JP2013052365A - Electric deionized water making apparatus - Google Patents

Electric deionized water making apparatus Download PDF

Info

Publication number
JP2013052365A
JP2013052365A JP2011193148A JP2011193148A JP2013052365A JP 2013052365 A JP2013052365 A JP 2013052365A JP 2011193148 A JP2011193148 A JP 2011193148A JP 2011193148 A JP2011193148 A JP 2011193148A JP 2013052365 A JP2013052365 A JP 2013052365A
Authority
JP
Japan
Prior art keywords
chamber
water
cathode
anode
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011193148A
Other languages
Japanese (ja)
Other versions
JP5866163B2 (en
Inventor
Kenta Aiba
健太 合庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2011193148A priority Critical patent/JP5866163B2/en
Publication of JP2013052365A publication Critical patent/JP2013052365A/en
Application granted granted Critical
Publication of JP5866163B2 publication Critical patent/JP5866163B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent generation of scale in both an ion exchanging membrane and a To prevent generation of scale in both ion exchanging membranes and a negative electrode.SOLUTION: An electric deionized water making apparatus has an negative electrode chamber E1 where the negative electrode 2 is arranged, a positive electrode chamber E2 where a positive electrode 3 is arranged, a plurality of condensing chambers C arranged between the negative electrode chamber E1 and the positive electrode chamber E2, and at least one desalinating chamber D1, the negative electrode chamber E1 is formed between the negative electrode 2 and an anion exchanging membrane a1 facing the negative electrode 2, the condensing chamber C1 are formed between the anion exchanging membrane a1 and a cation exchanging membrane c1 facing the anion exchanging membrane a1, the condensing chamber C2 serving also as the positive electrode chamber E2 is formed between the positive electrode 3 and the anion exchanging membrane a2 facing the positive electrode 3, the desalinating chamber D1 is next to the condensing chamber C2 via the anion exchanging membrane a2, the deionized chamber D1 is filled with an anion exchanging body, water from which cation components are removed in advance is fed to the condensing chamber C2, and water having passed through the condensing chamber C2 is fed to the negative electrode chamber E1 as electrode water.

Description

本発明は、電気式脱イオン水製造装置に関するものである。   The present invention relates to an electric deionized water production apparatus.

従来、イオン交換体に被処理水を通水させて脱イオンを行う脱イオン水製造装置が知られている。このような脱イオン水製造装置では、イオン交換体のイオン交換基が飽和して脱塩性能が低下したときに、薬剤(酸やアルカリ)によってイオン交換基の再生を行う必要がある。具体的には、イオン交換基に吸着した陰イオンや陽イオンを酸またはアルカリ由来のH+やOH-で置換する必要がある。近年、上記のような運転上の不利な点を解消するため、薬剤による再生が不要な電気式脱イオン水製造装置が開発され、実用化されている。以下、電気式脱イオン水製造装置を「EDI」と略称する場合がある。 Conventionally, a deionized water production apparatus that performs deionization by passing water to be treated through an ion exchanger is known. In such a deionized water production apparatus, when the ion exchange group of the ion exchanger is saturated and the desalting performance is lowered, it is necessary to regenerate the ion exchange group with a chemical (acid or alkali). Specifically, H + and OH of adsorbed derived anion and cation an acid or an alkali to an ion exchange group - has to be replaced with. In recent years, in order to eliminate the disadvantages in operation as described above, an electric deionized water production apparatus that does not require regeneration with a drug has been developed and put into practical use. Hereinafter, the electric deionized water production apparatus may be abbreviated as “EDI”.

EDIは、電気泳動と電気透析を組み合わせた装置である。一般的なEDIの基本構成は次のとおりである。すなわち、EDIは、対向する陰極室と陽極室の間に配置された一対の濃縮室と、一対の濃縮室の間に配置された脱塩室とを有する。さらに、脱塩室は、対向配置されたアニオン交換膜およびカチオン交換膜と、それら交換膜の間に充填されたイオン交換体(アニオン交換体およびカチオン交換体)とを有する。   EDI is a device that combines electrophoresis and electrodialysis. The basic configuration of general EDI is as follows. That is, EDI has a pair of concentrating chambers disposed between the opposing cathode chamber and the anode chamber, and a desalting chamber disposed between the pair of concentrating chambers. Furthermore, the desalting chamber has an anion exchange membrane and a cation exchange membrane arranged opposite to each other, and an ion exchanger (anion exchanger and cation exchanger) filled between the exchange membranes.

上記のような構成を有するEDIによって脱イオン水を製造するには、陽極室および陰極室にそれぞれ設けられている電極間に直流電圧を印加した状態で脱塩室に被処理水を通水させる。脱塩室では、アニオン交換体によってアニオン成分(Cl-、CO3 2-、HCO3 -、SiO2等)が、カチオン交換体によってカチオン成分(Na+、Ca2+、Mg2+等)がそれぞれ吸着(捕捉)される。同時に、脱塩室内のアニオン交換体とカチオン交換体の界面で水の解離反応が起こり、水素イオンと水酸化物イオンが発生する(H2O→H++OH-)。イオン交換体に捕捉されたイオン成分は、これら水素イオンまたは水酸化物イオンと交換されてイオン交換体から遊離する。遊離したイオン成分はイオン交換体を伝ってイオン交換膜(アニオン交換膜またはカチオン交換膜)まで電気泳動し、イオン交換膜で電気透析されて濃縮室へ移動する。濃縮室に移動したイオン成分は、濃縮室を流れる濃縮水と共に系外へ排出される。 In order to produce deionized water with EDI having the above-described configuration, water to be treated is passed through the desalting chamber in a state where a DC voltage is applied between the electrodes provided in the anode chamber and the cathode chamber, respectively. . In the desalting chamber, anion components (Cl , CO 3 2− , HCO 3 , SiO 2, etc.) are obtained by the anion exchanger, and cation components (Na + , Ca 2+ , Mg 2+, etc.) are obtained by the cation exchanger. Each is adsorbed (captured). At the same time, a water dissociation reaction occurs at the interface between the anion exchanger and cation exchanger in the desalting chamber, and hydrogen ions and hydroxide ions are generated (H 2 O → H + + OH ). The ion component trapped in the ion exchanger is exchanged with these hydrogen ions or hydroxide ions and released from the ion exchanger. The liberated ion component travels through the ion exchanger to the ion exchange membrane (anion exchange membrane or cation exchange membrane), is electrodialyzed on the ion exchange membrane, and moves to the concentration chamber. The ion component that has moved to the concentration chamber is discharged out of the system together with the concentrated water flowing through the concentration chamber.

上記のように、EDIでは、水素イオンおよび水酸化物イオンが、イオン交換体を再生する酸やアルカリの再生剤として連続的に作用する。このため、薬剤による再生が基本的には不要であり、連続運転が可能である。   As described above, in EDI, hydrogen ions and hydroxide ions continuously act as an acid or alkali regenerator for regenerating the ion exchanger. For this reason, regeneration by a medicine is basically unnecessary, and continuous operation is possible.

従来のEDIの一構成例を図6に示す。図6に示すEDIは2つの脱塩室D1、D2を備えている。脱塩室D1は、一対の濃縮室C1、C2の間に配置されている。また、脱塩室D2は、一対の濃縮室C2、C3の間に配置されている。なお、図6に示すEDIでは、濃縮室C1が陰極室E1を兼ねており、濃縮室C3が陽極室E2を兼ねている。   An example of the configuration of conventional EDI is shown in FIG. The EDI shown in FIG. 6 includes two desalting chambers D1 and D2. The desalting chamber D1 is disposed between the pair of concentration chambers C1 and C2. The desalting chamber D2 is disposed between the pair of concentration chambers C2 and C3. In the EDI shown in FIG. 6, the concentration chamber C1 also serves as the cathode chamber E1, and the concentration chamber C3 also serves as the anode chamber E2.

濃縮室C1(陰極室E1)と脱塩室D1とは、第1のカチオン交換膜c1によって仕切られており、脱塩室D1と濃縮室C2とは、第1のアニオン交換膜a1によって仕切られている。また、濃縮室C2と脱塩室D2とは、第2のカチオン交換膜c2によって仕切られており、脱塩室D2と濃縮室C3(陽極室E2)とは、第2のアニオン交換膜a2によって仕切られている。   The concentrating chamber C1 (cathode chamber E1) and the desalting chamber D1 are partitioned by the first cation exchange membrane c1, and the desalting chamber D1 and the concentrating chamber C2 are partitioned by the first anion exchange membrane a1. ing. The concentration chamber C2 and the desalting chamber D2 are partitioned by the second cation exchange membrane c2, and the desalting chamber D2 and the concentration chamber C3 (anode chamber E2) are separated by the second anion exchange membrane a2. It is partitioned.

さらに、脱塩室D1、D2には、アニオン交換体Aとカチオン交換体Kが充填されており、濃縮室C1(陰極室E1)および濃縮室C2には、アニオン交換体が充填されている。また、濃縮室C3(陽極室E2)には、カチオン交換体が充填されている。   Further, the desalting chambers D1 and D2 are filled with an anion exchanger A and a cation exchanger K, and the concentration chamber C1 (cathode chamber E1) and the concentration chamber C2 are filled with an anion exchanger. The concentration chamber C3 (anode chamber E2) is filled with a cation exchanger.

図6に示すEDIでは、RO(Revers Osmosis)膜を透過した水(以下「原水」と呼ぶ場合がある。)の一部が被処理水として脱塩室D1、D2にそれぞれ供給される。また、原水の他の一部が濃縮水として濃縮室C1、C2、C3にそれぞれ供給される。濃縮室C1、C3に供給される原水が電極水としても利用されることは勿論である。   In the EDI shown in FIG. 6, a part of water (hereinafter sometimes referred to as “raw water”) that has passed through an RO (Reverse Osmosis) membrane is supplied to the desalting chambers D1 and D2 as treated water. Moreover, the other part of raw | natural water is each supplied to concentration chamber C1, C2, C3 as concentrated water. Of course, the raw water supplied to the concentrating chambers C1 and C3 is also used as electrode water.

ここで、陰極室E1内の陰極2と、陽極室E2内の陽極3との間に直流電圧が印加されると、水の電気分解(電極反応)によって陰極室E1内で水酸化物イオンが生成されるので(2H2O+2e-→H2+2OH-)、陰極室E1を流れる水(電極水兼濃縮水)の液性がアルカリ性に傾く。すると、陰極2に引き寄せられた硬度成分と水酸化物イオンが反応し、陰極2の表面においてスケール(主に、水酸化マグネシウム)が生成される。 Here, when a DC voltage is applied between the cathode 2 in the cathode chamber E1 and the anode 3 in the anode chamber E2, hydroxide ions are generated in the cathode chamber E1 by electrolysis of water (electrode reaction). Since it is generated (2H 2 O + 2e → H 2 + 2OH ), the liquidity of the water (electrode water / concentrated water) flowing through the cathode chamber E1 tends to be alkaline. Then, the hardness component attracted to the cathode 2 reacts with hydroxide ions, and a scale (mainly magnesium hydroxide) is generated on the surface of the cathode 2.

加えて、陰極室E1内で生成された水酸化物イオンは、陽極側に引き寄せられ、カチオン交換膜c1の表面に集まる。一方、濃縮室としても機能する陰極室E1には、隣接する脱塩室D1からカチオン成分が移動してくる。結果、カチオン交換膜c1の陰極側表面においてもスケールが生成される。   In addition, the hydroxide ions generated in the cathode chamber E1 are attracted to the anode side and gather on the surface of the cation exchange membrane c1. On the other hand, the cation component moves from the adjacent desalting chamber D1 to the cathode chamber E1, which also functions as a concentration chamber. As a result, a scale is also generated on the cathode side surface of the cation exchange membrane c1.

すなわち、図6に示すような構成のEDIでは、陰極および陰極に最も近接しているカチオン交換膜の双方においてスケールが生成される。スケールが生成されると、生成箇所における電気抵抗が上昇して消費電力が増加するだけでなく、電流分布が不均一となり処理水の水質が低下する。   That is, in the EDI configured as shown in FIG. 6, scales are generated in both the cathode and the cation exchange membrane closest to the cathode. When the scale is generated, not only the electric resistance at the generation point increases and the power consumption increases, but also the current distribution becomes non-uniform and the quality of the treated water decreases.

以上のような課題の解決を目的として、図7に示すような構成のEDIが提案されている(特許文献1)。図7に示すEDIでは、陽極室E2を通過した水が電極水兼濃縮水として陰極室E1に供給される。濃縮室としても機能する陽極室E2には、隣接する脱塩室D2からアニオン成分が流入し、濃縮される。よって、陽極室E2を通過した水の液性は酸性に傾く。すなわち、アルカリ性傾向にある陰極室E1に酸性傾向の水を供給することによって液性が中和され、上記スケールの生成が抑制される。   For the purpose of solving the above problems, an EDI configured as shown in FIG. 7 has been proposed (Patent Document 1). In the EDI shown in FIG. 7, water that has passed through the anode chamber E2 is supplied to the cathode chamber E1 as electrode water and concentrated water. An anion component flows from the adjacent desalting chamber D2 into the anode chamber E2, which also functions as a concentration chamber, and is concentrated. Therefore, the liquidity of the water that has passed through the anode chamber E2 tends to be acidic. That is, by supplying acidic water to the cathode chamber E1 which has an alkaline tendency, the liquidity is neutralized and the generation of the scale is suppressed.

特開2001−058186号公報JP 2001-058186 A

しかし、EDIの陰極室内では、水の電気分解によって常に大量の水酸化物イオンが生成されている。図7に示す陰極室E1内でも同様である。よって、陰極室E1に供給される水の液性が酸性であったとしても、陰極2の表面が局所的にアルカリ性になる可能性が高い。酸性の電極水が供給されることでイオン交換膜上のスケールは回避できるものの、陰極表面のアルカリ性を中和するには不十分である。その上、濃縮室としても機能する陰極室E1内では、隣接する脱塩室D1内で捕捉された硬度成分(マグネシウムイオンやカルシウムイオンが高濃度に濃縮される。そのため、陰極2に引き寄せられた硬度成分の一部が水酸化物イオンと反応し、陰極2の表面においてスケールが生成される虞がある。   However, in the cathode chamber of EDI, a large amount of hydroxide ions is always generated by electrolysis of water. The same applies to the cathode chamber E1 shown in FIG. Therefore, even if the liquidity of the water supplied to the cathode chamber E1 is acidic, there is a high possibility that the surface of the cathode 2 is locally alkaline. Although scale on the ion exchange membrane can be avoided by supplying acidic electrode water, it is insufficient to neutralize the alkalinity of the cathode surface. In addition, in the cathode chamber E1 which also functions as a concentration chamber, hardness components (magnesium ions and calcium ions trapped in the adjacent desalting chamber D1 are concentrated to a high concentration. Therefore, they are attracted to the cathode 2. There is a possibility that a part of the hardness component reacts with hydroxide ions and a scale is generated on the surface of the cathode 2.

本発明は、イオン交換膜上のみでなく、電極上におけるスケール生成をも確実に防止することを目的とする。   An object of the present invention is to reliably prevent scale generation not only on an ion exchange membrane but also on an electrode.

本発明の電気式脱イオン水製造装置は、陰極が設けられた陰極室と、陽極が設けられた陽極室と、陰極室と陽極室との間に設けられた複数の濃縮室および少なくとも1つの脱塩室とを有する。陰極と該陽極との間の空間は複数のイオン交換膜によって複数の空間に区画されている。そして、陰極と該陰極に対向する第1のアニオン交換膜との間の空間によって陰極室が形成されている。また、第1のアニオン交換膜と該第1のアニオン交換膜に対向する第1のカチオン交換膜との間の空間によって、陰極室に隣接する第1の濃縮室が形成されている。また、陽極と該陽極に対向する第2のアニオン交換膜との間の空間によって陽極室を兼ねる第2の濃縮室が形成されている。また、脱塩室は、第2のアニオン交換膜を介して陽極室を兼ねる第2の濃縮室に隣接している。さらに、脱塩室には少なくともアニオン交換体が充填される。また、陽極室を兼ねる第2の濃縮室には予めカチオン成分が除去された水が供給される。そして、陽極室を兼ねる第2の濃縮室を通過した水が電極水として陰極室に供給される。陽極室を兼ねる第2の濃縮室に供給された水は、該室を通過する過程で、脱塩室から移動してきたアニオン成分を取り込む。よって、陰極室には、アニオン成分を多く含んだ酸性の水が供給される。   The electric deionized water production apparatus of the present invention includes a cathode chamber provided with a cathode, an anode chamber provided with an anode, a plurality of concentration chambers provided between the cathode chamber and the anode chamber, and at least one And a desalination chamber. The space between the cathode and the anode is partitioned into a plurality of spaces by a plurality of ion exchange membranes. A cathode chamber is formed by a space between the cathode and the first anion exchange membrane facing the cathode. A first concentration chamber adjacent to the cathode chamber is formed by a space between the first anion exchange membrane and the first cation exchange membrane facing the first anion exchange membrane. A second concentrating chamber that also serves as the anode chamber is formed by a space between the anode and the second anion exchange membrane facing the anode. The desalting chamber is adjacent to the second concentration chamber that also serves as the anode chamber via the second anion exchange membrane. Furthermore, the desalting chamber is filled with at least an anion exchanger. Further, water from which the cation component has been removed in advance is supplied to the second concentration chamber that also serves as the anode chamber. And the water which passed through the 2nd concentration chamber which serves as an anode chamber is supplied to a cathode chamber as electrode water. The water supplied to the second concentrating chamber that also serves as the anode chamber takes in the anion component that has moved from the desalting chamber in the process of passing through the chamber. Therefore, acidic water containing a large amount of anionic components is supplied to the cathode chamber.

本発明によれば、イオン交換膜および電極の双方におけるスケール生成が防止される。   According to the present invention, scale generation in both the ion exchange membrane and the electrode is prevented.

本発明のEDIの実施形態の一例を示す概略構成図である。It is a schematic block diagram which shows an example of embodiment of EDI of this invention. 本発明のEDIの実施形態の他例を示す概略構成図である。It is a schematic block diagram which shows the other example of embodiment of EDI of this invention. 実施例1に係るEDIの概略構成図である。1 is a schematic configuration diagram of EDI according to Embodiment 1. FIG. 実施例2、比較例2に係るEDIの概略構成図である。2 is a schematic configuration diagram of EDI according to Example 2 and Comparative Example 2. FIG. 比較例1に係るEDIの概略構成図である。It is a schematic block diagram of EDI which concerns on the comparative example 1. 従来のEDIの一例を示す概略構成図である。It is a schematic block diagram which shows an example of the conventional EDI. 特許文献1に記載されているEDIの概略構成図である。It is a schematic block diagram of EDI described in Patent Document 1.

(実施形態1)
以下、図面を参照して、本発明のEDIの実施形態の一例について説明する。図1は、本実施形態に係るEDIの概略構成図である。本実施形態に係るEDIでは、対向する陰極2と陽極3の間に、一対の濃縮室C1、C2と、濃縮室C1、C2の間に配置された脱塩室D1とからなる脱塩処理部が設けられている。
(Embodiment 1)
Hereinafter, an example of an EDI embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of EDI according to the present embodiment. In the EDI according to the present embodiment, a desalination treatment unit including a pair of concentration chambers C1 and C2 and a desalination chamber D1 disposed between the concentration chambers C1 and C2 between the cathode 2 and the anode 3 facing each other. Is provided.

ここで、陽極3は濃縮室C2内に設けられている。すなわち、濃縮室C2は陽極室E2を兼ねている。一方、陰極2は濃縮室C1とは独立している陰極室E1内に設けられている。   Here, the anode 3 is provided in the concentration chamber C2. That is, the concentration chamber C2 also serves as the anode chamber E2. On the other hand, the cathode 2 is provided in a cathode chamber E1 which is independent from the concentration chamber C1.

上記の各部屋は、枠体1の内部を複数のイオン交換膜によって多数の空間に仕切ることによって形成されており、イオン交換膜を介して隣接している。各部屋の配列状況を陰極室E1の側から順に説明すると、次の通りである。すなわち、陰極室E1は、第1のアニオン交換膜a1を介して濃縮室C1に隣接し、濃縮室C1は、カチオン交換膜c1を介して脱塩室D1と隣接している。脱塩室D1は、第2のアニオン交換膜a2を介して濃縮室C2(陽極室E2)と隣接している。   Each of the above rooms is formed by dividing the inside of the frame 1 into a large number of spaces by a plurality of ion exchange membranes, and is adjacent to each other through the ion exchange membranes. The arrangement of the rooms will be described in order from the cathode chamber E1 side as follows. That is, the cathode chamber E1 is adjacent to the concentration chamber C1 via the first anion exchange membrane a1, and the concentration chamber C1 is adjacent to the desalting chamber D1 via the cation exchange membrane c1. The desalting chamber D1 is adjacent to the concentration chamber C2 (anode chamber E2) via the second anion exchange membrane a2.

陰極室E1内に設けられている陰極2は、金属の網状体あるいは板状体であり、例えばステンレス製の網状体あるいは板状体である。   The cathode 2 provided in the cathode chamber E1 is a metal net or plate, for example, a stainless steel net or plate.

陽極室E2内に設けられている陽極3は、金属の網状体あるいは板状体である。被処理水にCl-を含む場合、陽極上おいて塩素が発生する。このため、陽極には耐塩素性能を有する材料を用いることが望ましく、一例として、白金、パラジウム、イリジウム等の金属、あるいはチタンをこれらの金属で被覆した材料が挙げられる。 The anode 3 provided in the anode chamber E2 is a metal net or plate. The water to be treated Cl - if it contains chlorine is generated at the anode. For this reason, it is desirable to use a material having chlorine resistance for the anode, and examples thereof include metals such as platinum, palladium and iridium, or materials obtained by coating titanium with these metals.

陰極室E1には、アニオン交換体Aが単床形態で充填されている。一方、陽極室E2(濃縮室C2)には、カチオン交換体Kが単床形態で充填されている。すなわち、陰極室E1には、アニオン交換体Aの層(以下「アニオン層A」)が設けられている。一方、陽極室E2には、カチオン交換体Kの層(以下「カチオン層K」)が設けられている。   The cathode chamber E1 is filled with the anion exchanger A in a single bed form. On the other hand, the anode chamber E2 (concentration chamber C2) is filled with the cation exchanger K in a single bed form. That is, the cathode chamber E1 is provided with a layer of anion exchanger A (hereinafter “anion layer A”). On the other hand, the anode chamber E2 is provided with a layer of a cation exchanger K (hereinafter “cation layer K”).

脱塩室D1には、アニオン交換体Aとカチオン交換体Kが混床形態で充填されている。   Desalination chamber D1 is filled with anion exchanger A and cation exchanger K in a mixed bed form.

なお、図1では、枠体1が一体的に示されている。しかし、実際には各部屋ごとに別々の枠体(セル)を備え、それら枠体同士が互いに密着している。枠体1の素材は、絶縁性を有し、液体が漏洩しない素材であれば特に限定されず、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ABS、ポリカーボネート、m−PPE(変性ポリフェニレンエーテル)等の樹脂を挙げることができる。   In addition, in FIG. 1, the frame 1 is shown integrally. However, actually, each room is provided with a separate frame (cell), and these frames are in close contact with each other. The material of the frame 1 is not particularly limited as long as it has insulating properties and does not leak liquid. For example, polyethylene, polypropylene, polyvinyl chloride, ABS, polycarbonate, m-PPE (modified polyphenylene ether), etc. Resins can be mentioned.

次に、図1に示すEDIにおける被処理水、処理水、濃縮水および電極水の主な流れについて概説する。なお、本実施形態に係るEDIにおいても、RO膜を透過した水、すなわち原水が使用される。   Next, the main flow of the treated water, treated water, concentrated water, and electrode water in the EDI shown in FIG. 1 will be outlined. In addition, also in EDI which concerns on this embodiment, the water which permeate | transmitted RO membrane, ie, raw water, is used.

原水の一部は、被処理水として脱塩室D1に供給され、原水の他の一部は、濃縮水として濃縮室C1に供給される。脱塩室D1を通過した水の一部は、処理水として系外へ排出され、他の一部は電極水兼濃縮水として陽極室E2に供給される。   A part of the raw water is supplied to the desalting chamber D1 as treated water, and the other part of the raw water is supplied to the concentrating chamber C1 as concentrated water. Part of the water that has passed through the desalting chamber D1 is discharged out of the system as treated water, and the other part is supplied to the anode chamber E2 as electrode water and concentrated water.

陽極室E2に供給された水は、該陽極室E2を通過した後、電極水として陰極室E1に供給される。陰極室E1に供給された水は、該陰極室E2を通過した後、濃縮室C1を通過した濃縮水と共に系外へ排出される。   The water supplied to the anode chamber E2 passes through the anode chamber E2, and is then supplied to the cathode chamber E1 as electrode water. The water supplied to the cathode chamber E1 passes through the cathode chamber E2, and is then discharged out of the system together with the concentrated water that has passed through the concentration chamber C1.

なお、脱塩室D1における被処理水の通水方向と、濃縮室C1、C2における濃縮水の通水方向とは逆向きである。   In addition, the water flow direction of the to-be-processed water in the desalting chamber D1 is opposite to the water flow direction of the concentrated water in the concentration chambers C1 and C2.

上記のように被処理水、処理水、濃縮水および電極水を流すためにいくつかの流路が設けられている。図1に示されている流路10は、その一端が原水の供給口に接続され、他端が脱塩室D1の入口に接続されている。流路11は、その一端が脱塩室D1の出口に接続され、他端が処理水の出口に接続されている。   As described above, several flow paths are provided for flowing the water to be treated, treated water, concentrated water, and electrode water. 1 has one end connected to the raw water supply port and the other end connected to the inlet of the desalination chamber D1. One end of the channel 11 is connected to the outlet of the desalting chamber D1, and the other end is connected to the outlet of the treated water.

流路12は、その一端が流路11に接続され、他端が陽極室E2(濃縮室C2)の入口に接続されている。流路13は、その一端が陽極室E2の出口に接続され、他端が陰極室Eの入口に接続されている。流路14は、その一端が陰極室E1の出口に接続され、他端が濃縮水の排出口に接続されている。   One end of the channel 12 is connected to the channel 11 and the other end is connected to the inlet of the anode chamber E2 (concentration chamber C2). One end of the flow path 13 is connected to the outlet of the anode chamber E2, and the other end is connected to the inlet of the cathode chamber E. One end of the channel 14 is connected to the outlet of the cathode chamber E1, and the other end is connected to the outlet of the concentrated water.

流路15は、その一端が原水の入口に接続され、他端が濃縮室C1の入口に接続されている。流路16は、その一端が濃縮室C1の出口に接続され、他端が流路14に接続されている。   One end of the flow path 15 is connected to the raw water inlet, and the other end is connected to the inlet of the concentrating chamber C1. One end of the channel 16 is connected to the outlet of the concentration chamber C <b> 1 and the other end is connected to the channel 14.

以上のように、本実施形態に係るEDIでは、処理水の一部が電極水兼濃縮水として陽極室E2(濃縮室C2)に供給される。さらに、陽極室E2(濃縮室C2)を通過した水が電極水として陰極室E1に供給される。換言すれば、電極水兼濃縮水として陽極室E2に供給される水は、イオン成分が除去された水であり、硬度成分を殆ど含まない。そして、陽極室E2に供給された水は、濃縮室としても機能する該陽極室E2を通過する過程で、脱塩室D1から陽極室E2に移動してきたアニオン成分を取り込む。よって、陰極室E1には、アニオン成分を多く含み、かつ、硬度成分を含んでいない水が供給される。換言すれば、陰極室E1に供給される電極水は、硬度成分を含まない酸性の水である。加えて、陰極室E1には濃縮室C1が隣接している。濃縮室C1は脱塩室D1から移動してくる硬度成分を濃縮水とともに系外へ排出する機能を果たす。従って、陰極室E1は、脱塩室から移動してくる硬度成分の影響を受けず、陰極室E1内の硬度成分の濃度は低く保たれる。   As described above, in the EDI according to the present embodiment, part of the treated water is supplied to the anode chamber E2 (concentration chamber C2) as electrode water and concentrated water. Furthermore, the water that has passed through the anode chamber E2 (concentration chamber C2) is supplied to the cathode chamber E1 as electrode water. In other words, the water supplied to the anode chamber E2 as electrode water / concentrated water is water from which ionic components have been removed and contains almost no hardness component. The water supplied to the anode chamber E2 takes in the anion component that has moved from the desalting chamber D1 to the anode chamber E2 in the process of passing through the anode chamber E2 that also functions as a concentration chamber. Accordingly, the cathode chamber E1 is supplied with water containing a large amount of anionic components and not containing hardness components. In other words, the electrode water supplied to the cathode chamber E1 is acidic water that does not contain a hardness component. In addition, a concentration chamber C1 is adjacent to the cathode chamber E1. The concentration chamber C1 functions to discharge the hardness component moving from the desalting chamber D1 to the outside of the system together with the concentrated water. Therefore, the cathode chamber E1 is not affected by the hardness component moving from the desalting chamber, and the concentration of the hardness component in the cathode chamber E1 is kept low.

したがって、陰極2の表面が局所的にアルカリ性になっていたとしても、陰極2の表面におけるスケールの生成が防止または低減される。   Therefore, even if the surface of the cathode 2 is locally alkaline, scale generation on the surface of the cathode 2 is prevented or reduced.

なお、陰極室E1に供給される電極水中のアニオン成分は、電極水が陰極室E1を通過する過程で該陰極室E1内のアニオン交換体Aにより捕捉される。よって、陰極室E1を通過した水の液性はほぼ中性となる。
(実施形態2)
以下、図面を参照して、本発明のEDIの実施形態の他例について説明する。もっとも、本実施形態に係るEDIは、脱塩室が2つの小脱塩室に区画されている点を除いて、実施形態1に係るEDIと同一の構成を有する。そこで、実施形態1に係るEDIと異なる構成についてのみ以下に説明し、共通する構成についての説明は適宜省略する。
The anion component in the electrode water supplied to the cathode chamber E1 is captured by the anion exchanger A in the cathode chamber E1 in the process of passing the electrode water through the cathode chamber E1. Therefore, the liquidity of the water that has passed through the cathode chamber E1 is almost neutral.
(Embodiment 2)
Hereinafter, another example of the EDI embodiment of the present invention will be described with reference to the drawings. However, the EDI according to the present embodiment has the same configuration as the EDI according to Embodiment 1 except that the desalination chamber is divided into two small desalination chambers. Therefore, only the configuration different from the EDI according to the first embodiment will be described below, and the description of the common configuration will be omitted as appropriate.

図2は、本実施形態に係るEDIの概略構成図である。図2に示すように、本実施形態に係るEDIの脱塩室D1は、イオン交換膜によって二つの小脱塩室に区画されている。具体的には、脱塩室D1は、第2のカチオン交換膜c2によって、濃縮室C1に隣接している小脱塩室D1-1と、濃縮室C2(陽極室E2)に隣接している小脱塩室D1-2とに区画されている。もっとも、脱塩室D1を二つの小脱塩室に区画するイオン交換膜はカチオン交換膜に限られず、アニオン交換膜やバイポーラ膜などであってもよい。   FIG. 2 is a schematic configuration diagram of EDI according to the present embodiment. As shown in FIG. 2, the EDI desalination chamber D1 according to this embodiment is divided into two small desalination chambers by an ion exchange membrane. Specifically, the desalting chamber D1 is adjacent to the small desalting chamber D1-1 adjacent to the concentrating chamber C1 and the concentrating chamber C2 (anode chamber E2) by the second cation exchange membrane c2. It is divided into a small desalination chamber D1-2. However, the ion exchange membrane that divides the desalting chamber D1 into two small desalting chambers is not limited to a cation exchange membrane, and may be an anion exchange membrane or a bipolar membrane.

小脱塩室D1-1には、カチオン交換体Kが単床形態で充填され、小脱塩室D1-2には、アニオン交換体が単床形態で充填されている。   The small desalting chamber D1-1 is filled with a cation exchanger K in a single bed form, and the small desalting chamber D1-2 is filled with an anion exchanger in a single bed form.

本実施形態に係るEDIでは、原水の一部が被処理水として小脱塩室D1-1に供給される。小脱塩室D1-1に供給された水は、該小脱塩室D1-1を通過した後、中間水として小脱塩室D1-2に供給される。小脱塩室D1-2に供給された水は、該小脱塩室D1-2を通過した後、一部は処理水として系外へ排出され、他の一部は電極水兼濃縮水として陽極室E2(濃縮室C2)に供給される。さらに、陽極室E2(濃縮室C2)を通過した水は、電極水として陰極室E1に供給される。   In the EDI according to the present embodiment, a part of raw water is supplied to the small desalination chamber D1-1 as treated water. The water supplied to the small desalting chamber D1-1 is supplied to the small desalting chamber D1-2 as intermediate water after passing through the small desalting chamber D1-1. After the water supplied to the small desalting chamber D1-2 passes through the small desalting chamber D1-2, a part of the water is discharged out of the system as treated water, and the other part as electrode water and concentrated water. It is supplied to the anode chamber E2 (concentration chamber C2). Furthermore, the water that has passed through the anode chamber E2 (concentration chamber C2) is supplied to the cathode chamber E1 as electrode water.

以上のように、本実施形態に係るEDIにおいても、アニオン成分を多く含み、かつ、硬度成分を含んでいない水が電極水として陰極室E1に供給され、さらに脱塩室から陰極へ向かう硬度成分の移動は濃縮室C1によって妨げられる。よって、陰極2の表面が局所的にアルカリ性になっていたとしても、陰極2の表面におけるスケールの生成が防止または低減される。   As described above, also in the EDI according to the present embodiment, water containing a large amount of anionic components and not containing hardness components is supplied to the cathode chamber E1 as electrode water, and further the hardness components heading from the desalting chamber to the cathode. Is prevented by the concentration chamber C1. Therefore, even if the surface of the cathode 2 is locally alkaline, scale generation on the surface of the cathode 2 is prevented or reduced.

これまでの説明から、硬度成分を含まない酸性の水を電極水として陰極室に供給すること、脱塩室から陰極室に硬度成分が移動しないように陰極室と脱塩室の間に濃縮室を設けることが、本発明の特徴であることが理解できるはずである。よって、上記のような液性を有する水を陰極室に供給し、脱塩室から陰極室へ硬度成分が移動しないようにするために必要な構成が本発明の必須構成であり、その他の構成は適宜変更することができる。例えば、図2に示す小脱塩室D1-1を通過した水(中間水)の一部が陽極室E2に供給されるように流路を変更することができる。また、被処理水を小脱塩室D1-2、小脱塩室D1-1の順で通水させてもよい。この場合、小脱塩室D1-2および小脱塩室D1-1の双方を通過した水を陽極室E2に供給してもよい。また、脱塩処理部の数に特に制限はなく、2以上の脱塩処理部を設けることもできる。さらに、各部屋に充填するイオン交換体の種類や充填形態も適宜変更することができる。イオン交換体の充填形態の変更に伴い、例えば、小脱塩室D1−2にカチオン交換体が充填される場合、小脱塩室D1−2を通過した水(中間水)の一部を陽極室E2に供給してもよい。
(比較試験)
本発明の効果を確認すべく、次のような比較試験を行った。今回の比較試験では、実施例1、2および比較例1、2として、図3〜図5に示す構成のいずれかを有するEDIを4台用意した。なお、各図において、一部の流路の図示を省略してある。
From the explanation so far, it is said that acidic water containing no hardness component is supplied to the cathode chamber as electrode water, and the concentration chamber is provided between the cathode chamber and the desalting chamber so that the hardness component does not move from the desalting chamber to the cathode chamber. It should be understood that it is a feature of the present invention. Therefore, a configuration necessary for supplying water having the above liquid property to the cathode chamber and preventing the hardness component from moving from the desalting chamber to the cathode chamber is an essential configuration of the present invention, and other configurations. Can be appropriately changed. For example, the flow path can be changed so that a part of the water (intermediate water) that has passed through the small desalting chamber D1-1 shown in FIG. 2 is supplied to the anode chamber E2. Further, the water to be treated may be passed through the small desalting chamber D1-2 and the small desalting chamber D1-1 in this order. In this case, water that has passed through both the small desalting chamber D1-2 and the small desalting chamber D1-1 may be supplied to the anode chamber E2. Moreover, there is no restriction | limiting in particular in the number of desalination process parts, Two or more desalination process parts can also be provided. Furthermore, the type and filling form of the ion exchanger filled in each room can be changed as appropriate. With the change of the ion exchanger filling mode, for example, when the small desalting chamber D1-2 is filled with a cation exchanger, a part of the water (intermediate water) that has passed through the small desalting chamber D1-2 is treated as an anode. You may supply to the chamber E2.
(Comparative test)
In order to confirm the effect of the present invention, the following comparative test was conducted. In this comparative test, four EDIs having any of the configurations shown in FIGS. 3 to 5 were prepared as Examples 1 and 2 and Comparative Examples 1 and 2. In each figure, illustration of some flow paths is omitted.

実施例1に係るEDIは図3に示す構成を有し、実施例2および比較例2に係るEDIは図4に示す構成を有する。また、比較例1に係るEDIは図5に示す構成を有する。   The EDI according to Example 1 has the configuration shown in FIG. 3, and the EDI according to Example 2 and Comparative Example 2 has the configuration shown in FIG. Further, the EDI according to Comparative Example 1 has the configuration shown in FIG.

実施例1、2および比較例1、2に係るEDIは、図2に示すEDIと同一の基本構成を有するが、3つの脱塩処理部を備えている点で図2に示すEDIと異なる。もっとも、図3〜図5に示す脱塩室D1〜D3のそれぞれは、図2に示す脱塩室D1と同一の構成を有する。また、図3、図4に示す濃縮室C1〜3のそれぞれは、図2に示す濃縮室C1と同一の構成を有する。さらに、図3〜図5に示す濃縮室C4(陽極室E2)は、図2に示す陽極室E2(濃縮室C2)と同一の構成を有する。但し、図5に示す濃縮室C1は、陰極室E1を兼ねており、この点において図3、図4に示す濃縮室C1とは異なる。   The EDIs according to Examples 1 and 2 and Comparative Examples 1 and 2 have the same basic configuration as the EDI shown in FIG. 2, but differ from the EDI shown in FIG. 2 in that it includes three desalting units. However, each of the desalting chambers D1 to D3 shown in FIGS. 3 to 5 has the same configuration as the desalting chamber D1 shown in FIG. Each of the concentration chambers C1 to C3 shown in FIGS. 3 and 4 has the same configuration as the concentration chamber C1 shown in FIG. Further, the enrichment chamber C4 (anode chamber E2) shown in FIGS. 3 to 5 has the same configuration as the anode chamber E2 (enrichment chamber C2) shown in FIG. However, the concentration chamber C1 shown in FIG. 5 also serves as the cathode chamber E1, and is different from the concentration chamber C1 shown in FIGS.

実施例1および比較例1に係るEDIでは、処理水の一部が電極水兼濃縮水として陽極室E2(濃縮室C4)に供給される。一方、実施例2に係るEDIでは、不図示の供給源から、二段RO透過水が電極水兼濃縮水として陽極室E2(濃縮室C4)に供給される。比較例2に係るEDIでは、不図示の供給源から、一段RO透過水が電極水兼濃縮水として陽極室E2(濃縮室C4)に供給される。全てのEDIにおいて、陽極室E2(濃縮室C4)を通過した水が電極水として陰極室E1に供給される。   In the EDI according to Example 1 and Comparative Example 1, part of the treated water is supplied to the anode chamber E2 (concentration chamber C4) as electrode water / concentrated water. On the other hand, in the EDI according to the second embodiment, two-stage RO permeated water is supplied to the anode chamber E2 (concentration chamber C4) as electrode water / concentrated water from a supply source (not shown). In EDI according to Comparative Example 2, one-stage RO permeated water is supplied to the anode chamber E2 (concentration chamber C4) as electrode water / concentrated water from a supply source (not shown). In all EDIs, water that has passed through the anode chamber E2 (concentration chamber C4) is supplied to the cathode chamber E1 as electrode water.

今回の比較試験における条件(仕様、通水流量、供給水等)をまとめると以下とおりである。なお、CERはカチオン交換体(カチオン交換樹脂)、AERはアニオン交換体(アニオン交換樹脂)の略である。
・陰極室E1:寸法300×80×4mm AER充填
・陽極室E2(濃縮室C4):寸法300×80×4mm CER充填
・小脱塩室D1-1:寸法300×80×8mm CER充填
・小脱塩室D1-2:寸法300×80×10mm AER充填
・濃縮室C1〜C3:寸法300×80×5mm AER充填
・被処理水流量:150L/h
・濃縮水流量:15L/h(1室あたり)
・電極水流量:10L/h
・脱塩室供給水:一段RO透過水(11±1μS/cm)
・脱塩室供給水硬度:1±0.1mgCaCO3/L
・濃縮室供給水:一段RO透過水(11±1μS/cm)
・陽極室供給水(実施例1、比較例1):処理水(硬度:<0.001mgCaCO3/L)
・陽極室供給水(実施例2):二段RO透過水(硬度:0.2±0.1mgCaCO3/L)
・陽極室供給水(比較例2):一段RO透過水(硬度:1±0.1mgCaCO3/L)
・印加電流値:1.1A
・印加電流密度:0.46A/dm2
以上の条件の下で実施例1、2および比較例1、2をそれぞれ2000時間連続運転し、運転電圧および処理水水質(比抵抗)を測定した。測定結果を表1に示す。また、運転終了後、それぞれの装置を解体し、スケールの生成状態を目視により確認した。確認結果を表2に示す。
The conditions (specifications, flow rate, supply water, etc.) in this comparative test are summarized as follows. CER is an abbreviation for a cation exchanger (cation exchange resin) and AER is an anion exchanger (anion exchange resin).
・ Cathode chamber E1: Dimension 300 × 80 × 4 mm AER filling ・ Anode chamber E2 (concentration chamber C4): Dimension 300 × 80 × 4 mm CER filling ・ Small desalination chamber D1-1: Dimension 300 × 80 × 8 mm CER filling ・ Small Desalination chamber D1-2: Dimensions 300 × 80 × 10 mm AER filling / concentration chambers C1 to C3: Dimensions 300 × 80 × 5 mm AER filling / treatment water flow rate: 150 L / h
・ Concentrated water flow: 15L / h (per room)
・ Electrode water flow rate: 10L / h
・ Desalination chamber supply water: One-stage RO permeated water (11 ± 1 μS / cm)
・ Desalination chamber water hardness: 1 ± 0.1mgCaCO 3 / L
・ Concentration chamber supply water: One-stage RO permeated water (11 ± 1 μS / cm)
Anode chamber supply water (Example 1, Comparative Example 1): treated water (hardness: <0.001 mg CaCO 3 / L)
Anode chamber supply water (Example 2): Two-stage RO permeated water (Hardness: 0.2 ± 0.1 mg CaCO 3 / L)
・ Anode chamber supply water (Comparative Example 2): One-stage RO permeated water (Hardness: 1 ± 0.1 mg CaCO 3 / L)
-Applied current value: 1.1A
Applied current density: 0.46 A / dm 2
Under the above conditions, Examples 1 and 2 and Comparative Examples 1 and 2 were continuously operated for 2000 hours, and the operating voltage and treated water quality (specific resistance) were measured. The measurement results are shown in Table 1. Moreover, after completion | finish of operation, each apparatus was disassembled and the production | generation state of the scale was confirmed visually. The confirmation results are shown in Table 2.

Figure 2013052365
Figure 2013052365

Figure 2013052365
Figure 2013052365

1 枠体
2 陰極
3 陽極
10〜16 流路
A アニオン交換体(アニオン層)
K カチオン交換体(カチオン層)
E1 陰極室
E2 陽極室
C1〜C4 濃縮室
D1〜D3 脱塩室
D1-1、D1-2 小脱塩室
DESCRIPTION OF SYMBOLS 1 Frame 2 Cathode 3 Anode 10-16 Flow path A Anion exchanger (anion layer)
K cation exchanger (cation layer)
E1 Cathode chamber E2 Anode chamber C1-C4 Concentration chamber D1-D3 Desalination chamber D1-1, D1-2 Small desalination chamber

Claims (7)

陰極が設けられた陰極室と、陽極が設けられた陽極室と、前記陰極室と前記陽極室との間に設けられた複数の濃縮室および少なくとも1つの脱塩室と、を有する電気式脱イオン水製造装置であって、
前記陰極と前記陽極との間の空間が、該陰極と該陽極との間に配列された複数のイオン交換膜によって複数の空間に区画され、
前記陰極と該陰極に対向する第1のアニオン交換膜との間の空間によって前記陰極室が形成され、
前記第1のアニオン交換膜と該第1のアニオン交換膜に対向する第1のカチオン交換膜との間の空間によって、前記陰極室に隣接する第1の濃縮室が形成され、
前記陽極と該陽極に対向する第2のアニオン交換膜との間の空間によって前記陽極室を兼ねる第2の濃縮室が形成され、
前記脱塩室は、前記第2のアニオン交換膜を介して前記陽極室を兼ねる前記第2の濃縮室に隣接し、
前記脱塩室には少なくともアニオン交換体が充填され、
前記陽極室を兼ねる前記第2の濃縮室には予めカチオン成分が除去された水が供給され、
前記陽極室を兼ねる前記第2の濃縮室を通過した水が電極水として前記陰極室に供給される電気式脱イオン水製造装置。
An electric desorption having a cathode chamber provided with a cathode, an anode chamber provided with an anode, a plurality of concentration chambers and at least one demineralization chamber provided between the cathode chamber and the anode chamber. An ion water production device,
The space between the cathode and the anode is partitioned into a plurality of spaces by a plurality of ion exchange membranes arranged between the cathode and the anode,
The cathode chamber is formed by a space between the cathode and the first anion exchange membrane facing the cathode,
A space between the first anion exchange membrane and the first cation exchange membrane facing the first anion exchange membrane forms a first concentration chamber adjacent to the cathode chamber,
A second concentration chamber also serving as the anode chamber is formed by a space between the anode and the second anion exchange membrane facing the anode;
The desalting chamber is adjacent to the second concentration chamber serving also as the anode chamber through the second anion exchange membrane,
The desalting chamber is filled with at least an anion exchanger,
The second concentration chamber also serving as the anode chamber is supplied with water from which the cation component has been previously removed,
An electrical deionized water production apparatus in which water that has passed through the second concentration chamber also serving as the anode chamber is supplied to the cathode chamber as electrode water.
前記陰極室に供給される前記電極水中の硬度成分濃度が0.3mgCaCO3/L以下である請求項1に記載の電気式脱イオン水製造装置。 The electric deionized water production apparatus according to claim 1, wherein a hardness component concentration in the electrode water supplied to the cathode chamber is 0.3 mg CaCO 3 / L or less. 前記脱塩室を通過した水の少なくとも一部が前記陽極室を兼ねる前記第2の濃縮室に供給される請求項1または請求項2に記載の電気式脱イオン水製造装置。   The electric deionized water production apparatus according to claim 1 or 2, wherein at least a part of the water that has passed through the demineralization chamber is supplied to the second concentration chamber that also serves as the anode chamber. 前記脱塩室にアニオン交換体およびカチオン交換体の双方が充填されている請求項
1乃至請求項3のいずれか一項に記載の電気式脱イオン水製造装置。
The electric deionized water production apparatus according to any one of claims 1 to 3, wherein the demineralization chamber is filled with both an anion exchanger and a cation exchanger.
前記脱塩室がイオン交換膜によって2つの小脱塩室に区画され、
第1の小脱塩室には少なくともカチオン交換体が充填され、
第2の小脱塩室には少なくともアニオン交換体が充填され、
第2の小脱塩室は前記第2のアニオン交換膜を介して前記陽極室を兼ねる前記第2の濃縮室に隣接し、
少なくとも前記第1の小脱塩室を通過した水の少なくとも一部が前記陽極室を兼ねる前記第2の濃縮室に供給される請求項4に記載の電気式脱イオン水製造装置。
The desalting chamber is partitioned into two small desalting chambers by an ion exchange membrane;
The first small desalting chamber is filled with at least a cation exchanger,
The second small desalting chamber is filled with at least an anion exchanger,
The second small desalting chamber is adjacent to the second concentration chamber serving also as the anode chamber via the second anion exchange membrane,
The electric deionized water production apparatus according to claim 4, wherein at least a part of the water that has passed through the first small demineralization chamber is supplied to the second concentrating chamber that also serves as the anode chamber.
前記第1の小脱塩室を通過した後に前記第2の小脱塩室を通過した水の少なくとも一部が前記陽極室を兼ねる前記第2の濃縮室に供給される請求項5に記載の電気式脱イオン水製造装置。   The at least part of the water that has passed through the second small desalting chamber after passing through the first small desalting chamber is supplied to the second concentrating chamber that also serves as the anode chamber. Electric deionized water production equipment. 前記陰極室にアニオン交換体が充填されている請求項1乃至請求項6のいずれか一項に記載の電気式脱イオン水製造装置。   The electric deionized water production apparatus according to any one of claims 1 to 6, wherein the cathode chamber is filled with an anion exchanger.
JP2011193148A 2011-09-05 2011-09-05 Electric deionized water production equipment Expired - Fee Related JP5866163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011193148A JP5866163B2 (en) 2011-09-05 2011-09-05 Electric deionized water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011193148A JP5866163B2 (en) 2011-09-05 2011-09-05 Electric deionized water production equipment

Publications (2)

Publication Number Publication Date
JP2013052365A true JP2013052365A (en) 2013-03-21
JP5866163B2 JP5866163B2 (en) 2016-02-17

Family

ID=48129841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011193148A Expired - Fee Related JP5866163B2 (en) 2011-09-05 2011-09-05 Electric deionized water production equipment

Country Status (1)

Country Link
JP (1) JP5866163B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001327971A (en) * 2000-05-19 2001-11-27 Kurita Water Ind Ltd Electro-deionizing apparatus
JP2001353498A (en) * 2000-06-12 2001-12-25 Hitachi Plant Eng & Constr Co Ltd Production method of pure water, and device
JP2004034004A (en) * 2002-07-08 2004-02-05 Kurita Water Ind Ltd Electrically deionizing apparatus
JP2006026488A (en) * 2004-07-14 2006-02-02 Ebara Corp Electric desalter
JP2007125455A (en) * 2005-11-01 2007-05-24 Japan Organo Co Ltd Operation method of electric deionized water production apparatus and electric deionized water production apparatus
JP2007528781A (en) * 2003-03-28 2007-10-18 ケミトリート ピーティーイー リミテッド Continuous electrodeionization apparatus and method
JP2009226315A (en) * 2008-03-24 2009-10-08 Japan Organo Co Ltd Electric deionized water manufacturing device and manufacturing method of deionized water
JP2010036142A (en) * 2008-08-07 2010-02-18 Panasonic Corp Water softener, and hot water supply device with the same
JP2010201361A (en) * 2009-03-04 2010-09-16 Japan Organo Co Ltd Apparatus for manufacturing electric deionized water and method for manufacturing deionized water using the apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001327971A (en) * 2000-05-19 2001-11-27 Kurita Water Ind Ltd Electro-deionizing apparatus
JP2001353498A (en) * 2000-06-12 2001-12-25 Hitachi Plant Eng & Constr Co Ltd Production method of pure water, and device
JP2004034004A (en) * 2002-07-08 2004-02-05 Kurita Water Ind Ltd Electrically deionizing apparatus
JP2007528781A (en) * 2003-03-28 2007-10-18 ケミトリート ピーティーイー リミテッド Continuous electrodeionization apparatus and method
JP2006026488A (en) * 2004-07-14 2006-02-02 Ebara Corp Electric desalter
JP2007125455A (en) * 2005-11-01 2007-05-24 Japan Organo Co Ltd Operation method of electric deionized water production apparatus and electric deionized water production apparatus
JP2009226315A (en) * 2008-03-24 2009-10-08 Japan Organo Co Ltd Electric deionized water manufacturing device and manufacturing method of deionized water
JP2010036142A (en) * 2008-08-07 2010-02-18 Panasonic Corp Water softener, and hot water supply device with the same
JP2010201361A (en) * 2009-03-04 2010-09-16 Japan Organo Co Ltd Apparatus for manufacturing electric deionized water and method for manufacturing deionized water using the apparatus

Also Published As

Publication number Publication date
JP5866163B2 (en) 2016-02-17

Similar Documents

Publication Publication Date Title
AU2014212394B2 (en) Rechargeable electrochemical cells
JP2007175647A (en) Electric deionized water production apparatus and deionized water production method
JP5295927B2 (en) Electric deionized water production equipment
JP5145305B2 (en) Electric deionized water production equipment
JP2012239965A (en) Electric deionized water producing apparatus
JP6105005B2 (en) Electric deionized water production apparatus and deionized water production method
JP5695926B2 (en) Electric deionized water production equipment
JP5114307B2 (en) Electric deionized water production equipment
JP5379025B2 (en) Electric deionized water production equipment
JP5489867B2 (en) Electric deionized water production equipment
JP2011121027A (en) Electric type deionized water producing apparatus
JP5415966B2 (en) Electric deionized water production apparatus and deionized water production method
JP5806038B2 (en) Electric deionized water production equipment
JP5661930B2 (en) Electric deionized water production equipment
JP5866163B2 (en) Electric deionized water production equipment
JP5186605B2 (en) Electric deionized water production apparatus and deionized water production method
JP5719707B2 (en) Electric deionized water production equipment
JP4915843B2 (en) Electric softening device, softening device and soft water production method
JP6542091B2 (en) Water treatment apparatus and water treatment method
JP6994351B2 (en) Electric deionized water production equipment
JP6034736B2 (en) Electric deionized water production equipment
JP2013013830A (en) Electric deionized water production apparatus and deionized water production method
JP2012096176A (en) Electric deionized water making apparatus
JP5282109B2 (en) Method for producing purified water from which endotoxin has been removed
JP2013013831A (en) Electric deionized water production apparatus and deionized water production method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140418

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160104

R150 Certificate of patent or registration of utility model

Ref document number: 5866163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees