記インバータから交流電力を受電し、受電した交流電力を昇圧する第1の変圧器と、複数の前記第1の変圧器から昇圧した前記交流電力を受電し、受電した前記交流電力をさらに昇圧して前記電力系統に供給する第2の変圧器と、からなることを特徴とする。
この構成によれば、複数のインバータが第1の変圧器につながり、複数の第1の変圧器が第2の変圧器につながるという階層的な接続構成にしたので、線路の取り回しが効率的なことにより全体の線路長を短縮でき、電圧をまとめて上げることにより変圧器の台数を減らすことができる。なお、第1の変圧器及び第2の変圧器は、それぞれ実施の形態における変圧器T2及びT1に相当する。
The present invention is a distributed power supply system, wherein the transformer receives AC power from the plurality of inverters, and boosts the received AC power, and the plurality of the first power sources. A second transformer that receives the AC power boosted from the transformer, further boosts the received AC power, and supplies the AC power to the power system.
According to this configuration, since a plurality of inverters are connected to the first transformer and a plurality of first transformers are connected to the second transformer, a hierarchical connection configuration is adopted, so that the routing of the lines is efficient. Therefore, the overall line length can be shortened, and the number of transformers can be reduced by raising the voltage collectively. The first transformer and the second transformer correspond to the transformers T2 and T1 in the embodiment, respectively.

また、本発明は、分散型電源システムであって、家庭に設置され、直流電力を発電する分散型電源と、前記分散型電源から直流電力を受電し、受電した直流電力を交流電力に変換するインバータと、複数の前記インバータから交流電力を受電し、受電した交流電力を昇圧して電力系統に供給する変圧器と、複数の前記インバータと、前記変圧器とを接続する電線と、を備えることを特徴とする。
この構成によれば、家庭用の分散型電源を複数台まとめて、インバータ及び変圧器を介して低コストで電力系統に連系させることができる。また、直流電力を交流電力に変換し、変換した交流電力を昇圧することにより、電圧階級が高いところで電力系統に直接連系させることができるので、分散型電源による電圧の上昇や変動、高調波等の影響を減少させることができる。そして、インバータ及び変圧器を接続する電線が長い距離が亘る場合に、その電線に交流電力を通すので、直流電力を通す場合の遮断や安全性の問題を解決することができる。なお、変圧器は、実施の形態における変圧器T1及びT3に相当する。
Further, the present invention is a distributed power system, which is installed in a home and generates DC power, receives DC power from the distributed power, and converts the received DC power into AC power An inverter, a transformer that receives AC power from the plurality of inverters, boosts the received AC power and supplies the received AC power to an electric power system, and a plurality of the inverters and an electric wire that connects the transformers. It is characterized by.
According to this configuration, a plurality of household distributed power sources can be combined and linked to the power system at low cost via the inverter and the transformer. In addition, by converting DC power to AC power and boosting the converted AC power, it can be directly connected to the power system at a high voltage class, so voltage increases and fluctuations due to distributed power sources, harmonics Etc. can be reduced. And when the electric wire which connects an inverter and a transformer passes a long distance, since alternating current power is passed through the electric wire, the problem of the interruption | blocking and safety | security at the time of letting direct current power pass can be solved. The transformer corresponds to the transformers T1 and T3 in the embodiment.

また、本発明は、分散型電源システムであって、前記変圧器が、複数の前記インバータから交流電力を受電し、受電した交流電力を昇圧する第1の変圧器と、複数の前記第1の変圧器から昇圧した前記交流電力を受電し、受電した前記交流電力をさらに昇圧して前記電力系統に供給する第2の変圧器と、からなることを特徴とする。
この構成によれば、複数のインバータが第1の変圧器につながり、複数の第1の変圧器が第2の変圧器につながるという階層的な接続構成にしたので、線路の取り回しが効率的なことにより全体の線路長を短縮でき、電圧をまとめて上げることにより変圧器の台数を減らすことができる。なお、第1の変圧器及び第2の変圧器は、それぞれ実施の形態における変圧器T3及びT1に相当する。
The present invention is a distributed power supply system, wherein the transformer receives AC power from the plurality of inverters, and boosts the received AC power, and the plurality of the first power sources. A second transformer that receives the AC power boosted from the transformer, further boosts the received AC power, and supplies the AC power to the power system.
According to this configuration, since a plurality of inverters are connected to the first transformer and a plurality of first transformers are connected to the second transformer, a hierarchical connection configuration is adopted, so that the routing of the lines is efficient. Therefore, the overall line length can be shortened, and the number of transformers can be reduced by raising the voltage collectively. The first transformer and the second transformer correspond to the transformers T3 and T1 in the embodiment, respectively.

また、本発明は、分散型電源システムであって、前記変圧器又は前記第2の変圧器が、1の遮断器を介して前記電力系統に連系することを特徴とする。
この構成によれば、電力系統と、変圧器との間に1台の遮断器を設置することにより、単独運転の検出及び防止を図ることができる。
Moreover, the present invention is a distributed power supply system, wherein the transformer or the second transformer is connected to the power system via one circuit breaker.
According to this configuration, it is possible to detect and prevent an isolated operation by installing one circuit breaker between the power system and the transformer.

その他、本願が開示する課題及びその解決方法は、発明を実施するための形態の欄、及び図面により明らかにされる。   In addition, the problems disclosed by the present application and the solutions thereof will be clarified by the description of the embodiments and the drawings.

本発明によれば、複数の家庭用分散型電源を低コストで電力系統に連系させることができる。   According to the present invention, it is possible to link a plurality of household distributed power sources to a power system at low cost.

大規模太陽光発電システム1の構成を示す図である。1 is a diagram illustrating a configuration of a large-scale solar power generation system 1. FIG.

以下、図面を参照しながら、本発明を実施するための形態を説明する。本発明の実施の形態に係る太陽光発電システム(分散型電源システム)は、複数の家庭用太陽光発電装置(分散型電源)を1つの大型パワーコンディショナ(インバータ)に接続し、複数の大型パワーコンディショナ群を1つの大規模太陽光発電所として機能させるものである。電力系統の連系点は、6.6kV配電線だけでなく、22kV配電線、66kV配電線や110kV連系線等、6.6kV配電線より電圧階級が高いところでも電力系統に連系する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. A photovoltaic power generation system (distributed power supply system) according to an embodiment of the present invention connects a plurality of household photovoltaic power generation devices (distributed power supply) to one large power conditioner (inverter), and a plurality of large sized power conditioners (inverters). The power conditioner group functions as one large-scale solar power plant. The connection points of the power system are connected to the power system not only at the 6.6 kV distribution line but also at places where the voltage class is higher than the 6.6 kV distribution line, such as the 22 kV distribution line, the 66 kV distribution line, and the 110 kV distribution line.

なお、パワーコンディショナとは、太陽光発電システムに大変重要な役割を担っているものであり、太陽光発電装置で発電した直流電力を家庭で使用できるように交流電力に変換し、電圧の調整等をする機械である。   In addition, the power conditioner plays a very important role in the photovoltaic power generation system, and converts the DC power generated by the photovoltaic power generation device into AC power so that it can be used at home, and adjusts the voltage. Etc.

≪システムの構成と概要≫
図1は、大規模太陽光発電システム1の構成を示す図である。大規模太陽光発電システム1は、家庭用の太陽光発電装置を利用した大規模発電システムであり、電力系統2の連系点3に接続され、連系点3との間に遮断器4が介設される。電力系統2は、22kV、66kV、110kV等の電圧により送電する。遮断器4は、電力系統2における送電が停止した場合に大規模太陽光発電システム1からの電力供給を停止するものであり、単独運転防止装置や転送遮断装置等により実現される。
≪System configuration and overview≫
FIG. 1 is a diagram illustrating a configuration of a large-scale photovoltaic power generation system 1. The large-scale solar power generation system 1 is a large-scale power generation system using a household solar power generation device, and is connected to a connection point 3 of the power system 2, and a breaker 4 is connected to the connection point 3. It is installed. The power system 2 transmits power at a voltage of 22 kV, 66 kV, 110 kV, or the like. The circuit breaker 4 stops power supply from the large-scale solar power generation system 1 when power transmission in the power system 2 is stopped, and is realized by an isolated operation prevention device, a transfer interruption device, or the like.

図1に示すように、大規模太陽光発電システム1は、変圧器T1〜T4、電線L1〜L7、インバータI1〜I3、太陽光発電装置G1、G2及び蓄電池Cを備える。   As shown in FIG. 1, the large-scale solar power generation system 1 includes transformers T1 to T4, electric wires L1 to L7, inverters I1 to I3, solar power generation devices G1 and G2, and a storage battery C.

まず、接続構成と概要を説明する。変圧器T1は、遮断器4を介して連系点3において電力系統2に接続され、一方、電線L1を通じて変圧器T2〜T4に接続される。変圧器T2は、電線L1を通じて変圧器T1に接続され、一方、電線L2を通じてインバータI1に接続される。インバータI1は、電線L3及び電線L3につながる電線L4を通じて太陽光発電装置G1に接続される。変圧器T3は、電線L1を通じて変圧器T1に接続され、一方、電線L5、電線L5につながる電線L6及び電線L6につながる電線L7を通じてインバータI2に接続される。インバータI2は太陽光発電装置G2に接続される。変圧器T4は、電線L1を通じて変圧器T1に接続され、一方、インバータI3に接続される。インバータI3は蓄電池Cに接続される。   First, a connection configuration and an outline will be described. The transformer T1 is connected to the power system 2 at the interconnection point 3 through the circuit breaker 4, and is connected to the transformers T2 to T4 through the electric wire L1. The transformer T2 is connected to the transformer T1 through the electric wire L1, while being connected to the inverter I1 through the electric wire L2. Inverter I1 is connected to photovoltaic power generation device G1 through electric wire L3 and electric wire L4 connected to electric wire L3. The transformer T3 is connected to the transformer T1 through the electric wire L1, and is connected to the inverter I2 through the electric wire L5, the electric wire L6 connected to the electric wire L5, and the electric wire L7 connected to the electric wire L6. The inverter I2 is connected to the solar power generation device G2. The transformer T4 is connected to the transformer T1 through the electric wire L1, while being connected to the inverter I3. Inverter I3 is connected to storage battery C.

変圧器T1〜T4及びインバータI1は、例えば、住宅地の空きスペースや地下等に設置されるが、分散して配置されていてもよい。インバータI1は、大型の直流交流変換装置である。インバータI2は、各家庭に設置された直流交流変換装置である。インバータI3は、蓄電池Cの近くに設置された直流交流変換装置である。太陽光発電装置G1及びG2は、各家庭に設置された、太陽光を利用した発電装置である。電線L1、L2、L5、L6及びL7は、交流電力を通す電線である。電線L3及びL4は、直流電力を通す専用線であり、既存の配電線に沿って設けるか、又は、地下に埋設される。インバータI1と、太陽光発電装置G1とを接続する電線L3及びL4、並びに、変圧器T3と、太陽光発電装置G2とを接続する電線L5、L6及びL7は、ともに長い距離に亘るものとする。   For example, the transformers T1 to T4 and the inverter I1 are installed in a vacant space in a residential area or underground, but may be arranged in a distributed manner. The inverter I1 is a large DC / AC converter. The inverter I2 is a DC / AC converter installed in each home. The inverter I3 is a DC / AC converter installed near the storage battery C. The solar power generation devices G1 and G2 are power generation devices using sunlight that are installed in each home. The electric wires L1, L2, L5, L6, and L7 are electric wires that pass AC power. The electric wires L3 and L4 are dedicated lines through which DC power passes, and are provided along existing distribution lines or buried underground. The electric wires L3 and L4 that connect the inverter I1 and the solar power generation device G1, and the electric wires L5, L6, and L7 that connect the transformer T3 and the solar power generation device G2 are both long distances. .

≪機器の機能≫
次に、各機器の機能を説明する。
変圧器T1は、電線L1を通じて受けた6.6kVの電圧を22kV、66kV又は110kVの電圧に昇圧して電力系統2に供給する。
≪Function of equipment≫
Next, functions of each device will be described.
The transformer T1 boosts the voltage of 6.6 kV received through the electric wire L1 to a voltage of 22 kV, 66 kV, or 110 kV and supplies the boosted voltage to the power system 2.

変圧器T2は、電線L2を通じて受けた200〜400Vの電圧を6.6kVの電圧に昇圧し、電線L1を通じて変圧器T1に供給する。インバータI1は、電線L4を通じて受けた直流電力を交流電力に変換し、電線L2を通じて変圧器T2に供給する。複数の太陽光発電装置G1は、直流電力を発電し、電線L4を通じてインバータI1に供給する。以上を換言すれば、各家庭の太陽光発電装置G1からの直流電力を複数まとめてインバータI1により交流電力に変換し、その交流電力を変圧器T2及び変圧器T1により昇圧し、昇圧した交流電力を電力系統2に供給することになる。   The transformer T2 boosts the voltage of 200 to 400 V received through the electric wire L2 to a voltage of 6.6 kV, and supplies the voltage to the transformer T1 through the electric wire L1. The inverter I1 converts direct current power received through the electric wire L4 into alternating current power, and supplies the alternating current power to the transformer T2 through the electric wire L2. The plurality of solar power generation devices G1 generate DC power and supply it to the inverter I1 through the electric wire L4. In other words, a plurality of DC power from the solar power generation devices G1 in each household are collectively converted into AC power by the inverter I1, and the AC power is boosted by the transformer T2 and the transformer T1 and boosted AC power. Is supplied to the electric power system 2.

変圧器T3は、電線L5、L6及びL7を通じて受けた200〜400Vの電圧を6.6kVの電圧に昇圧し、電線L1を通じて変圧器T1に供給する。インバータI2は、太陽光発電装置G2から受けた直流電力を交流電力に変換し、電線L7、L6及びL5を通じて変圧器T3に供給する。太陽光発電装置G2は、直流電力を発電し、インバータI2に供給する。以上を換言すれば、各家庭の太陽光発電装置G2からの直流電力をそれぞれ各家庭のインバータI2により交流電力に変換し、その交流電力を複数まとめて変圧器T3及びT1により昇圧し、昇圧した交流電力を電力系統2に供給する。   The transformer T3 boosts the voltage of 200 to 400 V received through the electric wires L5, L6, and L7 to a voltage of 6.6 kV, and supplies the voltage to the transformer T1 through the electric wire L1. The inverter I2 converts the DC power received from the solar power generation device G2 into AC power, and supplies the AC power to the transformer T3 through the electric wires L7, L6, and L5. The solar power generation device G2 generates DC power and supplies it to the inverter I2. In other words, the DC power from the photovoltaic power generation device G2 of each household is converted into AC power by the inverter I2 of each household, and a plurality of the AC power is boosted by the transformers T3 and T1 and boosted. AC power is supplied to the power system 2.

変圧器T4は、インバータI3から受けた200〜400Vの電圧を6.6kVの電圧に昇圧し、電線L1を通じて変圧器T1に供給する。インバータI3は、直流交流変換装置であり、蓄電池Cから受けた直流電力を交流電力に変換し、変圧器T4に供給する。蓄電池Cは、昼間のピーク時の余剰電力を貯めておき、夜間や日照のない時間帯等発電しない時に必要に応じてインバータI3に供給する。以上を換言すれば、蓄電池Cからの直流電力をインバータI3により交流電力に変換し、その交流電力を変圧器T4及びT1により昇圧し、昇圧した交流電力を電力系統2に供給することになる。これによれば、蓄電池Cを併設することにより、負荷平準化、出力変動抑制、計画運転等を行うことができる。   The transformer T4 boosts the voltage of 200 to 400 V received from the inverter I3 to a voltage of 6.6 kV and supplies the voltage to the transformer T1 through the electric wire L1. The inverter I3 is a DC / AC converter, converts DC power received from the storage battery C into AC power, and supplies the AC power to the transformer T4. The storage battery C stores surplus power during peak hours in the daytime and supplies it to the inverter I3 as necessary when it does not generate power at night or during periods of no sunlight. In other words, the DC power from the storage battery C is converted into AC power by the inverter I3, the AC power is boosted by the transformers T4 and T1, and the boosted AC power is supplied to the power system 2. According to this, load leveling, output fluctuation suppression, planned operation, and the like can be performed by providing the storage battery C together.

以上のように、大規模太陽光発電システム1を階層的な接続構成とすることにより、線路の取り回しが効率的になり、電圧をまとめて上げることにより変圧器の台数を減らせて経済的であり、線路をまとめることにより全体の線路長を短縮して電圧低下、遮断、系統保護等の問題を抑止することができる。   As described above, the large-scale photovoltaic power generation system 1 has a hierarchical connection configuration, so that the routing of the lines becomes efficient, and the number of transformers can be reduced by raising the voltage collectively, which is economical. By combining the lines, the entire line length can be shortened to suppress problems such as voltage drop, interruption, system protection, and the like.

以上説明した本発明の実施の形態によれば、太陽光発電装置G1及びG2に係る接続構成においては、複数のインバータI1、I2がそれぞれ変圧器T2、T3につながり、複数の変圧器T2、T3が変圧器T1につながるという階層的な接続構成にしたので、線路の取り回しが効率的なことにより全体の線路長を短縮でき、電圧をまとめて上げることにより変圧器の台数を減らすことができる。また、6.6kV配電線だけでなく、22kV、66kV配電線や110kV連系線等、6.6kV配電線より電圧階級が高いところで電力系統2に直接連系させるので、太陽光発電装置G1及びG2による電圧の上昇や変動、高調波等の影響を減少させることが可能になる。   According to the embodiment of the present invention described above, in the connection configuration relating to the photovoltaic power generation apparatuses G1 and G2, the plurality of inverters I1 and I2 are connected to the transformers T2 and T3, respectively, and the plurality of transformers T2 and T3 are connected. Is connected to the transformer T1, the overall line length can be shortened by efficient routing, and the number of transformers can be reduced by increasing the voltage collectively. Moreover, since not only the 6.6 kV distribution line but also the 22 k, 66 kV distribution line, 110 kV connection line, etc., the voltage system is directly connected to the power system 2 at a higher voltage class than the 6.6 kV distribution line, It is possible to reduce the influence of voltage rise and fluctuation, harmonics, and the like due to G2.

次に、太陽光発電装置G1に係る接続構成によれば、複数の太陽光発電装置G1に対して1台のインバータI1を設けるので、各家庭にインバータを備える必要がなく、低コストで効率的である。   Next, according to the connection configuration related to the solar power generation device G1, since one inverter I1 is provided for the plurality of solar power generation devices G1, it is not necessary to provide an inverter in each home, and the cost is low and efficient. It is.

そして、太陽光発電装置G2に係る接続構成によれば、インバータI2及び変圧器T3を接続する電線L7、L6及びL5が長い距離が亘り、それらの電線に交流電力を通すので、遮断しやすく、安全性を向上することができる。   And according to the connection configuration relating to the solar power generation device G2, the electric wires L7, L6 and L5 connecting the inverter I2 and the transformer T3 are long distances, and the AC power is passed through these electric wires, so that it is easy to cut off, Safety can be improved.

また、単独運転検出に関しては、単独運転防止装置及び転送遮断装置のいずれも採用することができる。単独運転防止装置については、従来は個々の太陽光発電装置G1、G2に設置していたが、連系点3付近に1台設置すればよい。また、転送遮断装置についても、連系点3を遮断するよう1台設置すればよい。   Moreover, regarding the isolated operation detection, both the isolated operation preventing device and the transfer blocking device can be employed. The isolated operation prevention device has been conventionally installed in each of the photovoltaic power generation devices G1 and G2, but it may be installed in the vicinity of the interconnection point 3. Also, only one transfer blocking device may be installed so as to block the interconnection point 3.

都市部等ではメガソーラを設置することは困難であるが、大規模太陽光発電システム1は、家庭用の太陽光発電装置G1、G2を用いるので、密集した住宅街等でも設置が可能である。例えば、開発予定のニュータウン等に計画的に配置することもできる。   Although it is difficult to install a mega solar in an urban area or the like, the large-scale photovoltaic power generation system 1 uses household photovoltaic power generation devices G1 and G2, so that it can also be installed in a dense residential area. For example, it can be systematically arranged in a new town or the like to be developed.

≪その他の実施の形態≫
以上、本発明を実施するための形態について説明したが、上記実施の形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明はその趣旨を逸脱することなく変更、改良され得るとともに、本発明にはその等価物も含まれる。例えば、以下のような実施の形態が考えられる。
<< Other embodiments >>
As mentioned above, although the form for implementing this invention was demonstrated, the said embodiment is for making an understanding of this invention easy, and is not for limiting and interpreting this invention. The present invention can be changed and improved without departing from the gist thereof, and equivalents thereof are also included in the present invention. For example, the following embodiments can be considered.

(1)各家庭の太陽光発電装置G1、G2の設置、メンテナンス等を、電力会社、自治体又は太陽光発電装置G1、G2を設置した市民が設立した運営会社が行うビジネスモデルが考えられる。電力会社が設置やメンテナンスを行う場合のビジネスモデルとしては、大規模太陽光発電システム1を電力会社が運用する発電所の1つとみなし、太陽光発電装置G1、G2の設置場所を提供した各家庭に賃借料を支払うことにより、太陽光発電装置G1、G2を使用することが考えられる。
(2)上記実施の形態においては、家庭の太陽光発電装置を分散型電源として用いるようにしたが、他の分散型電源、例えば、風力発電装置や燃料電池等を用いてもよい。
(1) A business model in which the installation, maintenance, and the like of the solar power generation devices G1 and G2 in each home are performed by an electric power company, a local government, or an operating company established by a citizen who installed the solar power generation devices G1 and G2 can be considered. As a business model when an electric power company performs installation and maintenance, each household that considers the large-scale solar power generation system 1 as one of the power stations operated by the electric power company and provides the installation place of the solar power generation devices G1 and G2 It is conceivable to use the solar power generation devices G1 and G2 by paying a rent to the vehicle.
(2) In the above embodiment, the home solar power generation device is used as a distributed power source, but other distributed power sources such as a wind power generation device and a fuel cell may be used.

1 大規模太陽光発電システム(分散型電源システム)
2 電力系統
3 連系点
4 遮断器
C 蓄電池
G1、G2 太陽光発電装置(分散型電源)
I1〜I3 インバータ
L1〜L7 電線
T1〜T4 変圧器
1 Large-scale photovoltaic power generation system (distributed power supply system)
2 Power system 3 Interconnection point 4 Breaker C Storage battery G1, G2 Photovoltaic power generation device (distributed power supply)
I1-I3 Inverter L1-L7 Electric wire T1-T4 Transformer

Claims (5)

家庭に設置され、直流電力を発電する分散型電源と、
複数の前記分散型電源から直流電力を受電し、受電した直流電力を交流電力に変換するインバータと、
前記インバータから交流電力を受電し、受電した交流電力を昇圧して電力系統に供給する変圧器と、
を備えることを特徴とする分散型電源システム。
Distributed power source installed at home and generating DC power,
An inverter that receives DC power from the plurality of distributed power sources, and converts the received DC power into AC power;
A transformer that receives AC power from the inverter, boosts the received AC power, and supplies the AC power to the power system;
A distributed power supply system comprising:
請求項1に記載の分散型電源システムであって、
前記変圧器は、
複数の前記インバータから交流電力を受電し、受電した交流電力を昇圧する第1の変圧器と、
複数の前記第1の変圧器から昇圧した前記交流電力を受電し、受電した前記交流電力をさらに昇圧して前記電力系統に供給する第2の変圧器と、
からなることを特徴とする分散型電源システム。
The distributed power supply system according to claim 1,
The transformer is
A first transformer that receives AC power from the plurality of inverters and boosts the received AC power;
A second transformer that receives the boosted AC power from a plurality of the first transformers, further boosts the received AC power, and supplies the boosted AC power to the power system;
A distributed power system characterized by comprising:
家庭に設置され、直流電力を発電する分散型電源と、
前記分散型電源から直流電力を受電し、受電した直流電力を交流電力に変換するインバータと、
複数の前記インバータから交流電力を受電し、受電した交流電力を昇圧して電力系統に供給する変圧器と、
複数の前記インバータと、前記変圧器とを接続する電線と、
を備える
ことを特徴とする分散型電源システム。
Distributed power source installed at home and generating DC power,
An inverter that receives DC power from the distributed power source and converts the received DC power into AC power;
A transformer that receives AC power from the plurality of inverters, boosts the received AC power, and supplies the AC power to the power system;
A plurality of inverters and an electric wire connecting the transformer;
A distributed power supply system comprising:
請求項3に記載の分散型電源システムであって、
前記変圧器は、
複数の前記インバータから交流電力を受電し、受電した交流電力を昇圧する第1の変圧器と、
複数の前記第1の変圧器から昇圧した前記交流電力を受電し、受電した前記交流電力をさらに昇圧して前記電力系統に供給する第2の変圧器と、
からなることを特徴とする分散型電源システム。
The distributed power supply system according to claim 3,
The transformer is
A first transformer that receives AC power from the plurality of inverters and boosts the received AC power;
A second transformer that receives the boosted AC power from a plurality of the first transformers, further boosts the received AC power, and supplies the boosted AC power to the power system;
A distributed power system characterized by comprising:
請求項1ないし請求項4のいずれか一項に記載の分散型電源システムであって、
前記変圧器又は前記第2の変圧器は、
1の遮断器を介して前記電力系統に連系する
ことを特徴とする分散型電源システム。
A distributed power supply system according to any one of claims 1 to 4,
The transformer or the second transformer is:
A distributed power supply system that is linked to the power system via one circuit breaker.
JP2009053956A 2009-03-06 2009-03-06 Distributed power supply system Pending JP2010213384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009053956A JP2010213384A (en) 2009-03-06 2009-03-06 Distributed power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009053956A JP2010213384A (en) 2009-03-06 2009-03-06 Distributed power supply system

Publications (1)

Publication Number Publication Date
JP2010213384A true JP2010213384A (en) 2010-09-24

Family

ID=42972963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009053956A Pending JP2010213384A (en) 2009-03-06 2009-03-06 Distributed power supply system

Country Status (1)

Country Link
JP (1) JP2010213384A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102055368A (en) * 2010-12-20 2011-05-11 江苏省电力公司南京供电公司 100-KVA micro-grid energy storage bidirectional converter
CN102195298A (en) * 2011-05-25 2011-09-21 哈尔滨工程大学 Centralized generating set of renewable energy source
WO2012093584A1 (en) * 2011-01-05 2012-07-12 シャープ株式会社 Solar generator system
JP2012139051A (en) * 2010-12-27 2012-07-19 Mitsubishi Electric Corp Power reception circuit
WO2012117751A1 (en) * 2011-03-01 2012-09-07 シャープ株式会社 Power generation system
WO2012147687A1 (en) * 2011-04-26 2012-11-01 シャープ株式会社 Large-scale solar power generator
CN103337869A (en) * 2013-07-17 2013-10-02 国家电网公司 Novel battery energy-storage system and function integration designing method thereof
KR101375761B1 (en) * 2012-06-14 2014-04-01 주식회사 케이디파워 Grid-connected distribution system and grid-connetion method for decentralized power supply system using the same
CN105429161A (en) * 2015-09-28 2016-03-23 西安迅湃快速充电技术有限公司 Charge and discharge control system and method
CN105515032A (en) * 2016-01-27 2016-04-20 广东工业大学 Intelligent micro-grid energy storage control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245881A (en) * 1994-03-02 1995-09-19 Kansai Electric Power Co Inc:The System for linkage of demander-system to power-system
JP2002271997A (en) * 2001-03-09 2002-09-20 Nippon Telegr & Teleph Corp <Ntt> Dispersed power supplying network
JP2007037354A (en) * 2005-07-29 2007-02-08 Mitsubishi Electric Corp Independent operation preventing device
JP2007274841A (en) * 2006-03-31 2007-10-18 Toshiba Corp Solar power generation system and solar power generation plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245881A (en) * 1994-03-02 1995-09-19 Kansai Electric Power Co Inc:The System for linkage of demander-system to power-system
JP2002271997A (en) * 2001-03-09 2002-09-20 Nippon Telegr & Teleph Corp <Ntt> Dispersed power supplying network
JP2007037354A (en) * 2005-07-29 2007-02-08 Mitsubishi Electric Corp Independent operation preventing device
JP2007274841A (en) * 2006-03-31 2007-10-18 Toshiba Corp Solar power generation system and solar power generation plant

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102055368A (en) * 2010-12-20 2011-05-11 江苏省电力公司南京供电公司 100-KVA micro-grid energy storage bidirectional converter
JP2012139051A (en) * 2010-12-27 2012-07-19 Mitsubishi Electric Corp Power reception circuit
JP2012143102A (en) * 2011-01-05 2012-07-26 Sharp Corp Photovoltaic power generation system
WO2012093584A1 (en) * 2011-01-05 2012-07-12 シャープ株式会社 Solar generator system
JP2012196118A (en) * 2011-03-01 2012-10-11 Sharp Corp Power generation system
WO2012117751A1 (en) * 2011-03-01 2012-09-07 シャープ株式会社 Power generation system
WO2012147687A1 (en) * 2011-04-26 2012-11-01 シャープ株式会社 Large-scale solar power generator
CN102195298A (en) * 2011-05-25 2011-09-21 哈尔滨工程大学 Centralized generating set of renewable energy source
KR101375761B1 (en) * 2012-06-14 2014-04-01 주식회사 케이디파워 Grid-connected distribution system and grid-connetion method for decentralized power supply system using the same
CN103337869A (en) * 2013-07-17 2013-10-02 国家电网公司 Novel battery energy-storage system and function integration designing method thereof
CN105429161A (en) * 2015-09-28 2016-03-23 西安迅湃快速充电技术有限公司 Charge and discharge control system and method
CN105515032A (en) * 2016-01-27 2016-04-20 广东工业大学 Intelligent micro-grid energy storage control method
CN105515032B (en) * 2016-01-27 2018-07-17 广东工业大学 intelligent micro-grid energy storage control method

Similar Documents

Publication Publication Date Title
JP2010213384A (en) Distributed power supply system
Kumar et al. DC microgrid technology: system architectures, AC grid interfaces, grounding schemes, power quality, communication networks, applications, and standardizations aspects
Bacha et al. Photovoltaics in microgrids: An overview of grid integration and energy management aspects
Ribeiro et al. Making isolated renewable energy systems more reliable
CN103026130B (en) Street lamp system
JP2006320149A (en) Distributed power source system
CN110729754A (en) Wind-solar hybrid power plant
KR20160132944A (en) Brushless permanent magnet generator plus auxiliary voltage source constant potential exciter
US20210046840A1 (en) Method of operating a charging station for electric vehicles
DK2926003T3 (en) Process for operating an energy plant and an energy system with such energy plants
JP4075787B2 (en) Power transmission / distribution system, emergency electrical equipment, and operation method of power transmission / distribution system
JP6082610B2 (en) Power supply system and power storage type power supply device
ITPI20110142A1 (en) ENERGY TRANSFORMATION EQUIPMENT PRODUCED BY RENEWABLE SOURCES AND RELATIVE MANAGEMENT METHOD
JP2013013174A (en) Power supply system
EP2627900A2 (en) Power generation apparatus
JP6654327B2 (en) Shipping power system
CN106655254B (en) A kind of inverter and transformer integrated equipment
JP2008043170A (en) Power supply system, consumer group facility, and monitoring control method therefor
US9859782B2 (en) Power supply apparatus for power converters
WO2012093584A1 (en) Solar generator system
Kratz et al. Power supply of a short-range public transportation system based on photovoltaics-potential analysis and implementation
JP6752467B1 (en) DC power supply device
JP6936071B2 (en) Power generation equipment control method and power generation equipment control device
JP7117011B2 (en) Power supply method and power supply system realizing the same
US20160268810A1 (en) Pylon based power management system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130305